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Abstract

An orientation D of a graph G is a digraph obtained from G by replacing each edge by exactly one
of the two possible arcs with the same ends. An orientation D of a graph G is a k-orientation if the
in-degree of each vertex in D is at most k. An orientation D of G is proper if any two adjacent vertices
have different in-degrees in D. The proper orientation number of a graph G, denoted by −→χ (G), is the
minimum k such that G has a proper k-orientation.

A weighted orientation of a graph G is a pair (D,w), where D is an orientation of G and w is an
arc-weighting A(D)→ N\{0}. A semi-proper orientation of G is a weighted orientation (D,w) of G such
that for every two adjacent vertices u and v in G, we have that S(D,w)(v) 6= S(D,w)(u), where S(D,w)(v)
is the sum of the weights of the arcs in (D,w) with head v. For a positive integer k, a semi-proper
k-orientation (D,w) of a graph G is a semi-proper orientation of G such that maxv∈V (G) S(D,w)(v) ≤ k.
The semi-proper orientation number of a graph G, denoted by −→χs(G), is the least k such that G has a
semi-proper k-orientation.

In this work, we first prove that −→χs(G) ∈ {ω(G) − 1, ω(G)} for every split graph G, and that, given
a split graph G, deciding whether −→χs(G) = ω(G) − 1 is an NP-complete problem. We also show that,
for every k, there exists a (chordal) graph G and a split subgraph H of G such that −→χ (G) ≤ k and
−→χ (H) = 2k− 2. In the sequel, we show that, for every n ≥ p(p+ 1), −→χs(P p

n) =
⌈
3
2
p
⌉
, where P p

n is the pth

power of the path on n vertices. We investigate further unit interval graphs with no big clique: we show
that −→χ (G) ≤ 3 for any unit interval graph G with ω(G) = 3, and present a complete characterization
of unit interval graphs with −→χ (G) = ω(G) = 3. Then, we show that deciding whether −→χs(G) = ω(G)
can be solved in polynomial time in the class of co-bipartite graphs. Finally, we prove that computing
−→χs(G) is FPT when parameterized by the minimum size of a vertex cover in G or by the treewidth of
G. We also prove that not only computing −→χs(G), but also −→χ (G), admits a polynomial kernel when
parameterized by the neighbourhood diversity plus the value of the solution. These results imply kernels

of size 4O(k2) and O(2kk2), in chordal graphs and split graphs, respectively, for the problem of deciding
whether −→χs(G) ≤ k parameterized by k. We also present exponential kernels for computing both −→χ (G)
and −→χs(G) parameterized by the value of the solution when G is a cograph. On the other hand, we show
that computing −→χs(G) does not admit a polynomial kernel parameterized by the value of the solution
when G is a chordal graph, unless NP ⊆ coNP/poly.

1 Introduction

All graphs in this work are simple and finite. For terms not defined here, we refer to [9, 12].

∗This work was supported by the STIC-AmSud project GALOP (Programa Regional STICAMSUD 19-STIC-05).
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A (proper) k-colouring of G is a mapping c : V (G)→ {1, . . . , k} such that c(u) 6= c(v) for every edge
uv ∈ E(G). The chromatic number of G, denoted by χ(G), is the minimum k such that G admits a
k-colouring. Determining the chromatic number of a given graph G is one of the most studied problems in
Graph Theory and it is one of the Karp’s NP-hard problems [18].

An orientation D of a graph G is a digraph obtained from G by replacing each edge by exactly one of
the two possible arcs with the same ends. An orientation D of a graph G is a k-orientation if the in-degree
of every vertex in D is at most k. An orientation D of G is proper if any two adjacent vertices have different
in-degrees in D. The proper orientation number of a graph G, denoted by −→χ (G), is the minimum k such
that G has a proper k-orientation. In other words, the values of the in-degrees in D define a proper colouring
of G (with the first colour being zero). The existence of proper orientations was implicitely demonstrated
by Borowiecki, Grytczuk and Piĺsniak in [10], who established that −→χ (G) ≤ ∆(G), where ∆(G) denotes the
maximum degree of G. Thus,

χ(G)− 1 ≤ −→χ (G) ≤ ∆(G). (1)

Afterwards, the proper orientation number was introduced in [1]. Since then, the proper orientation
number has been studied by several authors and some parameters related to proper orientations were defined
in the literature (for instance, see [1–7,11,13,14,19]).

In [5], it is shown that the proper orientation number of a tree is at most 4, and that there exist trees
whose proper orientation number equals 4. A natural question is to ask how it can be generalized.

Problem 1.1. Which graph classes containing the trees have bounded proper orientation number?

Araujo et al. [6] proved that this is the case for cacti (their proper orientation number is bounded by
7), but left open the question for the class of outerplanar graphs. It was partly answered by Ai et al. [3],
who proved that −→χ (G) ≤ 3 if G is a triangle-free 2-connected outerplanar graph, and −→χ (G) ≤ 4 if G is a
triangle-free bridgeless outerplanar graph. This question was already asked for the more general subclasses
of planar graphs, like outerplanar graphs or (all) planar graphs. In [5], the authors posed the following
more general problem. Is −→χ (G) upper bounded by a function of the treewidth or the maximum average
degree of G? Recall that the maximum average degree of G, denoted by mad(G), is the maximum
value of 2|E(H)|/|V (H)| over all subgraphs H of G. Note that mad(G) and χ(G) are upper bounded by
the treewidth of G plus one, for every graph G, and that mad(G) and χ(G) are bounded by constants in
(outer)planar graphs. The above problem has very recently been solved by Chen, Mohar and Wu [11] who
proved the following theorem, which can be seen as a generalization of a result of Dehghan and Havet [14]
on the semi-proper orientation number (Theorem 1.5).

Theorem 1.2 (Chen, Mohar and Wu [11]). For all graph G, we have

−→χ (G) =
mad(G)

2
+O

(
χ(G) logχ(G)

log logχ(G)

)
.

Dehghan and Havet [14] introduced the notion of semi-proper orientations. A weighted orientation of
a graph G is a pair (D,w), where D is an orientation of G and w is an arc-weighting A(D) → N \ {0}. A
semi-proper orientation of G is a weighted orientation (D,w) of G such that, for every two vertices u and
v adjacent in G, we have that S(D,w)(v) 6= S(D,w)(u), where the in-weight of a vertex v, denoted S(D,w)(v),
is the sum of the weights of the arcs in (D,w) for which v is the head, i.e.:

S(D,w)(v) =
∑

z∈N−D (v)

w(z, v),

where N−D (v) = {z | (z, v) ∈ A(D)} denotes the in-neighbourhood of v in D. For a positive inte-
ger k, a semi-proper k-orientation (D,w) of a graph G is a semi-proper orientation of G such that
maxv∈V (G) S(D,w)(v) ≤ k. The semi-proper orientation number of a graph G, denoted by −→χs(G), is
the least k such that G has a semi-proper k-orientation. A semi-proper k-orientation (D,w) is optimum
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if k = −→χs(G). In [14], it is shown that, for any graph G, there exists an optimum semi-proper orientation
(D,w) such that w : A(D)→ {1, 2}.

Note that every proper k-orientation D of a graph G gives a semi-proper k-orientation (D,w) of G such
that w(e) = 1 for every e ∈ A(D). Consequently, by (1), we have

χ(G)− 1 ≤ −→χs(G) ≤ −→χ (G) ≤ ∆(G). (2)

The degeneracy δ∗(G) of a graph G is defined as δ∗(G) = maxH⊆G δ(H), where δ(H) is the minimum
degree of a vertex in H. Let ω(G) denote the maximum size of a clique in G. It is well known that:

ω(G) ≤ χ(G) ≤ δ∗(G) ≤ ∆(G) + 1. (3)

A considerable difference between the parameters −→χ and −→χs is that the latter is monotone. Recall that
a graph parameter γ is monotone if γ(H) ≤ γ(G) for every subgraph H of G. As shown [6], the proper
orientation number is not monotone, even when restricted to trees. In contrast, the semi-proper orientation
number is.

Lemma 1.3 (Dehghan and Havet [14]). If H is a subgraph of G, then −→χs(H) ≤ −→χs(G).

When dealing with induced subgraphs, we have the following more precise statement.

Proposition 1.4. Let G be a graph and v a vertex of G. Then, −→χs(G− v) ≤ −→χs(G) ≤ −→χs(G− v) + 1.

Proof. By Lemma 1.3, −→χs(G − v) ≤ −→χs(G). Therefore it suffices to prove that −→χs(G) ≤ −→χs(G − v) + 1.
Let (D,w) be an optimum semi-proper orientation of G − v, i.e., with maximum in-weight −→χs(G − v). Let
(D′, w′) be the semi-proper orientation of G such that D′ agrees with D on G − v and v has in-degree 0.
Moreover, for every u ∈ N(v), let w′(v, u) = 1 (so the in-weight of u in G equals the in-weight of u in G− v
plus one). Finally, for every u ∈ V (G) \N [v] that has in-weight at least one in (D,w), choose one in-going
arc (x, u) and let w′(x, u) = w(x, u)+1. For every other arc e, w′(e) = w(e). Then, (D′, w′) is a semi-proper
orientation of G with maximum in-weight at most −→χs(G− v) + 1.

Proposition 1.4 shows another major difference between −→χ and −→χs, since there exist a graph G and a
vertex v ∈ V (G) such that −→χ (G − v) ≤ −→χ (G) − 2. Indeed, Araujo et al. exhibit a split graph G′ (a graph
whose vertex-set can be partitioned into a clique and a stable set) such that −→χ (G′) = 2ω(G′)− 2 and they
show that, for any split graph G, −→χ (G) ≤ 2ω(G) − 2. Therefore, for any vertex v of the clique of G′,
−→χ (G′ − v) ≤ 2ω(G′ − v)− 2 = 2ω(G′)− 4 = −→χ (G′)− 2 [4].

Thanks to Lemma 1.3, Dehghan and Havet [14] succeeded to prove lower and upper bounds for −→χs(G) in
function of mad(G) and δ∗(G):

Theorem 1.5 (Dehghan and Havet [14]). For any graph G, we have⌈
mad(G)

2

⌉
≤ −→χs(G) ≤

⌈
mad(G)

2

⌉
+ χ(G)− 1 and

⌈
δ∗(G) + 1

2

⌉
≤ −→χs(G) ≤ 2δ∗(G).

Recall that graphs with treewidth at most k satisfy that δ∗(G) ≤ k, and thus previous bounds apply to the
class of bounded treewidth graphs. Tight constant upper bounds for the classes of trees, cacti, outerplanar
and planar graphs are presented in [14].

Theorem 1.2 (and Theorem 1.5) states that the proper orientation number (and thus semi-proper ori-
entation number) of sparse graphs is bounded. It also has corollaries for classes of dense graphs. If every
graph G of a class has maximum average degree bounded by a function of the clique number ω(G), then
the proper and semi-proper orientation numbers are also bounded by a function of the ω(G). Split graphs,
interval graphs and cobipartite graphs form such graph classes. For each of theses classes, a natural question
is then to find the minimum function f (resp. g) such that −→χ (G) ≤ f(ω(G)) (resp. −→χs(G) ≤ g(ω(G))) for
every graph G in the class.
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Regarding the computational complexity, deciding if the proper orientation number −→χ (G) of a graph
G is at most 2 is an NP-complete problem even if G is planar and bipartite. Moreover, deciding whether
−→χ (G) ≤ k is NP-complete for a graph G and a positive integer k given as inputs [4]. In [7], Araujo et al.

showed that deciding whether −→χ (G) ≤ k can be solved in O(2t
2 ·k3t ·t ·n) time in the class of n-vertex graphs

with treewidth at most t. In other words, the problem is FPT parameterized by the treewidth of G plus
the value k of the solution. Moreover, they showed that the weighted version of this problem (when edges
of the input graph G have weights given as input) is W[1]-hard when parameterized only by the treewidth.
For semi-proper orientation, Dehgan and Havet [14] proved that deciding whether −→χs(G) = −→χ (G) is NP-
complete, even if G is planar and −→χs(G) = 2, and that deciding whether −→χs(G) ≤ 2 is also NP-complete even
if G is planar and bipartite.

Our contributions. In Section 2, we present some definitions that we need along the text. Then, in
Section 3, we prove that −→χs(G) ∈ {ω(G)− 1, ω(G)} for every split graph G, and that, given a split graph G,
deciding whether −→χs(G) = ω(G)− 1 is an NP-complete problem. Note that, in contrast, −→χ (G) ≤ 2ω(G)− 2
for every split graph G and that this bound is tight [4]. To conclude Section 3, we show that, for every k,
there exists a chordal graph G and a split subgraph H of G such that −→χ (G) ≤ k and −→χ (H) = 2k − 2. In
Section 4, we show that −→χs(P pn) =

⌈
3
2p
⌉

for every n ≥ p(p+ 1), where P pn is the pth power of the path on n

vertices. Since −→χs is monotone, this implies that −→χs(G) ≤
⌈

3
2 (ω(G)− 1)

⌉
for any unit interval graph G, and

that this bound is tight. On the other hand, since −→χ is not monotone, we investigate further unit interval
graphs with small clique number: we show that −→χ (G) ≤ 3 for any unit interval graph G with ω(G) = 3
and, through a complete characterization of unit interval graphs with −→χ (G) = ω(G) = 3, we design a linear-
time algorithm that computes −→χ (G) in this class of graphs. In Section 5, we show that deciding whether
−→χs(G) = ω(G) can be solved in polynomial time in the class of co-bipartite graphs. Finally, in Section 6, we
show that computing −→χs(G) is FPT when parameterized by the minimum size of a vertex cover in G or by

the treewidth of G. As corollaries, we obtain kernels of size 4O(k2) and O(2kk2), in chordal graphs and split
graphs respectively, for the problem of deciding whether −→χs(G) ≤ k parameterized by k. We also show that
this problem does not admit a polynomial kernel in the class of chordal graphs, unless NP ⊆ coNP/poly. We
also prove that not only computing −→χs(G), but also −→χ (G), admits a polynomial kernel when parameterized
by the neighbourhood diversity plus the value of the solution. While the complexity of computing −→χ and
−→χs is open in cographs [4], we present exponential kernels for both problems parameterized by the value of
the solution when restricted to cographs. We conclude with several open questions in Section 7.

2 Definitions

We denote by [n] the set of first n positive integers {1, . . . , n}. Each graph G in this work is simple, i.e.
there are no parallel edges nor loops. Thus, we consider edges as subsets of two distinct vertices, and we
use uv to denote an edge, as a shorthand for {u, v}. Given a graph G, we use V (G) and E(G) to denote its
vertex set and edge set, whose cardinalities are known as the order and size of G, and are denoted by n(G)
and m(G), respectively.

Given two subsets A and B of vertices, we denote by E(A,B) the set of edges having one end in A and the
other in B. The neighbourhood of a vertex v ∈ V (G) in a graph G is denoted by NG(v) = {u | uv ∈ E(G)}
and, since G is an undirected simple graph, the degree of v in G is dG(v) = |NG(v)|. Subscripts will be
omitted when G is clear from the context. Two vertices u and v in a graph G are twins if NG(u) = NG(v).
We denote by δ(G) and ∆(G) the minimum and maximum degree of a vertex in G, respectively.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G), in which case we also say that G is
a supergraph of H. When S ( V (G), the graph G − S is obtained from G by the removal of all vertices
in S and all the edges that are incident to at least one vertex in S. A subgraph H of G is a subgraph
induced by S ⊆ V (G), denoted as H = G[S], if H = G− (V (G) \ S).

A clique in G is a set of pairwise adjacent vertices. The cardinality of a largest clique in G is called the
clique number of G and denoted by ω(G). A stable (a.k.a. independent) set in G is a set of pairwise
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non-adjacent vertices in G. The cardinality of a largest stable set in G is called the stability number of G
and denoted by α(G). A graph G whose vertex set is itself a clique is called complete.

A (u, v)-path on k vertices in a graph G is a sequence Pk = (u = v1, e1, v2, e2, . . . , ek−1, vk = v) satisfying
ei = vivi+1 ∈ E(G) for every i ∈ {1, . . . , k− 1}, and vi 6= vj for every 1 ≤ i 6= j ≤ k. A (u, v)-path P in G is
Hamiltonian if P traverses/contains all vertices of G. A graph G is connected if there exists a (u, v)-path
in G for any u, v ∈ V (G). A cycle on k vertices in G is a sequence Ck = (u = v1, e1, v2, e2, . . . , ek−1, vk = u)
satisfying ei = vivi+1 ∈ E(G) for every i ∈ {1, . . . , k − 1}, and vi 6= vj for every 1 ≤ i 6= j ≤ k − 1. A graph
G is chordal if every cycle Ck in G such that k ≥ 4 has a chord, i.e., an edge linking two non-consecutive
vertices of Ck. We do the usual abuse of notation of referring to the subgraph (and not the sequence) of G
corresponding to a path or a cycle by the same nomenclature.

A matching in G is a set of pairwise non-intersecting (i.e., with no end in common) edges. An anti-
matching is a set of pairwise non-intersecting pairs of non-adjacent vertices. In other words, it is a matching
in the complement of G. Let M be a matching or an anti-matching. For every edge uv of M , we say that u
is matched with v by M , and write u = M(v) and M(u) = v. We say that M saturates a set of vertices
A if every vertex a ∈ A is matched by M .

Similarly, each directed graph D = (V,A) in this work is simple, i.e., has no parallel arcs, no symmetric
arcs, and no loops. Given a digraph D, we use V (D) and A(D) to denote its vertex set and arc set; and
n(D) and m(D) to denote their cardinalities, respectively. If (u, v) ∈ A(D) is an arc in D, the tail of (u, v) is
u and its head is v. Let v be a vertex of D. The out-neighbourhood of v, denoted by N+

D (v), is the set of
vertices u such that (v, u) ∈ A(D). The in-neighbourhood of v, denoted by N−D (v), is the set of vertices u
such that (u, v) ∈ A(D). The out-degree d+

D(v) (resp. the in-degree d−D(v)) of v is |N+
D (v)| (resp. |N−D (v)|).

The notions of (Hamiltonian) path, cycle, (induced) subgraph, have their straightforward notions in digraphs
called as (resp. Hamiltonian) directed path, directed cycle, (induced) subdigraph. For any W ⊆
V (D), we denote by D〈W 〉 the subdigraph induced by W in D, and we denote by D −W the digraph
D〈V (D) \W 〉.

A tournament T is an orientation of a complete graph G. A regular tournament T is a tournament
where d−(v) = d+(v) for every vertex v ∈ V (T ). A transitive tournament T is a tournament such that
if (u, v), (v, w) ∈ A(T ), then (u,w) ∈ A(T ), for every u, v, w ∈ V (T ).

3 Split graphs

A split graph is a graph whose vertex set can be partitioned into a clique and a stable set. A split
partition of a split graph G is a bipartition (K,S) of V (G) where K is a clique and S is a stable set.

Theorem 3.1. If G is a connected split graph, then −→χs(G) ∈ {ω(G)− 1, ω(G)}.

Proof. Let G be a split graph. We have −→χs(G) ≥ χ(G)− 1 = ω(G)− 1.
Let (K,S) be a split partition of G with K = {v1, . . . , vk}. Let D be the orientation of G such that

D〈K〉 is a transitive tournament with Hamiltonian directed path (v1, . . . , vk) and all the edges between K
and S are oriented towards S. Let w be an arc-weighting of D such that every arc of D〈K〉 has weight 1,
and every vertex in S has in-weight ω(G). Such an arc-weighting exists because d−D(v) ≤ |K| ≤ ω(G) for all
v ∈ S. For every i ∈ [k], we have S(D,w)(vi) = i− 1 < k = ω(G). Hence (D,w) is a semi-proper orientation
of G, so −→χs(G) ≤ ω(G).

A natural question that arises with Theorem 3.1 is whether one can decide in polynomial time if −→χs(G) =
ω(G)− 1. We show in the sequel that this is not possible unless P = NP.

Theorem 3.2. It is NP-complete to decide whether a given split graph G has semi-proper orientation number
equal to ω(G)− 1.

Proof. We reduce the well-known 3-SAT problem to ours. Let Φ be a 3-SAT formula with n variables
x1, . . . , xn and m clauses C1, . . . , Cm. In addition, we assume that each clause has exactly three literals.
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We construct the split graph GΦ as follows: We create a clique K of size 4n − 3 which is the disjoint
union of {x0}∪

⋃
i∈[n]{xi, x̄i} and two sets D and D′ of size n−2. We create a stable set S of size 2n+m+1

which is the disjoint union of {y0} ∪
⋃
i∈[n]{yi, y′i} and {Cj | j ∈ [m]}.

We then add edges between K and S as follows:

• we link y0 to all vertices of K except x0;

• for every i ∈ [n], we connect yi to all vertices of K except xi, x̄i and i−1 vertices in D, and we connect
y′i to all vertices of K except xi, x̄i and i− 1 vertices in D′;

• for every j ∈ [m], we connect the clause Cj to all vertices of K except its three literals and n − 2
vertices in D ∪D′.

By construction K is a maximum clique of G so ω = ω(G) = 4n− 3. We shall prove that −→χs(G) = ω− 1
if and only if Φ is satisfiable.

Assume first that G admits a semi-proper weighted orientation (D,w) with maximum in-weight ω − 1.
Since K is a clique of size ω, for every k ∈ {0, . . . , ω − 1} there is exactly one vertex of K with in-weight
k. Thus D〈K〉 is a transitive tournament, all the arcs of D〈K〉 have weight 1, and all edges in E(K,S) are
oriented towards their end in S.

Consider now y0. We have S(D,w)(y0) ≥ d−D(y0) = dG(y0) = ω − 1. Hence S(D,w)(y0) = ω − 1 and so x0

has also in-weight ω − 1, since D is proper.
For every i ∈ [n], let zi be the vertex of K with in-weight ω − 1− i.

Claim 3.2.1. zi ∈ {xi, x̄i} for every i ∈ [n].

Proof: By induction on i ∈ [n]. Observe that both yi and y′i are adjacent to {x0, . . . , xi−1}. Thus, by the
induction hypothesis and because S(D,w)(x0) = ω− 1, they are adjacent to a vertex with in-degree ω− 1− k
for every k ∈ {0, . . . , i − 1}. But, by construction, yi and y′i have in-weight ω − 1 − i in D. Therefore,
S(D,w)(yi) = S(D,w)(y

′
i) = ω − 1 − i. Now zi is neither adjacent to yi nor y′i (in particular, zi /∈ D ∪ D′).

Hence, by construction, zi is either xi or x̄i. �
Let ϕ be the truth assignment defined by ϕ(xi) = true if xi = zi and ϕ(xi) = false if zi = x̄i. This is

well-defined by the above claim. Consider a clause Cj = `i1 ∨ `i2 ∨ `i3 , with `ip ∈ {xip , x̄ip} for all p ∈ [3]. It
has degree ω − 1− n in G and so in-degree ω − 1− n in D. Hence sj = S(D,w)(Cj) ≥ ω − 1− n. Moreover,
Cj is adjacent to x0. Thus, sj must be exactly the in-weight of one of the vertices corresponding to literals
belonging to Cj and so, by our definition of ϕ, Cj is satisfied. Consequently, ϕ satisfies Φ.

Reciprocally, assume that there is a truth assignment ϕ satisfying Φ. Let zi = xi if ϕ(xi) = true and
let zi = x̄i if ϕ(xi) = false. Orient K in a transitive tournament such that x0 has in-degree ω − 1 and zi
has in-degree ω − 1 − i for all i ∈ [n]. Orient all the edges between K and S from K to S. This results in
the orientation D. Let us now assign weights on the arcs of D. All arcs with both end-vertices in K are
weighted by 1. For each i ∈ [n], we assign weights to the arcs entering yi and y′i so that they both have
in-weight ω − 1− i. For each j ∈ [m], the clause Cj has a literal which is true, so Cj is non-adjacent to zij
for some ij ∈ [n]. Hence we assign weights to the arcs entering Cj so that Cj has in-weight ω − 1− ij . The
resulting weighted orientation (D,w) is a semi-proper orientation of G with maximum in-weight ω − 1.

Let us now use Theorem 3.1 to argue that, for a given chordal graph G, one may find a subgraph H ⊆ G
such that −→χ (H) ≥ 2−→χ (G)− 2.

Proposition 3.3. Every graph H has a supergraph G such that −→χ (G) ≤ −→χs(H).

Proof. Let H be a graph, and (D,w) be an optimal semi-proper orientation of H. Let G be the graph
obtained from H by adding for each vertex v ∈ V (H) a set Sv of S(D,w)(v) − d−D(v) new vertices of degree
1 adjacent to v, and let D′ be the orientation of G obtained from D by orienting all the edges between the
new vertices and V (H) towards V (H). Every new vertex is a source in D′ and, by the construction of G,
we have that S(D,w)(v) = d−D′(v). Therefore, D′ is a proper orientation of G with maximum in-degree equal
to −→χs(H).
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Observe that, if the graph H is chordal (resp. a tree), then the supergraph G given by the proof of
Proposition 3.3 is also chordal (resp. a tree). Araujo et al. [4] proved that there exists a split graph H such
that −→χ (H) = 2ω(H)− 2. Hence with Theorem 3.1, this implies the following.

Corollary 3.4. For every k, there exists a (chordal) graph G and a (split) subgraph H of G such that
−→χ (G) ≤ k and −→χ (H) = 2k − 2.

Problem 3.5. Does there exists a function θ such that −→χ (H) ≤ θ(−→χ (G)) for every graph G and every
subgraph H of G?

4 Unit interval graphs

A graph G is an interval graph if it can be obtained from a set of intervals on the real line, by adding
a vertex for each interval, and adding an edge for each pair of vertices whose intervals intersect. It is the
intersection graph of the intervals. A unit interval graph G is an interval graph that can be obtained
from intervals on the real line of that are of the same length.

If G is a unit interval graph, then ∆(G) ≤ 2ω(G)− 2, so by Equation (2), we get the following.

Proposition 4.1. If G is a unit interval graph, then −→χs(G) ≤ −→χ (G) ≤ 2ω(G)− 2.

A unit interval graph with clique number 2 is the disjoint union of paths. It is easy to check that a path
of order at least 4 has (semi-)proper orientation number equal to 2.

Let P kn be the k-th power of the path of order n, i.e., the graph with vertex set {v1, . . . , vn} and edge
set {vivj | i− j ∈ [k]}. The following proposition is easy to prove and well known.

Proposition 4.2. Every unit interval graph of order n with clique number at most ω is a subgraph of Pω−1
n .

So, let us present our result on powers of paths.

Proposition 4.3. Let b and ω be positive integers such that b > ω, and let n = b × ω. Then −→χs(Pω−1
n ) =

−→χ (Pω−1
n ) =

⌈
3
2 (ω − 1)

⌉
.

Proof. For every i ∈ [b], let Ci = {vj | (i− 1)ω + 1 ≤ j ≤ i · ω}. Observe that each Ci is a clique.

Let (D,w) be a semi-proper weighted orientation of Pω−1
n and let k be its maximum in-weight. Therefore

all vertices of Ci have different in-weights and so∑
v∈V (G)

S(D,w)(v) =
∑
i∈[b]

∑
v∈Ci

S(D,w)(v) ≤ b(k + k − 1 + . . .+ k − ω + 1) = b · ω
(
k − 1

2
(ω − 1)

)
(4)

But ∑
v∈V (G)

S(D,w)(v) ≥
∑

v∈V (G)

d−D(v) ≥ |E(G)| = n(ω − 1)− 1

2
ω(ω − 1) = b · ω

(
ω − 1− ω − 1

2b

)
. (5)

Equations (4) and (5) (divided by b · ω) yield

k ≥ 3

2
(ω − 1)− ω − 1

2b
>

3

2
(ω − 1)− 1

2
.

Since k, b and ω are integers, we have k ≥
⌈

3
2 (ω − 1)

⌉
.

Consequently, −→χs(Pω−1
n ) ≥

⌈
3
2 (ω − 1)

⌉
.

Let us now prove that −→χ (Pω−1
n ) ≤

⌈
3
2 (ω − 1)

⌉
. We distinguish two cases depending on whether ω is odd

or even.

7



• Assume first that ω is odd. Take an orientation D of G such that for every i ∈ [b − 1], all edges in
E(Ci+1, Ci) are oriented towards Ci, D〈Cb〉 is a transitive tournament with Hamiltonian directed path
(vn−ω+1, . . . , vn), and for every i ∈ [b− 1], D〈Ci〉 is a regular tournament.

For every j ∈ [ω], we have d−D(v(b−1)ω+j) = j − 1. For every i ∈ [b − 1] and every j ∈ [ω], the

vertex v(i−1)ω+j has w−1
2 in-neighbours in Ci and j − 1 in-neighbours in Ci+1. Hence d−D(v(i−1)ω+j) =

ω−1
2 + j − 1. Consequently D is a proper orientation of D with maximum in-degree 3

2 (ω − 1).

• Assume now that ω is even. Take an orientation D of G such that for every i ∈ [b − 1], all edges in
E(Ci+1, Ci) are oriented towards Ci, D〈Cb〉 is a transitive tournament with Hamiltonian directed path
(vn−ω+1, . . . , vn), and for every i ∈ [b − 1], D〈Ci〉 is a quasi-regular tournament such that, for every
1 ≤ j ≤ ω

2 , v(i−1)ω+j has in-degree ω−2
2 and for every ω

2 + 1 ≤ j ≤ ω v(i−1)ω+j has in-degree ω
2 .

For every j ∈ [ω], the vertex d−D(v(b−1)ω+j) = j − 1. Let i ∈ [b − 1] and j ∈ [ω]. Since v(i−1)ω+j

has j − 1 in-neighbours in Ci+1, it follows that and d−D(v(i−1)ω+j) = ω−2
2 + j − 1 if 1 ≤ j ≤ ω

2 , and

d−D(v(i−1)ω+j) = ω
2 + j − 1 if ω

2 + 1 ≤ j ≤ ω. Consequently D is a proper orientation of D with

maximum in-degree 3
2ω − 1 =

⌈
3
2 (ω − 1)

⌉
.

4.1 Unit interval graphs with clique number 3

In this subsection, we prove (in Lemma 4.4) that if G is an unit interval graph with clique number 3, then
−→χs(G) ≤ −→χ (G) ≤ 3. Moreover, we prove that if ω(G) ≤ 3, then one can decide in linear time whether
−→χ (G) = 2 (in Lemma 4.6). Overall, this gives a linear time algorithm that computes −→χ (G) in the class of
unit interval graph G with ω(G) = 3 (Theorem 4.7).

It is easy to check that every connected unit interval graph of order n contains Pn as a subgraph.
Moreover, every unit interval graph G with ω(G) ≤ 3 is a subgraph of P 2

n . Let us start with a result on
proper 3-orientations of such graphs.

Lemma 4.4. Let Pn = (v1, . . . , vn) be an n-node path and G be a graph such that Pn ⊆ G ⊆ P 2
n , for n ≥ 2.

Then, G admits a proper 3-orientation D such that d−D(v1) ≤ 1, d−D(v2) ≤ 2 and d−D(vn) ≤ 1.

Proof. A nice orientation of G is a proper 3-orientation of G such that d−D(v1) ≤ 1, d−D(v2) ≤ 2 and
d−D(vn) ≤ 1.

We shall prove by induction on the number n of vertices of G that G admits a nice orientation.
If n ≤ 4, then −→χ (G) ≤ ∆(G) ≤ 3. So G admits a proper 3-orientation. If G is a path, then this

orientation is necessarily nice. If G is not a path, then it is one of the graphs whose nice orientation is
depicted in Figure 1.

v1 v2 v3 v1 v2 v3 v4 v1 v2 v3 v4

v1 v2 v3 v4

Figure 1: Nice orientations when n ≤ 4.

Thus, assume n ≥ 5 and any graph H such that Pk ⊆ H ⊆ P 2
k with 1 ≤ k < n has a nice orientation.

Let G be a graph such that Pn ⊆ G ⊆ P 2
n .
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We shall show a nice orientation of G. We distinguish several cases. In order to shorten the writing,
in all cases the orientation is explicitly shown and thus one can verify that the constraints d−D(v1) ≤ 1 and
d−D(v2) ≤ 2 are satisfied. The fact that d−D(vn) ≤ 1 will always be a consequence of the induction hypothesis.
Therefore we shall only explicitly check that the orientation is proper.

1. d(v2) = 2 and d(v3) = 2.

In this case, we extend a nice orientation D3 of G − {v1, v2, v3} into a nice orientation D of G as
depicted in Figure 2. This orientation is proper since d−D(v4) = d−D3

(v4) ≤ 1 because D3 is nice.

v1 v2 v3 v4 v5

Figure 2: The case d(v2) = 2 and d(v3) = 2.

2. d(v2) = 2 and d(v3) = 3. If v1v3 ∈ E(G), then we extend a nice orientation D3 of G−{v1, v2, v3} into a
nice orientation D of G as depicted in Figure 3. This orientation is proper since d−D(v4) = d−D3

(v4) ≤ 1
because D3 is nice.

v1 v2 v3 v4 v5

Figure 3: The case d(v2) = 2, d(v3) = 3 and v1v3 ∈ E(G).

If v3v5 ∈ E(G), then we extend a nice orientation D2 of G− {v1, v2} into a nice orientation D of G as
depicted in Figure 4. This orientation is proper since d−D(v3) = d−D2

(v3) ≤ 1, because D2 is nice.

v1 v2 v3 v4 v5

Figure 4: The case d(v2) = 2, d(v3) = 3 and v1v3 ∈ E(G).

3. d(v2) = 2 and d(v3) = 4. In this case, we extend a nice orientation D3 of G − {v1, v2, v3} into a
nice orientation D of G as in Figure 5. This orientation is proper since d−D(v4) = d−D3

(v4) ≤ 1 and

d−D(v5) = d−D3
(v5) ≤ 2.

v1 v2 v3 v4 v5

Figure 5: The case d(v2) = 2 and d(v3) = 4.

4. d(v2) = 3 and d(v3) = 2. Let D4 be a nice orientation of G− {v1, v2, v3, v4}. Depending on the degree
of v4 in G, extend it into a nice orientation D of G as depicted in Figure 6, (d(v4) = 3 left and d(v4) = 4

9



v1 v2 v3 v4 v5 v1 v2 v3 v4 v5 v6

Figure 6: The case d(v2) = 3 and d(v3) = 2.

right). In both cases, D is proper since d−D(v5) = dD4
(v5) ≤ 1 and dD(v6) = dD4

(v6) ≤ 2 (in case
n ≥ 6) because D4 is nice.

5. d(v2) = 3 and d(v3) = 3.

If v1v3 ∈ E(G), then we extend a nice orientation D3 of G−{v1, v2, v3} into a nice orientation D of G
as depicted in Figure 7. This orientation is proper since d−D(v4) = d−D3

(v4) ≤ 1 because D3 is nice.

v1 v2 v3 v4

Figure 7: The case d(v2) = 3, d(v3) = 3 and v1v3 ∈ E(G).

If v3v5 ∈ E(G), then we extend a nice orientation D3 of G−{v1, v2, v3} into a nice orientation D of G as
depicted in Figure 8. This orientation is proper since d−D(v4) = d−D3

(v4) ≤ 1 and d−D(v5) = d−D3
(v5) ≤ 2

because D3 is nice.

v1 v2 v3 v4 v5

Figure 8: The case d(v2) = 3, d(v3) = 3 and v3v5 ∈ E(G).

6. d(v2) = 3 and d(v3) = 4. In this case, we extend a nice orientation D3 of G − {v1, v2, v3} into a nice
orientation D of G as depicted in Figure 9. This orientation is proper since d−D(v4) = d−D3

(v4) ≤ 1 and

d−D(v5) = d−D3
(v5) ≤ 2 because D3 is nice.

v1 v2 v3 v4 v5

Figure 9: The case d(v2) = 3 and d(v3) = 4.

The proof of Lemma 4.4 is constructive. That is, given a unit interval graph G with clique number
at most 3, it allows to build a proper orientation with proper orientation number at most 3. Recall that
−→χ (H) ≥ ω(H)−1 for any graph H, and so −→χ (G) ∈ {2, 3}. A simple dynamic programming algorithm would
allow to decide whether −→χ (G) = 2, as the one presented in [7] for graphs of bounded treewidth. To conclude
this section, we provide a full characterization of unit interval graphs with clique number 3 and with proper
orientation number 2, which leads to a simpler algorithm.

As noticed in [4]:
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Proposition 4.5. Let G be any graph with −→χ (G) = ω(G)− 1. Then, for any optimal proper orientation D
and any maximum clique K of G, we have:

(a) the orientation D restricted to K induces a transitive tournament;

(b) {d−D(v) | v ∈ V (K)} = {0, . . . , ω(G)− 1}; and

(c) for every u ∈ V (K) and v /∈ V (K), uv ∈ A(D).

Thus, if K ′ is another maximum clique of G, {d−D(v) | v ∈ V (K) ∩ V (K ′)} = {0, . . . , |V (K) ∩ V (K ′)| − 1}.

Now, let us present a characterization of unit interval graphs with ω(G) = 3 and −→χ (G) = 2.

Lemma 4.6. Let G = (V,E) be a connected unit interval graph with ω(G) = 3. Then, −→χ (G) = 2 if and
only if G has no induced subgraph isomorphic to one of the graphs depicted in Figure 10.

(a) (b)

(c)

(d)

x

(e) In addition to be an induced subgraph, in this case,
the vertex x must have degree 1 in G.

(f)

(g)

(h)

Figure 10: List of forbidden induced subgraphs for a unit interval graph G with ω(G) = 3 and −→χs(G) = 2.

Proof. Recall, by Lemma 4.4 and the fact that −→χ (G) ≥ ω(G)− 1 for any graph, −→χ (G) ∈ {2, 3}.
Let us first prove that if one of the induced subgraphs in Figure 10 appears in G, then −→χ (G) = 3.

Towards a contradiction, suppose that −→χ (G) = 2. Let D be a proper 2-orientation of G.
Note that every triangle (clique of size three) in G contains exactly 1 vertex of in-degree 0 in D. For

any three triangles K,K ′,K ′′ in G such that K ∩ K ′ 6= ∅ and K ∩ K ′′ 6= ∅, by Proposition 4.5, there is
K ∩K ′ ∩K ′′ 6= ∅. Therefore, G does not contain any of the graphs in Figures 10b and 10c.

Moreover, it is easy to check that, since G is a unit interval graph and K ∩K ′ ∩K ′′ 6= ∅, we have that G
contains the graph in Figure 10a, and the middle vertex of the path is of in-degree 0 in D. But, as it is easy
to check, there exists no proper 2-orientation of the graph in Figure 10a with the middle vertex of in-degree
0. A contradiction.
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By Proposition 4.5, in any proper 2-orientation of G, any edge xy with x in a triangle and y not in this
triangle must be oriented from x to y. Therefore, if G contains the induced subgraph depicted in Figure 10d,
there is no way to orient the edge between the two triangles in a proper 2-orientation of G.

Now, if G contains an induced diamond H (two triangles intersecting on an edge) as subgraph, there
exists only one way (up to symmetry) to orient it in a proper way respecting that −→χ (G) = 2. See Figure 11.
In particular, the two vertices x and y that do not belong to the intersection of the triangles must have
in-degree 2 and the edges between x (resp., y) and vertices not in V (H) must be oriented from x (resp., from
y). It can be checked that there is no way to extend this orientation in the graphs of Figures 10e to 10h
while keeping −→χ (G) = 2.

x y

Figure 11: Single proper orientation (up to symmetry of the central edge) of a diamond subgraph of a graph
G with −→χ (G) = 2.

Now, let us show that any unit interval graph G with ω(G) = 3 and with no induced subgraphs of
Figure 10 satisfies −→χ (G) = 2.

Let P = (v1, . . . , vn) be such that G is a subgraph of P 2.
Let X ⊆ V be the set of vertices not in any triangle. Let B1, . . . , Br be the connected components (called

blocks) of G−X, in the order they appear in P (i.e., for any vo ∈ Bi and vp ∈ Bj with i < j, then o < k).
Note that, by the assumption, each Bi is isomorphic to some graph depicted in Figure 12.

vi vi+1 vi+2

vi vi+1 vi+2 vi+3

vi vi+1 vi+2 vi+3 vi+4

Figure 12: Possible blocks.

Let Q1, . . . , Q` be the maximal subpaths with at least two vertices of P with internal vertices not in
any triangle (note that the end of these paths may belong to some triangle) in the order they appear in P
(note that r − 1 ≤ ` ≤ r + 1). If v1 ∈ V (B1) (in which case ` ≤ r), we set P1 = {v1} and Pi = Qi−1 for
every 2 ≤ i ≤ ` + 1, and otherwise, Pi = Qi for every 1 ≤ i ≤ `. If vn ∈ Br (in which case ` ≤ r), we
set Pr+1 = {vn}. Note that the Pi’s are pairwise vertex-disjoint and that, for every 1 < i ≤ r, |V (Pi)| ≥ 3
(because of the forbidden induced subgraph depicted in Figure 10d), and |V (P1)|, |V (Pr+1)| 6= 3 (because
of the forbidden induced subgraph depicted in Figure 10e). Moreover, note that, for every 1 ≤ i ≤ r, Bi
intersects Pi in one vertex, denoted by li (the “left” vertex of Bi and the “right” end of Pi), and Pi+1 in one
vertex, denoted by ri (the “right” vertex of Bi and the “left” end of Pi+1).

Let r be the number of blocks. Note that r ≥ 1 since ω(G) = 3. We show by induction on 1 ≤ j ≤ r,
that:

• if Bj is a diamond, then there exists a proper 2-orientation of Yj =
⋃

1≤i≤j
G[Pi ∪ Bi] such that rj has

in-degree 2;
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• otherwise, there are two proper 2-orientations of Yj one in which rj has in-degree 1 and another such
that rj has in-degree 2.

Furthermore, we also prove that when j = r, then one can extend a proper 2-orientation of Yr to G.
If B1 is a diamond, let us orient P1 (if P1 6= {v1}) in such a way that l1 has in-degree 0 (in P1), and the

neighbour of l1 has in-degree different than 2 (looking at Figure 13, it is possible since the length of P1 is
not 2 by assumption). Then, orient B1 as in Figure 14b, so that r1 has in-degree 2. If B1 is a single triangle
or two triangles intersecting in one vertex, let us give to P1 (if P1 6= {v1}) any orientation given in Figure 13
(so l1 has in-degree 0) and then: if B1 is one triangle, then orient B1 in such a way that l1 has in-degree 0
(Figure 14a, and, if B1 consists of two triangles intersecting in one vertex, then orient B1 in such a way that
l1 has in-degree 2 (Figure 14c). In both cases, there are two possible such orientations, one leading r1 with
in-degree 1 and the other with r1 with in-degree 2 (see Figures 14a and 14c).

Let us assume, by induction on j where 1 ≤ j ≤ r, that a proper 2-orientation of Yj =
⋃

1≤i≤j
G[Pi ∪ Bi]

has been obtained for some 1 ≤ j ≤ r, such that: if Bj is a diamond, then rj has in-degree 2, and otherwise,
we have both a proper 2-orientation of Yj such that rj has in-degree 1 and a proper 2-orientation of Yj such
that rj has in-degree 2. Note that this is satisfied for j = 1 by the previous paragraph.

If j = r and Pr+1 6= {vn} (as otherwise we already have a proper 2-orientation of G), then a proper
2-orientation of Pr+1 extending the one of Yr can be found according to Figure 13. Recall that, if Br is a
diamond, then, by assumption, Pr+1 has length different than 2 and so the neighbour of rr in Pr+1 can be
chosen with in-degree different than 2. Hence, one can obtain a proper 2-orientation of G.

Suppose then that 1 ≤ j < r. There are several cases to consider depending whether Bj and Bj+1 are
diamonds or not.

• If Bj and Bj+1 are not diamonds. Consider a proper 2-orientation of Yj such that rj has in-degree 1,
which exists by induction hypothesis. Give to Pj+1 any orientation with the neighbour of its left end
rj+1 having in-degree 6= 1 (which exists as in Figure 13 since, by assumption, the length of Pj+1 is at
least 2). Finally,

– if Bj+1 is a triangle, there are two possible orientations of Bj+1 such that lj+1 has in-degree 0:
one with rj+1 with in-degree 1 and the other one with rj+1 with in-degree 2 (see Figure 14a);

– otherwise Bj+1 consists of two triangles intersecting in one vertex, and then there are two possible
orientations of Bj+1 such that lj+1 has in-degree different from the left neighbour of lj+1 in Pj+1:
one with rj+1 with in-degree 1 and the other one with rj+1 with in-degree 2 (see Figure 14c).

• If Bj is not a diamond and Bj+1 is a diamond. Orient Bj+1 as in Figure 14b and so rj+1 and lj+1

have both in-degree 2. Then, give to Pj+1 an orientation such that lj+1 has in-degree 2. As shown
in Figure 13, here there exists such orientation in which the right neighbour of rj has in-degree 1 or,
resp., 2 because Pj+1 has length 4 or larger than 6, by assumption. Then, it can be completed into a
proper orientation of Yj+1 by using a proper 2-orientation of Yj such that rj has in-degree 2 or, resp.,
1 that exists by induction.

• If Bj is a diamond and Bj+1 is not a diamond. Then, by induction, there exists a proper 2-orientation
of Yj such that rj has in-degree 2. Then, orient Pj+1 using an orientation such that the neighbour of
rj in Pj+1 has in-degree 1. Note that the in-degree of the left neighbour of lj+1 is either 1 or 2 (see
Figure 13). Then,

– if Bj+1 is a triangle, there are two possible orientations of Bj+1 such that lj+1 has in-degree 0:
one with rj+1 with in-degree 1 and the other one with rj+1 with in-degree 2 (see Figure 14a);

– otherwise Bj+1 consists of two triangles intersecting in one vertex and there are two possible
orientations of Bj+1 such that lj+1 has in-degree different from its left neighbour: one with rj+1

with in-degree 1 and the other one with rj+1 with in-degree 2 (see Figure 14c).
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1 0 0 2 0 0 2 1 0

(a) Single possible orientations for paths of length at most 3 (up to left/right symmetry).

0 2 0 2 0 0 1 2 1 0

(b) Single possible orientations for paths of length 4. Note that no such orientation allows the two neighbours of the
ends to have different in-degree.

0 2 0 2 1 0

0 2 0 1 2 0

(c) Single possible orientations for paths of length 5 (up to symmetry). Note that no such orientation allows the two
neighbours of the ends to have both in-degree 1.

0 2 0 2 0 2 0

0 1 2 0 2 1 0

0 1 2 1 0 2 0

(d) Possible orientations for paths of length 2`+ 1, for ` ≥ 3. Note that, it is possible to ensure that the neighbours
of the ends have in-degree 1 or 2. The case ` = 2 can be extended to any path of length 2`+ 1, ` ≥ 3, as follows.

Let uv ∈ E such that the in-degree of u equals 0. Then subdivide twice uv into a path (u, x, y, v) with arcs ux, xy
and vy.

0 2 0 2 0 1 2 0

0 1 2 1 0 2 1 0

0 1 2 1 0 1 2 0

(e) Possible orientations for paths of length 2`, for ` ≥ 4. Note that, it is possible to ensure that the neighbours of
the ends have in-degree 1 or 2. The case ` = 4 can be extended to any path of lenght 2`, ` ≥ 4, as follows. Let

uv ∈ E such that the in-degree of u equals 0. Then subdivide twice uv into a path (u, x, y, v) with arcs ux, xy and
vy.

Figure 13: Orientations of paths such that both ends are sources (but in the case of the path of length one).
Integers in the nodes refer to their in-degree.

• If both Bj and Bj+1 are diamonds. Then path Pj+1 between Bj and Bj+1 is of length 4 or at least 6 by
assumption. It is possible to orient it in such a way that the neighbours of lj and rj+1 have in-degree
different from 2 (see Figure 13). Therefore, we may orient Bj+1 as in Figure 14b such that we obtain
a proper 2-orientation of Yj+1 with rj+1 with in-degree 2.

So, we are ready to prove the main result of this section.

Theorem 4.7. For any unit interval graph G with ω(G) = 3, then −→χ (G) ∈ {2, 3}. Moreover, there exists a
linear-time algorithm to compute −→χ (G).
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0 2 1 0 1 2

1 2 0

1 0 2

2 1 0 2 0 1

(a) Possible orientations of K3 (recall that the order of the vertices (from left to right) is the same as in P ).

2 1 0 2

(b) Single orientation of the diamond (up to reverse the central edge).

1 2 0 2 1 1 2 0 1 2

2 1 0 1 2 1 2 0 2 1

(c) Possible orientation of two triangles intersecting in one vertex (by Proposition 4.5, this common vertex must
have in-degree 0.

Figure 14: Possible proper 2-orientations of the blocks (where vertices are ordered from left to right as they
appear in P ).

Proof. The fact that −→χ (G) ∈ {2, 3} follows from the facts that −→χ (G) ≥ ω(G)− 1 for any graph G and from
Lemma 4.4. The linear complexity comes from the fact that computing a Hamiltonian path P of G such
that G is a subgraph of P 2 can be done in linear time [17], that the forbidden induced subgraphs and the
blocks can be identified in linear time (by following the path P ) and by Lemma 4.6.

The above section gives an ad-hoc proof that −→χ (G) ≤ ω(G) and an ad-hoc linear-time algorithm to
compute −→χ (G) for unit interval graphs with ω(G) = 3. Similar results might be obtained by tedious case
analysis for larger (but still constant) clique number. However, it would be interesting to obtain such
general bound for all (unit) interval graphs. Recall that Proposition 4.3 provides a family of unit interval
graphs with −→χ (G) =

⌈
3
2 (ω(G)− 1)

⌉
. Note that, in [11] (arXiv), it was stated that, for every graph G,

−→χ (G) = O(χ(G) log(χ(G))
log logχ(G) ) + mad(G)

2 . Supposing the provided proofs are correct, we obtain that, for any unit

interval graph G, −→χ (G) = O(ω(G) log(ω(G))
log logω(G) ) + ω(G) − 1, since, for any unit interval graph G, χ(G) = ω(G)

(since G is a perfect graph) and mad(G) ≤ mad(P
ω(G)
n ) ≤ 2(ω(G)− 1).

Note that −→χ (G) can be computed in linear time in interval graphs with bounded ω(G) by the dynamic
programming for bounded treewidth graphs [7].

5 Cobipartite graphs

A graph is cobipartite if its vertex set has a partition (K1,K2) such that both K1 and K2 are cliques. Such
a partition is called a cobipartition of the graph. We assume for the remainder of the section that K1 is
the largest clique of a cobipartite graph G with clique partition {K1,K2} of V (G).

The aim of this section is to prove the following theorem.

15



Theorem 5.1. Given a cobipartite graph G with cobipartition (K1,K2), one can decide in polynomial time
whether −→χs(G) = |K1| − 1, assuming that |K1| = max{|K1|, |K2|}.

To prove that −→χs(G) = |K1| − 1, note that any optimal weighted orientation when restricted to G[K1]
must be transitive with all weights equal to 1; and all edges from K1 to K2 must be oriented towards K2.
Thus, the goal in what follows it to decide which transitive orientation of K1 to pick, how to assign weights
to the edges from K1 to K2 and, overall, which weighted orientation to use in K2 satisfying the upper bound
of |K1| − 1 and the constraints of being proper.

We need some preliminary results. Let k1 and k2 be two positive integers. Let
−→
d = (d1, . . . , dk2) be a

sequence of non-negative integers.
−→
d is k1-suitable if and only if there is a tournament T with vertex set

{v1, . . . , vk2} such that, for every j ∈ [k2], there are at most j−1 indices of [k2] such that di+d
−
T (vi) > k1−j.

Let us first characterize graphs with −→χs(G) = k1 − 1.

Lemma 5.2. Let G be a cobipartite graph G with cobipartition (K1,K2). Set k1 = |K1| and k2 = |K2|, and
let K2 = {v1, . . . , vk2}.−→χs(G) = k1 − 1 if and only if the two following statements hold:

(i) There exists an antimatching saturating K2 in the bipartite graph induced by E(K1,K2); and

(ii) There exists an ordering (v1, . . . , vk2) of the vertices of K2 such that (dK1(v1), . . . , dK1(vk2)) is a k1-
suitable sequence.

Proof. Assume −→χs(G) = k1 − 1. Let (D,w) be an optimal semi-proper orientation of G. Set T = D〈K2〉.
Since K1 is a clique, by Proposition 4.5, for each i ∈ {0, . . . , k1}, there is exactly one vertex of K1 with
in-weight i, and all the edges of E(K1,K2) are oriented towards K2.

Now K2 is also a clique, so the in-weights of its vertices are all distinct. For each i ∈ [k2], there is a
unique vertex ui ∈ K1 such that S(D,w)(ui) = S(D,w)(vi). Since (D,w) is semi-proper, then ui and vi are
not adjacent. Hence M = {uivi | i ∈ [k2]} is an antimatching saturating K2 in the bipartite graph induced
by E(K1,K2). So (i) holds.

Furthermore, since the in-weight of the vi are all distinct, there are at most j − 1 vertices vi such that
S(D,w)(vi) ≥ k1 − j + 1. But S(D,w)(vi) ≥ d−D(vi) = dK1

(vi) + d−T (vi). So there are at most j − 1 vertices

vi such that dK1(vi) + d−T (vi) ≥ k1 − j + 1. Hence (dK1(v1), . . . , dK1(vk2)) is a k1-suitable sequence, so (ii)
holds.

Reciprocally, assume that (i) and (ii) hold. Let T be an orientation of K2 such that for every j ∈ [k2],
there are at most j − 1 indices of [k2] such that di + d−T (vi) > k1 − j. Free to relabel the vertices of K2, we
may assume that dK1

(v1) + d−T (v1) ≥ dK1
(v2) + d−T (v2) ≥ . . . ≥ dK1

(vk2) + d−T (vk2). Consequently, for every
i ∈ [k2], dK1

(vi) + d−T (vi) ≤ k1 − i.
Let us construct a weighted orientation D of G as follows. First D〈K2〉 = T and all the edges of

E(K1,K2) are oriented towards K2. Let i ∈ {2, . . . , k2}. Choose an arc ei of A(T ) ∪E(K1,K2) entering vi;
Such an arc exists since dK1

(vi) +d−T (vi) ≥ dK1
(vk2) +d−T (vk2), and dK1

(vi) +d−T (vi) +dK1
(vk2) +d−T (vk2) ≥

|A(T 〈{vi, vk2}〉)| ≥ 1; assign to all arcs entering vi a weight of 1 except for ei to which we assign weight
k1− i−(dK1

(vi)+d−T (vi))+1. Doing so, S(D,w)(vi) = k1− i for all i ∈ {2, . . . , k2}. Assign to all arcs entering

vk2 a weight of 1. Then S(D,w)(vk2) = dK1(vk2) + d−T (vk2) ≤ k1− k2. Hence all the in-weights of the vertices
of K2 are distinct.

Now by (ii), there is an antimatching M saturating K2. Take a transitive orientation T1 of K1 such that
d−T1

(M(ui)) = S(D,w)(vi) for all i ∈ [k2], and assign weight 1 to each of its arcs. One easily checks that the
resulting weighted orientation of G is semi-proper.

Let us now characterize k1-suitable sequences.

Lemma 5.3. Let k1, k2 be two integers with k1 ≥ k2, and let
−→
d = (d1, . . . , dk2) be a non-increasing sequence

of non-negative integers. Then
−→
d is k1-suitable if and only if there is a tournament T with vertex set

{v1, . . . , vk2} such that di + d−T (vi) ≤ k1 − i for all i ∈ [k2].
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Proof. By definition if there is a tournament T with vertex set {v1, . . . , vk2} such that di + d−T (vi) ≤ k1 − i
for all i ∈ [k2], then D is k1-suitable.

Let us now prove the reciprocal. Assume that
−→
d is k1-suitable. A tournament T with vertex set

{v1, . . . , vk2} is a
−→
d -partner if for every j ∈ [k2], there are at most j−1 indices of [k2] such that di+d

−
T (vi) >

k1−j. Observe that if T is a
−→
d -partner, then there is a permutation σ of [k2] such that di+d

−
T (vi) ≤ k1−σ(i)

for every i ∈ [k2]. Such a permutation is an adjoint of T . The displacement index of T of a permutation
σ of [k2] is the smallest index such that σ(i) 6= i or k2 + 1 of σ is the identity.

Since
−→
d is k1-suitable, by definition there is a

−→
d -partner. Consider the pair (T, σ) where T is a

−→
d -partner

of
−→
d and σ is an adjoint of T that maximizes the displacement index of σ. We shall prove that σ is the

identity, and thus di + d−T (vi) ≤ k1 − i for all i ∈ [k2].

Suppose, for a contradiction, that σ is not the identity. Let i be the displacement index of σ, and let
j = σ−1(i). By definition, j, σ(i) > i, so di ≥ dj . We have

di + d−T (vi) ≤ k1 − σ(i) ≤ k1 − i
dj + d−T (vj) ≤ k1 − i

If dj + d−T (vj) ≤ k1 − σT (i), then the permutation σ′ defined by σ′(i) = i, σ′(j) = σ(j) and σ′(k) = σ(k)
for all k ∈ [k2] \ {i, j}, is also an adjoint of T and has a larger displacement index than σ, a contradiction.

Henceforth, we may assume that dj + d−T (vj) > k1 − σ(i). Set α = dj + d−T (vj)− k1 + σ(i). Observe that
vj has k1−σ(i)−dj +α in-neighbours in T while vi has at most k1−σ(i)−di ≤ k1−σ(i)−dj in-neighbours
in T . Therefore, there exists a set A of α in-neighbours of vj which are not in-neighbours of vi. Let T ′ be
tournament obtained from T by reversing the direction of the arc between a and vi and vj if a ∈ A \ {vi}
and reversing the arc vivj if vi ∈ A. All vertices distinct from vi and vj have same in-degree in T ′ and T ,
while d−T ′(vi) = d−T (vi) + α and d−T ′(vj) = d−T (vj)− α. Hence

di + d−T ′(vi) ≤ k1 − σ(i) + α = dj + d−T (vj) ≤ k1 − i
dj + d−T ′(vj) = dj + d−T ′(vj)− α = k1 − σ(i)

Thus the permutation σ′ defined by σ′(i) = i, σ′(j) = σ(j) and σ′(k) = σ(k) for all k ∈ [k2] \ {i, j}, is an
adjoint of T ′ and has a larger displacement index than σ, a contradiction.

A score sequence is a non-decreasing sequence of integers corresponding to the in-degrees of the vertices
of a tournament. Let us recall a characterization of score sequences by Landau.

Theorem 5.4 (Landau [22]). Let −→s = (s1, . . . , sn) be a non-decreasing sequence of non-negative integers.

Then, −→s is a score sequence if and only if

n∑
i=1

si =

(
n

2

)
, and

k∑
i=1

si ≥
(
k

2

)
for all k ∈ [n].

With the following two corollaries, we will get an algorithmic tool for checking if a sequence is k1-suitable.

Corollary 5.5. Let −→s = (s1, . . . , sn) be a non-decreasing sequence of non-negative integers.
There is a tournament T with vertex set {v1, . . . , vn} such that d−T (vi) ≤ si for all i ∈ [n] if and only if
k∑
i=1

si ≥
(
k

2

)
for all k ∈ [n].

Proof. Assume first that there is a tournament T with vertex set {v1, . . . , vn} such that d−T (vi) ≤ si for all
i ∈ [n]. Then for every k ∈ [n],(

k

2

)
= |A(T 〈{v1, . . . , vk}〉)| ≤

k∑
i=1

d−T (vi) ≤
k∑
i=1

si.
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Let us now prove the reciprocal by induction on Exc =
∑n
i=1 si −

(
n
2

)
.

If Exc = 0, then the results follows from Landau’s Theorem. Assume now that Exc > 0. Let r be the
smallest integer such that sr = sn. Set s′r = sr − 1 and s′i = si for all i ∈ [n] \ {r}. We shall prove that∑k
i=1 s

′
i ≥

(
k
2

)
for all k ∈ [n]. Thus, by the induction hypothesis, there is a tournament T with vertex set

{v1, . . . , vn} such that d−T (vi) ≤ s′i for all i ∈ [n]. Since s′i ≤ si for all i ∈ [n], we get the result.

Therefore assume for a contradiction that there exists k such that
∑k
i=1 s

′
i <

(
k
2

)
. Choose such a k

that is minimum. Clearly r ≤ k < n (in particular, k < n because Exc > 0), so sk = sn. Moreover

s′k =
∑k
i=1 s

′
i −
∑k−1
i=1 s

′
i <

(
k
2

)
−
(
k−1

2

)
= k. So sk ≤ s′k + 1 ≤ k, and thus si ≤ k for all k ≤ i ≤ n. Hence

n∑
i=1

si =

k∑
i=1

si +

n∑
i=k+1

si ≤
k∑
i=1

si + k(n− k) ≤
(
k

2

)
+ k(n− k) <

(
n

2

)
because k < n. This a contradiction and completes the proof.

Corollary 5.6. Checking if a sequence is k1-suitable can be done in polynomial time.

Proof. Let
−→
d = (d1, . . . , dk2) be a sequence. Free to permute the indices, we may assume that the sequence

is non-increasing. By Lemma 5.3,
−→
d is

−→
d is k1-suitable if and only if there is a tournament T with vertex

set {v1, . . . , vk2} such that d−T (vi) ≤ k1 − i− di for all i ∈ [k2]. By Corollary 5.5, there is such a tournament

if and only if

k∑
i=1

k1 − i − di ≥
(
k

2

)
for all k ∈ [k2]. Each of this k2 inequalities can easily be checked in

linear time.

Now we are ready to complete the proof of Theorem 5.1.

Proof of Theorem 5.1. Let G be a cobipartite graph with cobipartition (K1,K2). Set k1 = |K1|. By
Lemma 5.2, −→χs(G) = k1 − 1 if and only if the following hold.

(i) There is an antimatching saturating K2 in the bipartite graph induced by E(K1,K2).

(ii) (dK1
(v1), . . . , dK1

(vk2)) is a k1-suitable sequence.

Checking if there is an antimatching saturating K2 can be done in polynomial time using any matching
algorithm in the complement.

Checking if a sequence is k1-suitable can be done in polynomial time by Corollary 5.6.

Nevertheless, the following problems remain open.

Problem 5.7. For any fixed positive integer `, what is the complexity of deciding whether−→χs(G) = |K1|−1+`
for a given cobipartite graph with cobipartition (K1,K2)?

Problem 5.8. What is the complexity of deciding whether −→χ (G) = |K1| − 1 for a given cobipartite graph
with cobipartition (K1,K2)?

Problem 5.9. Is it possible to characterize the cobipartite graphs G with cobipartition (K1,K2) such that
−→χs(G) ≤ |K1|+ |K2| − 2 ?

6 Parameterized Complexity

We now study the parameterized complexity of determining if the semi-proper orientation number of a graph
G is at most k when parameterized by the size of a minimum vertex cover in G, neighbourhood diversity of
G plus k, treewidth of G, and only by the value of k. The result for neighbourhood diversity plus k, and
the kernel for cographs also hold for the proper orientation number. Some results in this section use similar
ideas to the ones presented in [4].
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6.1 Vertex Cover and Neighbourhood Diversity

Given a graph G = (V,E), a subset S ⊆ V is a vertex cover of G if, for every uv ∈ E, we have that u ∈ S
or v ∈ S. Then, define vc(G) = min{|S| | S is a vertex cover of G}. With these definitions, let us present
the first parameterization.

Semi-Proper Orientation Parameterized by Vertex Cover

Input: A graph G and a positive integer k.
Parameter: vc(G).
Question: Is −→χs(G) ≤ k?

Let us prove that Semi-Proper Orientation Parameterized by Vertex Cover is FPT by showing
that it admits an exponential kernel.

Theorem 6.1. Semi-Proper Orientation Parameterized by Vertex Cover has a kernel of size
O(4vc(G) vc(G)2).

Proof. Let (G, k) be an instance of Semi-Proper Orientation Parameterized by Vertex Cover
where G is a connected graph. We construct, in polynomial time, an equivalent instance (G′, k) such that
|V (G′)| = O(4vc(G) vc(G)2).

First, since G admits a vertex cover of size vc(G), then its vertex-set can be partitioned into two sets
A and B such that |A| = vc(G) and B is an independent set. It follows that the degeneracy of G satisfies
δ∗(G) ≤ vc(G). Thus, we know that −→χs(G) ≤ 2 vc(G) as it is always true that −→χs(G) ≤ 2δ∗(G) [14].

Therefore, if k ≥ 2 vc(G), by the previous argument, the answer to Semi-Proper Orientation Pa-
rameterized by Vertex Cover is “YES” (and one can just output G′ as a trivial vertex). Hence, let us
assume that k < 2 vc(G).

By using the well-known 2-approximation algorithm for Vertex Cover, one may obtain in polynomial
time a subset C ⊆ V (G) such that C is a vertex cover of G and |C| = γ ≤ 2 vc(G). Thus, notice that V (G)
can be partitioned into C and an independent set S.

We partition the vertices of S into at most 2γ − 1 non-empty subsets Si of twins, for i ∈ {1, . . . , 2γ − 1}
(i.e., two vertices are in a same part if and only if they are twins). Let M = kγ.

Claim 6.1.1. If there exists i ∈ {1, . . . , 2γ − 1} such that |Si| ≥ M + 2, then removing (|Si| − (M + 1))
vertices from Si builds a smaller graph G′ such that −→χs(G) ≤ k if, and only if, −→χs(G′) ≤ k.

Proof: Since the problem is monotone under subgraphs [14], we just need to prove that if −→χs(G′) ≤ k, then
−→χs(G) ≤ k.

Let S′i be the M + 1 remaining vertices of Si in G′. Note that, if (D′, w′) is a semi-proper k-orientation
of G′ such that exactly ` edges with one end in C and the other in S′i are oriented towards C, then:

k ≥ max
v∈C

d−D′(v) ≥
∑
v∈C d

−
D′(v)

γ
≥ `

γ
.

Therefore, ` ≤ kγ = M ≤ 4 vc2(G). So, for every i ∈ {1, . . . , 2γ − 1} and every semi-proper k-orientation,
there are at most M edges oriented from S′i to C. Since |S′i| = M + 1, note that S′i has a sink s in D′. In
order to build a semi-proper k-orientation (D,w) of G, it suffices to extend (D′, w′) to G by making all the
|Si| − (M + 1) removed vertices of Si as sinks and having the same in-weight as s. �

By applying Claim 6.1.1 to each feasible Si, i ∈ {1, . . . , 2γ − 1}, we build a graph G′ as required.
Note that |G′| ≤ γ + (2γ − 1)(M + 1) = O(4vc(G) vc(G)2).

The above result still leaves open the problem of existence of a polynomial kernel.

Problem 6.2. Does there exist a polynomial kernel to Semi-Proper Orientation Parameterized by
Vertex Cover?
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Let us move to our second parameterization, based on the concept of neighbourhood diversity. The
neighbourhood diversity of a graphG, denoted by nd(G), is the minimum k such thatG can be partitioned
into at most k subsets of twin vertices [21]. It is well known that if G has a vertex cover S satisfying |S| ≤ k,
then G can be partitioned into at most 2k+k subsets of twin vertices (similarly to the proof of Theorem 6.1).

In the sequel, we prove that deciding whether −→χs(G) ≤ k, resp., −→χ (G) ≤ k, is FPT parameterized by the
neighbourhood diversity of G plus k.

Semi-Proper Orientation Parameterized by Neighbourhood Diversity plus Solution Value

Input: A graph G and a positive integer k.
Parameter: nd(G) + k.
Question: Is −→χs(G) ≤ k?

Proper Orientation Parameterized by Neighbourhood Diversity plus Solution Value

Input: A graph G and a positive integer k.
Parameter: nd(G) + k.
Question: Is −→χ (G) ≤ k?

Let us first present a technical lemma and then prove the main result on parameterization by neighborhood
diversity plus Solution value.

Lemma 6.3. Given a positive integer k, if G is a graph such that −→χ (G) ≤ k or −→χs(G) ≤ k and there are
S1, S2 ⊆ V (G) such that S1 ∩S2 = ∅ and uv ∈ E(G) for every u ∈ S1 and v ∈ S2, then min{|S1|, |S2|} ≤ 2k.

Proof. For purpose of contradiction, let us assume that |S1|, |S2| > 2k. In any optimal proper orientation

D (resp. semi-proper orientation (D,w)) of G, there are at least |S1|·|S2|
2 > 2k2 arcs oriented towards

Si, for some i ∈ {Si}, say S1. Hence, one vertex of S1 has (resp. weighted) in-degree at least k + 1, a
contradiction.

Theorem 6.4. Semi-Proper Orientation Parameterized by Neighbourhood Diversity plus So-
lution Value and Proper Orientation Parameterized by Neighbourhood Diversity plus So-
lution Value have a kernel of size at most nd(G)(2k2 + 1).

Proof. Let (G, k) be an instance of Semi-Proper Orientation Parameterized by Neighbourhood
Diversity plus Solution Value. We may assume that G is connected. Let nd(G) = d. In linear
time, we can obtain a partition P = {N1, . . . , Nd} such that each Ni is composed by twin vertices, for each
i ∈ {1, . . . , d}. Let i ∈ {1, . . . , d}. By definition, note that the subgraph of G induced by Ni is either a clique
or an independent set. In the case when G[Ni] is a complete subgraph, if |Ni| ≥ k + 2, the instance (G, k)
is trivially a “NO” instance and our kernelization algorithm just outputs the equivalent instance (Kk+2, k).

Let us consider a set Ni which induces a stable set. Since G is connected, there must be a set Nj ,
j 6= i, such that there are all edges between the vertices of Ni and the vertices of Nj . By Lemma 6.3, either
|Ni| ≤ 2k or |Nj | ≤ 2k. Let us consider the latter case. If |Ni| > 2k2 + 1, let us build an equivalent instance
(G′, k) by removing |Ni| − (2k2 + 1) vertices from Ni.

Let us show then that −→χ (G) ≤ k if, and only if −→χ (G′) ≤ k. Let D be a proper k-orientation of G. If
|Ni| > 2k2, then at least |Ni| − 2k2 vertices of Ni must be sinks. Indeed, otherwise, at least 2k2 + 1 arcs
are oriented from Ni to Nj and, since |Nj | ≤ 2k, at least one vertex of Nj has in-degree at least k + 1, a
contradiction. Let S ⊆ Ni be the set of sinks and let v ∈ S. Let D′ = D − (S \ {v}). Then D′ is a proper
k-orientation of G′. Reciprocally, let D′ be a proper k-orientation of G′. By the same reasoning (since Ni
has size 2k2 + 1 in G′), there exists at least one sink v ∈ Ni in D′. Let us build D by copying D′ and making
the extra |Ni| − (2k2 + 1) vertices of Ni as sinks. Then, D is a proper k-orientation of G.

Repeating this process for all Ni, we build an equivalent instance G′ such that, for every 1 ≤ i ≤ d =
nd(G), |Ni| ≤ 2k2 + 1. Hence, |V (G′)| ≤ nd(G)(2k2 + 1).

Note that −→χs(G′) ≤ −→χs(G) by Lemma 1.3. To prove that if −→χs(G′) ≤ k then, −→χs(G) ≤ k one can use
analogous arguments as in the previous case.
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The above result shows that parameterizing Semi-Proper Orientation by the neighborhood diversity
plus the solution value not only leads to an FPT algorithm, but even yields a polynomial kernel. It leaves
open the question whether adding the solution value is necessary for an FPT algorithm or a polynomial
kernel.

Problem 6.5. Id Semi-Proper Orientation is an FPT problem when parameterized by the neighbour-
hood diversity?

6.2 Treewidth

Let us now present a parameterization based on the concept of tree-decomposition. Recall that a tree-
decomposition of a graph G = (V,E) is a pair (T,X ) where T is a tree and X = {Xv | v ∈ V (T )} is a
family of subsets of V such that:

(a)
⋃
v∈V (T )Xv = V ;

(b) for every e = uw ∈ E, there exists v ∈ V (T ) with u,w ∈ Xv;

(c) for every u ∈ V , {v ∈ V (T ) | u ∈ Xv} induces a subtree of T .

The width w(D) of D = (T,X ) equals max
v∈V (T )

|Xv| − 1, and the treewidth of G, denoted by tw(G), is

the minimum width of its tree-decompositions.
A tree-decomposition (T,X ) of G of width t is nice if T is a rooted tree with maximum degree 3, the

root has at most two children and every node v ∈ V (T ) satisfies one of the following:

Leaf node: v is a leaf (and not the root) and |Xv| = t+ 1;

Forget node: v has one child v′ and, there exists u ∈ V such that Xv = Xv′ \ {u};

Introduce node: v has one child v′ and, there exists u ∈ V such that Xv = Xv′ ∪ {u};

Join node: v has two children v′ and v′′ and Xv = Xv′ = Xv′′ .

It is well known that, for any graph G on n vertices, a nice tree-decomposition D = (T,X ) of G with
tw(G) ≤ w(D) ≤ t such that |V (T )| = O(n) can be computed in linear time from any tree-decomposition
with width at most t of G [8]. In the sequel, we prove that the following problem is FPT:

Semi-Proper Orientation Parameterized by Treewidth

Input: A graph G and a positive integer k.
Parameter: tw(G).
Question: Is −→χs(G) ≤ k?

Let G = (V,E) be a graph, F ⊆ E and let w′ : F → {1, 2} and
−→
F be an orientation of the edges in F . A

weighted orientation (
−→
G,w : E → {1, 2}) of G extends (w′,

−→
F ) if w �F= w′ and

−→
F agrees with

−→
G on F ,

i.e. if uv ∈ F , then (u, v) ∈ A(
−→
G) if, and only if, (u, v) ∈

−→
F .

Theorem 6.6. Let t ≥ 1. For any k ≥ 0 and any graph G on n vertices with treewidth at most t, deciding
whether −→χs(G) ≤ k can be computed in 4O(t2)n time.

Proof. Let k ≥ 0 and G be any graph on n vertices with treewidth at most t. Because −→χs(G) ≤ 2δ∗(G) [14]
and δ∗(G) ≤ tw(G) ≤ t, if k ≥ 2t, then −→χs(G) ≤ k. Hence, we may assume that k < 2t.

First, a nice tree-decomposition (T,X ) with O(n) nodes and of width at most 2t of G can be computed
in 2O(t)n time [20]. Let r ∈ V (T ) be the root of T . For every v ∈ V (T ), let Tv be the subtree of T rooted
in v and let Gv be the subgraph of G induced by

⋃
h∈V (Tv)Xh.

Let us design a bottom-up dynamic programming algorithm that computes, for every v ∈ V (T ), the set
Ov of all the triples (L,C,O′) where L : Xv → 2{0,...,k}, C : Xv → {0, . . . , k} and O′ is a weighted orientation
of G[Xv] such that there exists a weighted orientation O = (D,w) of Gv satisfying:
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• S(D,w) ≤ k;

• O extends O′; and

• for every vertex u ∈ Xv, SD,w(u) = C(u) and L(u) = {0, . . . , k} \ {SD,w(x) | x ∈ NGv
(u) \Xv}.

Intuitively, C(u) represents the current colour of u in the weighted orientation O that extends O′ and L(u)
corresponds to the set of available colours that u may use later (the ones that are not the colours of the
neighbours of u in V (Gv) \Xv).

For every leaf ` ∈ V (T ), let SO` = {(D,w) | (D,w) is semi-proper k-orientation of G`)}. For every
v ∈ X` and (D,w) ∈ SO`, define C(D,w)(v) = S(D,w)(v) and L(v) = {0, . . . , k}. Thus, define O` =
{(L,C(D,w), O

′) | O′ = (D,w) ∈ SO`}. Note that |X`| = O(t), so |E(G`)| = O(t2) and, since each edge can

take two values [14] and two orientations, |SO`| ≤ 4O(t2), and so |O`| ≤ 4O(t2).
Now, let v ∈ V (T ) be a non-leaf node and assume that Ov′ has been computed for every child v′ of v.

We explain how to compute Ov from the set(s) of its child(ren). There are three cases to be considered
depending on the type of v.

Forget node: Let v′ be the unique child of v and let Xv = Xv′ \ {u}. The set Ov is obtained as follows.
For every (L′, C ′, O′) ∈ Ov′ , let O be the weighted orientation of G[Xv] such that O′ extends O to
G[Xv′ ]. For every x ∈ Xv ∩ N(u), let L(x) = L′(x) \ {C ′(u)}. Then, add (L,C ′�Xv

, O) to Ov, where
C ′�Xv

is the restriction of C to Xv.

Join node: Let v′ and v′′ be the two children of v. The set Ov is obtained as follows. For every (L′, C ′, O′) ∈
Ov′ and (L′′, C ′′, O′′) ∈ Ov′ such that O′ = O′′, let O = O′ = (D,w) and C = C ′. Moreover, for every
x ∈ Xv, let C(x) = C ′(x) + C ′′(x) −

∑
u∈Xv,ux∈A(D) w(ux) and let L(x) = L′(x) ∩ L′′(x). If, for all

u, x ∈ Xv, C(x) ∈ L(x) and, if ux ∈ A(D) or xu ∈ A(D), then C(x) 6= C(u), then add (L,C,O) to Ov.

Introduced node: Let v′ be the unique child of v and let Xv = Xv′∪{u}. The set Ov is obtained as follows.
For every (L′, C ′, O′) ∈ Ov′ and for every weighted orientation O = (D,w) of Xv that extends O′, let
C(u) = S(D,w)(u) and let L(u) = {0, . . . , k}. Then, for every x ∈ Xv \ {u}, let C(x) = C ′(x) + w(ux)
if ux ∈ A(D) and let C(x) = C ′(x) otherwise; and let L(x) = L′(x). If, for all u, x ∈ Xv, C(x) ∈ L(x)
and, if ux ∈ A(D) or xu ∈ A(D), then C(v) 6= C(u), then add (L,C,O) to Ot.

Clearly, −→χs(G) ≤ k if and only if Or 6= ∅, where r is the root of T . Moreover, the number of orientations

to be considered at any node v ∈ V (T ) is at most 4O(t2) and, for each vertex of Xv, the number of possible
values of the function L is O(2k) = O(4t) since k ≤ 2t and the number of possible values of the function C

is k + 1 = O(t). This implies that |Ov| = 4O(t2) ·O(tt) · (4t)t, which gives the desired time complexity.

6.3 Natural parameter

In this section, we combine the results of Sections 6.1 and 6.2 to obtain results with parameterization by the
value of the solution. Some ideas are similar to the ones presented in [4].

Parameterized Proper Orientation

Input: A graph G and a positive integer k.
Parameter: k.
Question: Is −→χ (G) ≤ k?

Parameterized Semi-Proper Orientation

Input: A graph G and a positive integer k.
Parameter: k.
Question: Is −→χs(G) ≤ k?

22



It is important to recall that Parameterized Semi-Proper Orientation is para-NP-complete in the
class of planar bipartite graphs [14].

In the sequel, we argue that a kernel of size polynomial in k is unlikely to exist even for the class of
chordal graphs. For this, we need the following definition and result.

Definition 6.7 (AND-cross-composition). Let L ⊆ Σ∗ be a language and Q ⊆ Σ∗ × N be a parameterized
language. We say that L AND-cross-composes into Q if there exists a polynomial equivalence relation
R and an algorithm A, called a cross-composition, satisfying the following conditions. The algorithm A
takes as input a sequence of strings x1, x2, . . . , xt ∈ Σ∗ that are equivalent with respect to R, runs in time
polynomial in

∑t
i=1 |xi|, and outputs one instance (y, k) ∈ Σ∗ × N such that:

1. k ≤ p(maxti=1 |xi|+ log t) for some polynomial function p(·), and

2. (y, k) ∈ Q if and only if xi ∈ L, for every i ∈ {1, . . . , t}.

Theorem 6.8 (Drucker [15], see also [16]). Assume that an NP-hard language L AND-cross-composes into
a parameterized language Q. Then Q does not admit a polynomial compression, unless NP ⊆ coNP/poly.

Now, given graphs G1, . . . , Gp with disjoint vertex sets, for some p ≥ 2, the disjoint union, or simply
union, of G1, . . . Gp is the graph G1 ∪ . . . ∪ Gp such that V (G1 ∪ . . . ∪ Gp) = V (G1) ∪ . . . ∪ V (Gp) and
E(G1 ∪ . . . ∪Gp) = E(G1) ∪ . . . ∪ E(Gp).

Let us present the following series of results on chordal and split graphs.

Proposition 6.9. If G = G1 ∪ . . . ∪Gp, then −→χs(G) = max{−→χs(G1), . . . ,−→χs(Gp)}, for any p ≥ 2.

Proposition 6.10. Parameterized Semi-Proper Orientation does not admit polynomial kernel for
chordal graphs, unless NP ⊆ coNP/poly.

Proof. By just taking the disjoint union of t instances of Semi-Proper Orientation in split graphs with
the same k (this is the equivalence relation R), we have an AND-cross-composition to an instance of Pa-
rameterized Semi-Proper Orientation in chordal graphs as the disjoint union of split graphs is chordal
and Proposition 6.9 holds. Thus, it follows, by Theorem 6.8.

Proposition 6.11. Parameterized Semi-Proper Orientation can be solved in 4O(k2) · n time for
chordal graphs.

Proof. The algorithm presented Theorem 6.6 decides whether −→χs(G) ≤ k, when G has treewidth at most t,

in 4O(t2) · n time. Thus, given a chordal graph G, one may compute ω(G) in polynomial time, as they are
perfect. In case ω(G) ≥ k+ 2, then the answer to Parameterized Semi-Proper Orientation is trivially
“NO”. Otherwise, note that a chordal graph with ω(G) ≤ k + 1 is a graph with treewidth at most k. Then,
the result follows by Theorem 6.6.

Proposition 6.12. Parameterized Semi-Proper Orientation admits a O(2kk2)-kernel for split graphs.

Proof. Let {K,S} be a partition of V (G) such that K is a maximum clique of G and S is a stable set. Recall
that |K| can be computed in linear time as G is chordal. By Proposition 6.9, we can suppose that G is
connected.

Note that if |K| ≥ k+ 2 the answer is trivially “NO” and one can output a trivial equivalent instance as
Kk+2. Otherwise, note that K is a vertex cover of G and thus vc(G) ≤ |K| ≤ k+ 1. Consequently, one may
just apply the algorithm in Theorem 6.1. Note that, contrary to the algorithm in 6.1, here we directly get a
vertex cover K of size at most k+1 (not at most 2k as in Theorem 6.1 that uses a 2-approximation algorithm
for Vertex Cover. Therefore, the size of the kernel is slightly improved to O(2kk2) in this case.

In view of the above results, it is natural to ask the following.

Problem 6.13. Does there exist a polynomial kernel to Parameterized Semi-Proper Orientation in
split graphs?
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Let us now address another dense-graph class admitting an exponential kernel for the natural parameter.
Given p ≥ 2 graphs G1, . . . , Gp with disjoint vertex sets, the join G1 + . . . + Gp of these graphs be the

graph obtained from the disjoint union of G1, . . . , Gp by adding an edge {x, y} for every x ∈ V (Gi) and
y ∈ V (Gj), for every 1 ≤ i < j ≤ p. The class of cographs is defined recursively as follows:

• a trivial graph (with one vertex and no edge) is a cograph;

• the join of cographs is a cograph, and

• the disjoint union of cographs is a cograph.

Any cograph G admits a unique cotree T (G) defined recursively as follows. If G has a unique vertex,
then its cotree T (G) is the rooted tree with a single node mapped to the single vertex of V (G). If G is the
disjoint union of connected cographs G1, . . . , Gp, then, the cotree T of G is obtained from T (G1), . . . , T (Gp)
by adding a root v (called a union node) linked to the roots of each T (Gi), 1 ≤ i ≤ p. If G is the
join of not connected and/or single vertex cographs G1, . . . , Gp, then, the cotree T of G is obtained from
T (G1), . . . , T (Gp) by adding a root v (called a join node) linked to the roots of each T (Gi), 1 ≤ i ≤ p.
Note that the join nodes and union nodes of T (G) define a bipartition of the internal vertices of T (G). Note
also that there is a one-to-one mapping between the leaves of T (G) and V (G). This implies the following:

Proposition 6.14. Let G be a cograph with cotree T (G) and k ∈ N. If there exists f : N → N such that
T (G) has depth at most f(k) and maximum degree f(k), then |V (G)| ≤ f(k)f(k).

As one may expect at this point, our kernelization algorithm uses the cotree T of a given cograph G to
build an equivalent instance of bounded size. In the next lemmas, we show how to bound the depth and the
degree of T as well as the number of vertices in G(vi) for every child vi of an inner node v of T .

For every t ∈ V (T (G)), let Gt be the cograph whose cotree is Tt, which is the subtree of T (G) rooted
in t. Note that V (Gt) is a module of G, i.e., for every u ∈ V (G) \ V (Gt) either {u,w} ∈ E(G) for all
w ∈ V (Gt) or {u,w} /∈ E(G) for all w ∈ V (Gt). Given a rooted tree T with root r ∈ V (T ), the depth of T
is the maximum length of a r, v-path in T , for some (leaf) v ∈ V (T ).

Lemma 6.15. Let G be a connected cograph and k be a positive integer. If −→χ (G) ≤ k or −→χs(G) ≤ k, then
the depth of T (G) is at most 2k + 2.

Proof. Let P = (r = t0, t1, . . . , t`) be a path from the root r of T (G) to a leaf t` with length `. Note that,
since r is a join node (because G is connected), t2i is a join node for every integer i ≥ 0.

Thus, for every, 0 ≤ i < `/2, let t′i 6= t2i+1 be a child of t2i in T (G) not in P and let vi ∈ G(t′i). Then
G[{v0, . . . , v`/2−1}] induces a complete subgraph of G with `/2 vertices. If ` > 2k + 2, then `/2 − 1 > k,
which implies that −→χ (G) ≥ −→χs(G) ≥ ω(G)− 1 ≥ `/2− 1 > k, a contradiction.

Lemma 6.16. Let G be a cograph with −→χ (G) ≤ k or −→χs(G) ≤ k for some positive integer k. Then, for every
join node t ∈ V (T (G)), t has at most k+ 1 children and at most one child t′ of t is such that |V (Gt′)| > 2k.

Proof. If there is a join node t ∈ V (T (G)) with at least k+2 children, by the definition of the join operation,
we deduce that ω(G) ≥ k + 2. This would contradict the fact that −→χ (G) ≤ k or −→χs(G) ≤ k. If t ∈ V (T (G))
has at least two children t′ and t′′ such that |V (Gt′)| > 2k and |V (Gt′′)| > 2k, then −→χs(G) > k and −→χ (G) > k
by Lemma 6.3, a contradiction.

Let k ∈ N. A cograph G is k-nice if the depth of T (G) is at most 2k+2 and every join node t ∈ V (T (G))
has at most k+ 1 children, and at most one child t′ of t is such that |V (Gt′)| > 2k. For every integer j ≥ 0,
a node t ∈ V (T (G)) is called j-high if the depth of Tt equals j.

For every 0 ≤ j ≤ 2k + 1, let fj : N→ N defined recursively as follows. First, f0(x) = 1 for every x ∈ N.
Then, for every 0 < j ≤ 2k+ 1 and x ∈ N, let gj(x) be the number of connected cographs with fj(x) vertices
and fj(x) = (2x2 + 1)gj−1(x)fj−1(x).

The cotree T (G) is (j, k)-thin if, for every 0 ≤ j′ ≤ j, and for every j′-high node t ∈ V (T (G)), we
have that |V (Gt)| ≤ fj′(k). Note that, if T (G) has depth at most d ≤ 2k + 2 and it is (d, k)-thin, then
|V (G)| ≤ fd(k), i.e., the number of vertices of G is a function only on k.
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Theorem 6.17. Parameterized Semi-Proper Orientation and Parameterized Proper Orienta-
tion admit a kernel of size f2k+3(k) in cographs.

Proof. Let k ∈ N. First let us consider a connected cograph G = (V,E) with cotree T (G). If G is not k-nice,
then −→χ (G) > k and −→χs(G) > k by Lemmas 6.15 and 6.16, and so we may return a trivial kernel (e.g., a
clique of size k + 2). Hence, we may assume that G is k-nice.

Claim 6.17.1. For every j ∈ {0, . . . , 2k + 1}, there exists a k-nice connected cograph G′ with T (G′) being
(j, k)-thin such that −→χ (G) ≤ k (resp., −→χs(G) ≤ k) if and only if −→χ (G′) ≤ k (resp., −→χs(G′) ≤ k).

Proof of Claim. We prove the claim by induction on j.
Note that the leaves of T (G) correspond to vertices of G and so T (G) is (0, k)-thin, and so the induction

hypothesis holds for j = 0.
Let 0 ≤ j ≤ 2k + 2 and let us assume by induction that there exists a k-nice connected cograph G′ such

that T (G′) is (j, k)-thin and −→χ (G) ≤ k (resp., −→χs(G) ≤ k) if and only if −→χ (G′) ≤ k (resp., −→χs(G′) ≤ k). If
j = 2k + 2, we are done since T (G) has depth at most 2k + 2 because G is k-nice. Otherwise, let us show
that the induction hypothesis also holds for j + 1.

Let t ∈ V (T (G′)) be a (j + 1)-high join node of T (G′). Then, because G′ is k-nice, t has at most
k + 1 children, and for every child t′ of t but one t′′, |V (Gt′)| ≤ 2k and |V (Gt′′)| ≤ fj(k) by the induction
hypothesis. Hence, |V (Gt)| ≤ max{2(k + 1)k, 2k2 + fj(k)} ≤ fj+1(k).

Let t ∈ V (T (G′)) be a (j + 1)-high union node of T (G′). If |V (Gt)| ≤ 2k ≤ fj+1(k), we are done.
Otherwise, let X = NG(V (Gt)) (recall that Gt is a module and so, we have all edges between X and V (Gt)).
Hence, by Lemma 6.3, |X| ≤ 2k. Let t′1, . . . , t

′
p be the children of t in T (G′). By induction, |V (Gt′i)| ≤ fj(k)

for every 1 ≤ i ≤ p.
Let G′′ be the graph obtained from G by keeping at most 2k2 + 1 copies of each subgraph Gt′i , for

1 ≤ i ≤ p. That is, if there exist I ⊆ {1, . . . , p} such that |I| > 2k2 +1 and all subgraphs Gt′j are isomorphic,

for every j ∈ I, then remove |I| − (2k2 + 1) children t′j , j ∈ I, of t in T (G′). Note that, after this operation,

t has at most (2k2 + 1)gj(k) children, where gj(k) is the number of connected cographs with at most fj(k)
vertices, and so |V (G′′t )| ≤ (2k2 + 1)gj(k)fj(k).

Clearly, −→χs(G′′) ≤ −→χs(G′) since −→χs is closed under taking subgraphs. To show that, if −→χ (G′) ≤ k then
−→χ (G′′) ≤ k, let D′ be a proper k-orientation of G′. For every I ⊆ {1, . . . , p} such that |I| > 2k2 + 1 and all
subgraphs Gt′j are isomorphic to some graph H, for every j ∈ I, there must be at least |I| − (2k2 + 1) copies

C of H such that, in D′, all edges are oriented from X to C (otherwise, at least one vertex of X would have
in-degree at least k + 1 since |X| ≤ 2k). Let D′′ be the orientation of G′′ obtained from D′ by removing
precisely these copies of H. Therefore, for every vertex of G′′, its in-degree in D′′ is the same as its in-degree
in D′. Hence, −→χ (G′′) ≤ k.

On the other hand, consider any proper k-orientation D′′ of G′′. For every subgraph H isomorphic to
some V (G′′t′) with t′ a child of t, there must be one copy of H where all arcs are oriented from X to H
(otherwise there would be at least 2k2 + 1 arcs to X and one vertex of X would have in-degree larger than k
as |X| ≤ 2k). Consider the orientation D′ of G′ obtained from D′′ and by orienting all arcs from X toward
the extra copies of H (and orienting the edges in the copies of H as they are oriented in H). This implies
that −→χ (G) ≤ k. Since −→χs(G) ≤ −→χ (G), we also get that −→χs(G) ≤ k.

After having considered all (j + 1)-high vertices, the induction hypothesis holds for j + 1. �

Finally, we have to consider a disconnected cograph G, i.e., when we have a disjoint union of con-
nected cographs G1, . . . , Gp at the root of T (G). Note that −→χ (G) = max1≤i≤p

−→χ (Gi) (resp., −→χs(G) =
max1≤i≤p

−→χs(Gi)). By Claim 6.17.1, for every 1 ≤ i ≤ p, we may find an instance G′i equivalent to Gi and
with order at most f2k+2(k). If p is larger than the number g2k+2(k) of connected graphs with at most
f2k+2(k) vertices, then two G′i and G′j , i 6= j, must be isomorphic and we can remove one. Overall, we get a
kernel of order at most g2k+2(k)f2k+2(k) ≤ f2k+3(k).

Although we present this exponential kernel for Parameterized Proper Orientation, the compu-
tational complexity for cographs remains open. This is an open problem posed by [4]. We have the same
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situation for the semi-proper orientation number:

Problem 6.18. What is the computational complexity of deciding whether −→χs(G) ≤ k for a cograph G and
an integer k given as inputs?

7 Further Research

Our NP-hardness proof computing −→χs restricted to split graphs also implies NP-hardness for chordal graphs,
but what is the complexity of computing −→χs(G) when G is an interval graph? In [4], the authors present an
NP-hardness proof for computing −→χ of chordal graphs, but the complexity for split graphs is open.

We have also shown that chordal graphs G may have split subgraphs whose proper orientation number
is at least 2−→χ (G)− 2. Can the same happen with respect to (unit) interval graphs?

It seems a challenging question to determine the computational complexity of computing both −→χs(G) and
−→χ (G) when G is cobipartite or when G is a cograph.

With respect to a split graph G, we have shown that computing −→χs(G) is NP-hard, but there is an
exponential kernelization algorithm when parameterized by the value of the solution. The straightforward
question is whether this kernelization can be improved.

The authors in [4] presented a straightforward linear kernel for deciding −→χ (G) ≤ k when G is a cobipartite
graph parameterized by k, as both cliques must have at most k + 2 vertices. The same happens for −→χs.
Actually, all parameterized complexity results for both −→χ and −→χs are so far “the same”, there is usually
just a factor 2 that appears in the case of −→χs due to optimal weighted orientations have weights in {1, 2}.
A natural question is to find a graph class and a parameter in which the parameterized complexity of these
problems differ.

References

[1] Ahadi, A., and Dehghan, A. The complexity of the proper orientation number. Inform. Process.
Lett. 113, 19-21 (2013), 799–803.

[2] Ahadi, A., Dehghan, A., and Saghafian, M. Is there any polynomial upper bound for the universal
labeling of graphs? J. Comb. Optim. 34, 3 (2017), 760–770.

[3] Ai, J., Gerke, S., Gutin, G., Shi, Y., and Taoqiu, Z. Proper orientation number of triangle-free
bridgeless outerplanar graphs. Journal of Graph Theory 95, 2 (2020), 256–266.

[4] Araujo, J., Cezar, A., Lima, C., dos Santos, V., and Silva, A. On the proper orientation
number of chordal graphs. Theoretical Computer Science 888 (2021), 117–132.

[5] Araujo, J., Cohen, N., de Rezende, S. F., Havet, F., and Moura, P. F. S. On the proper
orientation number of bipartite graphs. Theoret. Comput. Sci. 566 (2015), 59–75.

[6] Araujo, J., Havet, F., Linhares Sales, C., and Silva, A. Proper orientation of cacti. Theoret.
Comput. Sci. 639 (2016), 14–25.

[7] Araujo, J., Sales, C. L., Sau, I., and Silva, A. Weighted proper orientations of trees and graphs
of bounded treewidth. Theoretical Computer Science 771 (2019), 39 – 48.

[8] Bodlaender, H. L. A partial k -arboretum of graphs with bounded treewidth. Theor. Comput. Sci.
209, 1-2 (1998), 1–45.

[9] Bondy, A., and Murty, U. Graph Theory. Graduate Texts in Mathematics. Springer London, 2011.
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