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Abstract

In this paper we study the problem of energy-aware resource allocation for hosting long-term services or
on-demand compute jobs in clusters, e.g., deployed as part of computing infrastructures. We formalize the
problem as three constrained optimization problems: maximize job performance under power consumption
constraints, minimize power consumption under job performance constraints, and optimize a linear combi-
nation of power consumption and job performance. These problems are NP-hard but, given an instance,
a bound on the optimal solution can be computed via a rational linear program. We propose polynomial
heuristics for all three problems. Simulation experiments show that in all three cases some heuristics can
achieve results close to optimal, i.e., lead to good job performance while conserving energy.

1. Introduction

Commodity clusters have become the most com-
mon parallel computing platforms and are main-
stream in wide range of settings, including high-
performance computing, internet service hosting,
and data processing. The scale of deployed clus-
ters ranges from a few hundred nodes to tens of
thousands. At large-scale, these clusters represent a
large initial investments in terms of hardware. But
the largest fraction of their operating cost comes
from electrical power consumption, both for power-
ing compute nodes and switches and for providing
adequate cooling. Consequently, maintaining near
maximum resource utilization is a paramount con-
cern [1]. To avoid resource overprovisioning, the
common solution is to consolidate multiple run-
ning jobs and/or services on a single physical com-
pute node, possibly powering down unused com-
pute nodes and/or network elements temporarily.
A key enabling mechanism for such consolidation is
virtual machine technology, used routinely for ser-
vice hosting and more recently advocated for high-
performance computing [2].

While the mechanisms for consolidation are well
understood, one challenge is to define metrics that
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characterize “good” allocations. Another challenge
is to design resource allocation algorithms that op-
timize these metrics. These challenges have been
studied in previous work [3, 4, 5, 6, 7, 8]. In par-
ticular, Stillwell et al. in [9] have proposed formal-
izations of the resource allocation and consolidation
problem. They define an objective metric called the
yield, which measures to which extent a job or ser-
vice receives resource shares that match its effective
resource needs. Their work, however, does not con-
sider electrical power consumption. In this paper,
using the work by Stillwell et al. as a foundation,
we make the following contributions:

1. We formulate the resource allocation prob-
lem as a multi-objective optimization problem,
with both a yield objective and a power con-
sumption objective;

2. We define three classes of resource allocation
problems with three different ways of trans-
forming the multi-objective problem into a
single-objective problem;

3. We propose algorithms to solve these problems,
some of them coming from the standard litera-
ture, some based on the work in [9], and some
completely novel;

4. We evaluate our algorithms in simulation and
compare them both to each other and to theo-
retical bounds on optimal solutions.

This paper is organized as follows. Section 2 de-
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scribes the resource allocation problem, notations,
and objectives, as well as the three studied sub-
problems. Section 3 proposes resource allocation
algorithms. Simulation results are presented in Sec-
tion 4 and discussed in Section 5. Section 6 reviews
related work and Section 7 concludes the paper with
a summary of results and future work directions.

2. The Resource Allocation Problem

2.1. Model and Notations

We consider a cluster that consists of H com-
pute nodes, or hosts. We abstract each host as a
provider of two resources: CPU cycles per time unit
and RAM space. Using virtualization, precise and
arbitrary shares of these resources can be allocated
to virtual machine (VM) instances. We assume
that all hosts provide the same amount of CPU and
RAM resources, and thus we only talk of resource
shares as fractions of total host resources, i.e., num-
bers between 0 and 1. Host h, h = 1, . . . , N , con-
sumes Cmaxh Watts when its CPU is fully utilized. If
a fraction f of its CPU resources is utilized, then the
power consumption is Cminh + f × (Cmaxh − Cminh ),
where Cminh corresponds to the power used when
the host is idle (Cminh < Cmaxh ). While not fully
realistic, this simple model is corroborated by the
experiments reported in [10]. If a host is unused,
then we assume that it is simply powered off and
has a zero power consumption.

We consider N services, or jobs, that run on the
cluster. As in [9], we focus on an off-line resource
allocation problem with a fixed set of continuously
executing jobs that have constant resource needs.
In practice, jobs could arrive in or depart from the
system, and could have resource needs that evolve
throughout time. We leave such an on-line scenario
for future work. But we note that if good and fast
algorithms are identified for the off-line problem,
these algorithms form a sound basis for develop-
ing on-line resource allocation strategies (as seen,
for example, in [11]). We consider sequential jobs,
meaning that each job can be encapsulated inside
a single VM instance. Extension to multi-instance
jobs is immediate [9].

Job i is defined by a CPU need, αi, and a RAM
requirement, mi. The CPU need of a job is the CPU
share it would use on a host that is dedicated to that
job. The job cannot make use of a larger share of
the CPU (e.g., due to time spent idle, spent doing
I/O or network operations). If a job is allocated a

CPU share that is lower than its CPU need then
it operates at reduced speed. For instance, if a job
has a CPU need of 50% but is running within a VM
instance that is constrained to using at most 10% of
the CPU resources of a host, then the job operates
at one fifth of its maximum speed. Using the termi-
nology in [9], we call the ratio of the job’s CPU need
to the job’s allocated CPU share the job’s yield. In
the above example, the job has a yield of 0.2. A
yield of 1.0 means that the job receives all the CPU
resources it can use, while a yield of 0.0 means that
the job cannot run (denoting a failure of the re-
source allocation process). The RAM requirement
corresponds to share of RAM space necessary for
the job to run. The job cannot make use of a larger
share, but cannot run with a smaller share.

The resource allocation problem is trying to allo-
cate each jobs to a host and giving it a fraction of
the host’s resource. The resolution of this problem
is a success when every jobs has been mapped to
a host within the capability of the system. On the
contrary, failure of the allocation is when at least
one job could not be placed. We say that a resource
allocation algorithm fails when the algorithm can’t
provide a successful allocation.

2.2. Constraints

In this section we derive constraints that form
the basis for a linear program formulation of the
resource allocation problem. This program extends
that in [9] to account for power consumption. We
first define the following variables. eih is a binary
variable that takes value 1 if job i is allocated to
host h, and takes value 0 otherwise. αih is a rational
variables that denotes the CPU fraction allocated to
job i on host h. Finally, ph is a binary variable that
is set to 1 if host h is powered on. Our constraints
for these variables are as follows:
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∀i, h eih ∈ {0, 1} (1)

∀i, h αih ∈ Q (2)

∀h ph ∈ {0, 1} (3)

∀i
∑
h eih = 1 (4)

∀i, h 0 ≤ αih ≤ eih (5)

∀i, h ph ≥ αih (6)

∀h ph ≤
∑
i eih (7)

∀h
∑
i αih ≤ ph (8)

∀h
∑
i eihmi ≤ ph (9)

∀i
∑
h αih ≤ αi (10)

(11)

Constraints 1-3 define the range of the variables.
Constraint 4 states that job is allocated to a single
host, meaning that for a given i only one eih value
is non-zero. Constraint 5 states that a job can con-
sume CPU resources only on the host to which it is
allocated, meaning that for a given i only one αih
value is non-zero. Constraint 6 states that if a job
consumes CPU resources on a host then that host
must be powered on. Constraint 7 states that if no
job is allocated to a host then that host is powered
off. Constraint 8 states that the CPU resources of
a host that is powered on are not to be exceeded,
and that no CPU resources are consumed on a host
that is powered off. Constraint 9 states that the
RAM resources of a host that is powered on are
not to be exceeded, and that no RAM resources
are consumed on a host that is powered off. Fi-
nally, Constraint 10 states that a job never receives
a CPU share that is larger than its CPU need.

2.3. Objectives

We can define multiple objective functions that
define optimization problems subject to the con-
straints defined in the previous section. In [9], the
authors use the minimum yield over all jobs, Y ,
which is defined by the following additional con-
straint:

∀i,
∑
h

αih
αi
≥ Y . (12)

The objective is to maximize Y , which is a good
way to capture notions of both fairness and perfor-
mance.

While the yield relates to the levels of perfor-
mance experience by the jobs, an important aspect
of a resource allocation is its power consumption.

We define this power consumption E, expressed in
Watts, as:

E =
∑
h

Cminh ph +
∑
h

(Cmaxh − Cminh )
∑
i

αih .

(13)
In other words, the power consumption is equal to
the idle power consumption of all hosts that are
powered on plus the additional power consumption
of these hosts due to their CPU load. An objective
is then to minimize E.

We have thus defined a performance-related ob-
jective (maximize Y ) and a power-related objective
(minimize E). Multi-objective optimization prob-
lems are notorious for being difficult. Therefore,
in the following three sections, we define single-
objective versions of the problem.

2.4. The BoundedPower problem

We define BoundedPower by adding the con-
straints that E is bounded above by a user-provided
constant Ebound. This constant represents the max-
imum affordable power budget for the operation of
the cluster. The optimization problem then be-
comes a Mixed Integer Linear Program (MILP),
with the objective of maximizing Y . Relaxing all
integer variables in the MILP to be rational, we ob-
tain a relaxed rational linear program that (i) can
be solved in polynomial time; and (ii) provides a
theoretical upper bound on the optimal Y value.
However, the relaxation of all the integer variables
comes with a cost, that is the resulting allocation
not being realistic. For instance, one job can be
spread over several hosts, and a host can be half
switched-on.

2.5. The BoundedYield problem

We define BoundedYield by adding the con-
straint that Y is bounded below by a user-provided
constant Y bound. This constant represents a guar-
anteed minimum level of job “satisfaction,” where
satisfaction is defined as the achieved fraction of the
job’s CPU need. As above the optimization prob-
lem is a MILP with the objective of minimizing E,
and a theoretical lower bound on the optimal E
value can be computed in polynomial time.

2.6. The MixedObjective problem

An alternative to bounding one objective and op-
timizing the other is optimizing a linear combina-
tion of the two, e.g., optimizing Z = λY + (1 −
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λ)(1/E), with λ is between 0 and 1. We call this
problem MixedObjective. This problem defini-
tion has two drawbacks. The main drawback is that
the value of λ must be chosen by the user. While a
higher value indicates a larger weight for perfor-
mance than for power consumption, the tradeoff
is not precisely defined. Also, there is no guaran-
tee that the obtained solution, defined by achieved
minimum yield and power consumption values Ŷ
and Ê, is Pareto optimal. However, this issue can
be addressed by solving BoundedPower (resp.
BoundedYield) using Ê (resp. Ŷ ) as the bound
on E (resp. Y ). Another problem is that the units
and magnitudes of Y and E are not commensurate.
Since Y takes values between 0 and 1, it is necessary
to normalize E so that it too takes values between 0
and 1. This can be done by defining the objective as
maximizing Z = λY + (1−λ)(1−E/Emax), where
Emax represents the maximum power consumption
of the platform.

A näıve definition of Emax would be
∑
h C

max
h .

While this is the maximum possible power con-
sumption of the platform, it may not be a good
choice for normalizing the E value. Considering a
trivial allocation problem for a single job, and as-
suming for the sake of this discussion that all hosts
have the same Cmax value, E/Emax would then be
smaller than 1/H. In general, with this definition
of Emax, the range of values for E/Emax could be
orders of magnitude smaller than that for Y , mak-
ing the linear combination of the two inadequate.
Emax should instead be a reasonable upper bound
on the power consumption of a reasonable resource
allocation for the workload at hand.

To compute Emax, we first solve the relaxed lin-
ear program in Section 2.4 setting E =

∑
h C

max
h .

This linear program produces, in polynomial time,
a bound on the optimal value for Y . Let us use
Y bound to denote this value. We then perform a bi-
nary search for Emax over the range between 0.0
and

∑
h C

max
h . For each candidate Emax value

in this binary search, we solve the relaxed ratio-
nal linear program mentioned in Section 2.4, fixing
E = Emax. If this program produces a Y value that
is no lower than Y bound, then we attempt a lower
Emax value. Otherwise, we attempt a higher value.
We use a 0.01 threshold to define the precision of
this binary search. Our rationale is that Emax is
the smallest upper bound on E for which the theo-
retical bound on the optimal yield is no lower than
that obtained assuming the highest possible power
consumption.

Note that feasible allocations can have power
consumptions higher than Emax. For instance, con-
sideri 2 completely identical hosts (with identical
and strictly positive Cmin and Cmax values), and 2
jobs each with a CPU need of 50% and a memory
requirement of 50%. In this case, Emax = Cmax.
However, a valid allocation is one in which each job
is on a different host, leading to a power consump-
tion of 2(Cmin + .5× Cmax) > Emax.

Consequently, to ensure that both terms in our
linear combination of the objectives are always be-
tween 0 and 1, we redefine our maximization objec-
tive as:

Z = λY + (1− λ)(1−X) ,

where X = min(1, E/Emax). In this way, we have
obtained a MILP formulation for MixedObjec-
tive. Like for the two preceding problems, a the-
oretical bound on the optimal Z value can be ob-
tained by relaxing integer variables to be rational.

3. Algorithms

3.1. Greedy

We first propose algorithms that build on
well-known greedy algorithms for vector packing,
namely First Fit and Best Fit.

To solve the BoundedYield prob-
lems, we propose two First Fit algorithms.
The Greedy BoundedYield 1 algorithm
sorts the jobs by decreasing mi, while the
Greedy BoundedYield 2 algorithm sorts the
jobs by decreasing αi. Assuming that all jobs
have a yield equal to Y bound, both algorithms
place each job on the host with the lowest
Cmax that can accommodate the job’s resource
needs. The Greedy BoundedYield 3 and
Greedy BoundedYield 4 are the Best Fit
versions of Greedy BoundedYield 1 and
Greedy BoundedYield 2, respectively.

To solve BoundedPower, we also propose
two First Fit algorithms that aim at favor-
ing hosts with the lowest power consump-
tions. The Greedy BoundedPower 1 algo-
rithm sorts the hosts by decreasing mi, and the
Greedy BoundedPower 2 sorts the jobs by de-
creasing αi. Initially, both algorithms assume that
all jobs have a yield Y = 1, and attempts to
place all jobs if possible. The algorithms then
iteratively decrease non-zero αij values by 0.01
in a round robin fashion over all jobs. This is
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done until all jobs can be placed and the alloca-
tion’s power consumption reaches the specified en-
ergy bound. If a job is given a yield of 0 be-
fore these conditions are reached then resource
allocation fails. Greedy BoundedPower 3
and Greedy BoundedPower 4 are the Best
Fit versions of Greedy BoundedPower 3 and
Greedy BoundedPower 4, respectively.

The Greedy MixedObjective 1 and
Greedy MixedObjective 2 algorithms solve
the MixedObjective problems by build-
ing on the above two algorithms for solv-
ing BoundedPower. They first calculate
HZ = max(1, d(1 − λ) × (

∑
i αi)e), which gives

the theoretical number of hosts that is needed
to achieve a resource allocation with a given
λ value. The energy bound is then calculated
using the HZ first hosts in the host list (the
hosts are sorted by increasing Cmax). This en-
ergy bound is used to solve BoundedPower
using either Greedy BoundedPower 1 or
Greedy BoundedPower 2.

3.2. EA-ResAlloc Algorithms

In [12] we proposed a resource allocation heuristic
based on the work in [9] that aims at addressing
two antagonist objectives: maximizing the job yield
and minimizing power consumption. This heuristic
relies on the energy-aware yield of a job i ∈ [1..J ]
allocated to host h ∈ [1..H], defined as:

Y Eih =

[∑H
h=1(

αih
αi

)
]1−k[

γδCih+(1−γ)(Ah(1−
∑J
i′=1,i′ 6=i(αi′h)))

]k

=
(Yih)1−k

(Eih)k

The Yih part is simply the yield of job i. The
Eih part is correlated to the allocation’s power con-
sumption. The k parameter thus allows a tradeoff
between yield and power consumption.
δCih represents the contribution of job i to the

power consumption of host h without taking into
account the consumption of host h while idle. This
term favors the placement of jobs on energy efficient
hosts.
Ah is the “attractiveness” of host h, a smaller

value denoting a more attractive host. A host is
more attractive than another if, without taking into
account any other jobs, adding a job requires less
energy on it. The factor Ah(1 −

∑J
i′=1,i′ 6=i(αi′h))

is used to control the grouping of jobs on attrac-
tive hosts. It helps choosing the most attractive

host when no host is already loaded, and choosing
an already loaded host when there is one. In other
words, this term is used to favor workload consoli-
dation.

The γ parameter thus allows a tradeoff be-
tween placement (choosing the most energy-
efficient hosts) and consolidation (aggregating jobs
on a small amount of hosts). Note that both tend
to decrease energy consumption.

The energy-aware yield Y Eih is used by the
heuristic to conciliate 3 different goals:

• maximizing job yield;

• placing jobs on energy efficient hosts; and

• aggregating jobs on a reduced number of hosts
in order to power down as many hosts as pos-
sible.

This metric is used in a task allocation heuris-
tic using bin-packing, taking into consideration also
the memory required by jobs and available on the
hosts. Simulation results in [12] have shown that
using the energy-aware yield leads to good results,
namely reducing the energy consumption while
achieving good performances (in terms of average
job yields). In this work, we build on this heuris-
tic so that it can be applied to solve the Bound-
edYield, BoundedPower, and MixedObjec-
tive problems.

For the BoundedPower problem, we simply do
a binary search on the parameter k in the energy-
aware yield definition, with the constraint that the
power consumption of the resulting resource alloca-
tion is under Ebound. This amounts to finding the
lowest feasible value for k.

To solve the BoundedYield problem, we allo-
cate resources with an objective yield of Y bound and
with k = 0.

The MixedObjective problem is solved with
the energy-aware yield metric as it is, as it was de-
signed specifically for the bi-criteria approach of the
problem. As k is designed to make a tradeoff be-
tween energy consumption and job performance, we
use k = λ (k being the energy/performance trade-
off parameter of the energy-aware yield metric, λ
being the tradeoff parameter of the MixedObjec-
tive problem).

For each problems, we use γ = min(HJ , 1). For γ
values close to 1, i.e., when the system is not over-
loaded, the heuristic will mostly attempt to con-
solidate the workload. For γ values close to 0, the

5



heuristic will mostly attempt to perform good job
placement.

3.3. Bounds on optimal

Like the resource allocation problem in [9], our
three problems are NP-hard via trivial reduction
to the bin packing problem. Their MILP formula-
tions cannot be solved in polynomial time due to
the presence of integer variables. We can therefore
compute optimal solutions only for small problem
instances. In our results we compute optimal solu-
tions only for instances with 4 hosts and at most 12
jobs. We term this solution MILP.

In a view to comparing our algorithms to the op-
timal for larger instances we consider relaxed ver-
sions of our problems in which the integer variables
of the MILP formulation are made rational. The so-
lution can then be computed in polynomial time in
practice. In general, this solution is not a valid so-
lutin of the original MILP because it may spread a
job across multiple hosts. Nevertheless, it is useful
because it provides a bound on the optimal solu-
tion (either in terms of yield, or power consump-
tion, or of a combined objective). We term this
solution LPBOUND. If our algorithms achieve so-
lutions close to this bound, then their solutions are
even closer to the optimal.

We use the free and open source GLPK [13] solver
to compute MILP and LPBOUND. Commercial
solvers, such as ILOG CPLEX[14], would allow us
to compute MILP for larger instances, but LP-
BOUND is sufficient to evaluate the efficacy of our
algorithms in an absolute sense.

4. Experimental Results

4.1. Methodology

In this section we detail our experimental
methodology. To pick representative values for
Cmin and Cmax we monitored power consumption
on the Grid5000 [15] clusters in Lyon, Toulouse and
Grenoble. Based on our measurements, we con-
struct problem instances with hosts whose Cmin

values fall between 100 and 140, and whose Cmax

values fall between 160 and 220. Actual values are
sampled uniformly from these intervals. In our in-
stances, job CPU needs are sampled from a nor-
mal distribution with a mean of 0.33 and a stan-
dard deviation of 0.5 which we truncate to rule
out negatives values and scale to match the mean.
Given the lack of an accept model for CPU needs

of real workloads, we have opted for this simple
model that leads to a diverse job mix. We gen-
erated memory needs for the jobs between 2% and
95% following a Pareto distribution of order 6, since
typically only a few jobs consume a lot of mem-
ory. Note that, in our model, CPU needs and
memory needs are independent. This means that
a job that has a high CPU need does not neces-
sarily have a high memory need. Using the above
distributions we generate 100 random instances for
each H hosts (H = {4, 6, 8, 16, 32, 64}) and J jobs
(J = {H, 2H, 3H}) combination.

For each instance we solve the BoundedPower,
BoundedYield and MixedObjective problems
with the algorithms in Section 3, computing the
MILP solution only for small instances as explained
in Section 3.3. For BoundedYield (resp. Bound-
edPower) we randomly generate the bounds

between 50% and 100% of max(1,
∑
i αi
H ) (resp.∑

h C
max). For the MixedObjective problem, we

chose λ valus of 0.2 (foxus on energy), 0.5 (balanced
focus) and 0.8 (focus on performance).

For each of the produced solutions we compute Y
(the minimum yield), E (the power consumption),
and the number of hosts that are powered up. We
give mean and standard deviations of these values
computed over the 100 samples for selectedH and J
combinations. Note that while most of our random
instances have solutions, we do not guarantee their
feasibility. Algorithm failure rates reported in what
follows include failures for (a few) instances that are
not solvable.

4.2. The BoundedYield problem

In this section we evaluate our algorithms when
used to solve BoundedYield. For this prob-
lem, if the bound on the minimum yield cannot
be achieved, then the algorithm fails. We only
present results for the energy, E, since all algo-
rithms achieve the same yield when they succeed.
We discuss the failure rates of each algorithm as
well as the number of hosts they use.

4.2.1. Results for small instances

We first discuss results for instances with H = 4
hosts, for which the optimal solution, MILP, can
be computed. Figure 1 plots the mean energy (and
standard deviation) of the resource allocation for
the algorithms. We see that the EA-ResAlloc
algorithm and the greedy algorithms perform sim-
ilarly such a small number of hosts, and close
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Table 1: Variables summary

Variable Name Range
αjh CPU allocated to job j on host h [0,1]
αj CPU required by job j [0,1]
mj Memory required by job j [0,1]
ejh Presence of job j on host h {0 | 1}
ph host h is powered on {0 | 1}
Cmin Min host consumption [0,∞]
Cmax Max host consumption [0,∞]
Y Minimum yield [0,1]
E Energy Consumption [0,∞]
λ Tradeoff parameter [0,1]

Figure 1: Mean energy consumed for each algorithms with 4
hosts and 4 jobs

to MILP. LPBOUND, because it is a rational
(unattainable) bound on the optimal, always out-
performs all other solutions since it violates integer
constraints.

Figure 2 shows the average and standard devia-
tion of the number of hosts used in the allocation
produced by our algorithms when H = 4. On av-
erage only around 40% of the hosts (i.e., 1.6 host)
are used, for more than 50% energy reduction com-
pared to no workload consolidation. In this sce-
nario, the hosts are far from overloaded. Finding
a low-energy configuration by powering hosts down
is relatively straightforward, as seen in our results.
Nevertheless, this experiment shows the importance
of having power management algorithms, and that
even simple algorithms can be effective. Finally,
note that LPBOUND uses on average less than
25% of the hosts, meaning that its solutions amount
to powering on only a fraction of a host, which is

Figure 2: Mean number of hosts used for each algorithms
with 4 hosts and 4 jobs

not possible in practice.

4.2.2. Results for all instances

Table 2 shows the mean energy consumed by all
algorithms, computed over all instances, along with
the relative percent difference with LPBOUND.
We can see that EAResAlloc Bound Y per-
forms the best on average, but its competitors are
still close to the bound, and thus close to the opti-
mal.

To gain more insight into the results, Figure 3
plots the average energy consumed by each algo-
rithms, grouped by number of hosts in the instance.
We only have MILP results for the instances with
4 hosts, since computing it for instances with 6
hosts and above takes prohibitive amounts of time.
As expected, LPBOUND and MILP achieve the
smallest average energy consumption. For small,
number of hosts (4, 6, and 8), our heuristics all lead
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Table 2: Energy consumed for each algorithms

Algorithm Energy stddev % bound
LPBOUND 1908 2221 0%

EARESALLOC BOUND Y 2090 2329 +9.5%
GREEDY YIELDBOUND 1 2199 2485 +15.2%
GREEDY YIELDBOUND 2 2145 2396 +12.4%
GREEDY YIELDBOUND 3 2203 2502 +15.4%
GREEDY YIELDBOUND 4 2143 2388 +12.3%

Figure 3: Energy consumed by each algorithm for each number of hosts

to comparable results, as seen earlier in the case of
4 hosts. The EA-ResAlloc Bound Y algorithm
begins to behave differently from the greedy algo-
rithms for instances with over 16 hosts. For the
largest instances it achieves the best results, giv-
ing allocation of an average of 5,900 Watts. For
these instances, EA-ResAlloc Bound Y is ap-
proximately 6% away from LPBOUND, while the
Greedy BoundedYield 4, which is the best of
the greedy algorithms for these instances, is 10%
away from the bound.

Figure 3 aggregates results for multiple num-
bers of jobs, but the results could be different for
J = 1H, J = 2H or J = 3H jobs. As expected,
all algorithms perform better in the J = 1H case.

The J = 2H (resp. J = 3H) case is more CPU-
intensive, since the average sum of the CPU needs
is equal to 66% (resp. 100%) of the computational
capability of the hosts, without taking into account
the bound on the minimum yield. As the ratio be-
tween the number of jobs and the number of hosts
grows, the average energy consumed is closer to the
rational bound. This is because there is less flexibil-
ity when allocating resources, and thus less oppor-
tunity for energy reduction. Nevertheless, the rank-
ing of the algorithms seen in Figure 3 is unchanged
when examining results for particular numbers of
jobs.
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Figure 4: Mean execution time of the all algorithms for 64
hosts and 192 jobs

Figure 5: Percent of failure of the algorithms

4.2.3. Execution time and failure rate

Figure 4 plots the mean execution time of all
algorithms. We can see that apart from the LP-
BOUND algorithm, which takes more than 12 sec-
onds on average, all others algorithms are fast.
Their average execution times go from 67 millisec-
onds for EAResAlloc Bound Y to 1 millisecond
for the greedy algorithms. Furthermore, we created
an instance with 500 hosts and 1500 jobs and found
that EAResAlloc Bound Y produces a solution
in 1 second. We conclude that our algorithms are
sufficiently fast and scalable to be employed in prac-
tice. For comparison, the MILP solutions for 4
hosts and 12 jobs is computed in 1.5 seconds on
average.

The mean failure rates of the algorithms are
shown in Figure 5. The EAResAlloc Bound Y

Figure 6: Percent fail per bound hardness

algorithm fails for about 3% of the instances.
The Greedy BoundedYield 1, which is the al-
gorithm that fails the most, has a failure rate of
12%. The Greedy BoundedYield 4 algorithm,
which is the best of the greedy algorithms, is also
the greedy algorithm that fails the least with a 8%
failure rate. These failures occur mostly for in-
stances with J = 3H jobs, as these instances are
the hardest to solve (and some of them may not
be feasible). Also, expectedly, the rational bound
LPBOUND almost never fails. The only failure is
when, for example, the sum of the memory needs
exceed the hosts capacity. Again, this is because
we do not ensure that all our instances are feasible.

Figure 6 plots failure rate vs. “bound hardness,”
which we define as the relative percentage difference
between the specified yield bound and the bound
on the maximum yield that can be achieved, in
this case 1.0. As stated in Section 4.1, we only
generated bound values between 50% and 100%,
hence the plotted range in the figure. Each point
represents the failure rate for the corresponding
range. The sum of all the points of this graph cor-
responds to the results shown in Figure 5. The
clear, and expected, trend is that the harder the
bound, the higher the failure rates. For example,
for a bound between 90% and 100% of the max-
imum, the greedy algorithms fail for about 3% of
the instances. The main observation here is that the
EAResAlloc Bound Y algorithm is significantly
more robust than the greedy algorithms across the
board.
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Figure 7: Mean minimum yield for 4 hosts and 4 jobs

4.3. The BoundedPower problem

4.3.1. Results for small instances

A fundamental difference between this problem
and BoundedYield is that the bound on the en-
ergy consumption caps the number of hosts that
can be used in the allocation. Figure 7 shows the
performance of the algorithms for H = 4 hosts and
J = 4 jobs, including the MILP solution. Unlike
for BoundedYielf, there are striking differences
between the algorithms. Intuitively, the algorithms
here have to make smarter decisions than just se-
lecting hosts greedily. Since the greedy algorithms
first compute an allocation and then try to meet
the energy bound using this allocation as a starting
point, the minimum yield their produce ends up
being reduced drastically. This explains why the
performance of the greedy algorithms is as far as
20% lower than the optimal solution. By contrast,
the EA-ResAlloc Bound E algorithm performs
reasonably well even though it does not achieve the
optimal solution on all instances. The reason is
that our metric is centered on both placement ef-
fects (placing the jobs where they will consume the
least amount of energy) and consolidation effects
(reducing the number of hosts that are powered
on). For such small instances, our heuristics turns
out to achieve more consolidation than placement,
at times leading to sub-optimal allocations.

The poor performance of the greedy algorithms
worsens as the the ratio between the number of jobs
and the number of hosts increases. This is seen in
Figure 8, which is for J = 12 jobs, in which case the
average minimum yield drops up to to 40% of the
optimal solution. The EA-ResAlloc Bound E

Figure 8: Mean minimum yield for 4 hosts and 12 jobs

Figure 9: Number of hosts used for 64 hosts and 128 jobs

does not perform well in such cases either. Esen-
tially, there is rarely room for consolidation and,
when there is, the minimum yield drops signifi-
cantly. We can also see that this algorithm has the
largest standard deviation, which is due to a higher
variability due to a larger number of allocation fail-
ures.

4.3.2. Results for all instances

Figure 10 plots the average minimum yield for
each algorithm, grouped by number of hosts. As
expected, the best results are for MILP and LP-
BOUND. Among the other algorithms, we can
see that EA-ResAlloc Bound E leads to signif-
icantly higher performance on average. Although
this algorithm displays poor performance in scenar-
ios with few hosts and a relatively large number of
hosts (see Figure 8 for H = 4 and J = 12), in

10



Figure 10: Minimum yield by algorithms by number of hosts

less oversubscribed instances it leads to good per-
formance.

To gain more insight into the difference be-
tween EA-ResAlloc Bound E and the greedy
algorithms, Figure 9 plots the number of hosts
used by the algorithms for instances with H =
64 hosts and J = 128 jobs. We see that EA-
ResAlloc Bound E algorithm uses more hosts
on averages than the greedy algorithms. This
is explained as follows. On the one hand, EA-
ResAlloc Bound E tries to achieve good consol-
idation but also high minimum yield, thus tending
to have a high number of hosts. On the other hand,
the greedy algorithms tend to favor consolidation,
which is detrimental to job yield, but that results
in a low number of hosts powered on.

4.3.3. Execution time and failure rate

Figure 13 plots the execution times of the al-
gorithms for 64 hosts and 192 jobs. As we can
see, the EA-ResAlloc Bound E algorithm takes
much longer to compute an allocation than the
greedy algorithms. This is because multiple allo-
cations are produced in an attempt to achieve the
best energy-aware resource allocation (as part of

Figure 11: Failure rate of the algorithms

two binary searches). Consequently, computing on
instances of 500 hosts and 1500 jobs would require
more than one minute. In such situations, one must
then revert to using one of the greedy algorithms.

Figure 11 plots the failure rate of all the algo-
rithms. The main observation is that the EA-
ResAlloc Bound E algorithm has the highest

11



Figure 12: Failure rate vs. bound hardness

Figure 13: Execution time of the algorithms for 64 hosts and
192 jobs

failure rate, at about 13%. This is because this
algorithm does not favor consolidation, leading to
resource allocation failures in oversubscribed sce-
narios. Figure 12 plots the failure rate versus the
bound harness (as in Figure 6). This figure shows
that the hardness of the bound on the power con-
sumption has an effect on the greedy algorithms
as well as on the EA-ResAlloc Bound E algo-
rithm. As opposed to Figure 6, a smaller bound
percentage for the energy consumption is harder.
For example, a bound percentage of 50% on the
energy consumption means that the system should
not consume more than 0.50×

∑
h(Cmaxh ), which is

hard to achieve. We can see here that a hard bound
between 50% and 70% gives almost the same fail-
ure rate for the greedy algorithms and double for
EA-ResAlloc Bound E. However, if the failure

Figure 14: Minimum yield vs. power consumed for λ = 0.2

rate drops for the greedy for easier bounds, the EA-
ResAlloc Bound E algorithm still fails on a sig-
nificant number of instances. Most failures come
from instances with J = 3H, which, as discussed in
Section 5, is due to the imbalanced workload con-
solidation achieved by this algorithm.

4.4. The MixedObjective problem

For this problem, it is difficult to compare the
algorithms because they do not optimize the same
metric. For instance, the EA-ResAlloc Mixed
algorithm optimizes the metric described in Sec-
tion 3.2, while LPBOUND and MILP optimize
the metric described in Section 2.6. As the met-
rics are not comparable and the problem itself is
multi-criterion, we cannot compare the results in
terms of performances, as one algorithm could fa-
vor the power consumption over the yield and an-
other could do the opposite. Consequently, we only
compare what is comparable, i.e., the behavior of
the algorithms with different λ values.

Figure 14 plots the results of the algorithms for
all the instances, with λ = 0.2. Such a value for
λ favors the increase of the minimum yield over
the reduction of the power consumption. We can
distinguish the clusters induced by the variation of
the number of hosts among our instances, which in-
creases the energy consumption. We can note here
that increasing the number of hosts by a factor two
does not necessarily increase the power consump-
tion of the resources allocation twofold, for instance
for the Greedy Mixed 1 algorithm. On the one
hand we can see that the EA-ResAlloc Mixed
algorithm leads overall to a higher power consump-
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Figure 15: Minimum yield vs. power consumed for λ = 0.5

tion than the Greedy Mixed 1 algorithm. On the
other hand, the minimum yield achieved is greater
with EA-ResAlloc Mixed. When λ = 0.2, we
want to favor the minimum yield over the energy
consumption, which is closer to the use case when
the minimum yield is the solve objective.

Figure 15 plots the values for λ = 0.5, which
means that we want to optimize both the power
consumption and the minimum yield “equally”. As
a result, we see that the EA-ResAlloc Mixed al-
gorithm does not perform as well as before. In fact,
while the overall minimum yield is reduced the en-
ergy remains virtually the same. A possible reason
is that the increase of λ does not have a sufficient
impact on the energy component of our metric. In
other words, the impact of the λ parameter on the
minimum yield for our metric is not proportional to
the impact on the energy consumption. As a result,
λ has a much bigger impact on the minimum yield
than on the energy consumption.

The case λ = 0.5 might be an inflexion point of
our metric where our algorithm cannot reduce the
energy enough to match the performance loss. As
a result, such a value is likely not desirable and a
value closer to 0 or to 1 is preferable.

Figure 16 plots results obtained λ = 0.8. In this
case, we want to reduce energy, even if the perfor-
mance loss is large. And indeed, the performance
loss is significant. In fact, most minimum yield val-
ues are under 0.5. Unlike in Figure 15, however,
the energy reduction is significant. We manage to
achieve some consolidation and as a result we could
decrease in some case the overall energy consump-
tion by a small fraction. The performance loss still

Figure 16: Minimum yield vs. power consumed for λ = 0.8

does not match the energy reduction by a large mar-
gin.

The problem here is that the k parameter of our
metric is not related to both the minimum yield
and the power consumption in the same way that
λ is. This is why those results do not exhibit the
performance that we would have expected with such
a value of λ. Here for instance, we would want
for example to use k = 0.9 to achieve the energy
reduction wanted with λ = 0.8. Such relationship
between the two parameters is not known at this
time, and is left for future investigation.

Figures 17 and 18 plot respectively the aver-
age energy consumption and the average minimum
yield for each algorithm, grouped by number of
hosts in the instances. The best energy consump-
tion is achieved by the Greedy Mixed 1 algo-
rithm, as it focuses on the energy reduction. How-
ever, this algorithm also has the smallest mini-
mum yield of all the algorithms. The opposite goes
for the EA-ResAlloc Mixed algorithm, which
achieves the highest energy consumption and also
the highest minimum yield. This demonstrates the
fact that bi-criterion optimization is difficult,

Figure 19 plots the execution time of the algo-
rithms with 64 hosts and 192 jobs. Here we can see
that the EA-ResAlloc Mixed algorithm com-
putes an allocation in under a second. Of course,
the Greedy Mixed 1 computes in virtual no time
at all while compute the LPBOUND can take up
to almost 20 seconds.
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Figure 17: Energy consumed by each algorithms for each number of hosts

Figure 19: Execution time of the algorithms for 64 and 192
jobs

5. Discussion

In this section, we discuss some of the choices
we have made in the previous section, as well as
possible improvements to our approach.

The method to compute Emax described in Sec-
tion 2.6 is only one possibility. Another method,

for instance, would be to first sort the hosts
by decreasing Cmax, then to compute Emax =∑d2∑

i(αi)e
i (Cmaxi ). With this method, one could

obtain an Emax value that is twice the achievable
Emax (thus larger that the one computed in Sec-
tion 2.6). This method, however, can avoid an effect
that would occur in “stupid” allocations in which
the energy part of Z vanishes. Furthermore, it com-
putes the Emax value faster (which admittedly is
not of great importance since the computation is
done only once per instance).

For the MixedObjective problem, we have seen
that the impact of λ is important, but not neces-
sarily in the way that was initially intended. The
reason, mentionned briefly earlier, is that choosing
λ = k for the EA-ResAlloc Mixed algorithm
may not the most relevant approach for adapting
the algorithm in [12]. Studying results for various
values of k, one can see that on most the [0, 1] in-
terval there is no effect on the energy consump-
tion. Significant energy reduction are observed
only on the [0.7, 1] interval. Consequently, when
solving our problems, the algorithm cannot achieve
the balanced effect that could have been expected
with λ = 0.5, and we observed energy consump-
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Figure 18: Minimum yield by each algorithms for each number of hosts

tion reduction only with λ = 0.8. In order to bet-
ter balancing energy reduction with minimum yield
maximization, one would likely need to define the
energy-aware yield using a form close to the defini-
tion of Z, which is, after all, the optimization goal.

As seen in the results for the BoundedEnergy
problem, the EA-ResAlloc Bound E algorithm
fails as much as the greedy algorithms. A failure
rate as high as 10% can be problematic (and recall
that we considered at most J = 3H jobs). The
reason for these failures is that the algorithm leads
to imbalanced consolidation of workloads (i.e., only
a few hosts are overloaded). Improving the fail-
ure rate of EA-ResAlloc Bound E for such in-
stances must thus come from more balanced con-
solidation. The energy-aware yield metric varies
based on the current jobs allocated to a host. This
means that, for example, a host already loaded will
not have the same energy-aware yield than another
host for the allocation of a particular job. While
this is by design, one could imagine adding a bal-
ancing step to the algorithm, in order to produce a
more balanced allocation, thus likely reducing the
failure rate.

In this work, we do not consider the sum yield,

which would be defined as follows using our nota-
tions: ∑

i

∑
h

αih
αi

.

Optimizing the sum yield would make sense in
scenarios in which the throughput of the system
is more of a concern than fairness. It would be
straightforward to modify our problem formulation
and algorithms to optimize the sum yield for the
BoundedPower and BoundedYield problems.
However, taking into account the sum yield for
the MixedObjective problem is more challeng-
ing since a direct application of our techniques may
lead to job starvation [16, 17]. Note that in [9] sum
yield maximization is used as a second optimization
step once the minimum yield has been maximized,
so as to increase resource utilization.

Our approach takes into account both memory
and CPU resources, and studies three different al-
location problems. There are, however, several ap-
proaches and techniques for reducing energy con-
sumption that we have not considered, such as Dy-
namic Voltage and Frequency Scaling (DVFS) and
VM migration. With DVFS, processors can be
configured to achieve particular trade-offs between
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compute speed and energy consumption. Migra-
tion can be used to adapt a resource allocation in
the case of dynamic workloads. Both DVFS and
migration thus afford more flexibility both for work-
load consolidation and for energy consumption re-
duction. Our approach could be augmented to ac-
count for DVFS and migration capabilities. Note
that our linear program formulation would thus be
larger (i.e., more constraints and variables), which
may make it prohibitive to compute the optimal
even for very small instances. Furthermore, the so-
lution of the relaxed linear program could be further
from the actual optimal.

6. Related Work

There is a large literature on the topic of resource
allocation and resource management in clusters.
Furthermore, with virtual machine (VM) technol-
ogy it has become possible to easily consolidate and
quickly adapt resource allocations. Consequently,
many recent efforts have studied the resource allo-
cation problem in light of these new capabilities.
In this section we only discuss those works that
consider for the power consumption of a resource
allocation. We refer the reader to [9] for an exten-
sive literature review of resource allocation tech-
niques and algorithms that do not specifically take
power consumption into account, and to [18] for
a list of possible techniques for reducing energy in
large scale distributed systems.

The simplest technique to reduce power con-
sumption is to power down cluster nodes. Kamit-
sos et al. attempt to find an optimal policy for
powering nodes up and down using a Markov de-
cision process [19]. As in virtually all approaches,
there is a tradeoff between performance and power
consumption. Solving the Markov decision process
makes it possible to find a Pareto-optimal trade-
off between these two metrics. A similar approach
is taken in [20], in which 3 metrics are considered:
queue waiting time, power consumption, and job
blocking probability. In this work we also consider
a multi-objective problem and power down nodes
to conserve energy. The authors in [19] and [20]
only consider jobs that need a whole host to run,
whereas we allow the sharing of hosts by multiple
jobs. Moreover, unlike in those other works, we do
consider job memory requirements.

XXXXX BARF XXXXX
Beyond simply powering nodes up and down,

a more fine-grain option is to use DVFS. Rong

et al. [21] use DVFS for scheduling scientific ap-
plications on clusters. Leveraging load imbalance
and communication delays of the applications, they
demonstrate that power consumption can be re-
duced significantly with only marginal increases in
application execution times. They mainly provide
tools for programmers to achieve this energy reduc-
tion, whereas here we propose a system that man-
age the energy reduction itself. Etinski et al. [22]
also use DVFS to exploit the load imbalance of
large scale MPI applications. Essentially, they de-
liberately slow down shorter tasks to match the
task with the longest execution time. They also
take into account overclocking to reduce execution
time on a small subset of the nodes, thus not in-
creasing power consumption. They show that up
to 60% CPU power consumption can be saved in
imbalanced MPI applications. Although DVFS is
not considered in this work, our problem formula-
tion and our algorithms could easily be extend it to
make use of it.

In this work we base our algorithms on a mixed
integer linear program formulation of the resource
allocation problem to decide where to place VM in-
stances. A similar approach is used, for instance,
by Petrucci et al. [23]. The linear program is solved
periodically in a control loop fashion. Considering
a heterogeneous cluster with DVFS-enabled nodes,
a set of job placement constraints is derived and the
objective is to minimize power consumption. This
approach can also take advantage of VM instance
migration, accounting to the corresponding over-
head. Migration decisions are based on a notion of
network cost, i.e., cost to transfer VM instance im-
ages over the network. The migration problem is
likely far more complex because instances are often
part of an application and interact with each oth-
ers. Ideally, migration costs would account for the
interactions between the VMs as well as for data
locality. The work in [23] relies on a framework
for monitoring and reconfiguring instances based on
the actuators described in [24].

Current works that aims at reducing energy con-
sumption using VM technology mainly focus on the
dynamic workloads, with the objective of reduc-
ing migration costs while aggregating VM instances
on a reduced set of hosts. Entropy [25] is a re-
source manager for homogeneous clusters that per-
forms dynamic consolidation of resources based on
constraint programming, using VM migration and
taking its own overhead into account. Berral et
al. [26] achieve significant power consumption re-
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duction via resource consolidation using machine
learning to make resource allocation decisions. Es-
sentially, their approach favors the allocation of new
jobs to already powered-up nodes, possibly using
migration. Our approach is more service-oriented
as we allocate directly all jobs instead of allocating
jobs over time. Thus we do not consider job arrival
times, but instead consider long-running services.

Hoyer et al. propose statistical allocation plan-
ning using two different approaches for resource al-
location [27]. The first approach is pessimistic and
allocates to each VM instance the maximum re-
source fraction it could need, using vector packing
to perform the allocation. Their second approach is
instead optimistic and tries to overbook each host
while maintaining each job over a certain perfor-
mance threshold. They mainly focus on dynamic
tracking of resource needs of VM instances, and on
how to react to changing needs, which is comple-
mentary to our allocation problem. Results indi-
cate up to 27% savings in power compared to a
resource allocation policy that always allocate to a
job exactly the resources it need.

Power consumption reductions via intelligent re-
source allocation is not only studied at the clus-
ter scale, but also at a global scale. For instance,
in [28] Le et al. propose a framework to reduce costs
in geographically distributed system. The goal is
to exploit the differences and variabilities between
the energy costs of data centers, the different time
zone where these data centers are located, as well as
their proximity to “green” power sources. The opti-
mization problem is to minimize cost while meeting
SLAs.

7. Conclusion

In this paper we have formulated the problem
of energy-aware task allocation in commodity clus-
ters as a multi-objective problem. We have re-
duced this problem to three single-objective prob-
lems: (i) optimize job performance given power
consumption constraints; (ii) optimize power con-
sumption given job performance constraints; and
(iii) optimize a linear combination of job perfor-
mance and power consumption. We have proposed
five heuristics, four based on standard greedy algo-
rithms and a novel heuristic called EA-ResAlloc.
We have compared these heuristics to optimal and
near-optimal solutions over ranges of problem in-
stances using simulation. We have identified some

heuristics that perform well in terms of energy sav-
ings while still leading to good job performance.
These heuristics enforce consolidation on a subset
of the cluster hosts judiciously chosen depending on
the difficulty of the resource allocation problem. Fi-
nally, these heuristics have low computational cost
and can thus be employed in practical settings.
Overall, the proposed EA-ResAlloc is a promis-
ing heuristic that outperforms classical greedy al-
gorithms in many relevant scenarios (in particu-
lar for the first two problems above). Although
EA-ResAlloc can compute allocations quickly,
in some cases (i.e., optimizing power consumption
given job performance constraints for large problem
instances with hundreds of hosts and jobs) one may
favor the use of one of the greedy algorithms so as
to compute the allocation in only a few seconds.
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