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Abstract

A constant term sequence is a sequence of rational numbers whose
n-th term is the constant term of Pn(x)Q(x), where P (x) and Q(x)
are multivariate Laurent polynomials. While the generating functions
of such sequences are invariably diagonals of multivariate rational func-
tions, and hence special period functions, it is a famous open question,
raised by Don Zagier, to classify those diagonals which are constant
terms. In this paper, we provide such a classification in the case of
sequences satisfying linear recurrences with constant coefficients. We
further consider the case of hypergeometric sequences and, for a simple
illustrative family of hypergeometric sequences, classify those that are
constant terms.

Keywords: Integer sequences, C-finite sequences, hypergeometric sequences,
constant term sequences, P-recursive sequences, Laurent polynomials, Gauss
congruences, diagonals of rational functions.

1 Introduction

Recognizing and interpreting integrality of sequences defined by recursions
is at the same time an extensively studied and a hardly understood topic
in number theory. Even for the case of sequences A(n) defined by linear
recurrences with polynomial coefficients, the so-called P-recursive sequences,

pr(n)A(n + r) = pr−1(n)A(n + r − 1) + · · ·+ p0(n)A(n), pi(n) ∈ Z[n],
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neither a criterion nor even an algorithm is known for classifying/deciding
integrality. An attempt for such a classification is the famous and widely
open conjecture by Christol [Chr90, Conjecture 4, p. 55]. Roughly speaking,
it states that a P-recursive sequence (A(n))n≥0 with (at most) geometric
growth is integral if and only if (A(n))n≥0 is the coefficient sequence of the
diagonal of a rational function R(x) ∈ Z(x1, . . . , xd)∩Z[[x1, . . . , xd]] for some
d ≥ 1. Recall that the diagonal of a multivariate power series

R(x) =
∑

n1,n2,...,nd≥0

c(n1, n2, . . . , nd)x
n1

1 xn2

2 · · · xnd

d (1)

is the univariate power series Diag(R) whose coefficient sequence is given by
A(n) = c(n, n, . . . , n). For a precise statement of Christol’s conjecture see
Conjecture 6.3 below.

Often integrality of sequences can be explained by the underlying com-
binatorial nature. For example, the Catalan numbers C(n) satisfying

(n+ 2)C(n + 1) = 2(2n + 1)C(n), C(0) = 1,

are clearly integers because they count triangulations of convex polygons
with n + 2 vertices. On the other hand, for many other integral and P-
recursive sequences, combinatorial interpretations are not a priori known;
this is the case, for instance, for the Apéry numbers A(n) (associated with
the irrationality proof of ζ(3)) defined by

(n+ 1)3A(n+ 1) = (2n + 1)(17n2 + 17n + 5)A(n)− n3A(n− 1),

A(0) = 1, A(1) = 5.

In both examples above, integrality can be seen from the explicit formulas

C(n) =

(

2n

n

)

−
(

2n

n+ 1

)

and A(n) =

n
∑

k=0

(

n

k

)2(n+ k

k

)2

.

Putting Christol’s conjecture in practice gives a different justification for the
integrality of these two examples. It namely holds that

∑

n≥0

C(n)tn = Diag

(

1− y

1− x(y + 1)2

)

and

∑

n≥0

A(n)tn = Diag

(

1

1− (xy + x+ y)(zw + z + w)

)

,
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and the integrality of C(n) and A(n) follows from that of the coefficients in
the Taylor expansions of the corresponding multivariate rational functions.

In the context of the current text, however, we would like to empha-
size a slightly different viewpoint, which does not only justify integrality
of the two examples, but also implies some interesting arithmetic prop-
erties. Writing ct[P (x)] for the constant term of a Laurent polynomial
P (x) ∈ Q[x±1

1 , . . . , x±1
d ], one can prove that [Str14, Rem. 1.4]

C(n) = ct
[

(x−1 + 2 + x)n(1− x)
]

and

A(n) = ct

[(

(x+ y)(z + 1)(x+ y + z)(y + x+ 1)

xyz

)n]

.

Similar identities as in the examples of the Catalan and Apéry num-
bers can be deduced for many other integral P-recursive sequences. This
motivates the following definition and the subsequent natural question.

Definition 1.1. A sequence A(n) is a constant term if it can be represented
as

A(n) = ct[P (x)nQ(x)], (2)

where P,Q ∈ Q[x±1] are Laurent polynomials in x = (x1, . . . , xd).

Using the geometric series it is easy to see that generating functions of
constant term sequences can be expressed as diagonals of rational functions.
The converse is, however, not true in general. This leads to the follow-
ing question which was raised by Zagier [Zag18, p. 769, Question 2] and
Gorodetsky [Gor21] in the case Q = 1 (see Proposition 5.1 below for an
indication why this case is of particular arithmetic significance).

Question 1. Which P-recursive sequences are constant terms?

To our knowledge, Question 1 is widely open. In fact, the initial mo-
tivation for the present text was the goal of answering the following very
particular sub-question asked by the second author in [Str22, Question 5.1]:

Question 2. Is the Fibonacci sequence (F (n))n≥0 a constant term sequence?

Recall that the Fibonacci sequence (F (n))n≥0 is the coefficient sequence
in the Taylor expansion of the univariate rational function x/(1 − x − x2),
or equivalently the P-recursive sequence (F (n))n≥0 defined by F (n + 2) =
F (n + 1) + F (n) and F (0) = 0, F (1) = 1.

Already in [Str22] the second author noted that a representation of
the Fibonacci numbers as constant terms with Q = 1 is impossible since
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(F (n))n≥0 does not satisfy the so-called Gauss congruences (see (9)). Ex-
ploiting the fact that for any prime p, the value F (p) (mod p) depends on
p (mod 5), we can show (see Example 3.2) that the answer to Question 2
is negative. The reason for this is that, as we will prove, for any constant
term sequence A(n), the sequence A(p) (mod p) must be constant for large
enough primes p. Note that this is not a sufficient criterion, since already the
Lucas numbers L(n) (defined by the same recursion as the Fibonacci num-
bers, but with different initial terms L(0) = 2, L(1) = 1, see (8)) do satisfy
the Gauss congruences but are not constant terms (see Example 4.2).

In the present text, we are able to answer Question 1 in the case of diag-
onals of rational functions F (x) ∈ Q(x) in a single variable. Such sequences
are precisely the (rational) C-finite sequences (also known as C-recursive
sequences), and are characterized by the fact that they satisfy a linear re-
cursion with constant rational coefficients. More explicitly, we define a se-
quence A(n) of rational numbers to be C-finite if there exists a polynomial
P (x) ∈ Q[x] such that for every n ≥ 0 we have

P (N)A(n) = 0, (3)

where N denotes the shift operator N ℓ(A(n)) := A(n + ℓ) for all ℓ ≥ 0.
Equivalently, there exist integers r > 0 and n0 ≥ 0, and complex numbers
c0, . . . , cr−1 with c0 6= 0 such that

A(n+ r) = cr−1A(n+ r − 1) + · · ·+ c0A(n) for all n ≥ n0. (4)

We recall that associated to the recursion (4), the characteristic roots are
usually defined as the roots of

χ(λ) := λr − cr−1λ
r−1 − · · · − c0.

For our purpose, however, it is useful to define the characteristic roots of a C-
finite sequence A(n) as the roots of P (x), where P (x) is chosen with minimal
degree such that (3) holds. Note that the only difference between considering
roots of χ and P is that 0 can be a root of the latter. Equivalently, 0 is
defined to be a characteristic root of A(n) of multiplicity m0 if the minimal
n0 in (4) (chosen so that r is minimal) equals m0. With these definitions we
obtain the following:

Proposition 1.2. Let A(n) be a C-finite sequence. A(n) is a constant term
if and only if it has a single characteristic root λ and λ ∈ Q.

This proposition immediately answers Question 2 but also shows that,
for example, the sequence A(n) = 2n + 1 is not a constant term sequence
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either (in both of these cases, there are two different characteristic roots).
Evidently, however, it is the sum of two constant terms: we see that the
class of constant term sequences is not a ring. Therefore, to fix this issue, it
is natural to consider the class of sequences given as Q-linear combinations
of constant terms:

Question 3. Which P-recursive sequences are finite Q-linear combinations
of constant terms?

Again in the case of C-finite sequences, we can answer this question
completely with the main result of the present work:

Theorem 1.3. Let A(n) be a C-finite sequence. Then A(n) is an r-term Q-
linear combination of constant terms if and only if it has at most r distinct
characteristic roots, all of which are rational.

Having completed the classification of C-finite sequences that can be
written as (sums of) constant terms, there are two most natural directions
for further work. On the one hand, it is reasonable to go from diagonals
in one variable to diagonals in two variables. By the combination of results
due to Pólya [Pó22] and Furstenberg [Fur67] this is known to be exactly the
class of algebraic generating functions. One is then lead to the following
question which we leave for future work:

Question 4. Which sequences A(n) with algebraic generating function are
constant terms?

Another reasonable direction is to try to classify those hypergeometric
sequences which are constant terms. Recall that a P-recursive sequence
A(n) is called hypergeometric if it satisfies a recursion of order one, i.e.
α(n)A(n + 1) = β(n)A(n) for some polynomials α(n), β(n) ∈ Q[n]. In this
sense, this class of sequences is arguably the simplest (and best understood)
among P-recursive ones. Still, Christol’s conjecture remains open even in
this very special case. In fact, it is still an open question whether the
generating function of the sequence

A(n) =

(

1
9

)

n

(

4
9

)

n

(

5
9

)

n

n!2
(

1
3

)

n

can be represented as the diagonal of a rational function. Here and later,
(x)n := x(x+ 1) · · · (x+ n− 1) denotes the rising factorial. We can use the
same methods as in the C-finite case to prove that A(n) is not a constant
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term sequence (see Lemma 6.6). By classifying when the family (21) of
hypergeometric sequences is a constant term, we are further able to conclude
that not all hypergeometric diagonals are constant terms. The following
question, however, remains open in general:

Question 5. Which hypergeometric sequences are constant terms?

The organization of the paper is as follows: In Section 2, we review
properties of C-finite sequences that will be important for our purposes.
In particular, we state Theorem 2.2 which is due to Minton [Min14] and
which is a crucial ingredient of our approach. In Section 3, we derive certain
congruences that are satisfied by any constant term sequence; these are
already enough to answer Question 2. By combining these congruences
with Minton’s Theorem, we prove in Section 4 our main Theorem 1.3, thus
answering Question 1 and Question 3 in the case of C-finite sequences. In
the short Section 5 we prove a statement which is pleasingly similar to
Minton’s theorem and which allows to classify the constant terms with Q = 1
among all constant terms. Finally, in Section 6, we turn our attention to
hypergeometric sequences and discuss Question 5.

Throughout the article, p denotes a prime number, Fp the finite field
with p elements and Zp the ring of p-adic integers.

2 Trace sequences

Let A(n) be a C-finite sequence. Denote by λ1, λ2, . . . , λd ∈ Q the char-
acteristic roots, and let mj be the multiplicity of the root λj. Recall that
λ0 = 0 is defined to be a characteristic root of A(n) of multiplicity m0 if the
minimal n0 in (4) equals m0. A(n) can be written as a linear combination

A(n) = A0(n) +

d
∑

j=1

mj−1
∑

r=0

cj,rn
rλn

j (5)

for certain coefficients cj,r ∈ Q (more precisely, cj,r ∈ Q(λ1, . . . , λd)) and
A0(n) a sequence of finite support {0, 1, . . . ,m0−1}. We refer to [EvdPSW03]
or [KP11, Chapter 4] for introductions to C-finite sequences. Note that al-
lowing 0 as a characteristic root is equivalent to not restricting the numera-
tor of the rational generating function of A(n) to have degree less than the
degree of its denominator. In the following, we will refer to

Asep(n) = A0(0) +

d
∑

j=1

cj,0λ
n
j (6)
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as the separable part of A(n). We note that, if A(n) ∈ Q, then Asep(n) ∈ Q.
A sequence A(n) is said to be a trace sequence if it is a Q-linear combi-

nation of traces Tr(θn) = θn1 + · · · + θnr of algebraic numbers θ with Galois
conjugates θ1 = θ, θ2, . . . , θr (with the understanding that Tr(0n) is 1 for
n = 0 and 0 otherwise). Equivalently, a trace sequence is a C-finite se-
quence for which the multiplicity of each characteristic root is mj = 1 and
for which ci,0 = cj,0 in (5) whenever λi and λj have the same minimal poly-
nomial. We further note as in [BHS18] that the condition to be a trace
sequence is equivalent to the property that the generating function F (x)
is F (0) plus a Q-linear combination of functions of the form xu′(x)/u(x),
where u ∈ Q[x] is irreducible and u(0) = 1.

Example 2.1. For the Fibonacci numbers F (n), the representation (5)
takes the form

F (n) =
ϕn
+ − ϕn

−√
5

, ϕ± =
1±

√
5

2
. (7)

Because the coefficients of ϕn
+ and ϕn

− differ in sign, the Fibonacci numbers
F (n) are not a trace sequence. On the other hand, the Lucas numbers

L(n) = ϕn
+ + ϕn

− = tr[Mn], M =

[

0 1
1 1

]

, (8)

which satisfy the same recurrence as the Fibonacci numbers, are a trace
sequence. In particular, it follows from Theorem 2.2 that the Lucas numbers
L(n) satisfy the Gauss congruences (9).

Minton [Min14] classified those C-finite sequences that satisfy the Gauss
congruences (9) (see [BHS18] for another proof of Minton’s result).

Theorem 2.2 (Minton, 2014). Let A(n) be C-finite. Then the following are
equivalent:

(a) For all large enough primes p and for all r ≥ 1, A(n) satisfies the
Gauss congruences

A(prn) ≡ A(pr−1n) (mod pr). (9)

(b) For all large enough primes p, A(n) satisfies the congruences

A(pn) ≡ A(n) (mod p). (10)

(c) A(n) is a trace sequence.

7



We conclude from Minton’s Theorem 2.2 the following result, which we
employ in the proof of our main result (Theorem 1.3). To see the impor-
tance of Lemma 2.3, we note that, as we will show later (in Corollary 3.4),
the sequences A(n) which are linear combinations of constant terms satisfy
the congruences A(prn) ≡ A(pn) (mod p) for all r ≥ 1 and large enough
primes p.

Lemma 2.3. Let A(n) be C-finite. If A(n) satisfies the congruences

A(prn) ≡ A(pn) (mod p) (11)

for all r ≥ 1 and for all large enough primes p, then the separable part
Asep(n) is a trace sequence.

Proof. It follows from comparing (5) with (6) that for n large enough

A(n) = Asep(n) + nÃ(n),

where Asep(n) and Ã(n) are rational and satisfy the minimal recurrence for
A(n). In particular, each of these sequences is in Zp for large enough p, since
denominators can only arise from the coefficients of the recurrence and the
initial conditions. It follows that

Asep(pn) ≡ A(pn) (mod p)

for all large enough p. Consequently, the congruences (11) are also satisfied
by the C-finite sequence Asep(n). That is, for all r ≥ 1 and large enough p

Asep(prn) ≡ Asep(pn) (mod p). (12)

On the other hand, let us consider the C-finite sequence Asep(n) in Fp. To
avoid confusion, we denote this reduced sequence by asepp (n). Since the
characteristic polynomial of Asep(n) over Q is separable, it is also separable
for all large enough primes p (this can be seen by looking at the discriminant
which, if nonzero over Q, can only vanish modulo finitely many primes).
Consequently, we have a version of (6) with coefficients and roots in Fp.
Namely,

asepp (n) =

d
∑

j=1

djµ
n
j , dj , µj ∈ Fp.

Denoting with ϕp : Fp → Fp the Frobenius automorphism defined by ϕp(z) =
zp, we therefore have

asepp (psn) =

d
∑

j=1

djµ
psn
j =

d
∑

j=1

dj(ϕ
s
p(µj))

n
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for each s ∈ Z>0. Note that ϕp acts as a permutation on the roots µj.
Writing m for the order of this permutation, we have ϕm

p (µj) = µj and thus

asepp (pmn) = asepp (n).

Consequently, the corresponding sequence Asep(n) satisfies

Asep(pmn) ≡ Asep(n) (mod p).

Combined with the congruences (12), this implies that

Asep(pn) ≡ Asep(n) (mod p)

for all large enough p. Theorem 2.2 therefore implies that Asep(n) is a trace
sequence.

3 Congruences for constant terms

In this section we will show that if A(n) is a constant term sequence then
it must satisfy certain congruences for large enough primes p. As a con-
sequence, this allows us to conclude that the Fibonacci numbers are not a
constant term sequence, thus answering Question 2 from the introduction.

For a Laurent polynomial P ∈ Q[x±1], let deg(P ) denote the maximal
degree with which any variable or its inverse appears in P .

Lemma 3.1. Let A(n) = ct[P (x)nQ(x)] with P,Q ∈ Zp[x
±1]. Then

A(prn+ k) ≡ A(k) ct[P (x)p
r−1n] (mod pr)

for all integers n, k ≥ 0 and r ≥ 1, provided that p > deg(P kQ).

Proof. Recall that (see, for instance, [RY15, Proposition 1.9]), for any Lau-
rent polynomial F ∈ Zp[x

±1],

F (x)p
r ≡ F (xp)p

r−1

(mod pr). (13)

As in [Str22], it follows from (13) that

A(prn+ k) = ct[P (x)p
rnP (x)kQ(x)]

≡ ct[P (xp)p
r−1nP (x)kQ(x)] (mod pr)

= ct[P (x)p
r−1nΛp[P (x)kQ(x)]],

9



where Λp denotes the Cartier operator

Λp





∑

k∈Zd

akx
k



 =
∑

k∈Zd

apkx
k.

If p > deg(P kQ), then

Λp[P (x)kQ(x)] = ct[P (x)kQ(x)] = A(k)

and the claim follows.

Example 3.2. For the Fibonacci numbers F (n), it is a well-known conse-
quence of (7) that, modulo any prime p, we have the congruences

F (p) ≡
{

1, if p ≡ 1, 4 mod 5,

−1, if p ≡ 2, 3 mod 5,
(mod p).

Since this is incompatible with Lemma 3.1 (setting r = n = 1 and k = 0
implies that A(p) ≡ A(0) · c (mod p) for some c ∈ Q that is independent of
p), we see that F (n) is not a constant term sequence.

On the other hand, by Theorem 2.2, the Lucas numbers L(n) (from (8))
satisfy the congruences L(prn) ≡ L(pn) (mod p) for r ≥ 1 and p large
enough. As such, Lemma 3.1 is not sufficient to conclude that L(n) is not a
constant term sequence. However, we will be able to conclude in Example 4.2
the stronger result that both the Fibonacci numbers and the Lucas numbers
cannot be expressed as a Q-linear combination of constant terms.

Corollary 3.3. Let A(n) = ct[P (x)nQ(x)] with P,Q ∈ Zp[x
±1]. Then

A(psn+ k) ≡ A(prn+ k) (mod pr)

for all integers n, k ≥ 0 and s ≥ r ≥ 1, provided that p > deg(P kQ).

Proof. It follows from Lemma 3.1 and (13) that

A(psn+ k) ≡ A(k) ct[P (x)p
s−1n] (mod ps)

≡ A(k) ct[P (xps−r

)p
r−1n] (mod pr)

= A(k) ct[P (x)p
r−1n],

as claimed.
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The simple but useful special case r = 1 and k = 0 of the corollary
above takes the following form. Here, p is large enough if p > deg(Q) and
P,Q ∈ Zp[x

±1].

Corollary 3.4. Let A(n) = ct[P (x)nQ(x)] with P,Q ∈ Q[x±1]. If p is large
enough, then, for all integers n ≥ 0 and r ≥ 1,

A(prn) ≡ A(pn) (mod p).

4 C-finite sequences that are constant terms

In this section, we prove our main result, Theorem 1.3 stated in the introduc-
tion, thus classify those C-finite sequences that are constant terms or linear
combinations of such. We start by proving the following weaker version,
since it illustrates well our approach and the usefulness of the congruences
proved in Section 3. We then extend the argument to prove Theorem 1.3 in
full generality.

Proposition 4.1. Let A(n) be a C-finite sequence. A(n) is a Q-linear com-
bination of constant terms if and only if all characteristic roots are rational.

Proof. For one direction, note that

ct[(x+ λ)n(λ/x)r] =

(

n

r

)

λn =
n(n− 1) · · · (n− r + 1)

r!
λn. (14)

Varying r, the right-hand side forms a basis for the span of the sequences
(nrλn)n≥0. A sequence A0(n) of finite support can be represented as

A0(n) = ct[xn(A(0) +A(1)x−1 + · · ·+A(N)x−N )],

where N is the largest integer for which A0(N) is non-zero. It therefore
follows with (5) that, if all characteristic roots λ are rational, then A(n) can
be represented as a linear combination of constant terms.

On the other hand, suppose that A(n) is a linear combination of constant
terms. Note that this implies that any shift A(n + k), where k ∈ Z≥0, is
a linear combination of constant terms as well. These shifts generate the
space VA of rational solutions of the minimal constant-coefficient recursion
satisfied by A(n). Thus, any sequence in VA is a linear combination of
constant terms. Assume, for contradiction, that there is a characteristic
root λ that is not rational. Then among the sequences in VA there is always
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a sequence B(n) of the form (6) (that is, B(n) equals its separable part)
which is not a trace sequence.

For instance, if λ1, . . . , λd are the roots of the minimal polynomial of λ,
then the space Vλ of rational sequences of the form b(n) = c1λ

n
1 + · · · +

cdλ
n
d , with c1, . . . , cd ∈ Q, is a d-dimensional subspace of VA. Clearly, each

sequence in Vλ is of the form (6). Note that λn
1 + · · ·+ λn

d and its multiples
are the only trace sequences in Vλ. Since d ≥ 2, we can therefore choose a
sequence B(n) in Vλ that is not a trace sequence.

It follows from Corollary 3.4 that B(n) satisfies the congruences

B(prn) ≡ B(pn) (mod p)

for all r ≥ 1 and all large enough primes p. Lemma 2.3 therefore implies
that Bsep(n) = B(n) is a trace sequence. This is a contradiction, and we
conclude that all characteristic roots must be rational.

Example 4.2. Recall from (7) that the Fibonacci numbers F (n) are C-finite
with characteristic roots (1±

√
5)/2. Since these are not rational, it follows

from Proposition 4.1 that F (n) cannot be expressed as a linear combination
of constant terms.

The same argument applied to (8) shows that the Lucas numbers L(n)
cannot be expressed as a linear combination of constant terms as well. Al-
ternatively, this can also be concluded from the relationship

2L(n + 1)− L(n) = 5F (n)

combined with the fact that Fibonacci numbers are not a sum of constant
terms.

We next prove the case r = 1 of Theorem 1.3, that is Proposition 1.2,
stating that a C-finite sequence A(n) is a single constant term if and only if
it has a single characteristic root λ and λ ∈ Q.

Proof of Proposition 1.2. It follows from (5) and (14) that if A(n) is a C-
finite sequence with the single characteristic root λ ∈ Q (possibly repeated or
possibly 0), then A(n) is a constant term, namely A(n) = ct[(x+λ)nQ(x−1)]
for a suitable polynomial Q(x).

On the other hand, suppose that A(n) = ct[P (x)nQ(x)] is a single con-
stant term. Since A(n) is a C-finite sequence, it has a representation of the
form (5) or, equivalently,

A(n) = A0(n) +

d
∑

j=1

λn
j pj(n) (15)
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for pairwise distinct λj ∈ Q
×

and nonzero pj(n) ∈ Q[n]. As before, A0(n)
is a sequence with finite support, corresponding to the characteristic root 0.
It follows from Proposition 4.1 that all characteristic roots λj are rational,
and this further implies that pj(n) ∈ Q[n].

Let c0 = ct[P (x)] ∈ Q. From Lemma 3.1 (with r = 1 and n = 1) it
follows that

A(p + n) ≡ A(n) · c0 (mod p)

for all n ≥ 0 and all large enough primes p (namely, p > deg(PnQ) and
large enough so that c0 ∈ Zp). Combining this congruence with (15) and
applying Fermat’s little theorem to reduce λp+n

j and pj(p+ n) modulo p to

λn+1
j and pj(n) respectively, we find that

d
∑

j=1

λn+1
j pj(n) ≡ c0



A0(n) +

d
∑

j=1

λn
j pj(n)



 (mod p) (16)

for all large enough p (in particular, so that p is larger than any denominator
occuring in the pj(n) and so that A0(p+n) = 0). Note that both sides of (16)
are independent of p. Since they agree modulo any large enough p, it follows
that they must be equal (for each fixed value of n). Accordingly, we have
the identity

d
∑

j=1

λn+1
j pj(n) = c0



A0(n) +

d
∑

j=1

λn
j pj(n)



 for all n ≥ 0. (17)

Note that both sides of (17) are C-finite sequences so that, because the
representation (15) is unique, we must have, in particular, c0A0(n) = 0. If
c0 = 0 then it follows by comparison with the left-hand side of (17) that
d = 0 so that A(n) = A0(n) with the single characteristic root λ = 0. In the
other case, that is if c0 6= 0, we have A0(n) = 0, so 0 is not a characteristic
root. Further comparing both sides of (17), we find that λj = c0 for all j.
Since the λj are distinct, we conclude that d = 1 so that A(n) = λn

1p1(n)
with the single characteristic root λ1 ∈ Q×.

We now extend Proposition 1.2 to the case of r-term Q-linear combi-
nations of constant terms, thus proving our main result Theorem 1.3. We
recall that its statement is that a C-finiteA(n) sequence is an r-term Q-linear
combination of constant terms if and only if it has at most r characteristic
roots, all of which are rational.
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Proof of Theorem 1.3. The case r = 1 is proved by Proposition 1.2. With
the same argument as in (14) it follows that any C-finite sequence with r
characteristic roots, all of which are rational, can be represented as a linear
combination of r constant terms.

Therefore, suppose that r > 1 and that

A(n) = ct[P1(x)
nQ1(x)] + · · · + ct[Pr(x)

nQr(x)]

is an r-term Q-linear combination of constant terms with Pj, Qj ∈ Q[x±1].
We need to show that A(n) has at most r characteristic roots, all of which
are rational. As in the proof of Proposition 1.2, we find that all characteristic
roots of A(n) are rational and that A(n) can be represented in the form (15)
with pj(n) ∈ Q[n].

Let cj = ct[Pj(x)] ∈ Q. It follows from Lemma 3.1 that

A(p+ n) ≡ c1 ct[P1(x)
nQ1(x)] + · · ·+ cr ct[Pr(x)

nQr(x)] (mod p)

for all n ≥ 0 and all large enough primes p. On the other hand, for large p,
by Fermat’s little theorem,

A(p + n) ≡
d

∑

j=1

λn+1
j pj(n) (mod p).

Note that the right-hand sides of the last two congruences are independent
of p. Since the congruences hold modulo all large enough primes, we conclude
that

d
∑

j=1

λn+1
j pj(n) = c1 ct[P1(x)

nQ1(x)] + · · ·+ cr ct[Pr(x)
nQr(x)].

Note that the sequence

B(n) :=
d

∑

j=1

λn+1
j pj(n)− c1A(n) =

d
∑

j=1

(λj − c1)λ
n
j pj(n)− c1A0(n)

is C-finite and is an (r − 1)-term Q-linear combination of constant terms.
By induction, we may conclude that B(n) has at most r − 1 characteristic
roots, all of which are rational. By comparison with (15), we see that A(n)
has at most one more characteristic root than B(n). Thus A(n) has at most
r characteristic roots, which is what we had to show.

14



Theorem 1.3 classifies those rational recursive sequences with constant
coefficients which can be represented as a linear combination of r constant
terms. In particular, a rational C-finite sequence A(n) is a linear com-
bination of constant terms if and only if all of its characteristic roots are
rational. It is natural to wonder whether we can restrict to integer sequences
and conclude that all characteristic roots must be integral. This leads to
the following general conjecture on C-finite sequences.

Conjecture 4.3. Let A(n) be a C-finite sequence with characteristic roots
λ1, . . . , λd ∈ Q. If A(n) is an integer sequence, then λ1, . . . , λd ∈ Z.

Even though the statement of Conjecture 4.3 seems to be quite plausible,
we could find neither its statement nor its proof (even for particular cases)
in the vast literature on C-finite sequences.

Note that even in the particular case d = 2 and A(n) = λn
1 − λn

2 , Con-
jecture 4.3 is a non-trivial statement; in this case, it follows from the clas-
sical “lifting-the-exponent lemma” due to Carmichael [Car09, Thm. V]. In
many other cases with d = 2, Conjecture 4.3 follows similarly from [San16,
Thm. 1.5]. For arbitrary d, we expect that Conjecture 4.3 can be tackled by
using similar (analytic) p-adic arguments.

5 An analog of Minton’s theorem

In this section, we record the following result which, though having a much
simpler proof, is pleasingly similar to Theorem 2.2 due to Minton [Min14].
Moreover, this result gives a classification of constant term sequences of the
form A(n) = ct[P (x)n] among all constant term sequences ct[P (x)nQ(x)].

Proposition 5.1. Suppose A(n) = ct[P (x)nQ(x)] with P,Q ∈ Q[x±1].
Then the following are equivalent:

(a) For all large enough primes p and for all r ≥ 1, A(n) satisfies the
Gauss congruences (9).

(b) For all large enough primes p, A(n) satisfies the congruences (10).

(c) A(n) = A(0) ct[P (x)n].

Proof. We conclude from Lemma 3.1 with r = 1 and k = 0 that

A(pn) ≡ A(0) ct[P (x)n] (mod p)

15



for large enough p (namely, if p > deg(Q)). If A(n) satisfies the congru-
ences (10), we find that, for large enough p,

A(n) ≡ A(0) ct[P (x)n] (mod p).

In that case, since this congruence holds modulo infinitely many p, we con-
clude the equality A(n) = A(0) ct[P (x)n]. Thus the third condition follows
from the second.

To complete the proof, we need to show that the third condition implies
the first. This follows from Lemma 3.1 with k = 0 and Q = 1.

Remark 5.2. Note that Proposition 5.1 does not imply that if A(n) =
ct[P (x)nQ(x)] satisfies the Gauss congruences (9) for large enough primes,
then Q must be constant. For instance, for any P (x) ∈ Z[x±1], the con-
stant terms ct[P (x2)n(1 + x)] = ct[P (x2)n] = ct[P (x)n] satisfy the Gauss
congruences for all primes p, even though the first constant term has a non-
constant Q. Proposition 5.1 rather shows that if (a) or (b) are fulfilled, then
Q can be replaced by ct[Q].

6 Hypergeometric constant terms

Exiting the class of C-finite sequences, we find it natural to ask (Question 5
in the introduction): Which hypergeometric sequences1 A(n) are constant
term sequences?

The reason for the specialization to hypergeometric sequences is three-
fold. First, it can be argued that it is the easiest P-recursive case. Second,
similar to constant terms, hypergeometric sequences are not stable under ad-
dition. Finally, as we will see below in Lemma 6.1, the congruences proven
in Section 3 behave nicely with the hypergeometric assumption.

It follows from Lemma 3.1 (specialized to n = 1 and r = 1) that if
A(n) = ct[P (x)nQ(x)] with P,Q ∈ Q[x±1], then

A(p + k) ≡ A(k) ct[P (x)] (mod p)

for all integers k ≥ 0, provided that p > deg(P kQ) and P,Q ∈ Zp[x
±1]. In

other words, if A(n) is a constant term, then there exists a constant c ∈ Q

1Recall that a sequence A(n) is hypergeometric if it satisfies a first-order recurrence
α(n)A(n + 1) = β(n)A(n) for some polynomials α(n), β(n) ∈ Q[n]. For our purposes we
will assume α(n) 6= 0 for all n ≥ 0.
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such that, for each k ∈ Z≥0, the congruences

A(p + k) ≡ A(k) · c (mod p) (18)

hold for all large enough p. We shall now show that, for hypergeometric
sequences, the congruences (18) follow from the base case k = 0.

Lemma 6.1. Let A(n) be a hypergeometric sequence. Suppose that there
exists a constant c ∈ Q such that

A(p) ≡ c (mod p) (19)

for all large enough p. Then, for each k ∈ Z≥0, the congruence (18) holds
for sufficiently large p.

Proof. Since A(n) is hypergeometric, we have A(n + 1) = ρ(n)A(n) for a
rational function ρ(n) = β(n)/α(n) with α(n), β(n) ∈ Z[n]. Fix k ∈ Z≥0 and
suppose that the congruence (18) holds for all large enough p. By applying
the hypergeometric recurrence twice, we obtain

A(p + k + 1) = ρ(p+ k)A(p + k) ≡ ρ(k)cA(k) = cA(k + 1) (mod p),

which is (18) with k + 1 in place of k. Here we used that ρ(p + k) ≡ ρ(k)
(mod p), which holds true provided that α(k) 6≡ 0 (mod p). The latter is
true for all sufficiently large p since, by assumption, α(k) 6= 0. The claim
therefore follows by induction on k.

Remark 6.2. Note that Lemma 6.1 does not hold for non-hypergeometric
sequences in general. For instance, it does not hold for the Lucas numbers
L(n) as defined in (8). These form a trace sequence so that, by Minton’s
Theorem 2.2, the Gauss congruences (9) are satisfied. In the case n = 1,
these imply the congruences (19). However, the Lucas numbers do not
satisfy the congruences (18) for k > 0.

Lemma 3.1 gives a necessary condition for A(n) to be a constant term
sequence. It is natural to wonder whether, or to which degree, this condition
is sufficient: Is an integer hypergeometric sequence A(n) that satisfies the
congruences (19) a constant term? Natural sources of potential counterex-
amples to this question are families of integer sequences that are quotients of
binomial coefficients but cannot be written as products of those, for example

A(n) =
(

8n
4n

)(

4n
n

)(

2n
n

)−1
(see [Bob09, Thm. 1.2]).

We recall that the corresponding question for diagonals (1) (namely, to
classify which hypergeometric sequences A(n) are coefficients of diagonals)
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also remains open. The following conjecture due to Christol [Chr90, Con-
jecture 4, p. 55] attempts such a classification. In its statement, we call a
sequence (A(n))n≥0 almost integral if there exists a positive integer K such
that Kn+1A(n) ∈ Z for all integers n ≥ 0. An almost integral sequence with
(at most) geometric growth is called globally bounded.

Conjecture 6.3 ([Chr90]). Let (A(n))n≥0 be sequence of rational numbers.
The generating function

∑

n≥0 A(n)t
n is the diagonal of a rational function

if and only if (A(n))n≥0 is P-recursive and globally bounded.

Any hypergeometric sequence is P-recursive since it satisfies, by defi-
nition, a recurrence with polynomial coefficients of order one. Moreover,
thanks to a result of Christol [Chr87], [Chr90] it is easy to check when a
hypergeometric sequence is integral (in the case when α(n) and β(n) in
the definition split in Q[n]). This makes hypergeometric sequences a nat-
ural source of potential counterexamples to Conjecture 6.3. We refer to
[BBC+13], [AKM20] and [BY22] for recent progress in this area. Here, we
only mention that even for

A(n) =

(

1
9

)

n

(

4
9

)

n

(

5
9

)

n

n!2
(

1
3

)

n

(20)

the conjecture is open. In other words, it is an open question whether the
sequence (20) is the diagonal of a rational function. On the other hand, we
will show in this section that (20) is not a constant term. Before doing so,
we first prove the following result answering Question 5 for a special family
of hypergeometric sequences.

Lemma 6.4. Let m ≥ 2 be an integer and consider the sequence

Am(n) =

(

1
m

)

n

(

1− 1
m

)

n

n!2
. (21)

(a) Am(n) is a diagonal for all m ≥ 2.

(b) Am(n) is a constant term if and only if m ∈ {2, 3, 4, 6}.
Note that the classification in Lemma 6.4 suggests that constant term

sequences are special among diagonals and often have significant additional
arithmetic properties. Indeed, the cases m ∈ {2, 3, 4, 6} (see A002894,
A006480, A000897 and A113424 in the on-line encyclopedia of integer se-
quences [ST22]) correspond precisely to those special hypergeometric func-
tions underlying Ramanujan’s theories of elliptic functions (m = 2 being the
classical case and m = 3, 4, 6 corresponding the alternative bases). We refer
to [BBG95] for more information.
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Example 6.5. The hypergeometric sequence

B(n) = 53n
(

1
5

)

n

(

4
5

)

n

n!2
= 1, 20, 1350, 115500, 10972500, . . . (22)

is an integer sequence and grows at most exponentially. As suggested by
Christol’s Conjecture 6.3 and stated in Lemma 6.4, the sequence B(n) is a
diagonal. However, B(n) is not a constant term. The proof of Lemma 6.4
in this case proceeds by showing that we have the congruences

B(p) ≡
{

20, if p ≡ ±1 mod 5,

30, otherwise,
(mod p),

which contradict Lemma 6.1.

Proof of Lemma 6.4. Part (a) follows from the fact that the generating func-
tion of Am(n) is the Hadamard (term-wise) product of (1 − x)−1/m and
(1 − x)1/m−1. The latter are algebraic functions and hence diagonals by a
result of Furstenberg [Fur67]. Since diagonals are closed under Hadamard
products [Chr88], it follows that Am(n) is a diagonal.

That Am(n) is a constant term if m ∈ {2, 3, 4, 6} follows from the fol-
lowing alternative representations as products of binomial coefficients:

24nA2(n) =
(2n)!2

n!4
=

(

2n

n

)2

,

33nA3(n) =
(3n)!

n!3
=

(

3n

2n

)(

2n

n

)

,

43nA4(n) =
(4n)!

(2n)!n!2
=

(

4n

2n

)(

2n

n

)

,

24n33nA6(n) =
(6n)!

(3n)!(2n)!n!
=

(

6n

3n

)(

3n

n

)

.

In the remainder, we will show that Am(n) is not a constant term if m 6∈
{2, 3, 4, 6}. If m is coprime to p (as it is for large enough p) then the right-
hand side of

mp
(

1
m

)

p
= 1 · (m+ 1)(2m + 1) · · · ((p− 1)m+ 1)

is a product of all the residues modulo p. In particular, exactly one factor
is of the form ap where a ∈ {1, 2, . . . ,m − 1} is characterized by ap ≡ 1
(mod m). By Wilson’s theorem, we therefore have

mp
(

1
m

)

p
≡ −ap (mod p2)
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or, equivalently,
mp

(

1
m

)

p

p!
≡ a (mod p).

Similarly,
mp

(

1− 1
m

)

p
= (m− 1)(2m − 1) · · · (pm− 1)

and, again, the right-hand side features a product of all residues modulo p.
Exactly one factor is of the form bp where b ∈ {1, 2, . . . ,m − 1} is charac-
terized by bp ≡ −1 (mod m). It follows that b = m − a. Combined, we
conclude that

m2pAm(p) =
m2p

(

1
m

)

p

(

1− 1
m

)

p

p!2
≡ a(m− a) (mod p). (23)

Since a ∈ {1, 2, . . . ,m − 1} is characterized by a ≡ 1/p (mod m) it, in
particular, depends only on the residue class of p modulo m. As p ranges
through all primes, it follows from Dirichlet’s theorem on primes in arith-
metic progressions, that each value a ∈ {1, 2, . . . ,m− 1} with a coprime to
m appears infinitely many times. There are φ(m) many such values of a,
where φ is Euler’s totient function. Consequently, the quantity a(m− a) on
the right-hand side of (23) takes φ(m)/2 many different values as p ranges
through all primes p > m.

On the other hand, if Am(n) is a constant term sequence, then by (19)
there exists a constant c ∈ Q such that m2pAm(p) ≡ c (mod p) for all
large enough primes. If (23) holds for infinitely many p, we necessarily have
c = a(m− a), which is only possible if φ(m)/2 = 1.

Thus, if φ(m) > 2 then m2pAm(p) cannot satisfy the congruences (19)
for all large enough primes and, hence, the sequences m2nAm(n) and Am(n)
cannot be constant terms. Since φ(m) > 2 for all integers m ≥ 2 except for
m ∈ {2, 3, 4, 6}, the claim follows.

For hypergeometric sequences, we therefore have the following inclusions

{constant terms} ( {diagonals} ⊆ {P-recursive & globally bounded seq’s} .

We note that these inclusions are also true for C-finite as well as for P-
recursive sequences. An example for the strictness of the first inclusion in the
realm of hypergeometric sequences is given by the sequence (22) and in the
class of C-finite sequences by the Fibonacci numbers. The second inclusion
is a consequence of a result due to Lipshitz [Lip88] and it is strict if and
only if Christol’s Conjecture 6.3 (restricted to hypergeometric sequences) is
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false. A potential candidate of a globally bounded hypergeometric sequence
that is not a diagonal is sequence (20). We now show that this sequence is
not a constant term.

Lemma 6.6. The hypergeometric sequence A(n) defined in (20) is not a
constant term sequence.

Proof. Proceeding as in the proof of Lemma 6.4, we find

mp
(

r
m

)

p
= r(m+ r) · · · ((p − 1)m+ r),

where the right-hand side is a product over all residues modulo p. Exactly
one factor is of the form ap where a ∈ {1, 2, . . . ,m− 1} is characterized by
ap ≡ r (mod m). In that case,

mp
(

r
m

)

p

p!
≡ a (mod p).

If p ≡ 1 (mod 9), we therefore find

9p
(

1
9

)

p

p!
≡

3p
(

1
3

)

p

p!
≡ 1,

9p
(

4
9

)

p

p!
≡ 4,

9p
(

5
9

)

p

p!
≡ 5 (mod p),

which combine to

35pA(p) = 35p

(

1
9

)

p

(

4
9

)

p

(

5
9

)

p

p!2
(

1
3

)

p

≡ 1 · 4 · 5
1

= 20 (mod p).

On the other hand, if p ≡ −1 (mod 9), then

9p
(

1
9

)

p

p!
≡ 8,

3p
(

1
3

)

p

p!
≡ 2,

9p
(

4
9

)

p

p!
≡ 5,

9p
(

5
9

)

p

p!
≡ 4 (mod p),

which combine to

35pA(p) = 35p

(

1
9

)

p

(

4
9

)

p

(

5
9

)

p

p!2
(

1
3

)

p

≡ 8 · 4 · 5
2

= 80 (mod p).

As in the proof of Lemma 6.4 we conclude that 35nA(n) and, hence, A(n)
cannot be a constant term.
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