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An Adaptive Neural Network for Unsupervised Mosaic Consistency Analysis in Image Forensics

Automatically finding suspicious regions in a potentially forged image by splicing, inpainting or copy-move remains a widely open problem. Blind detection neural networks trained on benchmark data are flourishing. Yet, these methods do not provide an explanation of their detections. The more traditional methods try to provide such evidence by pointing out local inconsistencies in the image noise, JPEG compression, chromatic aberration, or in the mosaic. In this paper we develop a blind method that can train directly on unlabelled and potentially forged images to point out local mosaic inconsistencies. To this aim we designed a CNN structure inspired from demosaicing algorithms and directed at classifying image blocks by their position in the image modulo (2 × 2). Creating a diversified benchmark database using varied demosaicing methods, we explore the efficiency of the method and its ability to adapt quickly to any new data.

Introduction

Detecting image forgeries is a problem with critical applications ranging from the control of fake news in online media and social networks [59] to the avoidance of scientific misconduct involving image manipulation 1 . Images are easy to modify in a visually realistic way, but those modifications can be difficult to detect automatically.

The most common image forgery techniques are copymove, both internal and external (splicing), inpainting and enhancement, which may include a modification of the hue, contrast, brightness, etc., of an image to hide objects or change their meaning [START_REF] Farid | Photo Forensics[END_REF]75]. The settings in which these images are created and distributed may further alter the image and hinder certain detection methods. For instance, uncompressed images have characteristic demosaicing and noise signatures which are nearly erased by a strong compression. On the other hand, detection in tampered JPEG images may be based on the inconsistency of JPEG encoding caused by splicing [START_REF] Pevny | Detection of doublecompression in jpeg images for applications in steganography[END_REF][START_REF] Iakovidou | Content-aware detection of jpeg grid inconsistencies for intuitive image forensics[END_REF][START_REF] Farid | Exposing digital forgeries from jpeg ghosts[END_REF][START_REF] Lin | Fast, automatic and fine-grained tampered jpeg image detection via dct coefficient analysis[END_REF]6,7,[START_REF] Li | Passive detection of doctored jpeg image via block artifact grid extraction[END_REF]]. Yet, this detection method is so efficient that research on counterforensics has been very active and has proposed efficient ways to reinstate a coherent JPEG encoding after forgery [START_REF] Matthew | Undetectable image tampering through jpeg compression anti-forensics[END_REF][START_REF] Christopher Stamm | Anti-forensics of jpeg compression[END_REF][START_REF] Valenzise | Revealing the traces of jpeg compression antiforensics[END_REF]20].

There are two concurrent paradigms for forgery detection techniques. The first way consists in developing many different methods, that address separately the varied forgeries and inconsistencies created by these forgeries. Error Level Analysis (ELA) [START_REF] Cavalcanti | Image forgery detection by semi-automatic wavelet soft-thresholding with error level analysis[END_REF] fits in this category and creates a heatmap by recompressing the image and visualising the difference. As we just mentioned, many methods look for inconsistencies in JPEG encoding; many other try to detect noise discrepancies [START_REF] Ke | Detecting image forgery based on noise estimation[END_REF][START_REF] Alin | Statistical tools for digital forensics[END_REF][START_REF] Jawadul | Hybrid lstm and encoder-decoder architecture for detection of image forgeries[END_REF][START_REF] Ghosh | Spliceradar: A learned method for blind image forensics[END_REF][START_REF] Mayer | Learning unified deep-features for multiple forensic tasks[END_REF][START_REF] Mayer | Learned forensic source similarity for unknown camera models[END_REF][START_REF] Bayar | Constrained convolutional neural networks: A new approach towards general purpose image manipulation detection[END_REF][START_REF] Mayer | Forensic similarity for digital images[END_REF][START_REF] Mayer | Learning unified deep-features for multiple forensic tasks[END_REF][START_REF] Mayer | Learned forensic source similarity for unknown camera models[END_REF][START_REF] Bayar | Constrained convolutional neural networks: A new approach towards general purpose image manipulation detection[END_REF][START_REF] Mayer | Forensic similarity for digital images[END_REF][START_REF] Korus | Digital image integrity-a survey of protection and verification techniques[END_REF][START_REF] Walia | Forgery detection using noise inconsistency: A review[END_REF]35,16,[START_REF] Pan | Exposing image splicing with inconsistent local noise variances[END_REF][START_REF] Mahdian | Using noise inconsistencies for blind image forensics[END_REF]44,[START_REF] Zeng | Image splicing localization using pca-based noise level estimation[END_REF][START_REF] Yao | Detecting image splicing based on noise level inconsistency[END_REF] or attempt to directly detect internal copy-move operations [68,71,[START_REF] Wen | Coverage-a novel database for copy-move forgery detection[END_REF][START_REF] Silva | Going deeper into copy-move forgery detection: Exploring image telltales via multi-scale analysis and voting processes[END_REF][START_REF] Amerini | A sift-based forensic method for copy-move attack detection and transformation recovery[END_REF][START_REF] Ferreira | Behavior knowledge space-based fusion for copy-move forgery detection[END_REF]. The variety of setups before and after forgery makes exhaustiveness difficult, yet results obtained by such specific methods are self-explanatory. However, with few exceptions such as the recent development of Siamese Networks, which we briefly describe in Section 2, most of these methods are created manually, which can limit their performances, especially when forged images are created with a combination of methods rather than just one move.

Another possibility is to consider forgery detection as a unique learning problem and develop a structure -usually a neural network -to classify and/or localise forgeries independently of the setup and forgery type. For instance in [72] a heat map is computed, in [START_REF] Jawadul | Exploiting spatial structure for localizing manipulated image regions[END_REF] the network segments the image into forged and non-forged parts. See also [10] and [4]. While exhaustiveness is theoretically possible with these methods, it is actually limited by the database itself: they learn how to detect forgeries as seen in a training database, and can thus fail when confronted with images whose forgeries were made differently.

In this article, we choose to focus on the detection of demosaicing artefacts to detect forged regions on an image. Most cameras cannot directly capture colour. In order to Figure 1: The Bayer matrix is the most common CFA. Each pixel is represented as the colour in which the camera samples it. create colour images, they instead use a filter, named colour filter array (CFA) or mosaic, before the light rays reach the camera's sensor. As a consequence, each pixel is sampled in only one colour, and the other colours must be interpolated from neighbouring pixels sampled in other colours. These interpolation algorithms leave artefacts that can be detected to know in which colour each pixel was sampled.

The most commonly used CFA is by far the Bayer matrix, shown in Fig. 1, which samples two pixels of green for one pixel of red and another of blue. Although other CFA exist, their use is marginal. As a consequence, we only consider the Bayer matrix in our article.

When an image is forged by copying part of this image or of another image onto it, there is a 3 4 probability that the mosaic of the forged region will not be aligned to that of the main image. As a consequence, locally detecting the position of the mosaic in images can lead to finding discrepancies caused by forgeries.

While detecting the presence of demosaicing can be done reliably with current state-of-the-art methods, the interpretation of these artefacts is still a challenge. Most methods make assumptions of linearity of the interpolation or even assume the colour channels to be independently demosaiced. These assumptions are invalid with most commonly-used demosaicing methods, and even stateof-the-art mosaic detection algorithms thus tend to yield a large number of false positives.

Many different demosaicing algorithms exist, furthermore most of those used in commercial cameras are undisclosed. Learning-based methods must thus take into account the impossibility to learn on all existing algorithms.

In this paper, we overcome the above limitations by using an unsupervised convolutional neural network that learns to detect changes in the underlying pattern of mosaic artefacts. This network can be trained on unlabelled authentic images to detect forgeries in new images. Similarly to zero-shot learning, it can also train directly on a database of potentially forged images to adapt to JPEG compression.

The contributions of our article are three-fold. We create a new convolutional neural network (CNN) structure tailored to the specific task of mosaic artefacts detection, and that beats state-of-the-art mosaic detection methods. It can be trained in a fully unsupervised manner, and can even be directly retrained on a set of images to adapt to their specific conditions. To do that, we propose a new use for pixelwise convolutions in neural networks. Their main use in the literature has been to reduce the dimensionality of a network before performing heavier spatial operations, such as in [64]. We argue that they can also be used stacked to each other, to process the causality relations between previouslycomputed spatial features as, for the same price as spatial convolutions, they can have more and bigger layers; furthermore, they do not add any more spatial dependency to the results. Finally, working over the Dresden image dataset [START_REF] Gloe | The 'Dresden Image Database' for benchmarking digital image forensics[END_REF], we create a new dataset aimed specifically at benchmarking forgery detection via demosaicing artefacts.

Both the code and the dataset can be found on https://github.com/qbammey/adaptive cfa forensics.

Related works

Identification of demosaicing artefacts for forgery detection is not a new subject. A pioneer paper on this field is provided by [START_REF] Popescu | Exposing digital forgeries in color filter array interpolated images[END_REF]. They propose to work independently on the different colour channels, and use an expectationmaximisation (EM) algorithm to jointly compute a linear estimation of the demosaicing algorithm and find the probability of each pixel being interpolated or originally sampled. They then apply the Fast Fourier Transform (FFT) on the pseudo-probability map to detect changes in the magnitude and phase at the 2-periodicity peaks, which can correspond to changes in the CFA artefacts. [START_REF] González Fernández | Digital image tamper detection technique based on spectrum analysis of cfa artifacts[END_REF][START_REF] Bammey | Automatic detection of demosaicing image artifacts and its use in tampering detection[END_REF] improve on [START_REF] Popescu | Exposing digital forgeries in color filter array interpolated images[END_REF] by replacing the EM algorithm with a direct linear estimation of the algorithm in all four possible positions. [START_REF] González Fernández | Digital image tamper detection technique based on spectrum analysis of cfa artifacts[END_REF] uses the Discrete Cosine Transform (DCT) instead of the FFT in order to see changes of the mosaic, which can correspond to copy-move forgeries, as a change in the sign of the DCT, which is easier to see than a change of phase in the FFT. [START_REF] Bammey | Automatic detection of demosaicing image artifacts and its use in tampering detection[END_REF] notes that in a scenario where many different methods are needed to detect the variety of forgeries, it becomes especially important to strictly control the number of false positives for each of them. They propose a simple method to detect the presence of a significant CFA pattern, by pooling the error map into blocks, each of which votes for one of four grids. In the absence of demosaicing, the votes should be uniformly distributed between the four grids. They thus look at the number of votes for each position, and threshold the detection on the rate at which a detection at least as significant would happen in the absence of demosaicing. All three methods make two strong assumptions:

• they assume that demosaicing is done independently in each colour channel, and

• they assume that a linear estimation can sufficiently represent the demosaicing algorithm.

Even though these two assumptions might have been at least partially true in the green channel for most demosaicing algorithms commonly used in 2005, when [START_REF] Popescu | Exposing digital forgeries in color filter array interpolated images[END_REF] was first published, it is far from being the case nowadays. Another important method is provided by [40]. They propose to directly detect the mosaic used in the image, and to do that, they mosaic the image in all four possible positions, and redemosaic it using a simple algorithm such as bilinear interpolation. The reasoning is that the demosaicing should produce an image closer to the original when remosaicked and demosaiced in the correct position. They thus compare the residual maps to detect which of the possible mosaics has been used. Claiming demosaicing artefacts can usually be seen more clearly in the green channel, they first decide on the position of the green sampled pixels. They then use the most significant of the red and blue channels to decide on the remaining to position. This order of decision has been used in most of the literature since then. Their use of the bilinear algorithm limits them in the same way as [START_REF] Popescu | Exposing digital forgeries in color filter array interpolated images[END_REF][START_REF] González Fernández | Digital image tamper detection technique based on spectrum analysis of cfa artifacts[END_REF] because of the linearity and colour independence of the bilinear algorithm, which is not shared by most modern demosaicing algorithms. However, their method does not depend on the choice of the algorithm, and they can thus provide very good results in the rare case where the demosaicing algorithm of a studied image is known.

In order to detach themselves from one specific algorithm, [START_REF] Choi | Cfa pattern identification of digital cameras using intermediate value counting[END_REF] notes that pixels are more likely to feature locally extremal values in the channel in which they are sampled, and on the contrary to take intermediary values where interpolated. As a consequence, they count the number of intermediate values in all four positions to decide which position is the correct one, using the decision pipeline introduced in [40]. The assumption that pixels are more likely to take extremal values in their sampled channel is usually verified with most algorithms, which leads this method to yield good classification scores. However, the probability bias can sometimes be reversed when algorithms make extensive use of other channels' high frequencies, which can lead to some regions of the image being detected in a wrong position with a strong confidence.

[60] is the first method that tries to alleviate the colour channels independence assumption. Instead of working separately in each channel, they compute the difference of the green channel separately with both the red and blue channels. Using the variance of those differences, they decide on the correct position using a similar pipeline as above. Although the colour independence is hard-coded, the colour difference is used in many current algorithms. Using this instead of the raw channels thus provide a first step toward a correct understanding of demosaicing artefacts.

[45] is currently, to the best of our knowledge, the only method offering to use a neural network for mosaic detec-tion. They notice that most forgery detection methods involve first computing a residual error map, as in [40], or a similar feature map, as in [START_REF] Popescu | Exposing digital forgeries in color filter array interpolated images[END_REF][START_REF] González Fernández | Digital image tamper detection technique based on spectrum analysis of cfa artifacts[END_REF][START_REF] Choi | Cfa pattern identification of digital cameras using intermediate value counting[END_REF][START_REF] Shin | Color filter array pattern identification using variance of color difference image[END_REF], and then interpreting it, for instance with the FFT in [START_REF] Popescu | Exposing digital forgeries in color filter array interpolated images[END_REF]. They first compute an error map based on the green channel, then use a CNN to interpret the error map, and distinguish forgeries from post-processing steps such as JPEG compression. However, distinguishing demosaicing artefacts from JPEG or resampling artefacts can already be seen with simple methods such as [START_REF] Popescu | Exposing digital forgeries in color filter array interpolated images[END_REF]'s FFT or [START_REF] Bammey | Automatic detection of demosaicing image artifacts and its use in tampering detection[END_REF]'s a contrario approach. With most current methods, the first source of indistinguishable errors in the feature map come not from postprocessing applied to the image -which can hinder CFA detection rather than create false detections without being visible with manual method -but from a lack of fit between the detection method and the image's demosaicing. As a consequence, we believe that a CFA detection method would benefit from the use of a neural network more in the computation of the feature map than in the interpretation thereof. They do claim high accuracy results. Unfortunately, their tests were made on raw images from the Dresden database [START_REF] Gloe | The 'Dresden Image Database' for benchmarking digital image forensics[END_REF], which they thus demosaic themselves, without indicating which algorithm has been used, and no code is provided to verify the results.

Neural networks have also gained popularity in image forensics in the form of Siamese networks [8]. The goal of these networks is to compare two samples. Features for both samples are processed with a first network with shared weight, and a second network is applied to the residual between the two samples to decide on their similarity. This approach has already been successfully applied in several areas of forensics, including camera source detection [START_REF] Mayer | Learned forensic source similarity for unknown camera models[END_REF], and prediction of the probability of two patches sharing the same EXIF data [START_REF] Huh | Fighting fake news: Image splice detection via learned self-consistency[END_REF] for splicing detection. While we could use Siamese networks to compare the CFA pattern of different patches, Siamese networks are especially powerful to compare patches when classification is cumbersome -for instance because of a high number of classes, some of which may not be present in the training data -, in which case it can become more practical to directly compare patches without explicitly classifying them. On the other hand, the mosaic of an image belongs to one of four classes. This means that Siamese network do not necessarily offer an advantage to CFA grid detection, and we can probably use directly a classifying network, which is less complex as we do not need to compare all pairs of patches.

Proposed method

A standard approach to finding copy-move forgeries through demosaicing artefacts would be to first detect the image's initial mosaic, and then detect if parts of the image actually have a different mosaic. Our manual attempts to detect the original mosaic were not successful. Indeed, cri-teria to do this heavily depend on the demosaicing method. Instead, we designed a convolutional neural network (CNN) to train on blocks of the image and directly predict their position in the image modulo (2, 2). The only cue to this relative position are the periodic artefacts, such as CFA, resampling and JPEG artefacts. Hence, a change of the mosaic can lead to forged blocks being detected at incorrect positions modulo (2,2) and thus flagged as forged. Because the target output is only the relative position of blocks on the image, all that is required to train the network is a set of demosaiced images, without additional labels.

In a standard unsupervised scenario, the CNN can be trained with many authentic images and then used on new images to detect forgeries on them. However, if we have to detect forgeries on a large database, and if we can assume that the images in the database are similar in terms of demosaicing and post-processing -and in particular JPEG compression -, then we can retrain the CNN, performing unsupervised transfer learning directly on the test data. As the forged regions generally occupy a small part of the images, and only a small proportion of the images under study are forged, the risk that the CNN will overfit on the forged regions will be small.

The network consists of several parts, all of which serving different purposes. It only uses 31,504 trainable parameters. In the initial training phase, overfitting can occur both on the image contents and on the specific algorithms used for demosaicing. Although the former can easily be avoided by using more images for training, avoiding overfitting on the algorithms is harder. The small size of the network thus helps to avoid overfitting during training. It is even more useful when retraining on the same images to be studied, as overfitting on those images is much harder to avoid, and can make the network miss forgeries.

Spatial network

The first layers extract spatial features from the images. Due to the nature of demosaicing, we make use of two specific types of convolutions.

Most demosaicing algorithms try to avoid interpolating against a strong gradient [25], which would lead to visual artefacts. As a consequence, they often interpolate in one direction along edges. To mimic this, the first layers perform 10 horizontal, 10 vertical and 5 full convolutions, which are concatenated at the end of each layer.

In a mosaiced image, only one in four pixels is red and one in four is blue. As visualised in Fig. 2, this means that at the location of a sampled pixel, the closest sampled neighbours are all located at 2 pixels distance horizontally and/or vertically of the current position. We can take advantage of this by using dilated convolutions, which will only involve pixels belonging to the same mosaic.

We first use a sequence of two layers of 10 horizontal All layers in this part of the network are separated by a leaky rectified linear unit [START_REF] Andrew | Rectifier nonlinearities improve neural network acoustic models[END_REF]. A diagram of this structure can be found in Fig. 3. 

Pixelwise Causal network

Summarising, the network uses values that are up to four pixels away both horizontally and vertically from each pixel (the receptive field is thus 9 × 9). We consider this spatial span sufficient. Indeed, most demosaicing algorithms do not look farther to demosaic a given pixel. However, some algorithms still feature complex transfers between the different colour channels, especially in the high frequencies. As a consequence, the second part of our network consists of pixelwise (1 × 1) convolutions, which enable us to capture complex causal relations without adding more spatial dependencies to the convolutions. Although pixelwise convolutions are often used in the literature, their primary use is often to reduce data dimensionality. The Inception network [64], uses pixelwise convolutions before large convolutions to reduce dimensionality. Other networks use depthwise separable convolutions, where standard convolutions are replaced with one depthwise convolution followed by a pixelwise convolution [START_REF] Chollet | Xception: Deep learning with depthwise separable convolutions[END_REF][START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF].

In our network, however, we do not stack them to reduce dimensionality, but to perform complex operations after the spatial features have been computed. Linking pointwise convolutions with each other enables us to represent complex relations at a low computational cost, with few parameters and without incrementing spatial dependency.

This part of the network consists of four layers of respectively 30, 15, 15 and 30 1 × 1 convolutions. The output of the first convolution is skip-connected to the third and fourth convolutions, and the output of the second convolution is skip-connected to the fourth convolution. As a consequence, the last convolution takes the results of all previous pointwise layers into consideration to prepare features for the next step.

All the layers in this part of the network are separated by Softplus activation [START_REF] Bromley | Signature verification using a" siamese" time delay neural network[END_REF]. A diagram of the structure can be seen in Fig. 4.

Blocks preparation

Although relative positions could be detected at the pixel level, grouping the pixels into blocks can lead to more reliable predictions. However, the blocks must be created carefully in order to avoid any bias.

Pixelwise output

Average Pooling Blockwise input 

We then concatenate these four images in different ways into four new images J 00 , J 01 , J 10 and J 11 , each of shape (Y, X, 4C) and defined as follows:

J δxδy [y, x, 4c] = I δxδy [y, x, c] J δxδy [y, x, 4c + 1] = I (1-δx)δy [y, x, c] J δxδy [y, x, 4c + 2] = I δx(1-δy) [y, x, c] J δxδy [y, x, 4c + 3] = I (1-δx)(1-δy) [y, x, c] . (2) 
These four images are merely channel-wise permutations of one another, which enables the network to keep balance between the four patterns. Finally, each of these images is decomposed in blocks. Because all spatial and pixelwise features have already been computed in the previous parts, we can directly view the decomposition in blocks as one big average pooling, so that each block is spatially represented by one pixel. We thus get four output images B 00 , B 01 , B 10 and B 11 , each of shape ( Y 16 , X 16 , 4C). Each image is thus spatially 32 × 32 times smaller than the original image.

Thanks to this permutation, the detection problem is slightly shifted: Pixels in J δxδy are shifted so that all blocks of B δxδy should be detected at the same relative position modulo (2, 2), δ x δ y . This process is explained in Fig. 5.

Blockwise Causal network

Because blocks are represented through average pooling, each block is spatially represented by one pixel. As a consequence, creating new pointwise convolutions amounts to processing the data independently -but with shared weights -in each block.

Furthermore, the four values B δxδy [y, x, 4c + i] for i ∈ (0, 1, 2, 3) represent the same feature, averaged indepen- dently in each of the four possible mosaics δ x δ y . To compare these features separately before merging them, we start by stacking three layers of respectively 180, 90 and 90 grouped pixelwise convolution, where the output in one channel at one given block-position is made using only the values of the same feature, in the four mosaics and at the same position. Finally, we merge these features together with two additional layers, each of 45 full-depth pointwise convolutions. Like in the pixelwise network, the layers are separated by Softplus activation [START_REF] Bromley | Signature verification using a" siamese" time delay neural network[END_REF]. The structure of the blockwise causal network is shown in Fig. 6.

Decision and loss module

A final layer of four pointwise convolutions is placed to predict scores for each position. In an authentic image, all blocks from each image B δxδy would be expected to detect their own position as δ x δ y . If training on several images whose main mosaic may be different, we let the network permute the output of the four images either horizontally, vertically, or diagonally, in order to have the lowest of the four global losses before computing the local loss. This enables the loss to take into account the possibility of different images having different main positions.

Auxiliary prediction for training

Because the spatial and pixelwise networks are used at full resolution -whereas the resolution of images is reduced by a factor 32 × 32 in the blockwise network -, the first part of the network takes a higher computational toll than the rest. In order to speed up training, we work in a manner similar to [64] and start by training the spatial and pixelwise networks together. We add an additional layer of 4 pointwise convolutions at the end of the pixelwise network, and train it with the cross-entropy loss to detect the position of each pixel modulo [START_REF] Bammey | Automatic detection of demosaicing image artifacts and its use in tampering detection[END_REF][START_REF] Bammey | Automatic detection of demosaicing image artifacts and its use in tampering detection[END_REF].

Once the first part of the network is trained, we remove this auxiliary layer and process the output of the training images into blocks, as explained in 3.3. We then train the blockwise network, using the preprocessed output of the pixelwise network.

By training the first part of the network separately, and more importantly using a loss computed at full resolution, we can train it in fewer and faster iterations. Processing the images into blocks, which also requires a significant time, must only be applied once between the two global training steps. Finally, the blockwise part of the network can be trained very quickly, because there is no need to propagate into and from the full-resolution network at each iteration, making each individual iteration quicker.

Training is done first on the spatial (Fig. 3) and pixelwise (Fig. 4) networks, using the aforementioned auxiliary layer. Then, the blockwise network (Fig. 6) is trained alone, using the results of the pixelwise network, processed into blocks as seen in Fig. 5. All training is done with the Cross-Entropy loss and the Adam optimiser [39], with a learning rate of 10 -3 .

Dataset

Several datasets exist to benchmark image forgery detection, most notably Coverage [START_REF] Wen | Coverage -a novel database for copy-move forgery detection[END_REF], CoMoFoD [START_REF] Tralic | Comofodnew database for copy-move forgery detection[END_REF], Casia [17] and [START_REF] Christlein | An evaluation of popular copy-move forgery detection approaches[END_REF]. However, these datasets were created for generic copy-move detection. They do not allow for a demosaicing based detection. Indeed, the images of those datasets either do not present any trace of demosaicing, or were all demosaiced with the same algorithm. They are therefore useless for benchmarking CFA-based forgery detection algorithms.

The Dresden Image Database [START_REF] Gloe | The 'Dresden Image Database' for benchmarking digital image forensics[END_REF] provides 16,961 authentic images taken with 27 different cameras. Among them, 1,491 pictures taken with three different cameras, the Nikon D200, D70 and D70s, are provided unprocessed in a RAW format, which enabled us to perform demosaicing ourselves. Using these images, we created a new forgery detection database aimed specifically at the detection of forgeries by an analysis of CFA demosaicing inconsistencies.

To create the database, we cropped randomly each of the 1,491 images into smaller 648 × 648 pictures. We demosaiced them with one of eleven publicly available demosaicing algorithms: Bilinear interpolation, LMMSE [25], Hamilton-Adams [START_REF] Jr | Adaptive color plan interpolation in single sensor color electronic camera[END_REF], RI [37], MLRI [START_REF] Kiku | Minimized-laplacian residual interpolation for color image demosaicking[END_REF], ARI [START_REF] Monno | Adaptive residual interpolation for color image demosaicking[END_REF], GBTF [START_REF] Pekkucuksen | Gradient based threshold free color filter array interpolation[END_REF], contour stencils [START_REF] Getreuer | Image Demosaicking with Contour Stencils[END_REF], adaptive inter-channel correlation [START_REF] Duran | Self-similarity and spectral correlation adaptive algorithm for color demosaicking[END_REF], Gunturk [24] and self-similarity˜ [9].

We then split the resulting set of images in three equal parts. One third of the images were left unmodified. In the second third, we took half of the images and used them to perform a splicing into the other half. Each pair of images had been previously demosaiced with the same algorithm. In the last third, we picked half the images again and used them to falsify the other half. However, we did not enforce pairs of images to be demosaiced with the same algorithm in this set. Note that the source images for the forgeries are not part of the resulting dataset; therefore, there is the same number of authentic and forged images. At least half the forged images were created with a source image demosaiced with the same algorithm as for the target. To forge an image, we cropped the source image inside a random mask and pasted it onto the forged image. The masks were created as areas surrounded by random Bezier curves. They were enforced to contain at least one 64 × 64 square block, and to cover less than 10% of the image.

Examples of forged images found in our database can be seen in Fig. 7.

Experiments

We trained our network with a small database of 19 images, downsampled four times to remove any demosaicing trace. Each image has a size of at most 774 × 518 pixel, and was demosaiced by three different algorithms: bilinear interpolation, LMMSE [25] and Hamilton-Adams [START_REF] Jr | Adaptive color plan interpolation in single sensor color electronic camera[END_REF]. We trained the first part of the network for 1500 iterations and the second part for 500 iterations. Examples of detections can be seen in Fig. 8.

We also adapted the pretrained network to the database by retraining it directly on it for the 1000 iterations on the first part of the network and 500 on the second part. This training was done without knowledge of which image is forged or authentic.

We compare our results with intermediate value mosaic detection [START_REF] Choi | Cfa pattern identification of digital cameras using intermediate value counting[END_REF], variance of colour difference [START_REF] Shin | Color filter array pattern identification using variance of color difference image[END_REF], as well as with ManTraNet [START_REF] Wu | Mantra-net: Manipulation tracing network for detection and localization of image forgeries with anomalous features[END_REF], a state-of-the-art forgery detection method that directly trains a neural network to detect various forgeries on standard datasets. Results are measured with the ROC curve on the number of detected forged blocks.

By nature of demosaicing, a region forged by copy-move has a 1 4 probability of having its mosaic aligned with the main one, and in such case it cannot be detected by its CFA position. In our databases, aligned forgeries account for 26.7% of the total number of blocks. The results of our algorithms on the whole dataset is shown on Fig. 9b. Such results are closer to what could be detected in practical applications. However, because forgeries with aligned mosaic are not detectable by mosaic detection algorithms, we present other results with a modified ground truth, in which we consider a block as forged only if its mosaic is different than the position of the original image. These scores are thus given relative to what could theoretically be detected with perfect knowledge of the mosaics. Results under this definition of the ground truth can be seen in Fig. 9a.l The database features three algorithms that were also used for pretraining the network: bilinear interpolation, LMMSE [25] and Hamilton-Adams demosaicing [START_REF] Jr | Adaptive color plan interpolation in single sensor color electronic camera[END_REF]. In order to ensure fairness in the comparison, we remove all images demosaiced with, or containing a forged region demosaiced with, one of these three algorithms. The results are presented in Fig. 9c. We can see that the results are similar to those on the whole database, which shows that the network generalised well to new algorithms.

Finally, we test the robustness of our models to JPEG compression by compressing all the images at a quality of 95. The results are presented in Fig. 9d. [START_REF] Shin | Color filter array pattern identification using variance of color difference image[END_REF] does no better than random guessing, with an AUC score of 0.52 in the global evaluation and 0.49 in the local evaluation, and both [START_REF] Choi | Cfa pattern identification of digital cameras using intermediate value counting[END_REF] and our pretrained network do little better. On the other hand, the adaptive network, by adapting directly to the database and thus learning to detect the CFA position over JPEG artefacts, was able to perform much better.

Discussion

We have shown that a small convolutional neural network could be used to accurately detect and interpret CFA artefacts, and subsequently use them to detect forgeries in images. Even without new training, this network can adapt well to images demosaiced with unseen and more complex algorithms than those studied during training. Our neural network is small and can process images almost as quickly as methods presented in the literature, while offering detections of superior quality.

The forgeries in our database are very basic, since they are only made to evaluate CFA detection. Despite this, state-of-the-art generic methods such as ManTraNet yield detections that are little better than random, and worse than simple manual algorithms such as [START_REF] Choi | Cfa pattern identification of digital cameras using intermediate value counting[END_REF][START_REF] Shin | Color filter array pattern identification using variance of color difference image[END_REF]. This shows that detection methods that focus on specific artefacts, such as demosaicing detection, JPEG compression [START_REF] Nikoukhah | Jpeg grid detection based on the number of dct zeros and its application to automatic and localized forgery detection[END_REF] or camera noise [15], still have a big role to play. Our network was trained on few images, which were not taken from the evaluation dataset, and with only three algorithms. This enabled us to show, in Fig. 9c, that we could get strong results even on images demosaiced with algorithms on which the network was not trained. In order to test and show its capacity to generalise to new images and algorithms, we only trained it with 19 images from a different dataset than the evaluation images, and three algorithms. A full instance of this network, trained with all known and available algorithm, would probably yield even better results.

Unfortunately, the pretrained model is not sufficient to process mosaic artefacts in compressed images. This is to be expected, as JPEG compression erases high frequencies even at a high quality, which is also where demosaicing algorithms leave artefacts. However, adapting the network to the new compressed data by retraining it directly on the studied data enabled it to retrieve demosaicing traces over JPEG compression.

We believe that our method shows sufficient results for use in demosaiced images without postprocessing. The next step is to consider common post-processing effects, including but not limited to JPEG compression, added noise, or colour change. Further work will study the robustness of the network to various post-processing setups, and try to improve adaptation of the network to post-processed images.

Adapting a pre-trained network to the testing data by retraining it on said data is of course something that must be done carefully. A network that is too big can easily overfit if too few samples are available, and see its quality lower in comparison to the pre-trained network. More experiments must thus be done to fully understand what can be done this way. Namely, two big questions arise: How much similar data is needed, and how similar does it need to be, in order to be able to improve the quality of a neural network by retraining it on this data? More importantly, can we prevent the network from overfitting when retrained on small amounts of data?

Since overfitting is the only reason why a network could worsen by trying to adapt to new data, it is likely that preventing or limiting it would make it possible to improve a network by retraining it on new data. We have shown that it was possible to drastically improve the performance of the network by retraining on the full database. Would it still be possible if we only have several images, or, in the most extreme but also the most frequent case, only one image? Preliminary experiments suggest that it would be possible providing the image is big enough, but more work is necessary to determine this. This is a difficult challenge, however learning to make a network fit to new unlabelled data could greatly help make it more robust for practical applications.
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 2313 Figure 2: If we use a 3 × 3 convolution with a dilation of 2, the convolution at the central pixel sampled in blue only involves pixels sampled in the same colour. More generally, a 2-dilated convolution will look at pixels that all belong to the same colour channel.
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 4 Figure 4: Pixelwise 1 × 1 convolutional part of the network, containing 6105 parameters
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 5 Figure 5: Processing the image into blocks
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 6 Figure 6: Blockwise part of the network, containing 8,239 trainable parameters
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 7 Figure 7: Examples of forged images in our database.
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 8 Figure 8: Network's results.For each image, in this order: Forged image, pixelwise predictions for each of the 4 grids (auxiliary network output), blockwise predictions for each of the 4 grids (full network output), detected forged blocks, ground truth. The mosaic of the image and the forgery is aligned for the two images in the last row, which explain why no detection can be made with our method.
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 9 Figure 9: ROC curves comparing the detections of our methods to ManTraNet [73], Intermediate Values (IV) detection [11] and Variance of Colour Differance (VCD) detection [60].
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