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Forgery Detection by Internal Positional Learning of Demosaicing Traces

Quentin Bammey, Rafael Grompone von Gioi, Jean-Michel Morel
Université Paris-Saclay, ENS Paris-Saclay, CNRS, Centre Borelli

Abstract

We propose 4Point (Forensics with Positional Internal
Training), an unsupervised neural network trained to assess
the consistency of the image colour mosaic to find forgeries.
Positional learning trains the model to learn the modulo-2
position of pixels, leveraging the translation-invariance of
CNN to replicate the underlying mosaic and its potential
inconsistencies. Internal learning on a single potentially
forged image improves adaption and robustness to varied
post-processing and counter-forensics measures. This so-
lution beats existing mosaic detection methods, is more ro-
bust to various post-processing and counter-forensic arte-
facts such as JPEG compression, and can exploit traces to
which state-of-the-art generic neural networks are blind.

1. Introduction

Image forgeries are omnipresent, from fake news in so-
cial networks [53] to scientific misconduct. Indeed, a large
variety of image processing tools are available to create vi-
sually realistic image alterations. Image forensics aims at
detecting and characterizing these alterations. This can be
done by analysing traces left behind by the image process-
ing chain, and detecting its local inconsistencies caused by
tampering. This analysis is difficult because of the vari-
ety of interactions between the successive image processing
steps, such as demosaicing, gamma correction, and JPEG
encoding. These operations are often complemented by fur-
ther, equally unknown, post-processing such as resampling
and even potential anti-forensic attacks.

The large field of image forensics has been approached
in two ways: syntactic analysis and deep learning. The
recent deep learning models are directly or indirectly
trained to find forgeries in images. ManTraNet [59] is
an end-to-end network trained directly on forged images
to extract their features and localize inconsistent regions.
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Figure 1: Results of the proposed method on an inpainted
image from the Korus [36, 37] dataset. Local detection of
the demosaicing pattern not only enables detection of the
forgery, but also shows the patches used during inpainting.

Noiseprint [14] extracts the noise pattern of the image and
finds its inconsistencies by means of Siamese networks.
Bappy et al. [6, 7] approach forgery detection as a bi-
nary segmentation problem between forged and authentic
regions. The Achilles’ heel of these methods is the training
database itself. Working very well on images and forgeries
similar in nature to the database, they may nevertheless fail
to adapt to the variety of images and forgery methods.

Syntactic analysis instead focuses on specific inconsis-
tencies left by forgeries. For instance, Error Level Anal-
ysis [28] compresses the image and uses the residual be-
tween the original and compressed versions to find areas
in which compression levels are different. Many methods
look for inconsistencies in the traces left by JPEG compres-
sion [47, 58, 27, 39, 40, 9, 1] or noise discrepancies [30,
51, 13, 22, 43, 44, 8, 45, 35, 56, 29, 15, 48, 42, 41, 60, 57].



(a) The Bayer CFA, by far
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(b) The four potential patterns that arise
from the Bayer CFA.

Figure 2: The Bayer Colour Filter Array (CFA), and the
four potential patterns that arise from it. The pattern identi-
fies the offset of the CFA.

However, forgery tools are varied, and so is the plethora of
postprocessing operations, both occurring naturally through
the treatment and distribution of the image, or maliciously
made to hide the forgery. The syntactic methods therefore
often miss forgeries that did not modify the statistics of the
image in an expected way, or whose traces were erased by
further processing. Nevertheless, these methods yield ex-
plainable and easily understood results.

One of the classic syntactic methods is to analyse the
traces of demosaicing. Most cameras recreate the colour
image from a Bayer pattern (shown in Fig. 2a) that sam-
ples just one colour channel per pixel. This pattern is
2 × 2 periodic. Demosaicing is a clever nonlinear inter-
polation method recreating the two missing colour channels
at each pixel from the observed channel values in a neigh-
borhood. Demosaicing algorithms have shown in recent
year a growing sophistication, from standard manual meth-
ods [26, 49, 20, 21] to complex classic ones [31, 32, 46] and
eventually to deep-learning-based [55].

Demosaicing is of interest to image forensics, because
when an image is forged by splicing or copy-move, there
is a 3

4 chance that the mosaic patterns of the authentic and
forged regions will not be aligned. Being able to detect lo-
cal inconsistencies of the original mosaic pattern can thus
help find such forgeries. Most manual methods [4, 12, 54]
easily detect the presence of demosaicing, but fail to detect
the position of the mosaic pattern, due to the extreme vari-
ety of demosaicing algorithms. Recently, Bammey et al. [3]
used deep learning to identify the correct position, even
on unseen demosaicing algorithms. However, even recent
state-of-the-art methods fail to detect the mosaic pattern of
images after common post-processing such as JPEG com-
pression, even at a very high quality factor. Furthermore,
post-processing, and especially JPEG compression, can be
done in various ways. As a consequence, deep learning-
based methods must take into account the impossibility to
learn on all existing demosaicing algorithms.

In this article, inspired by [3, 38], we propose a self-
supervised learning method that leverages the translation
invariance of a CNN to implicitly interpret demosaicing
traces. Inconsistencies in the detected traces are then evi-
dence of possible forgeries (see Fig. 1). We borrow from [3]

the idea of performing self-supervised learning of the demo-
saicing grid position. Our method enables internal learning
on a single test image, without the need for a large database
of similarly-processed images. Using our own JPEG com-
pression in several different alignments further improves ro-
bustness to JPEG compression. Furthermore, it becomes
able to detect not only regions with a different grid posi-
tion, but also regions with incoherent grid positions, like
those caused by most inpainting methods. The proposed
method detects separately the diagonal inconsistencies, that
are generally more solid, then detects the general pattern in-
consistencies. Last but not least, we process the results of
the network to filter out irrelevant results, instead of relying
on the often-overconfident [25] raw results of the neural net-
work. Overall, our results are more robust and interpretable.

We show that the CNN can be directly fine-tuned on a
single image (internal learning) to assess its consistency, by
training on it as if it were authentic, and that this retraining
makes the network more robust to various post-processing
methods. As a consequence, our network is able to adapt
to a broader range of images, even if the network was not
initially trained on the same specific post-processing chain.

Because JPEG compression destroys the high frequen-
cies of an image in which demosaicing traces are located,
there is no hope to detect them when an image has suffered
strong compression or has been downsampled. This means
that demosaicing artefact detection is irrelevant to images
found, for instance, in social media. Nevertheless, being
able to achieve some degree of robustness when the JPEG
compression is not too strong can make such methods useful
in other many areas, such as criminal investigations, press
authentication or photographic contest verification.

To tackle the variety of existing post-processing algo-
rithms and combinations thereof, we show that the network
can be fine-tuned on-the-fly on a single, potentially forged,
image by training on it as if it was authentic. Adapting to
the image’s statistics in this way helps the network improve
its interpretation of demosaicing traces over common post-
processing methods and detect forgeries.

2. Related Works
In a pioneer paper [50], Popescu and Farid proposed to

use an expectation-maximization (EM) algorithm to jointly
estimate the demosaicing algorithm of an image and detect
the local Bayer pattern. A Fourier transform of the result-
ing pseudo-probability map then shows the presence or ab-
sence of demosaicing on the image. The methods in [24, 2]
replace the EM algorithm with a direct linear estimation of
the algorithm in all four possible positions. The method
of [24] further uses the Discrete Fourier Transform (DCT)
instead of the FFT, to detect not just the mere presence of
demosaicing, but also changes of the mosaic position. In-
deed, a change in the sign of the DCT is easier to detect than



a phase change in the FFT. All of these methods assume
demosaicing was performed independently in each colour
channel and a linear estimation is a valid representation of
the demosaicing process. These assumptions are no longer
true with most commonly-used demosaicing methods.

Kirchner [34] proposed to directly detect the mosaic po-
sition used in the image. To do so, the authors mosaic the
image in all four possible positions, and redemosaic it with
bilinear interpolation. When this is done in the correct posi-
tion, the processed image is closer to the original image, en-
abling detection of the correct pattern. Due to the large va-
riety of demosaicing algorithms, this method does not work
well in the wild, but can provide reliable results when the
algorithm used by the camera is known or can be estimated.

Choi et al. [12] remarked that interpolated pixels are
more likely to take intermediate values than sampled pix-
els. Counting the number of intermediate values in each of
the four patterns thus provides a simple estimate the pattern,
although the decision can be confused with modern algo-
rithms that do not process colour channels independently.

Shin [54] uses the fact that most algorithms do not pro-
cess colour channels, but more or less directly the difference
between the green and the other two channels. As a conse-
quence, they work on the difference of channels to find the
pattern with the highest variance, which corresponds to a
higher probability of being originally sampled, thus break-
ing free from the assumption of channel independence.

In previous work [3], we trained a self-supervised neu-
ral network that detects the relative position modulo 2 of
pixels and blocks in the image. Because a CNN is invari-
ant to translation, it implicitly needs to learn from mosaic
artefacts in order to perform this classification. Shifts in the
output of the network are thus evidence of forged regions.
This network can be fine-tuned on a dataset of potentially
forged images, which enables it to adapt to it and gain some
robustness to JPEG compression.

In recent years, internal learning has gained popularity in
several domains of image processing. Using self-supervised
information to retrain an over-parameterized network on the
very image to process, such methods often provide better
results and greater adaptability to uncontrolled cases than
their supervised counterparts. For instance, in the close field
of image denoising, Noise2Void [38] and the subsequent
Self2Self [52] train a network to reconstruct a noisy image
while hiding pixels from its input. The network provides
the regularization necessary to actually denoise the image.

3. Method
We propose to train a fully-convolutionnal neural net-

work (CNN) to detect the positional information on each
pixel of an image. Because a CNN is invariant to transla-
tion, it does not know these positions and has to infer them
from camera traces, in particular from demosaicing traces.
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Figure 3: The four possible sampling patterns can be
grouped by the diagonal on which the green channel was
sampled: R G

G B and B G
G R share the · G

G · diagonal, whereas G R
B G

and G B
R G share the G ·

· G one.

Inconsistencies in the output of the network reveal incon-
sistencies in the demosaicing pattern, and are thus traces of
forgeries. In Sec. 3.1, we explain how the network is trained
on positional data. In Sec. 3.2, we show how some level
of robustness to JPEG compression can be achieved during
training. In Sec. 3.3, we show that it is possible to retrain
this network directly on a single suspicious image to adapt
to the setup of this image, thus achieving a greater robust-
ness to JPEG compression. Finally, in Sec. 3.4, we detail
how the network’s output can be used to detect forgeries.

3.1. Positional learning

A CNN is invariant to translation; it does not know the
position of an image’s pixels. If we train it to do so, it thus
has to rely on external cues, such as demosaicing traces.
After such training, the network is thus able to provide an
insight as to the image’s demosaicing.

Bammey et al. [3] proposed to train a CNN to detect the
modulo 2 position of each pixel, both horizontally and verti-
cally. Coarser-scale position information is irrelevant to the
very local demosaicing traces, and could lead the network
to rely on unwanted cues. However, demosaicing detection
algorithms [4, 12, 54, 34] usually proceed in two steps: they
start by detecting the diagonal pattern, i.e. to find which pix-
els were sampled in green, then try to distinguish between
the two patterns sharing the same diagonal, because the di-
agonal is easier and more robust than directly making a de-
cision on the full pattern.

To adopt this, we trained a CNN to detect the offset of
each pixel’s diagonal (Fig. 4a), representing whether the
pixel is sampled in green. For pixels that are not sampled
in green, we also estimate whether they are on an even line
(Fig. 4b), saying whether they are sampled in red or blue.

This method is self-supervised, since the position of each
pixel is known. The only requirement is that all images of
the training set be demosaiced in the R G

G B pattern, to enforce
consistency of the output across images and correspondence
between the detected position and the sampled colour1. If a
training image has been demosaiced in another pattern, we
align it to R G

G B by cropping its first row and/or column.
We use a 17×64 DnCNN [61] architecture, with 17 lay-

1If images whose grid is known were not available, it would still be pos-
sible to train on images of an unknown grid by applying the same method
as during internal learning (see Sec. 3.3).
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(a) The first detected feature is
the diagonal offset. It corre-
sponds to whether the pixel was
sampled in green.
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(b) The second feature is the
evenness of the line/column of
the pixel on the main diagonal.
It corresponds to whether the
pixel was originally sampled in
red or in blue.

Figure 4: The CNN is trained to output these two patterns.
Asterisks (*) correspond to values that are ignored.

ers and 64 features per layer. DnCNN is more suited to our
task than other standard structures, as it does not make use
of any downsampling. The downsampling which is found
in most CNN structures would remove the high-frequency
information in which demosaicing artefacts are located.

3.2. Training on JPEG-compressed images

JPEG compression is a major obstacle to demosaicing
detection. The quantization induced during compression
quickly removes the highest frequencies of an image, in
which demosaicing traces are located. As a consequence,
strongly-compressed images keep no demosaicing traces
and cannot be detected by our method. Nevertheless, it re-
mains possible to find demosaicing traces on high-quality
images, where the compression is minimal. This prompts
us to train our network on JPEG-compressed images.

However, JPEG compression aggregates data in 8 × 8
blocks, imprinting a strong 8-periodic component. JPEG
artefacts would thus be enough for the CNN to find the
position of all pixels without even looking at demosaicing
traces. To prevent the network from doing this and to force
it to analyse the demosaicing artefacts over JPEG compres-
sion, we start from uncompressed images and compress
them ourselves in the four possible alignments between the
demosaicing pattern and the JPEG grid, seen in Fig. 5. For
each initial image, we have 4 compressed images with dif-
ferent shifts, and the network is trained simultaneously on
them. The network can no longer directly analyse and use
JPEG compression to find the positions, as the positional
cues from JPEG contradict each other across the shifts.

This training scheme assumes that the JPEG grid is con-
sistent across the image, ie. that the compression happened
after the forgery. This assumption is reasonable; if the JPEG
grid itself is inconsistent, the forgery will be apparent and
much easier to detect through JPEG grid analysis [47, 5].

Figure 5: The JPEG grid and the Bayer pattern can be
aligned in four different ways. Simultaneous training of the
network on the four possible shifts prevents it from using
JPEG information instead of the mosaic.

3.3. Internal learning

Training on compressed images already provides some
robustness to JPEG compression. However, there is a huge
variety of post-processing algorithms, and an even bigger
number of combinations thereof, as post-processing encom-
passes not only algorithms such as JPEG compression, but
also image-enhancing filters often automatically applied by
cameras, and specific counter-forensic measures such as
added noise or median filtering. Furthermore, such algo-
rithms change with time. We propose an alternative strat-
egy. The robustness of our network can be further increased
with internal learning, ie. by retraining the network on the
specific image we want to study. This enables the network
to adapt to the specific statistics of the image.

Given a potentially forged image to analyse, we assume
the image is authentic and train the network repeatedly on
it to detect the position of pixels, as explained in Sec. 3.1.
Contrarily to the initial training, the image is not necessarily
in the R G

G B pattern. To train the network, we compute the
loss not only on the initial target of Fig. 4, but we also shift
the target by one row and/or column. We thus have 4 losses
depending on the offset of the target, we use the one that is
minimal across the global image. In other words, we train
the network to be locally coherent with the global pattern.

Of course, single-image training induces a risk of over-
fitting. However, even if the network overfits on the image,
training is done on the hypothesis that the full image is au-
thentic. In other words, fine-tuning incentivises the network
to conclude that everything is authentic. As a consequence,
if the image is actually authentic, the risks of making a
false detection are lower than with the pretrained-network;
even overfitting will by design not induce new false detec-
tions. In the more interesting case where the image is indeed
forged, the network will also adapt to the post-processing to
learn demosaicing traces and detect the position of pixels.
Forged regions in images are usually small compared to the
total size. As a consequence, even though the forged regions
would steer the network towards detecting their pixels’ po-
sitions correctly, they would produce evidence contradict-
ing that of much larger authentic regions, and the network
should thus not learn too much from forged regions. The
small size and locality of the network is particularly impor-



tant here to prevent it from being able to adapt to both, the
authentic and the forged regions. The impact of overfitting
can thus be expected to be limited.

3.4. Forgery detection

The network does not directly detect forgeries in an im-
age, it only detects pixel-wise, demosaicing-related posi-
tional information. This information must then be analysed
to find forged regions of an image.

The output of the network consists of two feature maps,
following the targets of Fig. 4: the diagonal of the pixel Od,
and the line Ol for pixels on the main diagonal.

These results are aggregated in 2×2 blocks, correspond-
ing to a Bayer CFA tile from fig. 2a. Let Bd and Bl repre-
sent a block from Od and Ol, three binary decisions are
made on that block:

• δ · G
G · |

G ·
· G

,
[

1
4

(
Bd0,0 +Bd1,1 −Bd0,1 −Bd1,0

)]
,

• δ R G
G B |

B G
G R

,
[

1
2

(
Bl0,0 −Bl1,1

)]
, and

• δ G R
B G |

G B
R G

,
[

1
2

(
Bl1,0 −Bl1,0

)]
.

In these definitions, [·] represents rounding to 0 or 1.
δ · G

G · |
G ·
· G

says in which diagonal the block – or rather its
top-left pixel – is detected, from which the pattern diago-
nal can be inferred: a value of 0 (resp. 1) means the block
is demosaiced in a · G

G · (resp. G ·
· G ) pattern. Assuming we

know the block is demosaiced in one of the two · G
G · pat-

terns, δ R G
G B |

B G
G R

then distinguishes them; a value of 0 (resp.
1) means the block is demosaiced in the R G

G B (resp. B G
G R ) pat-

tern. Similarly, a value of 0 (resp. 1) for δ G R
B G |

G B
R G

means the
block is demosaiced in the G R

B G (resp. G B
R G ) pattern, assum-

ing we know the block is demosaiced in a G ·
· G pattern.

Using these blocks, we determine the pattern of the
global image. The main diagonal pattern GD is the mode
of δ · G

G · |
G ·
· G

across the whole image ( · G
G · or G ·

· G ). The full
pattern GP is then the mode of either δ R G

G B |
B G
G R

or δ G R
B G |

G B
R G

.

At this stage, we can already have a first estimation of
inconsistent regions in an image, by considering a block
forged if its detected pattern is different from that of the
full image. However, such results are not stable enough.
We instead propose to aggregate the blocks in overlapping
windows of W ×W blocks, or 2W × 2W pixels. For each
window, we define ∆ · G

G · |
G ·
· G

(resp. ∆ R G
G B |

B G
G R

, ∆ G R
B G |

G B
R G

)
as the mean of δ · G

G · |
G ·
· G

(resp. δ R G
G B |

B G
G R

, δ G R
B G |

G B
R G

) across
the window. The detected diagonal pattern of the window is

D ,

{
· G
G · ∆ · G

G · |
G ·
· G

< 1
2

G ·
· G otherwise

, (1)

the demosaicing pattern is then detected as:

P ,


R G
G B D = · G

G · and ∆ R G
G B |

B G
G R
≤ 1

2
B G
G R D = · G

G · and ∆ R G
G B |

B G
G R

> 1
2

G R
B G D = G ·

· G and ∆ G R
B G |

G B
R G
≤ 1

2
G B
R G D = G ·

· G and ∆ G R
B G |

G B
R G

> 1
2

. (2)

We can now introduce a forgery detection confidence score
to windows. Windows that are detected in the same grid
than the original image, i.e. where P = GP , are given a
zero confidence; they are considered authentic. Windows
whose detected diagonal is different than the original im-
age’s, i.e. where D 6= GD, are given an initial confidence
of 2 ·

∣∣∣∆ · G
G · |

G ·
· G
− 1

2

∣∣∣. If a region is detected with high
confidence as forged, nearby regions that may be detected
with a lower confidence are likely to be part of the forgery
as well. Consequently, we segment the detected windows
into connected components. Two inconsistent windows are
connected iff they can be joined by a path of windows of
the same diagonal. The detection confidence of all the win-
dows in this component is then set to the value of the most
confident of those windows.

Likewise, windows whose detected diagonal is consis-
tent, but whose pattern is not, i.e. where D = GD but
P 6= GP , are given an initial confidence of 2·|∆− 1

2 |, where
∆ is either ∆ R G

G B |
B G
G R

or ∆ G R
B G |

G B
R G

depending on the diag-
onal. Segmentation in connected components of the same
grid and component-wise maximum are applied as above.

4. Experiments
4.1. Experiments setup

To train our network, we used the 1488 raw images
from the Dresden database [23] and demosaiced them with
several demosaicing methods: AICC [16, 17], RI [31],
MLRI [32], ARI [46], CDMCNN [55, 18], CS [21], GBTF [49],
Alternating Projections [19], HA [26], LMMSE [20] and bi-
linear demosaicing. Training was done with Adam [33]
with a learning rate of 10−3. During internal training on
each image, the network was retrained for 15 iterations.

Experiments were done on two datasets. The Korus [36,
37] database contains 220 high-quality splicing forgeries,
on images from 4 different cameras. The Trace [5] database
introduces invisible forgery traces in the form of pipeline in-
consistencies. Each raw image is processed with two differ-
ent camera pipelines, then both obtained images are merged
according to a forgery mask. The content of the image stays
unchanged, only the pipeline is altered. The database is di-
vided into several datasets with the same images and masks
but different changes in the pipeline. Two of these are of
particular interest to us; the CFA grid dataset, in which the
forged region is demosaiced in a different pattern; and the



Forged input image

Ground Truth

Original image

CNN feature 0 (zoom)

CNN feature 1 (zoom)

δ · G
G · |

G ·
· G

δ R G
G B
| B G

G R

δ G R
B G
| G B

R G

global diagonalD = · G
G ·

∆ · G
G · |

G ·
· G

C̃diag
Cdiag

select δ R G
G B
| B G

G R

global pattern P = R G
G B

∆ R G
G B
| B G

G R
C̃grid

Cgrid

Final detections C

test

Figure 6: From the output of the network to forgery detection. First, the diagonal is detected in each 2 × 2 block, then
aggregated on overlapping windows. The density of block votes for the wrong diagonal provides an initial confidence in
forgery detections C̃diag . The confidence map is segmented into connected components, and each component is given the
score of its best window, yielding the diagonal forgery confidence map Cdiag . Then, using the second feature map output of
the network, a similar process is repeated with the vote between the two patterns sharing the globally detected diagonal. The
grid forgery confidence map Cgrid is obtained by finding windows that are in the correct diagonal, but with the wrong full
pattern. Finally, the final detection map C is the combination of the two maps Cdiag and Cgrid.

CFA algorithm, in which the forged region is demosaiced
with a different algorithm, and a new demosaicing pattern is
selected, which thus has a 3

4 chance to be different from the
authentic region. For each image and dataset, two forgeries
are available, using the same pipeline but different masks,
one taken from the image segmentation (endomask) and the
other from another image (exomask). As our method only
detects pattern shifts, we cannot expect to make detections
in regions where the demosaicing pattern is the same, i.e.
in one quarter of the images of the CFA algorithm dataset.
However, since our method is not content-aware, results be-
tween the endomask and exomask should be similar. On the
CFA grid dataset, we further study our robustness to JPEG
compression, by compressing all images before testing.

We compare our method with the state-of-the-art NN-
based Noiseprint [14], as well as demosaicing detection
tools Bammey [3], Choi [12] (implementation of [4]) and
Shin [54]. All methods, including ours, except Noiseprint
operate on windows; we set their size to 32× 32 pixels.

4.2. Results

Results are presented in Tab. 1 with the Matthews Cor-
relation Coefficient (MCC), which is the cross-correlation
coefficient between the ground truth and the detection. This
metric, considered the most representative number for de-
tection evaluation [10, 11], varies between -1 and 1, with 1
representing a perfect detection, -1 its complementary. Any

random method has an expected score of 0. As all the tested
methods produce heatmaps and not binary outputs, the test
was done using the best threshold over each dataset.

On the Trace datasets, the method beats the state-of-the-
art at all the tested compression levels. The results are sim-
ilar to Bammey [3] on the uncompressed images, but our
method presents a stronger robustness to JPEG compres-
sion. Choi [4, 12] presents some robustness to compression
as well. Both Bammey and Shin [54] are unable to make
any detection on compressed images. Noiseprint [14] is
entirely blind to demosaicing pattern shifts, as seen in the
Trace CFA Grid datasets. However, its positive results on
the CFA Algorithm datasets mean that it is, to some extent,
able to detect changes in the demosaicing algorithm used.

On the Korus dataset, our method presents the best re-
sults overall, despite images from the Canon 60D dataset
presenting no demosaicing artefacts, as also evidenced by
the other demosaicing detection methods. This may be due
to an absence of any demosaicing or to a downsampling of
the images – images are at a lower resolution than the cam-
era’s maximal resolution. On the two Nikon cameras, we
get MCC scores of 0.412 (Nikon D7000) and 0.408 (Nikon
D90). The best score is reached on the Sony α57 camera,
where the MCC is 0.628. All demosaicing detection meth-
ods perform best on that camera, which is probably due
to a demosaicing that leaves more artefacts. Noiseprint is
the only method able to provide relevant detections on the
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Figure 7: Results on several images from the Korus [36, 37] (first 4 images) and Trace [5] CFA Grid (last 3 images) databases.
From left to right: Forged image, forgery mask, detected demosaicing grids with the proposed methods, detected forgeries
with the proposed method, and results of Noiseprint [14], Bammey [3], Shin [54] and Choi [4, 12]. As seen on the 1st and
2nd images, detecting the grid enables one not only to find forgeries, but also to precisely know how the forgery (here, an
inpainting) was done, by localizing patches with different pattern alignments. On the 3rd image, no demosaicing traces are
detected by any method. Still, the forgery can be detected by Noiseprint, which relies on different cues. On the 4th image,
the same grid is detected on the whole image; the forged region cannot be detected by demosaicing analysis because the
forged region’s pattern is aligned. On the last three rows, the same image has been processed uncompressed and at JPEG
compression qualities 95 and 90. Even after compression, we can still detect the forgery.

Method Grid Exo Grid Endo Alg Exo Alg Endo

Proposed 0.709 0.703 0.523 0.519
Bammey[3] 0.682 0.665 0.501 0.491
Shin[54] 0.104 0.099 0.085 0.084
Choi[4, 12] 0.603 0.575 0.420 0.385
Noiseprint[14] -0.001 0.002 0.066 0.060

(a) Results on the CFA Grid (Grid) and CFA Algorithm (Alg) datasets of the
Trace [5] database, with endomasks (Endo) and exomasks (Exo)

UNC J95 J90

Bilinear 0.732 0.400 0.200
AHD 0.719 0.281 0.123
AAHD 0.680 0.233 0.139
DCB 0.764 0.307 0.132
DHT 0.689 0.193 0.087
PPG 0.714 0.250 0.123
VNG 0.679 0.482 0.252

(b) Results of the proposed method on Trace CFA Grid
Exo [5] depending on the demosaicing, on uncom-
pressed (UNC) and compressed (J95, J90) images.

Method UNC J95 J90

Proposed 0.709 0.307 0.151
Bammey[3] 0.682 0.005 0.003
Shin[54] 0.104 0.001 0.001
Choi[4, 12] 0.603 0.156 0.070
Noiseprint[14] -0.001 0.004 0.001

(c) Compared robustness to JPEG compression on
Trace CFA Grid exo. UNC means no compression.

Method Canon 60D Nikon D7000 Nikon D90 Sony α57 All

Proposed 0.009 0.401 0.378 0.624 0.353
Bammey 0.002 0.049 0.044 0.574 0.167

Noiseprint 0.153 0.322 0.236 0.148 0.202
Choi 0.004 0.176 0.251 0.251 0.238
Shin 0.021 0.003 0.012 0.511 0.143

(d) Results on the Korus dataset.

Table 1: Compared results on the Trace [5] and Korus [36, 37] datasets, using the MCC metric.



Canon 60D cameras. Although its final score is lower than
the proposed method’s, we want to highlight that these two
methods should be seen as complementary, not as competi-
tors. As seen on the Trace database, Noiseprint is blind to
shifts in the demosaicing pattern. Its detections on the Ko-
rus datasets are thus based on other kinds of artefacts. On
the other hand, the proposed method focuses solely on de-
mosaicing pattern shifts. Both thus provide a different and
complementary insight into potential forgeries.

Visual results on different images can be seen on Fig. 7.

4.3. Ablation Study

We test the ability of the proposed method to detect
forgeries when its key components are removed in Tab. 2.
Although retraining is not strictly needed to analyse im-
ages, it improves the robustness of the network to vari-
ous post-demosaicing processing (Korus) and JPEG com-
pression (Trace). When the results are already clear with-
out retraining, however, the difference is much more minor
(uncompressed Trace). Unsurprisingly, pretraining the net-
work on JPEG-compressed images is not necessary when
analysing uncompressed images. By forcing the network to
diversify its analysis, results are actually slightly lower on
uncompressed datasets. Even on compressed images, the
network that was not pretrained on JPEG images is still able
to adapt to the compression to some extent. Nevertheless,
the JPEG-pretrained network we propose is almost as good
on uncompressed images, and much better when analysing
compressed images. Unless one is certain the images were
not compressed, the JPEG-pretrained network is thus better
overall. Both JPEG pretraining and internal learning im-
prove robustness to JPEG compression, and best results are
achieved when both are used. Without at least one of them,
however, the network is unable to make any detections on
compressed images. In any case, when JPEG pretraining is
performed, it must be done with the shifting strategy pre-
sented in Sec. 3.2. Otherwise, the network can be led to di-
rectly detect the JPEG pattern instead of detecting the mo-
saic over the JPEG compression, and its scores are worse
than even the network without JPEG pretraining. The loss
must also be computed on the four possible offset targets,
and back-propagation must be performed on the best one
globally. Without this, the network is forced to shift its de-
tections into assuming the image is in the R G

G B pattern, thus
harming the results if this is not the case.

Discarding the diagonal pattern detection and only look-
ing at the full patterns lowers the scores. Two thirds of
the detectable inconsistencies feature different grids and the
same diagonal, yet the diagonal is much easier to identify
on more difficult (e.g. compressed) images or smaller in-
consistencies, where a diagonal shift is often the only thing
that can be detected significantly.

Method Korus Trace Trace J95 Trace J90

Proposed 0.353 0.709 0.307 0.151
No Retraining 0.267 0.625 0.143 0.036
Fixed Loss 0.178 0.472 0.099 0.028
No JPEG 0.362 0.728 0.254 0.083
No JPEG/Retraining 0.289 0.740 0.012 0.005
No Shifts 0.340 0.696 0.250 0.056
No Diagonal 0.189 0.281 0.125 0.060

Table 2: Ablation study of the method. No JPEG: pre-
training was only done on uncompressed images. No Re-
training: We directly use the pretrained network. Fixed
loss: The target cannot be shifted to minimize the loss. No
Shifts: the shifting JPEG described in Sec. 3.2 was not ap-
plied. No Diagonal: Detections were only made with the
full pattern. No Segmentation: The score of each block is
not maximized within each connected components.

5. Discussion

In this article, we have shown that positional and internal
learning could be coupled to detect image forgeries as shifts
in the image’s demosaicing pattern. The self-supervised na-
ture of positional learning makes it fit for internal learning,
as labels can be directly obtained from the tested image,
considering it is authentic. The main difficulty that could be
expected to come with single-image fine-tuning comes from
overfitting, especially on forged regions. While an overfit-
ting network will detect all pixels’ locations, and will thus
fail to detect the forgery, it will not lead to a higher num-
ber of false positives. Overfitting is naturally limited by the
small size of forgeries, combined with the fact that forgeries
create evidence that contradict the rest of the image.

Our experiments show that our method detects demo-
saicing pattern shifts better than other demosaicing detec-
tion methods, and more generally beats the state of the art
on the Korus dataset of uncompressed forged images.

Internal learning was performed with 15 iterations on
each tested image. This number has been set heuristically,
as results do not seem to improve much after that. In future
work, obtaining an automatic stopping criterion would be
desirable, to increase both the speed and detections.

We observed that demosaicing pattern detection is
mostly undetected by more generic SOTA forensic algo-
rithms, whereas our method specifically focuses on those.
When trying to find forgeries, these methods yield comple-
mentary results and can thus work in parallel, not in com-
petition. To this end, future work should focus on ways to
interpret its results, to further limit its number of false de-
tections and enable joint use with other methods.
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