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MEAN DIMENSION OF NATURAL EXTENSION OF
ALGEBRAIC SYSTEMS

BINGBING LIANG AND RUXI SHI

Abstract. Mean dimension may decrease after taking natural
extension. In this paper we show that mean dimension stays the
same after taking natural extension for an endomorphism on a
compact metrizable abelian group. As an application, we obtain
that the mean dimension of algebraic cellular automaton coincides
with its natural extension, which strengthens a result of Burguet
and Shi [1] with a different proof.

1. Introduction

By a dynamical system, we mean a pair (X,ϕ) for a compact metriz-

able space X and ϕ : X → X a continuous map. Denote by ‹X the
natural extension of (X,ϕ) with the extension map ϕ̃ (see Definition
2.5). It is well known that the topological entropy of (X,ϕ) coincides

with the topological entropy of (‹X, ϕ̃).
Mean (topological) dimension is a dynamical invariant which can dis-

tinguish the dynamical systems of infinite entropy. Gromov introduced
this invariant when measuring the size of some holomorphic function
spaces [6]. Mean dimension takes a crucial role in the dynamical em-
bedding problems [13, 7, 9] and has close relations with other areas like
information theory [12] and operator algebras [11, 5]. As is pointed out
by Burguet and the second author, the mean dimension of the natural

extension (‹X, ϕ̃) is no greater than the mean dimension of (X,ϕ) and
the inequality can be strict [1, Section 3.2]. In fact, it roughly follows
from the facts that the natural extension is defined as the inverse limit
(see Definition 2.5) and that the inverse limit of compact metrizable
spaces can decrease the (covering) dimension [10, Example 183]. This
motivates the following question:
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Question 1.1. For which dynamical system (X,ϕ) do we have the

equality mdim(X,ϕ) = mdim(‹X, ϕ̃)?

In other words, we concern which dynamical properties would guar-
antee the non-decreasing of mean dimension of its natural extension. In
this paper, we show that the above equality holds when the dynamical
system admits an algebraic structure. That is,

Theorem 1.2. For a compact metrizable abelian group X and a contin-

uous endomorphism ϕ : X → X, we have mdim(X,ϕ) = mdim(‹X, ϕ̃).

To show this theorem, taking advantage of the abelian group struc-
ture of X, we can translate this question into its dual action of Pon-
tryagin dual space. We first study the surjective endomorphism ϕ on
X. By introducing a proper notion of mean rank, we will see that
mean dimension of (X,ϕ) coincides with the mean rank of its Pontrya-
gin dual. With the help of a result of Gutman [8] regarding the mean
dimension of nonwandering subsystems, we can finally deal with the
nonsurjective case.

It is worth-mentioning that the approach of interplay between an
action on a compact abelian group and its dual action on Pontryagin
dual space already appears in [11], where the addition formula for mean
dimension of algebraic actions is hard to prove directly. However, when
transforming the problem into the algebraic setting, the discreteness of
algebraic objects makes the proof accessible.

On the other hand, Burgeut and the second author [1, Theorem 6.4]
showed that the mean dimension of a unit cellular automaton coincides
with that of its natural extension. In general, they [1, Question 3.6]
asked that

Question 1.3. Does the mean dimension of a general cellular automa-
ton coincide with the mean dimension of its natural extension?

Based on a computation result concerning cellular automaton [1,
Lemma 7.3], it is implicitly proved that the mean dimension of an
algebraic permutative cellular automaton (see Definition 4.3) stays the
same as the mean dimension of its natural extension.

Our result improves the result of [1] with a different proof and give
a partial answer to Question 1.3.

Corollary 1.4. For an algebraic cellular automaton F : XZ → XZ, we

have mdim(XZ, F ) = mdim(›XZ, F̃ ).

The paper is organized as follows. In Section 2 we recall the defi-
nitions of mean dimension and natural extension. As a preparation,
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in Section 3 we introduce the notion of mean rank for a general group
homomorphism, show some nice properties, and establishes an equal-
ity relating mean dimension and mean rank. In Section 4 we finish the
proof of Theorems 1.2 and Corollary 1.4.
Acknowledgements. The first author is supported by the School of
Mathematical Sciences at Soochow University.

2. background

2.1. Mean dimension. Let X be a compact metrizable space with
a compatible metric d. Fix ε > 0. Recall that a continuous map
f : (X, d) → Y for another topological space Y is an (ε, d)-embedding
if

diam(f−1(y), d) < ε

for every y ∈ Y where diam denotes the diameter of set. Denote by
Wdimε(X, d) the minimal dimension of a polyhedron P bearing an
(ε, d)-embedding f : (X, d)→ P .

The following important lemma is proved first by Gromov [6, Section
1.11 and 1.12] and admits a proof via Brouwer’s fixed point theorem
[2, Proposition 4.6.5].

Lemma 2.1. For every 0 < ε < a and d ∈ N, we have

Wdimε([0, a]d, | · |∞) = d.

Let ϕ : X → X be a continuous map. For a compatible metric d on
X and n ∈ N, we obtain a larger compatible metric

dn(x, x′) := max
0≤i≤n−1

d(ϕi(x), ϕi(x′)).

It is easy to check that the sequence an := Wdimε(X, dn) is subadditive
in the sense that an+m ≤ an + am for any n,m ∈ N. Thus we obtain a
well-defined notation:

mdimε(X, d) := lim
n→∞

Wdimε(X, dn)

n
.

Definition 2.2. The mean (topological) dimension of (X,ϕ) is

mdim(X,ϕ) := sup
ε>0

mdimε(X, d).

It is easy to see that the definition is independent of choices of com-
patible metrics.

Remark 2.3. Lindenstrauss and Weiss introduced another equivalent
definition of mean (topological) dimension in terms of the overlapping
number of finite open covers [13]. This definition works for actions on
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general compact Hausdorff spaces. See a friendly introduction of mean
dimension theory in [2].

2.2. Inverse limit. Let {Xn}∞n=1 be a sequence of compact metrizable
spaces with surjective continuous maps ψn : Xn+1 → Xn for all n ∈ N.
The inverse limit of ψn’s , denoted as

lim←−Xn,

is defined as the subset of
∏

n≥1Xn consisting of all elements (xn)n∈N
satisfying ψn(xn+1) = xn for all n ∈ N.

Now let ϕn : Xn → Xn be a surjective continuous map such that ψn◦
ϕn+1 = ϕn ◦ ψn for every n ∈ N. In other words, ψn : (Xn+1, ϕn+1) →
(Xn, ϕn)’s is a sequence of factor maps of dynamical systems (Xn, ϕn)’s.
Define Φ: lim←−Xn → lim←−Xn by sending (xn)n∈N to (ϕn(xn))n∈N.

Definition 2.4. The dynamical system given by (lim←−Xn,Φ) is called
the inverse limit of dynamical systems (Xn, ϕn)’s.

For a (not necessarily surjective) dynamical system (X,ϕ), it is easy
to check that the continuous map ϕ restricted on ∩k≥1ϕk(X) is surjec-
tive. Notice that if ϕ is surjective, then ∩k≥1ϕk(X) = X.

Definition 2.5. For a dynamical system (X,ϕ), settingXn = ∩k≥1ϕk(X)
and ψn = ϕn = ϕ, the induced inverse limit is called the natural exten-

sion of (X,ϕ), which we denote by (‹X, ϕ̃).

The following proposition shows that the mean dimension of the

natural extension (‹X, ϕ̃) is no greater than the mean dimension of
(X,ϕ).

Proposition 2.6. [15, Proposition 5.8] For an inverse limit of dynam-
ical systems (Xn, ϕn)’s, we have

mdim(lim←−Xn, lim←−ϕn) ≤ lim
n→∞

mdim(Xn, ϕn).

In particular, for a dynamical system (X,ϕ), we have

mdim(‹X, ϕ̃) ≤ mdim(X,ϕ).

3. Mean rank and mean dimension

In this section, similar to [11], we introduce the notion of mean
rank, discuss its nice properties, and establish its connection with mean
dimension.

Let A be a discrete abelian group and ϕ : A → A a group homo-
morphism. For a finite subset E of A, consider the subgroup of A
generated by {ϕi(E) : i = 0, · · · , n− 1}, which we denote by Tn(E,ϕ).
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We call Tn(E,ϕ) the n-trajectory of E. For a subgroup B of A, we
denote by rk(B) the rank of B. Since the sequence {rk(Tn(E,ϕ))}n∈N
is subadditive, the limit limn→∞

rk(Tn(E,ϕ))
n

exists, which we denote by
mrk(E,ϕ).

Definition 3.1. For a discrete abelian group A and ϕ : A→ A a group
homomorphism, the mean rank of A is defined as

mrk(A,ϕ) := sup
E

mrk(E,ϕ)

for E ranging over all finite nonempty subsets of A.

Let {An}∞n=1 be a sequence of discrete abelian groups and ϕn ∈
End(An) space of endomorphisms for every n ∈ N. Suppose that
{ψn,m : An → Am} is a directed system of discrete abelian groups An’s,
i.e. ψn,m ◦ϕn = ϕm ◦ψn,m for any n,m ∈ N with n ≤ m. Denote by λn
the natural embedding An → ⊕n≥1An. Then an explicit construction
of the colimit of {ψnm : An → Am} is

lim−→An := (⊕n≥1An)/S

where S is the subgroup of ⊕n≥1A generated by all elements

λm ◦ ψn,m(an)− λn(an)

with n ≤ m and an ∈ An (see [14, Proposition B-7.7]).
The compatible ϕn’s then induce a homomorphism Φ: lim−→An →

lim−→An sending (an)n to (ϕn(an))n. In particular, as An = A, ψn,m = id,

and ϕn = ϕ for all n,m ∈ N, we denote by
−→
A the colimit and −→ϕ the

corresponding map on
−→
A .

The following proposition is in the same line of [3, Proposition 3.5].

Proposition 3.2. Let {ψn,m : An → Am} be a directed system of dis-
crete abelian groups and ϕn ∈ End(An) such that ψn,m ◦ϕn = ϕm ◦ψn,m
for any n,m ∈ N with n ≤ m. Denote by A′n the quotient group

An/ ∪m≥n ker(An
ψn,m→ Am) and ϕ′n the map A′n → A′n sending x to

ϕn(x). Then we have

mrk(lim−→An,Φ) = sup
n≥1

mrk(A′n, ϕ
′
n).

In particular, if A is a discrete abelian group and a group homom-

rophism ϕ : A→ A is injective, then mrk(A,ϕ) = mrk(
−→
A,−→ϕ ).

Proof. Consider the injective homomorphism ιn : A′n → lim−→An by send-

ing x to λn(x). We have that ιn intertwines ϕ′n with Φ and ιn(A′n)
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increases with ∪n≥1ιn(A′n) = lim−→An. Since mrk is upper continuous,
we see that mrk(A′n, ϕ

′
n) increases to mrk(lim−→An,Φ).

On the other hand, for a single injective homomorphism ϕ : A→ A,
we have A′n = A and ϕ′n = ϕ. Thus

mrk(
−→
A,−→ϕ ) = sup

n≥1
mrk(A,ϕ) = mrk(A,ϕ).

�

Now we consider a compact metrizable abelian group X. The Pon-

tryagin dual of X, denoted as “X, is defined as the collection of contin-
uous group homomorphisms from X to the unit circle T. Under the

pointwise multiplication “X becomes an abelian group and under the

compact-open topology “X makes a discrete group. The classical Pon-

tryagin duality says that the Pontryagin dual of “X is isomorphic to X
as topological groups.

Let ϕ : X → X be a group homomorphism. Then ϕ induces a group

homomorphsim ϕ̂ : “X → “X sending χ to χ ◦ ϕ. For convenience, we
may write

〈ϕ̂(χ), x〉 = 〈χ, ϕ(x)〉
for every χ ∈ “X and x ∈ X.

The following theorem establishes the connection between mean di-
mension and mean rank, which already appears in [11, Theorem 4.1].
For readers’ convenience, we present a proof here.

Theorem 3.3. Let X be a compact metrizable group and ϕ : X → X

a continuous endomorphism. Then mdim(X,ϕ) = mrk(“X, ϕ̂).

Proof. Let us first estimate the upper bound of mean dimension. Fix
a compatible metric d on X. We may consider X as the Pontryagin

dual of “X. Then for any ε > 0, there exists A ⊆ “X finite such that
whenever χ|A = χ′|A for χ, χ′ ∈ X we have d(χ, χ′) < ε. Fix n ∈ N
and pick a maximal independent subset E of ∪n−1i=0 ϕ̂

i(A) and hence
|E| = rk(〈ϕ̂i(A) : i = 0, · · · , n − 1〉). Consider the continuous map
πE : X → TE sending χ to the restriction map χ|E . Assume that χ|E =
χ′|E for some χ, χ′ ∈ X. By our selection of E , for every a ∈ A and
i = 0, 1, · · · , n− 1, we have

〈ϕi(χ), a〉 = 〈χ, ϕ̂i(a)〉 = 〈χ′, ϕ̂i(a)〉 = 〈ϕi(χ′), a〉.
It follows that πE is an (ε, dn)-embedding and hence

Wdimε(X, dn) ≤ dim(TE) = |E| = rk(Tn(A, ϕ̂)).

Let n→∞ and then ε→ 0, we obtain mdim(X,ϕ) ≤ mrk(“X, ϕ̂).
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Now we estimate the lower bound of mean dimension. Fix a finite
subset A ∈ “X and n ∈ N. Let E ⊆ ∪n−1i=0 ϕ̂

i(A) be a maximal linearly
independent subset and hence |E| = rk(Tn(A, ϕ̂)). We then desire to
embed [0, 1/2]E into X topologically.

Consider the collection {H ≤ “X : H ∩ 〈E〉 = 0} with the partial
order of set containment. By Zorn’s Lemma, there exists a maximal

subgroup HE of “X such that HE ∩ 〈E〉 = 0. Then for any u ∈ “X there
exists k ∈ Z such that ku ≤ HE ⊕ 〈E〉 (If not we will get a strictly
larger subgroup HE ⊕ Zu!). Write ku as

ku =
∑
e∈E

λee+ v

with v ∈ HE and λe ∈ Z. Define the map f : ([0, 1/2]E , || · ||∞) →
X sending (xe)e∈E to (

∑
e∈E

λe
k
xe + Z)u. Clearly f is well defined,

continuous, and injective. What’s left is to introduce a compatible
metric d on X such that f is an (ε, dn)-embedding. Enumerate the

elements of “X as a1, · · · , a|A|, · · · such that A = {a1, · · · , a|A|}. Define
a compatible metric θ on T by

θ(x+ n, y +m) = min
k∈Z
|x− y + k|.

Then the desired metric d can be defined via

d(χ, χ′) := max
a∈A

θ(χ(a), χ′(a)) + max
j>|A|

1

2j
θ(χ(aj), χ

′(aj)).

This completes the proof. �

Remark 3.4. In light of [4, Definition 4.2], we can extend the notion
of mean rank to the actions by amenable semigroups and expect the
above connection holds.

4. mean dimension of the natural extension

In this section we give the proof of Theorem 1.2 and Corollary 1.4.
For a dynamical system (X,ϕ), recall that a point x ∈ X is called

non-wandering if for every open set U containing x and N ≥ 1, there
is k ≥ N such that U ∩ ϕ−kU 6= ∅. Denote by Ω(X) the collection of
non-wandering points of (X,ϕ).

Lemma 4.1. For a dynamical system (X,ϕ), we have mdim(X,ϕ) =
mdim(∩n≥1ϕn(X), ϕ).

Proof. Following the same argument of [8, Lemma 7.2] for the non-
invertible case, we still have mdim(X,ϕ) = mdim(Ω(X), ϕ). Since
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X ⊇ ∩n≥1ϕn(X) ⊇ Ω(X), it follows that

mdim(X,ϕ) ≥ mdim(∩n≥1ϕn(X), ϕ) ≥ mdim(Ω(X), ϕ) = mdim(X,ϕ).

�

Now we are ready to complete the proof of the main theorem. We
repeat our main result as follows.

Theorem 4.2 (Theorem 1.2). For any compact metrizable abelian
group X and a continuous homomorphism ϕ : X → X, we have the

equality mdim(X,ϕ) = mdim(‹X, ϕ̃).

Proof. First we deal with the case that ϕ is surjective. From Proposi-

tion 2.6, it suffices to show mdim(X,ϕ) ≤ mdim(‹X, ϕ̃).

By definition, for each element (χn)n∈N ∈
−→“X we have χn+1 = χn ◦ ϕ

for all n ∈ N. (χn)n∈N induces an element of
“‹X by sending (xn)n ∈ ‹X

to χ1(x1), which we denote by π((χn)n). Since ϕ(xn+1) = xn for every
n ∈ N, we have

χn+1(xn+1) = χn ◦ ϕ(xn+1) = χn(xn).

Thus χ1(x1) = χn(xn) for all n ∈ N. Moreover we see that the

map π is well defined and injective. Note that
−→
ϕ̂ sends (χn)n∈N to

(χn ◦ ϕ)n∈N and for each ξ ∈ “‹X, ̂̃ϕ(ξ) sends each (xn)n∈N ∈ ‹X to

ξ((ϕ(xn)n∈N). It follows that π ◦
−→
ϕ̂ = ̂̃ϕ ◦ π, i.e. π :

−→“X → “‹X is an

injective group homomorphism that intertwines
−→
ϕ̂ with ̂̃ϕ. Thus we

have mrk(
−→“X,−→ϕ̂ ) ≤ mrk(

“‹X, ̂̃ϕ).
Since ϕ is surjective, we get that the map ϕ̂ is injective. By Propo-

sition 3.2, we obtain mrk(“X, ϕ̂) = mrk(
−→“X,−→ϕ̂ ). Applying Theorem 3.3

we have

mdim(X,ϕ) = mrk(“X, ϕ̂) = mrk(
−→“X,−→ϕ̂ ) ≤ mrk(

“‹X, ̂̃ϕ) = mdim(‹X, ϕ̃).

This completes the proof when the map ϕ is surjective.
Now we consider the general case that ϕ is not necessarily surjective.

Denote by Y the subspace ∩n≥1ϕn(X). Since ϕ|Y is surjective, we have

mdim(‹Y , ϕ̃) = mdim(Y, ϕ). By Lemma 4.1 and the definition of (‹X, ϕ̃),
we have

mdim(X,ϕ) = mdim(Y, ϕ) = mdim(‹Y , ϕ̃) = mdim(‹X, ϕ̃).

�
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In the rest of this section, we will prove Corollay 1.4. Firstly, we
recall the definition of algebraic cellular automatons.

Definition 4.3. For a compact metric space X and a continuous map
f : XI → X with a finite set I ⊆ Z, the cellular automaton on XZ

with local rule f is the continuous map F : XZ → XZ sending (xn)n∈Z
to (f((xn+j)j∈I))n. We say F is algebraic if X is a compact metric
abelian group and f is a group homomorphism.

Next, we give a proof of Corollay 1.4.

Corollary 4.4 (Corollay 1.4). For an algebraic cellular automaton, we

have mdim(XZ, F ) = mdim(›XZ, F̃ ).

Proof. Since f is a continuous homomorphism between compact metric
abelian groups, so is F . Applying Theorem 1.2 to the induced dynam-
ical systems (XZ, F ), we see that the mean dimension of the natural

extension (›XZ, F̃ ) stays the same as mdim(XZ, F ). �
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