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Fig. 1: The proposed method detects image forgeries by resimulating the mosaic in all four positions and demosaicing it again
with multiple algorithms. The original mosaic is most likely to yield the lowest residual, thus enabling its identification. Regions
with a different mosaic are then checked for forgery with an a contrario paradigm that enables control of false detections.
Image from the Korus dataset [1].

Abstract—The trustfulness of images is a critical concern.
Digital photographs can no longer be assumed to be truthful;
indeed, digital image editing tools can easily and convincingly
alter the semantic content of an image. Being able to analyse an
image to check for forgeries becomes of the utmost importance
in many domains, from police investigations to fact-checking and
journalism. We propose here to analyse traces left by the camera
during demosaicing, one of the first steps of image formation.
When an object is added or displaced on an image, the demo-
saicing traces can be disrupted, leaving forgery clues. In order to
detect these inconsistencies, we explore the possibilities offered by
double demosaicing. Computing the demosaicing residual of an
image with different demosaicing algorithms and patterns enables
one to find image regions with inconsistent demosaicing traces.
We render the method fully automatic by a simple a contrario
scheme computing forgery detection thresholds with statistical
guarantees on the number of false alarms.

I. INTRODUCTION

Once considered reliable evidence, photographic images can
no longer be assumed to depict the naked truth. With the
advent of digital photography and the progress of photo editing
tools, altering a picture has never been easier. While most of
these modifications solely seek to enhance the image, they can
potentially alter its very semantics. Concealing, modifying,
or adding a foreign object can give an image a new and
false meaning. Although these forgeries can easily be made
visually realistic, they still distort the very fabric of the image.
The formation of a digital image, from the camera sensors to
storage, leaves traces, which act like a signature for the image.
Modifying an image distorts these traces, creating detectable
inconsistencies.

Most cameras cannot see colour directly and instead place
a colour filter array (CFA) in front of the sensors, so each
pixel samples the value in one colour. By using filters of
different colours on neighbouring pixels, the missing colours
can then be interpolated. The Bayer CFA is used in almost
all commercial cameras and is thus the focus of research on
demosaicing detection. This matrix samples half the pixels in
green, a quarter in red, and the last quarter in blue. Depending
on the offset of the CFA, an image can thus be sampled in one
of four patterns: R G

G B , B G
G R , G R

B G or G B
R G . No demosaicing method

is perfect – after all, it is a matter of reconstructing missing
information – and each produces some level of artefacts.
Therefore, it is possible to detect these artefacts to obtain
information on the demosaicing method applied to the image.

In this paper, we propose to analyse traces left by the
process of demosaicing. Detecting its local inconsistencies
yields forgery clues. Yet, most existing demosaicing analysis
tools make unrealistic hypotheses on the linearity or channel-
independence of the demosaicing operation. These hypothe-
ses can strongly limit their ability to detect inconsistencies
in general scenarios, as well as their robustness to JPEG
compression. Instead, we propose to explore the potential of
so-called double demosaicing to identify the CFA pattern.
Local selection of the most suitable demosaicing algorithm
enables one to detect the CFA pattern even when the original
demosaicing algorithm is unknown.

Let S be the original colour image signal, which is not
fully observed. Let M

R G
G B be the mosaic function for the

R G
G B pattern, which samples one colour on each pixel accord-



(a) Input image, HA-demosaiced in the R G
G B pattern.

(b) Residuals when the input image is demosaiced again with the same algorithm (HA) in the four positions, from left to right R G
G B (correct

pattern), B G
G R , G R

B G , G B
R G . The residual is zero when the correct pattern is used, making the pattern identification easy.

(c) Here, the input image is analysed with a different algorithm (LMMSE). The residual in the correct pattern (left) is no longer zero, but
is still weaker than on the incorrect patterns.

(d) The input image is JPEG-compressed (Q = 90 before the second demosaicing), with the same (HA) algorithm. Again, although the
correct pattern’s residual is not zero, it is still weaker than in other positions.

(e) The input image is JPEG-compressed (Q = 90 before the second demosaicing, with a different (LMMSE) algorithm. The residual is still
weaker with the correct pattern.

(f) Here, the (uncompressed) input image is analysed with yet another algorithm (ARI).

Fig. 2: An image [2] was demosaiced with HA and analysed with several algorithms. When the image is not compressed
between the two demosaicing operations, and if the algorithm used is the same, the residual will be zero in the correct mosaic
pattern. When the image is compressed, the residual is no longer zero in the correct pattern, but is still weaker than in the
other patterns as long as the compression is moderate. If a different algorithm is used for analysis, results vary: Analysing the
image with LMMSE yields a lower residual in the correct pattern, but this is no longer the case when using ARI, which is
not suited to analyse HA-demosaiced images. Residuals are blurred (σ = 1.7) for better visualization.

ing to the pattern. M
R G
G B S is the observed image on the

sensor, of size (2X, 2Y ), mosaiced in the R G
G B pattern. The

image is demosaiced with algorithm A, yielding the image
I ≜ DAM

R G
G B S of size (2X, 2Y, 3), which we observe and

analyse. The goal is to detect this image was demosaiced with
the R G

G B pattern.

Demosaicing interpolates missing colour values from the
image, but it does not modify the already-known values. What
happens then if we artificially recreate a mosaic on I , then
demosaic it again? Mosaicing DAM

R G
G B S in its original R G

G B

position yields the original mosaic; as a consequence, when
performing the remosaicing-demosaicing operation with the
original CFA and algorithm A, the image is unchanged:

DAM
R G
G B I = DAM

R G
G B DAM

R G
G B S = DAM

R G
G B S = I.

(1)
On the other hand, if we are using the wrong CFA pattern, the

originally-sampled values are lost, and the final demosaicing
will reconstruct a slightly different image.

Assuming the demosaicing algorithm A is known, it is
thus easy to find the original CFA pattern of an image, by
remosaicing and demosaicing it again on the four possible
patterns, and looking for the pattern with which the image was
unchanged. Based on this, Kirchner [3] proposed to find the
CFA pattern of an image by demosaicing in the four patterns
with bilinear interpolation, and looking at the pattern with
the lowest residual. We follow on this idea by using multiple
demosaicing algorithms instead of just bilinear interpolation.
Indeed, although the assumption of bilinear demosaicing was
reasonable when the article was published, most common
demosaicing methods nowadays are much more advanced.

Figure 2 shows a visual example of one image in differ-
ent scenarios. When the original demosaicing and analysis
algorithms are the same, the residual is zero on the correct



pattern, yielding easy detection. In the compressed case, the
residual is no longer zero in the correct position, but it is
still weaker than in other positions, and the detection is still
possible. When using different algorithms for demosaicing and
analysis, detection is still possible as long as one is using a
close enough demosaicing method – hence the necessity of
trying several algorithms to select the best-matching one.

In this article, we propose to analyse and extend double
demosaicing to adapt to different demosaicing algorithms.
Automatic selection of the most suited algorithm enables
a more robust understanding of the studied image. Local
analysis of the results on an image can then be used to detect
inconsistencies and thus forgeries. An a contrario paradigm is
then used to automatically detect forgeries without need for
expert analysis. Our studies show that this double demosaicing
scheme can be used to analyse an image, even in compressed
scenarios, to understand its original processing as well as to
detect its inconsistencies and potential forgeries.

II. RELATED WORKS

In a pioneer paper on demosaicing analysis, Popescu and
Farid [4] jointly estimate a linear model for the demosaicing
algorithm and detect sampled pixels. In demosaiced regions,
the locations of detected pixels are 2-periodic, the local
absence of this periodic component hints at the absence
of demosaicing in a region. Ferrara [5] also look for the
local absence of demosaicing traces. A fixed predictor looks
at the difference of variance between the two lattices of
supposedly-sampled and interpolated pixels: in the presence
of demosaicing, the variance should be significantly higher on
the former. Kirchner [6], whose work we extend, performs
bilinear demosaicing in the four possible patterns to identify
the true sampling pattern as the one where the residual is
lowest. Similarly, Milani et al. [7] applies demosaicing with
several algorithms on the supposed pattern to identify the
image’s true demosaicing algorithm. Choi et al. [8], [9] notice
that interpolated pixels are more likely to be intermediate
values than their neighbours. They propose to compare the
counts of intermediate values in each lattice to estimate the
correct pattern. Bammey [10] makes use of positional training
to make the network implicitly replicate the underlying mosaic
pattern of an image. Very recently, Park [11] avoids using
reinterpolation, so as not to be subject to the suitability of the
hard-to-estimate kernel. Instead, a channel-wise SVD removes
background information to yield a more reliable residual.

While the most recent methods overcome to some extent the
variety of non-linear, interchannel-transfers-rich demosaicing
algorithms, they still struggle to make detections on com-
pressed images, even at a very high quality. Although it is
likely impossible to detect demosaicing artefacts in strongly-
compressed images, some degree of robustness is desirable for
applicability in many fields where compressed but high-quality
images are found, such as criminal investigations.

III. METHODOLOGY

Two inconsistencies can be used as evidence of forgeries: a
difference in the detected pattern of a region, and a difference
in the best algorithm that can be used to approximate said
region. We analyse both features in parallel with an a contrario
paradigm. Most forgery detection methods do not perform
automatic detection. Instead, they yield a heatmap of regions
that appear to be forged, and let the user decide on whether
the image is indeed forged. However, the user trying to know
whether an image is forged does not necessarily have the
knowledge to interpret the results. Furthermore, visual analysis
of all images is not possible if many images are to be
inspected. To make the detection truly automatic, a contrario
analysis [12] can prove useful. It has already been successfully
applied to other forgery detection methods [13], [14]. Based
on Gestalt theory, this detection paradigm computes automatic
thresholds on the heat map by controlling an upper bound
of the number of false alarms (NFA) one might expect.
This is obtained by a threshold on the p-value deviance to
a background hypothesis. This threshold is chosen so as to
limit the expected number of images which would wrongly
be detected as forged while under the background hypothesis.
The NFA of a detection belongs in (0,+∞), with scores closer
to 0 corresponding to more significant detections. An NFA of
10−3, means that under the background hypothesis, we can
expect at most one false detection every 1000 images.

To do this, we aggregate the image into 2×2 blocks, so as to
neglect the variance caused by the different results on different
positions of a mosaic. Indeed, one could expect different
accuracy and bias where the pixel is sampled in different
colours, so aggregating the 2×2 blocks removes this volatility.
Each block is then made to vote for the best algorithm that
can approximate it, the pattern on which the lowest residual
is achieved, and the diagonal on which it is achieved ( · G

G · if
the pattern is R G

G B or B G
G R , G ·

· G otherwise). Separation between
full and diagonal patterns is used to capture the many cases
where the diagonal can be estimated correctly, but not the full
pattern, as is classical in demosaicing analysis [8], [15], [16].

The globally best algorithm, diagonal and full pattern, is the
mode of all 2 × 2 block votes. However, one wants to know
whether this detection is indeed significant, or could come
from random-like block votes. This can be easily checked; in
the absence of demosaicing one could expect those votes to
be distributed uniformly, and the count of votes for one grid
would follow a binomial distribution. The frequency at which
one could obtain such a significant detection in the absence of
demosaicing is thus bounded from above by the number N of
possible votes (4 if voting for the patterns, 2 for the diagonals,
and the number of algorithms when voting for the algorithm),
multiplying the survival function of the binomial distribution,
N Binomsf

(
k, n, 1

N

)
, where k is the number of votes for the

best value and n the total number of blocks. Thresholding on
this value enables automatic detections while keeping control
over the expected number of false detection in noise.

If the global detection is significant, we declare to know



which algorithm is globally best, or the best pattern or diagonal
for the image. We then try to detect local inconsistencies over
these values. In each overlapping window, of size W × W ,
if the locally-best value is different from the global one,
then we again use the binomial distribution to decide on the
significance of the detection. To fully control the number of
false alarms, we further multiply the result by the number
of windows. This enables one to keep control, not over the
number of blocks that would be falsely detected in authentic
images, but more directly over the frequency at which one
image would be detected as forged. The resulting number of
false alarms for the detection is thus

NFA = nwindowsN Binomsf

(
k,W 2,

1

N

)
. (2)

Thresholding over this yields an automatic decision. We
threshold the outputs at 10−3, so we can expect one false
rejection of the background hypothesis every thousand images.

IV. EXPERIMENTS

The authors of [2] have provided 18 images clean of any
demosaicing traces, with varying levels of textures. We recre-
ate a demosaiced version of those images with several al-
gorithms, on a single position: bilinear demosaicing, con-
tour stencils (CS) [17], Hamilton-Adams (HA) [18], Lin-
ear Minimum Mean-Square-Error Estimation (LMMSE) [19],
Alternating Projections (AP) [20], self-similarity-driven de-
mosaicing (SSDD) [21], CDM-CNN (CDM) [22], gradient-
based threshold-free (GBTF), residual interpolation (RI) [23],
minimized-Laplacian residual interpolation (MLRI) [24], and
adaptive residual interpolation (ARI) [25]. We then demosaic
the image a second time in all four positions with the array of
algorithms, and check whether the lowest residual is found on
the correct pattern. We make this check with each individual
pair of algorithms, as well as with the closest-found algorithm,
whose selection is done both taking into account the original
demosaicing method and excluding it. This corresponds to
testing the method in scenarios where the image was originally
demosaiced with an algorithm that either belongs in the
list of tested methods, or not. To check robustness against
JPEG compression, we include an optional compression step
between the two demosaicing operations. We look at the
proportion of 2×2 blocks that are correctly detected, as well as
the number of images where most 2 × 2 blocks are detected
on the correct pattern. Results can be seen in Fig. 3. It is
unsurprisingly easier to detect the correct pattern when the
demosaicing algorithm is known and the image uncompressed.
While the results are poorer on more difficult scenarios,
automatic search of the best algorithm enables detection of the
correct pattern at a better rate than random, even on JPEG-
80 images where the original algorithm is excluded from the
tests. While this is not enough for analysis at a very local
scale, it enables the detection of the pattern on a more global
scale. Surprisingly, analysing bilinear-demosaiced images with
other algorithms yields poor results. This is probably due to
the fact that other methods have a very different behaviour

Grid Alg Alg (J95) Alg (J90) runtime (s)

Ours 0.401 0.415 0.135 0.102 7.2
Ours, ALG 0.003 0.244 0.098 0.087 7.2
Ours, GRID 0.422 0.325 0.065 0.039 7.2

4Point [26] 0.709 0.523 0.307 0.151 642
Bammey [10] 0.682 0.501 0.005 0.003 40.6
Shin [16] 0.104 0.085 0.001 0.001 5.4
Choi [8], [9] 0.603 0.420 0.108 0.049 5.7
Ferrara [5] 0.071 0.218 0.005 0.000 5.6
Dirik [27] -0.002 0.001 0.000 0.001 36.4
Park [11] 0.116 0.152 0.003 0.001 48.3
Noiseprint [28] -0.001 0.066 0.013 0.005 32.5
Splicebuster [29] 0.003 0.075 0.015 0.002 23.9

TABLE I: Comparative results of the method on the Trace [30]
database, with the CFA Grid (Grid) and CFA Algorithm (Alg)
datasets. We use the Matthews Correlation Coefficient (MCC)
as metric. The score varies from -1 to 1, with random baseline
at 0 and perfect detection at 1. The CFA Algorithm dataset
is further tested with JPEG compression at quality factors
95 (J95) and 90 (J90). The proposed method is tested in
full, as well as when looking separately at detected algorithm
discrepancies (ALG) or mosaic pattern shifts, both in the full
patterns and diagonals (GRID). While pattern inconsistencies
are easier to spot than demosaicing algorithm inconsistencies
on uncompressed images, this order is reversed on JPEG-
compressed images, where algorithm detections make our
method the most robust against JPEG compression. Only
two other methods feature robustness to JPEG compression,
Choi [8], [9] and 4Point [26]. Although 4Point yields better
results than all other methods, including the proposed one,
it requires fine-tuning a CNN on every image to be tested,
a costly process that cannot be carried on large amounts of
images. Furthermore, both 4Point and Choi are solely based on
detecting mosaic pattern shifts, which leads us to believe that
our detections are complementary in nature. Runtime average
for one 2474 × 1640 image, 12-cores intel i7 G8, Nvidia
Quadro P3200.

from bilinear demosaicing in many cases, so as to provide a
better image. More globally, images demosaiced with complex
algorithms such as ARI can easily be analysed with simpler
ones, whereas said complex algorithms perform poorly to
analyse other images. This leads us to only use a selection of
six algorithms for the rest of the study: bilinear demosaicing,
CS, AP, LMMSE, HA and GBTF. While those are not the
best demosaicing methods, they form a basis that is shown
to be very good at analysing most images, including those
demosaiced with SOTA algorithms.

We now study the ability of double demosaicing to detect
inconsistencies of the CFA pattern. The Trace [30] database
introduces invisible forgery traces in the form of pipeline
inconsistencies. We use two of its datasets; the “CFA grid”
dataset, in which the forged region is demosaiced in a different
pattern; and the “CFA algorithm” dataset, in which the forged
region is demosaiced with a different algorithm, and a new
demosaicing pattern is selected, which thus has a 3

4 chance to
be different from the authentic region. On the CFA algorithm
dataset, we further study our robustness to JPEG compression
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(a) Uncompressed
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(b) JPEG 95
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(c) JPEG 90
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(d) JPEG 85
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(e) JPEG 80
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(f) Uncompressed
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(g) JPEG 95
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(h) JPEG 90
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(i) JPEG 85

BI
L

HA GB
TF

CS LM
M

SE
AI

CC
SS

DD
AP RI M

LR
I

AR
I

CD
M

Au
to

 E
xc

.
Au

to
 In

c.

Analysis algorithm

BIL
HA

GBTF
CS

LMMSE
AICC

SSDD
AP
RI

MLRI
ARI

CDMOr
ig

in
al

 d
em

os
ai

cin
g

0/16
2/16
4/16
6/16
8/16
10/16
12/16
14/16
16/16

(j) JPEG 80

Fig. 3: Percentage of 2×2 blocks whose residual is lowest in the correct pattern depending on the original demosaicing and the
algorithm used for analysis (top), and number of images on which most 2×2 blocks are detected in the correct pattern (bottom).
On compressed data, Auto Exc. (resp.Inclusive) refers to selecting the pattern with the lowest residual across all analysis
demosaicking algorithms, excluding (resp. including) the algorithm that was used in the original demosaicing process. It is
unsurprisingly easier to detect the correct pattern when the demosaicing algorithm is known and the image uncompressed.
While the results are poorer on more difficult scenarios, automatic search of the best algorithm enables detection of the correct
pattern at a better rate than random, even on JPEG-80 images where the original algorithm is excluded from the tests (Auto
Exc.). This enables the detection of the pattern on a global scale (the tested images have a size of 704× 469 pixels).

by compressing all images before testing.
The experiments were run with automatic selection of the

algorithm. Note that while 15% of the images in the Trace
database use bilinear demosaicing, none of the remaining
demosaicing algorithms are used in our method. This selection
provides a challenging opportunity to further test how the
method generalizes to unseen algorithms.

Results on the Trace [30] database, with the CFA Grid
(Grid) and CFA Algorithm (Alg) datasets, are presented in
Table I. We compare our method with six demosaicing-
based forensic tools, Bammey [10], Shin [16], Choi [8], [9],
Ferrara [5], Dirik [27], Park [11], and with two generic forgery
detection methods Splicebuster [29] and Noiseprint [28]. The
original Choi and Shin methods [8], [16] only detect mosaic
patterns, but do not detect forgeries.[9] extends [8] to find
discrepancies, we also port this extension to [16]. The imple-
mentations for Ferrara [5] and Dirik [27] are taken from [31].
Bammey [10], Park [11], Splicebuster [29] and Noiseprint [28]
are used directly with the authors’ implementations.

To measure detections, we provide scores with the Matthews
Correlation Coefficient (MCC), whose values lie between 1
(perfect detection) and -1 (its complementary). Any input-
independent method has an expected score of 0. Although
our method provides automatic, binary detections, other tested
methods provide a continuous heatmap: we thus use the best
threshold over the dataset. Note that this provides a scoring
advantage to those methods, compared to the proposed work
which automatically thresholds the data.

Against uncompressed images, our method comes third on
the CFA Grid dataset, after Bammey [10] and Choi [8], [9],
and second on the CFA Algorithm dataset, after Bammey [10].

On compressed images, however, our method comes first by a
large margin, with Choi being the only other method providing
some robustness to JPEG compression.

As an ablation, we tested our method when only using
detection separately from algorithm inconsistencies, and from
shifts in the mosaic, both with the full pattern and diagonal.
Results are presented on the same Table I. On uncompressed
images, mosaic shifts are quite easy to detect and most of
the score comes from these. This situation is reversed on
compressed images; pattern shifts are much harder to detect
with our method, while discrepancies over the detected demo-
saicing keep more robustness. We conclude that our results on
compressed images mainly stem from algorithm discrepancies,
and are thus complementary to Choi’s results, a method based
solely on pattern detection.

V. DISCUSSION

In this article, we have studied the possibility of using double
demosaicing to detect the pattern of an image. When an
image has been through demosaicing in an unknown pattern,
a second demosaicing can be applied in all four patterns.
No information is lost when the initial pattern is used for
the second demosaiced. As a consequence, the residual is
lower or even zero in the correct pattern than in the other
positions. A simple strategy is enough to select the best-
matching demosaicing algorithm among a list.

Overall, this method can be used to analyse the image at
a global scale, helped by its surprisingly good robustness to
JPEG compression. We then applied an a contrario scheme
to automatically detect and localize image forgeries. While
some of the robustness to JPEG compression is inevitably lost



at a local scale, the proposed method is still quite robust to
compression. Furthermore, double demosaicing analysis can
provide useful information on the original demosaicing of an
image, and is thus a valuable tool in reverse-engineering the
image processing pipeline used by a given image, which could
in turn be used for image authentication.

Demosaicing detection methods now perform quite well
on uncompressed images, it is now necessary to focus on
improving their robustness to JPEG compression. While it is
unlikely that detecting demosaicing inconsistencies on low-
quality images could be possible, performing robust detection
at a quality factor above 90 now seems possible, if not easy,
and is of critical security importance to analyse images in
contexts such as police investigations, where images are often
of a high enough quality. Even if demosaicing analysis cannot
suffice on such images, it can serve as an excellent comple-
ment to other tools, given that all existing non-demosaicing-
specific forensic tools are mostly blind to demosaicing traces.
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