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The Alfeld split is obtained by subdividing a simplex in R s into s+1 sub-simplices with the barycenter as one of their vertices. On this split, we consider the space of C 1 splines of degree d = 2s-1, on which we construct a basis of simplex-splines with knots at the barycenter and the vertices of the simplex. The basis consists of two types of of simplex-splines, firstly Bernstein polynomials with domain points on the external faces of the simplex and secondly certain simplex-splines with at least one knot at the barycenter. Partition of unity, Marsdenlike identities and domain points are shown for s ≤ 20.

Introduction

Piecewise polynomials over triangles and tetrahedrons have applications in several branches of the sciences ranging from finite element analysis, surfaces in computer aided design and other engineering problems, [START_REF] Hughes | Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[END_REF], [START_REF] Lai | Spline Functions on Triangulations[END_REF] . For many of these applications, piecewise linear C 0 surfaces do not suffice. In some 1 cases, we need smoother elements for modeling, or higher degrees to increase the approximation order. The smoothness on tetrahedrons is obtained either by high degrees of polynomials or using smaller degrees when splitting the tetrahedron into smaller pieces. For example, for smoothness C 1 of a tetrahedral partition in R 3 , one need to use piecewise polynomials of degree 9, see [START_REF] Lai | Spline Functions on Triangulations[END_REF]. However, it is known [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF] that if we split each subtetrahedron into 4 pieces by connecting the vertices to the barycenter, then degree 5 is sufficient. This split is known as the Alfeld split [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF] and it generalizes the Clough-Tocher split [START_REF] Clough | Finite element stiffness matrices for analysis of plate bending[END_REF] of a triangle.

To describe the Alfeld split in arbitrary space dimension, s ≥ 2, let T s be a simplex defined by s + 1 points {p 1 , p 2 , . . . , p s+1 } ∈ R s . Adding the barycenter p T := s+1 j=1 p j /(s + 1) to these points, and removing a vertex p j , we have a simplex T s,j for each j = 1, . . . , s + 1. In this way a split of T s into s + 1 sub-simplices is obtained. See Figure 2 for s = 2, 3.

On T s , we consider the linear space S 1 d,s of C 1 piecewise polynomials of degree d ∈ N on the Alfeld split, where for r ≥ 0 S r d,s := {f ∈ C r (T s ) :

f |T s,j ∈ P d,s , j = 1 . . . , s + 1}, (1) 
and where P d,s is the space of polynomials of total degree ≤ d in s variables. It was shown in [START_REF] Kolesnikov | Multivariate C1-continuous splines on the Alfeld split of a simplex[END_REF], Theorem 3, that dim S 1 d,s =

d + s s + s d -1 s . (2) 
Moreover, it was proved in [START_REF] Floater | A characterization of supersmoothness of multivariate splines[END_REF] that the barycenter has supersmoothness s.

For dimension of spaces analogous to (1), but of higher smoothness see [START_REF] Foucard | Generating dimension formulas for multivariate splines[END_REF], [START_REF] Schenck | Splines on the Alfeld split of a simplex and type A root systems[END_REF]. For computation with functions in the space S 1 d,s , one needs a basis. The case s = 2 was considered in [START_REF] Lyche | Simplex-splines on the Clough Tocher element[END_REF]. There, a basis of cubic simplex-splines for the Clough-Tocher split of a triangle was constructed forming a nonnegative partition of unity. Moreover, a Marsden-like identity was derived. Generalizing the bivariate case, we consider degrees d = 2s -1 for arbitrary space dimension s, and construct a basis for S 1 2s-1,s consisting of simplex-splines. We show that it form a nonnegative partition of unity for s up to 20. We also prove a Marsden-like identity and derive domain points for the same values of s.

Notation

We let N be the set of natural numbers and N 0 := N ∪ {0}, the set of nonnegative integers. For a given degree d ∈ N, the space of polynomials of total degree at most d of dimension d+s s in R s will be denoted by P d,s . We denote by V the convex hull of a set of points V := {v 1 , v 2 , . . . , v n } in R s . Here V can be considered either as a sequence, a multiset, or as a matrix V ∈ R s×n with columns v 1 , . . . , v n . The matrix V has rank s if and

only if V has positive volume in R s , denoted vol s (V) > 0. Given p j ∈ R s , j = 1, . . . , s + 1 the set T s := {p 1 , p 2 , . . . , p s+1 } is called a simplex. Its volume is vol s (T s ) = 1 s! |det 1 ••• 1 p 1 ••• p s+1 |.
The simplex T s is an interval for s = 1, a triangle for s = 2, and a tetrahedron for s = 3. For n ∈ N, the unit simplex

σ n in R n with vol s (σ n ) = 1/n! is σ n := (t 1 , . . . , t n ) : t i ≥ 0, ∀i and n i=1 t i ≤ 1 . (3) 
Finally, we use standard multi-index notation when convenient. Thus, for n ∈ N, j := (j

1 . . . j n ) ∈ N n 0 and x := (x 1 . . . x n ) ∈ R n we define j! := j 1 ! . . . j n !, |j| := j 1 + • • • + j n , x j := x j 1 1 • • • x jn n .
2 Bernstein polynomials and simplex-splines

For convenience, we review some of the properties of Bernstein polynomials and simplex-splines in R s that we need. For further properties of Bernstein polynomials, see [START_REF] Lai | Spline Functions on Triangulations[END_REF][START_REF] Lyche | On the p-norm condition cumber of the multivariate triangular Bernstein basis[END_REF] and for simplex-splines, we refer the reader to, e.g., [START_REF] Micchelli | On a numerically efficient method for computing multivariate B-splines[END_REF][START_REF] Prautsch | Bézier and B-spline Techniques[END_REF].

Bernstein polynomials

For given s ∈ N, and j := (j 1 , . . . , j s+1 ) ∈ Z s+1 , the Bernstein polynomial is defined on the affine set {β = (β 1 , . . . , β s+1 ) ∈ R s+1 : Σβ j = 1} by

B j 1 ,...,j s+1 (β 1 , . . . , β s+1 ) := (j 1 +•••+j s+1 )! j 1 !•••j s+1 ! β j 1 1 • • • β j s+1 s+1 , j k ≥ 0, ∀k, 0, otherwise,
or in multindex notation

B j (β) := |j|! j! β j , j ∈ N s+1 0 , 0, otherwise. (4) 
Let T s := {p 1 , p 2 , . . . , p s+1 } with distinct p j ∈ R s , be a simplex in R s . The s + 1 subsimplices {p 1 , p 2 , . . . , p s+1 } \ {p j } are called the external faces of T s . To link the computations in the vector space R s and its corresponding affine space, let β be the barycentric coordinates of a simplex {p 1 , p 2 , . . . , p s+1 } ∈ R s , i. e., for

x = (x 1 , . . . , x s ) ∈ R s x = s+1 k=1 β k p k , s+1 k=1 β k = 1.
(

) 5 
We define

B d j (x) := B j (β), d := |j|, x ∈ R s , (6) 
and since each β k is a linear polynomial in x, it follows that B d j ∈ P d,s . We define

J d s := {j ∈ N s+1 0 : |j| = d}, B d s := {B d j : j ∈ J d s }. (7) 
The elements of B d s constitute a basis for P d,s . With u := (u 1 , . . . , u s+1 ) T ∈ R s+1 and β := (β 1 , . . . , β s+1 ) T ∈ R s+1 satisfying β k = 1, the multinomial expansion of (u T β) d leads to the barycentric Marsden identity

(u T β) d = j∈J d s u j B j (β). ( 8 
)
Taking partial derivatives of u, in (8), using [START_REF] Floater | A characterization of supersmoothness of multivariate splines[END_REF] and setting u = 1 ∈ R s+1 , we obtain for all x ∈ R s and d ∈ N

1 = j∈J d s B d j (x), x = j∈J d s b d j B d j (x), b d j = s+1 k=1 j k p k d . (9) 
The vector b d j ∈ R s is called the domain point of B d j . The collections where J d s is given by [START_REF] Hughes | Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[END_REF]. The cardinality of these sets are given in the following lemma.

B d s,I := {B d j 1 ...j s+1 ∈ B d s : s+1 k=1 j k = 0} B d s,F := {B d j 1 ...j s+1 ∈ B d s : s+1 k=1 j k = 0}, (10) 
Lemma 1 We have

#J d s = d + s s , #J d s,I = d -1 s , #J d s,F = d + s s - d -1 s . (11) 
Proof: We first show for m ∈ N 0 and n ∈ N

#{i ∈ N n 0 : |i| = k} = n -1 + k k , (12) 
and

#{i ∈ N n 0 : |i| ≤ m} = m k=0 n -1 + k n -1 = m + n n . (13) 
(13) (used in the proof of Lemma 10) follows from [START_REF] Lyche | On the p-norm condition cumber of the multivariate triangular Bernstein basis[END_REF] and by induction on m.

To show [START_REF] Lyche | On the p-norm condition cumber of the multivariate triangular Bernstein basis[END_REF], we follow [START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF], pp. 38. We have k elements which can be distributed in n cells. We represent the k elements by stars and the n cells by bars on the left and the right, common with the next or previous cell if any. For example, if n = 5, k = 4 the symbol | * | * * | | * | | represents i = (1, 2, 0, 1, 0). Such a symbol starts and ends with a bar, but the remaining n -1 bars and k stars can appear in arbitrary order. Thus #{i ∈ N n 0 : |i| = k} equals the number of ways we can choose k elements out of a collection of n + k -1 elements, without regards to their order. This number is (n + k -1) • • • (n + 1)n/k!, which equals the binomial coefficient in the lemma.

Taking n = s + 1 and k = d in [START_REF] Lyche | On the p-norm condition cumber of the multivariate triangular Bernstein basis[END_REF], it follows that #J d s = d+s s . Next, from [START_REF] Lyche | On the p-norm condition cumber of the multivariate triangular Bernstein basis[END_REF] 

with n = s + 1 and k = d -s -1, with j = i -1, #J d s,I = #{i ∈ N s+1 : |i| = d} = #{j ∈ N s+1 0 : |j| = d -s -1} = s + 1 + d -s -1 -1 d -s -1 = d -1 d -s -1 = d -1 s .
Finally, since #J d s,F = #J d s -#J d s,I we obtain the formula for #J d s,F .

Multivariate simplex-splines in R s

For s ∈ N, we define Ξ := {ξ 0 , . . . , ξ n } := {η

[m 0 ] 0 , . . . , η [mν ] ν } ∈ R s×(n+1) , n := ν i=0 m i -1, ( 14 
)
where η 0 , . . . , η ν are distinct members in R s . In [START_REF] Prautsch | Bézier and B-spline Techniques[END_REF], each η i is repeated m i ∈ N times, i = 0, . . . , ν and we assume ν ≥ s. The points ξ i , i = 0, . . . , n are called knots and the integers m j are refered to as their multiplicities.

The nontrivial hyperplanes containing s distinct knots in Ξ are called knot planes, they are points and lines in the univariate and bivariate case, respectively. The knot planes provide a partition of Ξ into polytopes.

In the univariate case, the simplex-spline is a univariate B-spline of degree n -1 normalized to have unit integral. It can be defined by a recurrence relation, as a divided difference of a truncated power, or in a geometric or variational way.

For s ∈ N, we use here the following variational definition of a simplexspline M Ξ : R s → R, see [START_REF] Micchelli | On a numerically efficient method for computing multivariate B-splines[END_REF]. If Ξ ∈ R s×(n+1) has rank s, then for all

f ∈ C(R s ) R s M Ξ (x)f (x)dx := n! σn f (t 0 ξ 0 + • • • + t n ξ n )dt 1 • • • dt n , (15) 
where t 0 := 1 -n i=1 t i and σ n is the unit simplex in R n given by (3). We define M Ξ to be identically zero if rank(Ξ) < s.

For n = s the degree zero simplex-spline is given by

M Ξ (x) = 1/vol s ( Ξ ), x ∈ • Ξ , 0, if x / ∈ Ξ . ( 16 
)
The value of M Ξ on the boundary of Ξ has to be dealt with separately. In general M Ξ has the following properties.

• Knot symmetry: M Ξ is independent of the ordering of the knots.

• Nonnegativity and normalization: M Ξ is nonnegative and has unit integral.

• Compact support: M Ξ has support Ξ .

• Piecewise polynomial: M Ξ is a polynomial of total degree d := n -s on each polytope in the partition of Ξ .

• Local smoothness: Across a knot plane the simplex-spline has smooth-

ness 1 M Ξ ∈ C n-1-µ , ( 17 
)
where µ is the number of knots in the knot plane, including multiplicities.

• Univariate simplex-spline: If s = 1 then M Ξ is the univariate Bspline of degree n -1 normalized to have unit integral.

• Bernstein polynomial:

If ν = s then M Ξ = B n-s µ 1 -1,.
..,µ s+1 -1 , a Bernstein polynomial of degree n -s on Ξ .

• Differentiation formula (A): For any u ∈ R s and any a 0 , . . . , a n such that i a i ξ i = u, i a i = 0, we have

(u • ∇)M Ξ = n n i=0 a i M [Ξ\ξ i ] , (18) 
where ∇ denotes the vector of partial derivatives, i. e., the gradient.

• Recurrence relation (B): For any x ∈ R s and any b 0 , . . . , b n such that i b i ξ i = x, i b i = 1, we have M Ξ (x) = n d n i=0 b i M [Ξ\ξ i ] (x). ( 19 
)
• Knot insertion formula (C): For any y ∈ R s and any c 0 , . . . , c n such that i c i ξ i = y, i c i = 1, we have

M Ξ = n i=0 c i M [Ξ∪y\ξ i ] . (20) 
3 Simplex-splines on the Alfeld split in R s of degree 2s -1

To describe the Alfeld split in R s , let T s := {p 1 , p 2 , . . . , p s+1 } be a simplex in R s with positive volume as in Figure 2 for s = 2 and s = 3. Using the barycenter p T := s+1 j=1 p j /(s + 1) (we omit the index s in p T ), we can split T s into s+1 subsimplices T s,j := {p 1 , . . . , p s+1 , p T }\{p j } , j = 1 . . . , s+1.

These sets are separated by s+1 2 knot planes

F u,v := {p 1 , . . . , p s+1 , p T } \ {p u , p v } , 1 ≤ u < v ≤ s + 1.

Lemma 2

The subsimplices all have the same volume

vol s (T s,j ) = V s + 1 , j = 1, . . . , s + 1,
where V is the volume of T s . Proof: It is well known that

V := vol s (T s ) = 1 s! |det 1 ••• 1 p 1 ••• p s+1 |.
By properties of determinants and j = s + 1

vol s (T s,j ) = 1 s! |det 1 ••• 1 p 1 ••• p s p T | = 1 s! |det 1 ••• 1 p 1 ••• p s p s+1 /(s+1) | = V s + 1 .
The proof for other values of j is similar.

The following notations will be convenient.

Definition 3 For ∈ N 0 , s ∈ N and i = (i 1 , . . . , i s+1 ) ∈ N s+1 , we denote by d [i; ] : R s → R the simplex-spline of degree d = |i| + -1 -s with knots {p

[i 1 ] 1 , . . . , p [i s+1 ] s+1 , p [ ] T }. We define τ d [i; ] = τ d [i 1 , .
. . , i s+1 ; ] as the set { d [j 1 , . . . , j s+1 ; ]} of all distinct permutations of (i 1 , . . . , i s+1 ).

In the following lemma, we collect some properties of d [i; ] and

τ d [i; ]. Lemma 4 Suppose s ∈ N, ∈ N 0 , i = (i 1 , . . . , i s+1 ) ∈ N s+1 , n := s+1 r=1 i r + -1 ≥ s and d := n -s. Then 1. The simplex-spline d [i; ] is a piecewise polynomial in R s of degree d.
2. The knot insertion formula for inserting a knot at the barycenter can be written

d [i; ] = s+1 r=1 d [i -e r ; + 1]/(s + 1), ( 21 
)
where e 1 , . . . , e s+1 ∈ R s+1 are the unit vectors in R s+1 , i. e., the columns of the identity matrix I ∈ R (s+1)×(s+1) , while insertion at p j gives

d [i; ] = (s + 1) d [i + e j ; -1] - s+1 r=1,r =j d [i -e r + e j ; ]. (22) 3. If = 0 then d [i; ] = B d i-1 , a Bernstein polynomial of degree d on T s . 4. The number of elements in τ d [i; ] is #τ d [i; ] = (s + 1)! m 1 !m 2 ! • • • m s ! , ( 23 
)
where m j is the number of i 1 , . . . i s+1 equal to j, j = 1, . . . , s. The recurrence relation (19) gives for i k , ∈ N 0 and k = 1, . . . , s

Suppose

∈ N, 1 ≤ j ≤ s + 1, and i = {i 1 , . . . , i s+1 } with i k ≥ 1 for 1 ≤ k ≤ s + 1, k = j and i j = 0. Then for x ∈ R s d [i; ](x) =        0 on • T s,k , for k = j, K d,s s+1 k=1,k =j (β k -β j ) i k -1 (i k -1)! × (s + 1)β j -1 ( -1)! , on • T s,j , (24) where 
K d,s := s + 1 V (d + s)! s! , (25) 
d [i + 1, 0; + 1] := d [i 1 + 1, . . . , i s + 1, 0; + 1] = d + 1 + s d + 1 s j=1 β j d-1 [i 1 + 1, . . . , i j-1 + 1, i j , i j+1 + 1, i s + 1, 0; + 1] + β s+1 d-1 [i 1 + 1, . . . , i s + 1, 0; ] .
Here d := s j=1 i j + -1 ≥ 0 is the degree of the simplex-splines on the right, so that d [i+1, 0, +1] has degree d+1. If (24) holds for the simplex-splines of degree d then

d [i + 1, 0, + 1] = K s k=1 (β k -β s+1 ) i k i k ! × (s + 1)β s+1 ! ,
where

K = d + 1 + s d + 1 × s + 1 V × (d + s)! s! s j=1 i j + = s + 1 V × (d + 1 + s)! s! = K d+1,s .
Thus we obtain (24) for j = s + 1 and degree d + 1; The the proof is complete.

Lemma 5 For degree

d := |i| + -s -1 ≥ 1, i ∈ N s+1 , ∈ N 0 and j = 1, . . . , s + 1, the simplex-spline d [i; ] satisfies 1. If i j + ≥ 2, then d [i; ] = 0 on the external faces of T s . 2. If all i j ≥ 1 then d [i; ] ∈ C 0 (T s ).
Proof: For d = 1, we deduce that s + 2 = i r + ≥ s + 1 + so that ≤ 1. The only corresponding splines are of type

• d [2, 1, . . . , 1; 0]
which is a Bernstein polynomial on T s so that the element is in C 0 (T s ). Moreover, it belongs to B d s,I so that it vanishes on the face {p 2 , . . . , p s+1 } . We have similar results for the symmetrics.

• d [1; 1] := d [1 . . . , 1; 1]
which is a piecewise polynomial. We have to prove that it is null on the the external faces of T s and that it belongs to C 0 (T s ).

If x = s+1 r=1 β r p r with β r = 1, then by ( 19)

d [1; 1](x) = (s + 1) s+1 r=1 β r d [1 -e r ; 1](x). 1. If x ∈ • T s,1 then by (16) and Lemma 2, d [1 -e 1 ; 1](x) = s + 1 V
, where V is the volume of T s and all other elements of the sum are null on T s,1 , so that

d [1; 1](x) = β 1 (s + 1) 2 /V . If x → {p 1 , . . . , p s+1 } \ {p 1 } or equivalently lim β 1 = 0, then lim d [1 . . . , 1; 1](x) = 0.
We have similar results on the other faces which is the first assertion.

Similarly

d [1; 1](x) = β s (s + 1) 2 /V for x ∈ • T s,s β s+1 (s + 1) 2 /V for x ∈ • T s,s+1 .
In both cases. if x → {p 1 , . . . , p s-1 , p T } then β s and β s+1 both tend to the same limit and continuity across {p 1 , . . . , p s-1 , p T } follows. We have similar results on the other knot planes which give the second assertion.

Suppose the two properties hold for d -1, and let d [i; ] be a spline of degree d.

If = 0, then d [i; ] is a Bernstein polynomial and the properties are satisfied.

For > 0, again, let x = s+1 r=1 β r p r with β r = 1, then by (19)

d [i; ](x) = d + s d s+1 r=1 β r d-1 [i -e r ; ](x). ( 26 
)
• If i 1 > 1 then by the induction hypothesis, d-1 [i -e 1 ; ] ∈ C 0 (T ) satisfies the two properties, and so does

β 1 d-1 [i -e 1 ;
].

• If i 1 = 1, then d-1 [i -e 1 ; ] = 0 on
• T s,j for any j ∈ {2, . . . , s + 1}, so that it is also null on the external faces {p 1 , . . . , p s+1 } \ {p j } , and continuous with value zero across all knot planes {p 1 , . . . , p s+1 , p T } \ {p j , p k } for k ∈ {2, . . . , s + 1}, k = j.

On

• T s,1 , following (24),

β 1 K d,s s+1 k=2 (β k -β 1 ) i k -1 (i k -1)! × (s + 1)β 1 -1
( -1)! .

The limit is zero when x → {p 2 , . . . , p s+1 } or equivalently β 1 → 0, which gives the first part.

If x → {p 2 , . . . , p s+1 , p T } \ {p j } for some j ∈ {2, . . . , s + 1}, then 1. If i j > 1 , lim β 1 = lim β j = λ so that lim(β j -β 1 ) i j -1 = 0, and we have continuity with value zero across the knot plane.

2. If i j = 1, we use the symmetric element in the sum (26)

β j d-1 [i -e j ; ](x) =      β j K d,s s+1 k=1,k =j (β k -β j ) i k -1 (i k -1)! × (s + 1)β j -1 ( -1)! , on • T s,j , 0, on • T s,1 .
When lim β 1 = lim β j = λ, both elements, β 1 d [i -e 1 ; ] and β j d [i -e j ; ] have the same limit

λK d,s s+1 k=2 (β k -λ) i k -1 (i k -1)! × (s + 1)λ -1 ( -1)! ,
while the other elements of the sum are null on

• T s,1 ∪
• T s,j so that we obtain the continuity across the knot plane.

We have similar results for all the elements of the sum (26) which proves the properties at step d. 

i; ) = B 2s-1 i-1 ∈ B 2s-1 s,F
of degree 2s -1 given by [START_REF] Lyche | Simplex-splines on the Clough Tocher element[END_REF]. Thus = 0 and at least one i j is equal to one.

• Type [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF]: the elements (i; ) with 0 < ≤ s -1, exactly one of the i j = 1 and the others i k ≥ 2.

We let

I := {(i, ) : i ∈ N s+1 , 0 ≤ ≤ s -1and |i| + = 3s},
and the set of indices [i; ] such that d [i; ] is of type [0], type [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF] will be written I 0 , I 1 , respectively.

We will show the following theorem.

Theorem 7 Σ 1 2s-1,s is a basis for S 1 2s-1,s for s ≥ 2.

Before giving the detailed proofs, we consider some examples which will also be used in the following section. Example 8 For s = 2, 3, . . . , 5 we find

• s = 2, d = 3, dim S 1 3,2 = 12, dim P 3,2 = 10
-Type [0]: 9 elements, all Bernstein polynomials of degree 3 except -Type [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF]: -Type [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF]: [4] , 1; 3] ∪ τ 7 [3, 2 [3] , 1; 2] ∪ τ 7 [4, 2 [3] , 1; 1]} ∪ {τ 7 [3 [2] , 2 [2] , 1; 1]}. elements, all the Bernstein polynomials except τ 9 [5, 2 [5] ; 0] ∪ τ 9 [4, 3, 2 [4] ; 0] ∪ τ 9 [3 [3] , 2 [3] ; 0].

B 3 111 = 3 [2, 2, 2; 0], -Type [1]: The three elements τ 3 [2, 2, 1; 1] = { 3 [2, 2, 1; 1], 3 [2, 1, 2; 1], 3 [1, 2, 2; 1]}. • s = 3, d = 5, dim S
(s + 1) 2s-2 s = 16 elements τ 5 [2, 2, 2, 1; 2] ∪ τ 5 [3, 2, 2, 1; 1] = { 5 [2, 2, 2, 1; 2], 5 [2, 2, 1, 2; 2], 5 [2, 1, 2, 2; 2], 5 [1, 2, 2, 2; 2], 5 [3, 2, 2, 1; 1], 5 [3, 2, 1, 2; 1], 5 [3, 1, 2, 2; 1], 5 [2, 3, 2, 1; 1], 5 [2, 3, 1, 2; 1], 5 [2, 2, 3, 1; 1], 5 [2, 2, 1, 3; 1], 5 [2, 1, 3, 2; 1], 5 [2, 1, 2, 3; 1], 5 [1, 3, 2, 2; 1], 5 [1, 2, 3, 2; 1], 5 [1, 2, 2, 3; 1]}. • s = 4, d = 7,
{τ 7 [2
-Type [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF]: The elements τ 9 [[2 [5] , 1; 4] ∪ τ 9 [3, 2 [4] , 1; 3] ∪ τ 9 [4, 2 [4] , 1; 2] ∪ τ 9 [5, 2 [4] , 1; 1]} ∪ τ 9 [3 [2] , 2 [3] , 1; 2] ∪ τ 9 [4, 3, 2 [3] , 1; 1] ∪ τ 9 [3 [3] , 2 [2] , 1; 1].

By (23) the number of these elements is 6!/5!+3 * 6!/4!+6!/2!/3!+ 6!/3! + 6!/3!/3! = (s + 1) 2s-2 s which is the number of elements of type [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF].

The proof of Theorem 7 will follow by combining results of the following three subsections.

Subspace

Proposition 9 We have Σ 1 2s-1,s ⊂ S 1 2s-1,s . Moreover, each element of type [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF] vanish on the boundary of T s .

Proof: By Lemma 4, each element d [i; ] of type [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF] is a piecewise polynomial on T s of degree 2s -1. That d [i; ] belongs to C 0 (T s ) and is null on the boundary is a consequence of Lemma 5. To prove the smoothness C 1 , suppose that i j = 1 and all the other i k > 1. For j = s + 1, we take derivatives of d [i; ] in s independent directions, u 1 := p T -p 1 and u k := p k -p 1 , k = 2, . . . , s. By the differentiation formula (18)

(u 1 • ∆) d [i; ] = (d + s) -d-1 [i -e 1 ; ] + d-1 [i; -1] (u k • ∆) d [i; ] = (d + s) -d-1 [i -e 1 ; ] + d-1 [i -e k ; ] , k = 2, . . . , s.
All splines on the right are continuous on T s by Lemma 5. We deduce that the s partial derivatives are continuous on T s so that d [i; ] in C 1 (T s ). The proof for other values of j is similar.

Counting

Next, we count the elements in Σ 1 2s-1,s . We start with a lemma. Lemma 10 For m, n ∈ N and (p 1 , . . . ,

p n ) ∈ N n 0 , if P m n := {(p 1 , . . . , p n ) ∈ N n 0 : m ≥ p 1 ≥ p 2 ≥ . . . ≥ p n ≥ 0}, then #P m n := m+n n .
Proof: We prove the lemma by induction on n. Clearly, #P m 1 = m+1 1 for any m ∈ N. Suppose that for any j ∈ N, #P j n = j+n n . Then

#P m n+1 = m j=0 #P j n = m j=0 j + n n = m + n + 1 n + 1 .
The last equality follows from [START_REF] Micchelli | On a numerically efficient method for computing multivariate B-splines[END_REF], and the proof is complete.

Proposition 11

#I 0 = 3s -1 s - 2s -2 s , #I 1 = (s + 1) 2s -2 s , (27) 
so that #I 0 + #I 1 = dim S 1 2s-1,s
Proof: The count #I 0 follows from [START_REF] Lyche | Simplex-Splines on the Clough-Tocher Split with Arbitrary Smoothness[END_REF] with d = 2s -1. Consider #I 1 and let for s, ∈ N S s := { (i 1 , . . . , i s , i s+1 ; ) ∈ S 1 2s-1,s : i k ≥ 2, k = 1 . . . , s, i s+1 = 1} be a collection of elements of type [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF]. We define a bijection F 1 between S s and P s-1- s , given in Lemma 10. Let S := (i 1 , . . . , i s , i s+1 ; ) ∈ S s . Since i k ≥ 2 for k = 1, . . . , s we have

2s + 1 + ≤ i 1 + 2s -1 + ≤ s+1 k=1 i k + = 3s (28) 
which implies that

1 ≤ ≤ s -1, 2 ≤ i 1 ≤ s + 1 -. But then 0 ≤ p 1 := s + 1 --i 1 ≤ s -1 -. Define p k := 2 + p k-1 -i k , k = 2, . . . , s so that i 1 = s + 1 --p 1 , i k = 2 + p k-1 -p k , k = 2, . . . , s, i s+1 = 1. ( 29 
)
Since i k ≥ 2 for k = 1, . . . , s -1, we see that p k ≤ p k-1 for k = 2, . . . , s. By (29), we have

s+1 k=1 i k = s + 1 --p 1 + s k=2 (2 + p k-1 -p k ) + 1 = 3s --p s ,
and by (28) we conclude that p s = 0. It follows that (p 1 , . . . , p s ) defines an element F 1 (S) in P s-1- s which is one-to-one by construction. Conversely, given (p 1 , . . . , p s ) ∈ P s-1- s . Define i 1 , . . . , i s+1 by (29). Clearly i k ≥ 2 for k = 1 . . . , s, showing that (i 1 , . . . , i s+1 ; ) ∈ S s .

Using Lemma 10, there are 2s-2- s-1

elements in P s-1- s .
With the permutation of the element i k with value 1, the total number of simplex-splines of type [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF] is

(s + 1) s-1 =1 2s -2 - s -1 = (s + 1) s-2 r=0 s -1 + r s -1 = (s + 1) 2s -2 s .
The last equality of the proposition is a consequence of ( 27) recalling (2).

Proof of linear independence

We show that the elements of Σ 1 2s-1,s are linearly independent on T s . Suppose on T S σ :=

(i;0)∈I 0 λ(i; 0) d [i; 0] + (j; )∈I 1 λ(j; ) d [j; ] = 0. ( 30 
)
We need to show that all λ(i; 0), λ(j; ) are zero. Recall that if (j; ) ∈ I 1 then ≤ s -1. Thus linear independence will follow from Step 0 and (32) with k = s -1. Consider the face Π := {p 1 , . . . , p s } .

Step 0: We show that λ(i; 0) = 0 for all (i; 0) ∈ I 0 , and start by studying the elements of the sum restricted to Π.

By Lemma 5 we have (i; )| Π = 0 if i s+1 + ≥ 2 and it follows that

1. d [i; 0]| Π = 0 for d [i; 0] ∈ I 0 if i s+1 ≥ 2.
2. d [j; ]| Π = 0 for all (j; ) ∈ I 1 . , since ≥ 1 and j s+1 ≥ 1.

Thus,

σ| Π = (i; )∈I 0 i s+1 =1 λ(i; 0) d [i; 0]| Π = (i;0)∈I 0 i s+1 =1 λ(i; 0)B d (i 1 -1,...,is-1,0) (β)| Π .
Since β s+1 = 0 on Π the last sum is a combination of Bernstein polynomials of degree d on Π. Since these polynomials are linearly independent, we deduce that all the λ(i; 0) corresponding to d [i; 0]| Π vanish. With the same argument on the other faces we conclude that λ(i; 0) = 0 for all (i; 0) ∈ I 0 .

With n = 3s -1, let

∂ j := 1 n -j + 1 (p T -p j ) • ∆ , j = 1, 2, . . . , s + 1.
Step 1: We show that λ(j; 1) = 0 for all (j; 1) ∈ I 1 , and again start by studying the elements of the sum restricted to Π.

From Step 0, λ(i; 0) = 0 for all (i, 0) ∈ I 0 so that by (30)

0 = σ = (j; )∈I 1 λ(j; ) d [j; ].
By the differentiation formulla for simplex-splines

0 = ∂ 1 σ = (j; )∈I 1 λ(j; ) -d-1 [j 1 -1, j 2 , . . . , j s+1 ; ]+ d-1 [j; -1] . (31) Since d-1 [i; ]| Π = 0 if i s+1 + ≥ 2 we find 0 = ∂ 1 σ| Π = (j;1)∈I 1 λ(j; 1) d-1 [j; 0]| Π = (j;1)∈I 1 λ(j; 1)B d-1 j-1 | Π .
Using linear independence of these Bernstein polynomials completes step 1.

Step k: We show by induction on k

∂ k . . . ∂ 1 σ = (j; )∈I 1 ≥k+1 λ(j; )Γ k and λ(j; ) = 0, for 0 ≤ ≤ k, (32) 
where

Γ k = k q=0 (-1) q ω∈Ω k,q d-k (ω 1 , . . . , ω k , j k+1 , . . . , j s+1 ; -k + q). (33) 
Here ω := (ω 1 , . . . , ω k ) ∈ Ω k,q if exactly q components of ω satisfy ω r = j r -1 and for the k -q others we have ω r = j r . So the sum ω∈Ω k,q contains k q terms. By the calculation in Step 1, we have λ(j; 1) = 0 for all (j; 1) ∈ I 1 . In addition, by comparing (31) and (33), it is seen that (32) holds for k = 1. Suppose (32) holds for some k -1 ≥ 0. We find

∂ k . . . ∂ 1 σ = (j; )∈I 1 ≥k λ(j; )∂ k Γ k-1 = (j; )∈I 1 ≥k λ(j; ) k-1 q=0 (-1) q ω∈Ω k-1,q (v q + w q ) v q = -d-k [ω 1 , . . . , ω k-1 , j k -1, j k+1 , . . . , j s+1 ; -k + 1 + q] w q = d-k [ω 1 , . . . , ω k-1 , j k , . . . , j s+1 ; -k + q]. (34 
) Let us prove that λ(j, ) = 0 for = k and (j, ) ∈ I 1 . Recall again that

d-k [i; m]| Π = 0 if i s+1 + m ≥ 2. But then v q | Π = 0 for 0 ≤ q ≤ k since for ≥ k and q ≥ 0 i s+1 + -k + 1 + q ≥ i s+1 + -k + 1 ≥ i s+1 + 1 ≥ 2. Lemma 13 For ≥ 1, s ≥ 2 and k ≥ 3 (s + 1) d [2 [s+1] ; -1] = Σ d [2 [s] , 1; ] , (36) 
(s + 1)Σ d [k, 2 [s] ; -1] = Σ d [k, 2 [s-1] , 1; ] + Σ d [k -1, 2 [s] ; ], (37) 
(s + 1)Σ d [3, 2 [s] ; -1] = Σ d [3, 2 [s-1] , 1; ] + Σ d [2 [s] , 1; + 1], (38) 
(s + 1)Σ d [3 [2] , 2 [s-1] ; -1] = Σ d [3 [2] , 2 [s-2] , 1; ] + sΣ d [3, 2 [s] ; ]. (39) 
Proof: Firstly, on the left in (36), we use (21) to insert a knot at p T and we deduce the formula.

Similarly for (37)

(s + 1) d [k, 2 [s] ; -1] = d [k -1, 2 [s] ; ] + Σ d,1 [k, 2 [s-1] , 1; ] (40) 
Modifying the position of k and summing gives the result. Then (38) follows by taking k = 3 in (37) and using (36) with replaced by + 1 since Σ d [2, 2 [s] ; ] = (s + 1) d [2 [s+1] ; ].

Again with the knot insertion, for (39), we obtain [2] ; 2 [s-2] , 1; ] (41) Modifying the position of 3 [2] and summing gives the result since there are s+1 2

(s+1) d [3 [2] , 2 [s-1] ; -1] = d [2, 3, 2 [s-1] ; ]+ d [3, 2 [s] ; ]+Σ d,2 [3
elements of type d [3 [2] , 2 [s-1] ; ] and s + 1 elements of type d [3, 2 [s] ; ] appearing twice in (41).

The following Proposition is a conjecture for general s.

Proposition 14 For s ≤ 20 and d = 2s -1, we have

[i; ]∈I S [i; ] = 1.
Proof: We give a direct proof of the theorem for s up to 5, while the rest (6 ≤ s ≤ 20) has been verified by symbolic computation using Mathematica. We recall that for any degree d,

j∈J d s B d j = j∈J d s,F B d j + j∈J d s,I B d j = 1.
For d = 2s -1, the elements in J d s,F are the simplex-splines of the basis of type [0].

To prove (35), it remains to show

[i; ]∈I 1 d [i; ] = (s + 1) j∈J s,I B 2s-1 j . ( 42 
)
The elements of I 1 are described in Example 8 for s = 2, 3, 4, 5.

For s = 2, the three elements of type [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF] are τ 3 [2 [2] , 1; 1] and (36) with = 1 gives Σ 3 [2 [2] , 1; 1] = 3 3 [222; 0] = 3B 3 111 which is (42). For s = 3, the elements of type [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF] are τ 5 [2 [3] , 1; 2] and τ 5 [3, 2 [2] , 1; 1] and from (38) with = 1 and k = 3 we find Σ 5 [2 [3] , 1; 2] + Σ 5 [3, 2 [2] , 1; 1] = 4Σ 5 [3, 2 [3] ; 0] = 4ΣB 5 2111 which is (42).

For s = 4, the elements of type [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF] are τ 7 [2 [4] , 1; 3], τ 7 [3, 2 [3] , 1; 2], τ 7 [4, 2 [3] , 1; 1], τ 7 [3 [2] , 2 [2] , 1; 1]. Summing the three equations 5Σ 7 [4, 2 [4] ; 0] = Σ 7 [4, 2 [3] , 1; 1] + Σ 7 [3, 2 [4] ; 1], from (37) with = 1, 5Σ 7 [3, 2 [4] ; 1] = Σ 7 [3, 2 [3] , 1; 2 + Σ 7 [2 [4] , 1; 3], from (38) with = 2, 5Σ 7 [3 [2] , 2 [3] ; 0] = Σ 7 [3 [2] , 2 [2] , 1; 1] + 4Σ 7 [3, 2 [4] ; 1], from (39) with = 1, and cancelling the term Σ 7 [3, 2 [4] ; 1] we obtain (42).

For s = 5, the elements of type [START_REF] Alfeld | A trivariate clough-tocher scheme for tetrahedral data[END_REF] are τ 9 [2 [5] , 1; 4], τ 9 [3, 2 [4] , 1; 3], τ 9 [4, 2 [4] , 1; 2], τ 9 [3 [2] , 2 [3] , 1; 2], τ 9 [5, 2 [4] , 1; 1], τ 9 [4, 3, 2 [3] , 1; 1] and τ 9 [3 [3] , 2 [2] , 1; 1].

As for s = 4 we successively obtain then we sum, counting the elements of each types to get the results. Summing the equations in (43) and cancelling the first three terms on the left gives [i; ]∈I 1 9 [i; ] = 6(Σ 9 [5, 2 [5] ; 0] + Σ 9 [4, 3, 2 [4] ; 0] + Σ 9 [3 [3] , 2 [3] ; 0]) = 6(ΣB 9 4,1,1,1,1,1 + ΣB 9 3,2,1,1,1,1 + ΣB 9 2,2,2,1,1,1 )

which is (42) for s = 5. 

Marsden-like Identities

u i k -1 k u j u -1 T , (46) 
and for x ∈ T s and v ∈ R n the cartesian Marsden-like identity (1 + v T p k ) i k -1 (1 + v T p j )(1 + v T p T ) -1 .

(47)

Proof: Again, we give a direct proof for s up to 5, while the rest (6 ≤ s ≤ 20) has been computed using Mathematica.

For the second equation, let u k = 1 + v T p k and β be the barycentric coordinates of x ∈ T s . Then Proof: Again we give a direct proof for s up to 5, while the rest (6 ≤ s ≤ 20) has been computed using Mathematica.

• s = 2, d = 3:

Taking partial derivatives with respect to the components of v and setting v = 0 we obtain x =

[i 1 ,i 2 ,i 3 ;0]∈I (i 1 -1)p 1 + (i 2 -1)p 2 + (i 3 -1)p 3 3 S [i 1 ,i 2 ,i 3 ;0] (x) + p T S [2,2,1;1] (x) + S [2,1,2;1] (x) + S [1,2,2;1] (x) .

• s = 3, d = 5, p 5 [i 1 ,i 2 ,i 3 ,i 4 ;0] = (i 1 -1)p 

Figure 1 ::

 1 Figure 1: The Bernstein domain points of degree d = 5 for s = 2. The ones belonging to B 5 2,I and B 5 2,F are colored red (full) and black (circle), respectively.

Figure 2 :

 2 Figure 2: The Clough-Tocher split (left) and the Alfeld split (right).

V

  = vol s (T s ), d := |i| + -1 -s and β 1 , . . . , β s+1 are the barycentric coordinates of x with respect to T s .Proof: 2. follows from (20), while 1. and 3. is a direct consequence of the general properties of simplex-splines. There are (s + 1)! permutations of i = (i 1 , . . . , i s+1 ) counting repetitions and each permutation containing j is repeated m j times. Thus (23) follows.Consider finally (24). By the support property of simplex-splines, we have d [i; ] = 0 on • T s,k for k = j.. We show the rest of (24) only for j = s + 1.The other values of j follow by symmetry.Let b 1 , . . . , b s+1 be the barycentric coordinates of x with respect to the subsimplex T s,s+1 = p 1 , . . . , p s , p T . We then have b j = β j -β s+1 , for j = 1, . . . , s and b s+1 = (s + 1)β s+1 . We use induction on d. If d = 0 then |i| + = s + 1 and the only possibility is i = (1, 1, . . . , 1, 0) ∈ N s+1 and = 1. Combining (16) and Lemma 2, we obtain (24).
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 46 basis for C 1 splines of degree 2s -1 on T s For s ≥ 2 we consider in the rest of the paper simplex-splines d [i; ] ∈ R s with 3s knots and degree d = 2s -1. Let Σ 1 2s-1,s be the set of elements (i; ) = (i 1 , . . . , i s+1 ; ) with i ∈ N s+1 , n + 1 = |i| + = 3s and degree d := n -s = 2s -1 of two types • Type [0]: the elements corresponding to all Bernstein polynomials (

1 5 , 3 1 s-2s- 2 s

 5312 = 68, dim P 5,3 = 56, -Type [0]: 3s-= 56 -4 = 52 elements, all the Bernstein polynomials of degre 5 except τ 5 [3, 2, 2, 2; 0].

By ( 23 )

 23 this gives rise to 5!/4!+2 * 5!/3!+5!/(2!2!) = 5+2 * 20+30 = 75 = (s + 1) 2s-2 s elements, which is the number of elements of type [1]. • s = 5, d = 9, dim S 1 9,5 = 2282, dim P 9,5 = 2002, -Type [0]: 2002-6!/5!-6!/4!-6!/3!/3! = 2002-(6+30+20) = 1946

Proposition 15 u i k - 1 k

 151 For s ≤ 20, d = 2s -1, β, u ∈ R s+1 with s+1 k=1 β k = 1 and 4u T = Σ i u i , we have the barycentric Marsden-like identity(u T β) 2s-1 = [i; ]∈I ϕ [i; ] S [i; ] (β), where for [i; 0] ∈ I 0 : ϕ [i;0] (u) = s+1 k=1 for [i; ] ∈ I 1 , i j = 1 : ϕ [i; ] (u) =

( 1 +( 1 +

 11 v T x) 2s-1 = [i; ]∈I ψ [i; ] (v)S [i; ] (x), where for [i; 0] ∈ I 0 : ψ [i;0] (v) := s+1 k=1 v T p k ) i k -1 , for [i; ] ∈ I 1 , i j = 1 : ψ [i; ] (v) := s+1 k=1 k =j

u T β = s+1 k=1 ( 1 +

 k=11 v T p k )β k = s+1 k=1 β k + v T s+1 k=1 p k β k = 1 + v T xProposition 16 For s ≤ 20 and d = 2s -1, we havep d [i 1 ,...,i s+1 ;0] = s+1 k=1 i k -1 2s -1 p k , [i 1 , . . . , i s+1 ; 0] ∈ I,while for [i 1 , . . . , i s+1 ; ] ∈ I 1 and i j = 1:p d [i 1 ,...,i s+1 ; ]

  dim S 1 7,4 = 390, dim P 7,4 = 330,

-Type [0]: 315 = 330 -15 elements, all the Bernstein polynomials except τ 7 [3, 3, 2, 2, 2; 0] ∪ τ 7 [4, 2, 2, 2, 2; 0].

  1 + (i 2 -1)p 2 + (i 3 -1)p 3 + (i 4 -1)p 4 5 , [i 1 , i 2 , i 3 , i 4 ; 0] ∈ I Ts .

	p 5 [3,2,2,1;1] = p 5 [3,2,1,2;1] = p 5 [3,1,2,2;1] =	2p 1 + p 2 + p 3 + p 4 5	=	p 1 + 4p Ts 5	,
	p 5 [2,2,2,1;2] = p 5 [2,2,1,2;2] = p 5 [2,1,2,2;2] = p 5 [1,2,2,2;2] = p			

For a geometric proof of the local smoothness in any space dimension, see[START_REF] Prautsch | Bézier and B-spline Techniques[END_REF]. The smothness properties that we need in this paper will be proved directly, see Lemma 5 and Propsition 9.

[START_REF] Lai | Spline Functions on Triangulations[END_REF] [3[START_REF] Grošelj | Construction and analysis of cubic Powell-Sabin B-splines[END_REF] , 2[START_REF] Grošelj | Construction and analysis of cubic Powell-Sabin B-splines[END_REF] ; 0] = Σ 3 [3[START_REF] Grošelj | Construction and analysis of cubic Powell-Sabin B-splines[END_REF] , 2[START_REF] Clough | Finite element stiffness matrices for analysis of plate bending[END_REF] , 1; 1] + 9 [2, 3[START_REF] Clough | Finite element stiffness matrices for analysis of plate bending[END_REF] , 2[START_REF] Grošelj | Construction and analysis of cubic Powell-Sabin B-splines[END_REF] ; 1] + 9 [3, 2, 3, 2[START_REF] Grošelj | Construction and analysis of cubic Powell-Sabin B-splines[END_REF] ; 1] + 9 [3[START_REF] Clough | Finite element stiffness matrices for analysis of plate bending[END_REF] , 2[START_REF] Feller | An Introduction to Probability Theory and Its Applications[END_REF] ; 1].(45)

By a similar computation i s+1 + -k + q ≥ 2 for q ≥ 1 and w q | Π = 0 for q ≥ 1. Thus in (34) restricted to Π we are only left with (j; )∈I 1 ≥k λ(j; )

Now β s+1 = 0 on Π so this sum is a combination of Bernstein polynomials of degree d -k on Π. Since these polynomials are linearly independent, we deduce that all the λ(j; k) corresponding to d-k [j; k]| Π vanish. With the same argument on the other faces we conclude that λ(j; k) = 0 for all (j; k) ∈ I 1 .

Finally, by a combinatorial argument it follows that (34) can be written in the form (32) and the proof of (32) is complete.

Normalization, Marsden-like Identity and Domain Points

In this section, we generalize the formulas ( 8), ( 7) and ( 10) obtained for the Bernstein basis, to the simplex-splines basis.

Partition of unity

We begin by the normalization of the elements of Σ 

For 0 ≤ k ≤ s + 1, we denote by Σ d,k [i 1 , . . . , i k , i k+1 , . . . , i s+1 ; ] the sum of d [i; ] for all distinct permutations of i k+1 , . . . , i s+1 . This means that the first k components of i are kept fixed in each term of Σ d,k . We set Σ d := Σ d,0 , i. e., we sum over all distinct permuntations of i 1 , . . . , i s+1 .

We start with a Lemma that we use to prove the partition of unity, while intermediate formulas will be used for Marsden Identity. and (47) follows from (46).

To show (46), we begin with the barycentric Marsden identity for Bernstein polynomials, [START_REF] Kolesnikov | Multivariate C1-continuous splines on the Alfeld split of a simplex[END_REF], (u T β) d = u j B d j (β). We know that the S [i;0] = B d j a Bernstein polynomials of degree d = 2s -1, when at least one j k = 0. Precisely, for [i; 0] ∈ I 0 , with

For the small dimension, the element of I 1 are described in Example 8. Using the normalization (35), we want to prove that

For s = 2, and = 1, (36) gives Σ 3 [2 [2] ,

Then

where the "sym" are, 3 at place j and u 1 replaced by u j for j = 2, 3, 4. But by ( 40) with k = 3, Σ 1 5 [3, 2 [2] , 1; 1] = 4 5 [3, 2, 2, 2; 0] -5 [2 [4] ; 1].

Thus, when computing the symmetrics, since Σ i u i = 4u T , [3] , 1; 2] -4 5 [2 [4] ; 1]

By (36) Σ 5 [2 [3] , 1; 2] -4 d [2 [4] ; 1] = 0 from which we deduce that [2] , 2 [2] , 1; 1] + sym3 24 where the "sym1" are, 3 at place j and u 1 replaced by u j for j = 2, 3, 4, 5, idem for "sym2" with 4 and "sym3" with [33].

With successively (36), (40) with k = 3, then k = 4 and (41), [5] ; 2] + u 1 u 2 u 3 u 4 u 5 u T u 1 (5 7 [3, 2 [4] ; 1] -7 [2 [5] ; 2]) + sym1 [4] ; 0] -7 [3, 2 [4] ; 1]) + sym2 + u 1 u 2 u 3 u 4 u 5 u 1 u 2 (5 7 [3 [2] , 2 [3] ; 0] -7 [3, 2 [4] ; 1] -7 [2, 3, 2 [3] ; 1]) + sym3

After simplifications, it remains [4] ; 0] + u 1 u 2 7 [3 [2] , 2 [3] ; 0] + sym which can be written as

This precisely (48) for s = 4. For s = 5, let [5] , 1; 4] + u 2 T u 1 Σ 9,1 [3, 2 [4] , 1; 3] + sym1 + u T u 2 1 Σ 9,1 [4, 2 [4] , 1; 2] + sym2 + u 3 1 Σ 9,1 [5, 2 [4] , 1; 1] + sym3 + u T u 1 u 2 Σ 9,2 [3 [2] , 2 [3] , 1; 2] + sym4 + u 2 1 u 2 Σ 9,2 [4, 3, 2 [3] , 1; 1] + sym5 + u 1 u 2 u 3 Σ 9,3 [3 [3] , 2 [2] , 1; 1] + sym6 where the "sym1" are 3 at place j and u 1 replaced by u j for j = 2, 3, 4, 5, 6, idem for "sym2" with 4, "sym3" with 5... With successively (36), (40) with k = 3, 4, 5, (41), ( 44) and (45), [6] ; 3] + u 2 T u 1 (6 9 [3, 2 [5] ; 2] -9 [2 [6] ; 3]) + sym1 + u T u 2 1 (6 9 [4, 2 [5] ; 1] -9 [3, 2 [5] ; 2]) + sym2 + u 3 1 (6 9 [5, 2 [5] ; 0] -9 [4, 2 [5] ; 1]) + sym3 + u T u 1 u 2 (6 9 [3 [2] , 2 [4] ; 1] -9 [2, 3, 2 [4] ; 2] -9 [3, 2 [5] ; 2]) + sym4 + u 2 1 u 2 (6 9 [4, 3, 2 [4] ; 0] -9 [3 [2] , 2 [4] ; 1] -9 [4, 2 [5] ; 1]) + sym5 + u 1 u 2 u 3 (6 9 [3 [3] , 2 [3] ; 0] -9 [2, 3 [2] , 2 [3] ; 1] -9 [3, 2, 3, 2 [3] ; 1] -9 [3 [2] , 2 [4] ; 1]) + sym6 Since u T = Σu i /6, we have simplifications: [6] ; 3] at first row is simplified by -u 1 9 [2 [6] ; 3] and sym1 in the second row,

• u T u 1 6 9 [3, 2 [5] ; 2] in second row is simplified by -u 2 1 9 [3, 2 [5] ; 2] and sym2 in the third row but also by -u 1 u 2 9 [3, 2 [5] ; 2] in row five, while, in same row -u 1 u 2 9 [2, 3, 2 [4] ; 2] appears also in row two in sym1, precisely u T u 2 6 9 [2, 3, 2 [4] ; 2],

• u T u 2 1 6 9 [4, 2 [5] ; 1] in row three is simplified by -u 3 1 9 [4, 2 [5] ; 1] in row four and -u 2 1 u 2 9 [4, 2 [5] ; 1] in row five with the symmetrics, • u T u 1 u 2 6 9 [3 [2] , 2 [4] ; 1] and sym4 are simplified by the corresponding elements in rows six and seven...

It remains

σ 5 =6 u 3 1 9 [5, 2 [5] ; 0] + u 2 1 u 2 9 [4, 3, 2 [4] ; 0] + u 1 u 2 u 3 9 [3 [3] , 2 [3] ; 0] + sym = u 3 1 B 9 411111 + u 2 1 u 2 B 9 321111 + u 1 u 2 u 3 B 9 222111 + sym which gives (48) for s = 5.

Domain points

For [i 1 , . . . , i s+1 ; ] ∈ I, the domain points, p d [i 1 ,...,i s+1 ; ] are the coefficients of x in terms of the basis of S 1 2s-1,s in (47).

• s = 4, d = 7, The case s = 5, d = 9 is similar.

Conclusions

We have determined a basis of simplex-splines for C 1 splines on the Alfeld split of a simplex in R s for any s ≥ 2. For s ≤ 20, it can be scaled to form a partition of unity and satisfies both a Barycentric and Cartesian Marsden-like identity. Then, the domain points of the basis are determined from this first identity.

We conjecture that those results hold true for any s.

A follow up work could be to generalize the results in [START_REF] Lyche | Simplex-Splines on the Clough-Tocher Split with Arbitrary Smoothness[END_REF] to obtain a C r simplex-spline basis for the Alfeld split for r > 1. Its dimension was conjectured in [START_REF] Foucard | Generating dimension formulas for multivariate splines[END_REF] and proved in [START_REF] Schenck | Splines on the Alfeld split of a simplex and type A root systems[END_REF]