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ABSTRACT Depth estimation is an important computer vision task, useful in particular for navigation in
autonomous vehicles, or for object manipulation in robotics. Here, we propose to solve it using StereoSpike,
an end-to-end neuromorphic approach, combining two event-based cameras and a Spiking Neural Network
(SNN) with a modified U-Net-like encoder-decoder architecture. More specifically, we used the Multi
Vehicle Stereo Event Camera Dataset (MVSEC). It provides a depth ground-truth, which was used to train
StereoSpike in a supervised manner, using surrogate gradient descent. We propose a novel readout paradigm
to obtain a dense analog prediction –the depth of each pixel– from the spikes of the decoder. We demonstrate
that this architecture generalizes verywell, even better than its non-spiking counterparts, leading to near state-
of-the-art test accuracy. To the best of our knowledge, it is the first time that such a large-scale regression
problem is solved by a fully spiking neural network. Finally, we show that very low firing rates (< 5%)
can be obtained via regularization, with a minimal cost in accuracy. This means that StereoSpike could be
efficiently implemented on neuromorphic chips, opening the door for low power and real time embedded
systems.

INDEX TERMS Computer vision, bio-inspired learning, deep neural architectures, neuromorphic
computing, spiking neural networks, stereo depth regression.

I. INTRODUCTION
Depth is an important feature of the surrounding space
whose estimation finds its place in various tasks across
many different fields [1]. Potential applications can be as
diverse as object manipulation in robotics [2] or collision
avoidance for autonomous vehicles during navigation [3].
In humans, depth processing is extremely well developed and
relies on monocular (e.g., occlusions, perspectives or motion
parallax) and binocular (retinal disparities) visual cues [4].
This processing consumes very little energy as the visual
system encodes retinal information under the form of action
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potentials, or spikes and it is believed that the brain only
requires about 20 Watts to function [5]. Over the last years,
it has motivated the development of numerous bio-inspired
approaches based on neuromorphic sensors and spiking
neural networks to process depth in embedded systems.

Dynamic Vision Sensors (DVS) have recently gathered
the interest of scientists and industrial actors, thanks to
a growing number of research papers explaining how to
process their output [6]. Notable reasons for this recent
popularity are their very high dynamic range and excellent
temporal resolution which allow them to operate in extreme
conditions (e.g., night, bright sun, rapid motion) where
conventional frame-based cameras would suffer from severe
saturation or motion blur. Instead of repeating redundant
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frame information (i.e., when the camera or the scene is not
moving) at a fixed sampling rate, their pixels asynchronously
emit an action potential –spike or event–whenever the change
in log-luminance at this location since the last event, reaches
a threshold. This sparse encoding scheme draws direct inspi-
ration from retinal ganglion cells in animal models. Finally,
event cameras’ unrivaled energy-efficiency also contribute to
make them especially suitable in automotive scenarios with
strong energy, memory and latency constraints.

Spiking Neural Networks (SNNs) are a good fit for
DVSs, as they can leverage the sparsity of their output
event streams. Implemented on dedicated chips such as
Intel Loihi [7], IBM TrueNorth [8], Brainchip Akida [9] or
Tianjic [10], these models could become a new paradigm for
ultra-low power computation in the coming years. In addition,
SNNs maintain the same level of biological plausibility as
silicon retinae, making them new models of choice among
computational neuroscientists. SNNs have recently attracted
the deep learning community since the breakthrough of
Surrogate Gradient (SG) learning [11], [12], which enabled
the training of networks with back-propagation despite
the non-differentiable condition for spike emission. While
SNNs generally remain less accurate than their analog
counterpart (i.e., Analog Neural Networks or ANNs), the
gap in accuracy is decreasing, even on challenging problems
like ImageNet [13]. In this context, we bring the following
contributions:

• We propose an ultra-low power spiking neural network
for depth estimation, capable of dense depth predic-
tions even at places without events and with high
performances. In addition to its superior hardware-
friendliness, our network is conceptually simpler than
prior works and paves the way for using strictly
spiking neural networks in other large-scale regression
problems.

• We show that despite the dynamic nature of DVS data,
the problem of depth estimation from such neuromor-
phic event streams can be treated as a non-temporal
task. We leverage this feature by designing our model
purely stateless in the sense that we reset all neurons to
a membrane potential of zero at each timesteps. If this
choice might not fully take advantage of the temporal
processing abilities of SNNs, it drastically decreases the
computational and energy footprint of our approach.

• We report, to the best of our knowledge, one of the first
SNNs outperforming equivalent ANNs in a serious and
applied engineering task.

• We accompany this network with a new data augmen-
tation technique for sequential DVS data which we call
time mirror.

In section II, we introduce several related works that
inspired our approach. We explain our methodology in
section III, including the data pre-processing, network
architecture, and training details. In section IV, we compare
our method with prior studies in terms on performances.

Very interestingly, we also show that StereoSpike surpasses
equivalent analog Neural Networks (ANNs) with similar
architectures. Finally, section V discusses the superiority
of our model in terms of computational efficiency and
energy-consumption.

II. RELATED WORK
Deep learning approaches for depth estimation have had
a long tradition on the timescale of modern deep learning
techniques. First methods were based on luminance-field data
from traditional frame-based cameras, either in mono- or
binocular setups. The model in [14] was the first successful
multi-scale architecture designed for depth estimation from
RGB images, and was consequently followed by advances
based on similar approaches [15], [16], [17].

Consistently with the recent interest of the scientific
community in event-based cameras, a few works successfully
tackled the problem with neuromorphic data. Historically,
several groups used bio-inspired approaches such as Spiking
Neural Networks (SNNs), in a very hardware-oriented
direction, but not in a ‘‘deep learning’’ setting. For instance,
the authors of [18] implemented a spike-based algorithm on
a FPGA to regress low-resolution depth maps on a small size
dataset. Furthermore, [19] proposed a SNN for processing
depth from defocus (DFD); this work targeted neuromorphic
chips and was able of recovering depth at full resolution,
but reconstructions were not dense and the approach was not
based on learning.

Following the latter, [20] proposed a neural network
that jointly predicted camera pose and per-pixel disparity
from stereo inputs. However, their reconstructed depth maps
remained sparse as they restricted their analyses to pixels
where events occurred. [21] addressed this problem and
pushed even further the state-of-the-art on indoor scenarios
thanks to 3D convolutions exploiting a specific event embed-
ding. The model in [22] used the same input embedding and
backbone as [21], but proposed a preliminary network using
spatially-adaptive normalization (SPADE) [23] to reconstruct
grayscale intensity images jointly with depth maps. If the
performance gain in this case is indeed important, this
paradigm is very intensive as it adds much more parameters
and FLOPs but also imposes to have access to ground-truth
intensity images for training. [24] also used a similar
matching backbone as well as SPADE, but differed in its
input encoding. In this work, subsequent spike histograms are
fed sequentially into a layer of recurrent, non-spiking Leaky-
Integrate and Fire (LIF) neurons with different time constants
to capture time dependencies at different scales. Although
this approach can be considered the current state-of-the-
art of stereo matching DVS events, this model is difficult
to implement on neuromorphic chips, as its activations are
dense and not binary. Finally, in [25], dense metric depth
was recovered from only one camera, and showed good
performances with a recurrent, monocular encoder-decoder
architecture on outdoor sequences. However, we argue that
the task of depth recovery from events has a minor temporal
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component and can be solved by a fully feedforward model
with minimal temporal knowledge; therefore the use of
convLSTMs in [25] is suboptimal and unnecessarily costly
in terms of computation.

Another inspiration for our work has been the task of
optical flow regression from neuromorphic data, which is
similar to depth reconstruction because it is also a large-scale
image regression task. Despite this similarity, it inspired
lighter and hardware-friendly approaches, closer to the
philosophy of SNNs, but still no fully spiking –to the
strict sense– models have been proposed for this purpose.
EV-FlowNet [26], arguably considered as the precursor of
encoder-decoder models for optical flow reconstruction from
event data, consisted in a feedforward analog encoder-
decoder architecture. As a direct sequel, the hybrid model
Spike-FlowNet [27] used spiking neurons in the encoder of
a similar backbone, while maintaining the same levels of
performances. In this approach, spiking neurons were shown
to be able of encoding abilities close to analog ones and with
a reduced computational cost. On the other hand, authors kept
the remaining part of their network analog, to counteract the
lack of expressivity in SNNs. More recently, the model pro-
posed in [28] showed very good performances but it cannot
be considered as a fully spiking network because real-valued
intermediate predictions of the outputs were reinjected within
the network and mixed with binary spike tensors. In addition,
they upsampled low-scale representations with the bilinear
upsampling method, which breaks the binary spike constraint
necessary for an implementation on neuromorphic hardware.
Nevertheless, it is the first success in a large-scale regression
task with a network that is spiking for its vast majority.

So far, SNNs have been used for classification tasks like
image recognition [13], [29], object detection [30], [31],
or motion segmentation [32]. Only a few works employed
them for regression tasks. A notable exception is [33], but
they only regressed 3 variables, while we propose here to
regress the values of 260× 346 = 89960 pixels.

III. METHOD
We used PyTorch and SpikingJelly [34] as our main
development libraries. PyTorch is currently one of the most
popular tools for deep learning and automatic differentiation,
while Spikingjelly is an open-source framework for spiking
neural networks, based on PyTorch andwith rising popularity.
Our codes are partially available on GitHub at the following
address: https://github.com/urancon/stereospike. We plan for
a full release upon publication of the paper. Within this
repository is a link to aWeights and Biases1 report, compiling
trainings that led to the set of hyperparameters we present in
this paper.

A. DATASET
We trained and tested our network on theMulti Vehicle Stereo
Event Camera (MVSEC) dataset [35]. Because of its large

1https://wandb.ai/

size and variability, it has become one of the most popular
benchmarks for depth reconstruction from neuromorphic
events. It was collected from two DAVIS346 cameras with
a resolution of 346×260 pixels, mounted on several vehicles
such as a car, a motorbike or a drone. The depth groundtruth
was provided by a Velodyne Puck Lite LIDAR mounted
on the top of the two event cameras and with a sampling
frequency of 20 Hz, hence providing a ground truth depth
map every 50 ms.

We first applied our method on the indoor_flying
sequences of MVSEC, which was recorded on a quadri-
copter flying inside a large room. We used the data
splits that were defined in [36] and [21]. We followed
these previous works and removed take-off and landing
parts of the sequence, because they contained very noisy
event streams and inaccurate groundtruths. As a result,
indoor settings were represented on average by 2850,
200 and 1100 samples for training, validation and test sets
respectively.

We then investigated outdoor scenarios by following the
same training, test and validation splits as [25]. Namely,
the largest outoor_day2 sequence was used for training
and validation, and testing was performed on one day-time
and one night-time sequences, respectively outoor_day1 and
outoor_night1. Please note that [25] also used simulated
data that did not come from MVSEC, but this does not
prevent StereoSpike from outperforming this competitor
by a large margin with substantially less parameters (cf.
Table 1). In summary, we used respectively 8520, 1820 and
5130 samples for training, validation and testing outdoor
conditions.

B. EVENT REPRESENTATION
We adopted a rather common representation of data: we
binned all incoming spikes on each pixel on a time window
of 50 ms (see Figure 1). Furthermore, we accumulated
spikes for each polarity in a different channel. Because
there are two polarities, the resulting tensor had a shape
of (2,Height,Width) and contained positive integers, corre-
sponding to the number of spikes of each polarity that showed
up at each position of the scene during the time window.
We further refer to this format as spike histograms or spike
frames interchangeably.
The duration of 50 ms for binning was motivated by

empirical results, as this value leads to better model
performances than durations of 25 ms or 100 ms.

The final input tensor is obtained by concatenating the
spike frames from left and right cameras together channel-
wise, hence resulting in a (4,Height,Width)-shaped volume.
Many ANN approaches normalize this kind of input

tensor (e.g. divide by the maximum number of spike
count) for an easier-to-learn distribution of data and better
generalization [25]. We believe that this operation has a high
cost on neuromorphic hardware, and can lead to non-integer
number of spikes in the normalized input tensor. For this
reason, we prefer feeding raw spike frames directly to
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FIGURE 1. (top): ON and OFF events are binned, per-pixel, within time
windows of 50 ms. Frames displayed on the temporal axis are the
ground-truth depth maps, provided by the LIDAR at 20 Hz. (middle): This
operation results in a 2-channel histogram of spikes, containing integer
spike counts at every pixel and for each polarity. (bottom): Such spike
frames are commonly visualized according to the following convention:
pixels reporting at least one ON event are colored in red, those reporting
OFF events in blue, and those reporting both types in pink.

our network. As a counterbalance measure, we used data
augmentation; as [25]. Pretraining the model on simulated
data may also help generalize to other distributions.

C. NEURON MODEL
We use the McCulloch and Pitts model [37], outputting
a binary activation when the amount of weighted spikes
integrated from lower layers reaches a threshold:

S l = 2(V l
reset +

∑
wl−1 ∗ S l−1) (1)

where 2 is the Heaviside step function, l denotes the layer
number, and w synapse weights. Vreset corresponds to the
potential of neurons at rest, and acts as an offset – a
bias– to facilitate or hinder neurons from spiking.

This model is equivalent to the Integrate-and-Fire (IF)
model deprived of the implicit recurrence in the membrane
potential; all neuron potentials are reset to a value of Vreset at
every timestep. As a result this model is stateless, contrarily
to the traditional IF model. We use SpikingJelly’s IFNode
class for its implementation. Such neurons are inexpensive to
simulate and can be deployed in large models, whereas more
complex ones such as Hodgkin-Huxley [38], Izhikevich [39]

or even SRM [40] are still too computationally expensive to
be trained on modern hardware.

A problem that has long prevented researchers from using
simple Integrate-and-Fire models with standard deep learning
techniques, is the gradient of the activation function –the
Heaviside function– being zero everywhere (except in
0 where it is not defined). A recent solution to this is the
replacement of the true gradient by a surrogate [11], which
lets more room for the gradient to flow. We use the derivative
of the arctan function as our surrogate gradient in this paper,
as suggested in [29].

D. ARCHITECTURE
Our model is fully convolutional and based on a U-Net
backbone [41] consisting of an encoder, a bottleneck
and a decoder whose non-linearities were achieved by
spiking neurons (see Figure 2). We used the McCulloch
and Pitts model presented in (1) with a reset potential
of Vreset = 0.

Downsampling in the encoder was performed by 2-strided
convolutions, which divided the spatial resolution by 2 while
doubling the channel resolution. The bottleneck consisted
in 2 SEWResBlocks [13] following each other and with ADD
connect function.

Because transposed convolutions are known to generate
checkerboard artifacts [42], decoder upsampling layers rather
consist in nearest neighbor (NN) upsampling followed by a
convolution. Contrarily to bilinear upsampling, we believe
NN to be neuromorphic-hardware friendly, because it essen-
tially keeps integer spike counts in the upsampled volume.
In terms of biological plausibility, it can be viewed as a single
neuron at low scale projecting synapses towards several
higher-scale neurons.

The output of the network was carried by the potentials
of a pool of non-leaky neurons with an infinite threshold.
One critical problem of SNNs is their lack of expressivity,
since they can only update the membrane potentials of output
neurons with discrete weighted spikes.With synapses coming
from the full scale level of the encoder only as in a standard
architecture, the model would have too few spikes and too
few different parameters (i.e., synaptic weights) to achieve
top performances at rendering a large-scale and diverse
depth scene. To counteract this effect, we increased the
number of spikes to update the readout neurons’ potential by
linking them to lower levels of the network via intermediary
prediction layers. These layers essentially consisted in nearest
neighbor upsampling followed by convolution; they were the
same as the upsampling layers in the decoder, except that
they upsampled spike tensors directly up to the full, original
scale.

In order to capture long-range spatial dependencies while
maintaining a low amount of parameters, all convolutions
in the model used large 7 × 7 kernels and were separable
(depthwise followed by pointwise). In addition, none of
the layers in our network used a bias term nor Batch
Normalization (BatchNorm) because adding constant biases
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FIGURE 2. Detailed architecture of StereoSpike. Its first convolutional layer has 2 or 4 input channels (depending on the modality), essentially one pair
for a each event camera. These encoded spike frames are further processed through a bottleneck consisting of 2 chained SEW-Resblocks. As a result,
the tensor out of these residual layers is composed of integers in range [0, 3]. This latent representation is progressively upsampled by decoder layers
and whose outputs are summed with same-level encoder spike tensors, leading to integer values in range [0, 2]. In parallel, prediction synapses from
different scales directly project to output I-neurons whose membrane potentials bear the final prediction. The numbers indicate the size of channel
dimension for each spike volume. Best viewed in color.

is costly on neuromorphic hardware and is not biologically
plausible.

E. LOSS FUNCTION
As in [25], we used a combination of a regression loss with a
regularization loss. Noting R = D̂ − D the residual between
the groundtruth and predicted depth maps, the first term can
be written as:

Lregression =
1
n
(
∑
u

(R(u))2 −
1
n2

(
∑
u

R(u))2) (2)

where n is the number of valid groundtruth pixels u. With the
same notations, the regularization loss is computed with:

Lsmooth =
1
n

∑
u

|∇xRs(u)| + |∇yRs(u)| (3)

According to [25], the minimization of this term encour-
ages smooth depth changes as well as sharp depth discontinu-
ities in the depthmap prediction, hence helping the network to
represent objects that stand out of the background of the scene
(e.g., because they are closer), while respecting its overall
topology. Finally, we weighted both terms with a factor λ in
the total loss:

Ltot = Lregression + λLsmooth (4)

We used a value of 0.5 for λ, which was determined
empirically. This loss was applied on all intermediate
predictions, therefore giving out 4 loss terms: the first being

from the lowest prediction layer, and the last being the
actual prediction and the sum of all 4 prediction layers.
This encourages the network to predict relevant depth images
as early as possible; we determined that this strategy on
the application of the loss gives better results than simply
applying it on the final prediction.

F. TRAINING PROCEDURE
Parameter values in our model were learnt using the method
of the surrogate gradient [11], as implemented in Spikingjelly
Python library [34].

Because our network is feed-forward and only processes
one step for inference, we trained it on the shuffled
dataset with regular back-propagation, not Back-Propagation
Through Time (BPTT).

To avoid overfitting, we used random horizontal flip and
another technique that we call time mirror. Conceptually sim-
ple, it applies to sequential DVS data and consists in feeding
the frames and label in anti-chronological order. Because
event polarities indirectly carry temporal information, it is
needed to switch both ON and OFF channels in spike frames.
To our knowledge, such a technique is new. We present
it in Figure 4 for the general case where the duration
between two ground-truth is cut into N > 1 histograms.
A PyTorch-like code snippet further details this technique in
Appendix B.

We used Adam optimizer [43] with β1 = 0.9 and
β2 = 0.999. We trained the network for 30 epochs with an
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TABLE 1. Comparison of StereoSpike’s performances with the state-of-the-art. Our philosophy values solving the accuracy-deployability trade-off,
instead of the sole accuracy.

initial learning rate set to 2.10−4 and divided by 10 at epochs
10, 25 and 40. From preliminary tests, we concluded that the
optimal batch size was 1. Similarly, we found that weight
decays did not improve performances and thus did not use
it. The whole training process took 7 hours on average on a
single Nvidia Titan V with 12 GiB VRAM capacity, with an
actual memory consumption of around 2.5 GiB.

IV. EXPERIMENTS
A. PERFORMANCES
Figure 3 shows qualitative visualizations of depth reconstruc-
tions obtained with our model. Table 1 provides a quantitative
comparison with previous works on the Mean Depth Error
(MDE), the most common metric used for characterizing
depth estimation on MVSEC.

In outdoor scenarios, our model outperforms E2Depth [25]
by a large margin at all cutoff distances, and with 25×
fewer parameters. This is not due to the fact that [25]
takes input from only one camera as the monocular version
of StereoSpike still remains consistently superior to this
competitor.

In indoor settings, our model also proves to be better
in terms of both accuracy and number of parameters
than the previous state-of-the-art (DDES, [21]), which is
a fully-fledged ANN using 3D convolutions with a less
general framework. However, recent approaches [22], [24]
have built upon the latter and positioned themselves with
lower MDE than StereoSpike. In the case of EITNet [22],
this improvement comes at the cost of a much higher number
of parameters (more than 10 times). DTC-SPADE [24]
has managed to incorporate elements of the latter for the

benefit of accuracy and without exploding algorithmic size.
Nevertheless, we argue that this model is heavier than
StereoSpike and less suited to edge and energy-efficient
computing in embedded systems. With StereoSpike, we aim
to address the problem of dense depth estimation from
events consistently with the philosophy of event cameras,
that is, by placing ourselves on the portability side of
the accuracy-lightweightness trade-off. Moreover, unlike
the recent state-of-the-art for this task [21], [22], [24],
StereoSpike’s architecture is not specific to the estimation of
depth and could be used for any other large-scale regression
task; its simple adaptation from the standard 2D U-Net base
makes it all the more general.

In terms of MDE, monocular models (i.e., receiving data
from only one camera) also lead to good depth estimates,
but with a consistent drop in accuracy across data splits. This
suggests that in addition to being –for the most part– a non-
temporal task, depth reconstruction from DVS data can be
efficiently tackled on a monocular setting, at a reasonable
cost in performance. Therefore, fusing left and right data as
early as in the first convolution layer reveals itself to be a
simple but good strategy for exploiting binocular disparity,
as backpropagation proves capable of extracting stereoscopic
cues in such a way. From a visual neuroscience perspective,
there is strong evidence that binocular cues are mixed in a
similar manner at very early stages of the visual system [44].

B. ABLATION STUDIES
1) INTERMEDIARY PREDICTIONS
Contrarily to a standard U-Net [41], StereoSpike makes a
coarse-to-fine reconstruction of the depth scene via four
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FIGURE 3. Qualitative comparison of our method with other state-of-the-art approaches. We selected the same input frames and run our model to infer
depth from this data; Event ground-truth and other prediction images were borrowed and adapted from [21], [22]. The top row corresponds to frame
#1700 of indoor_flying3 and frame #980 of indoor_flying1 sequences. The pixelated aspect of our predictions comes from the Nearest-Neighbor
interpolation in the prediction layer from very-low to full scale. Even so, it can be seen that our fully spiking network captures the scene just as well as a
cutting edge ANN using a heavy framework and 3D convolutions. DTC-SPADE [24] is not represented here as the authors did not use the same colormap
as other studies and did not publish their code. We tried but were still unable to faithfully reproduce their rendering. The above figure was obtained by
using reversed JET colormap in the natural metric depth scale.

FIGURE 4. ‘‘Time Mirror’’ data augmentation technique. The events
generated between the timestamps of two consecutive labels are
cumulated into N ON-OFF frames of temporal duration T and
concatenated channel-wise. In the case of this study, N = 1 and
T = 50ms. A sequence in anti-chronological order is a piece of data as
valid as the original in chronological order. To reverse the order of a DVS
sequence, event timestamps must be reversed –therefore translating into
an inversion of the order of the histograms– but event polarities must be
switched as well.

prediction layers, which can be seen as synapses projecting
from different levels of the network body (i.e., decoder) to
the pool of readout neurons. This technique is new, and to
determine its added value, we conducted an ablation study
on the architecture by ‘‘cutting’’ the latter and observing the
performances of models partially deprived of their means of
expressivity. Results are compiled in Table 2.

TABLE 2. Test Mean Depth Error (MDE) on split 1 of indoor_flying
sequence. Reported errors are averaged and provided with standard
deviations over three randomized training trials. Prediction layers are
depicted by a number ∈ {1, 2, 3, 4}, where 1 and 4 are the top- and
bottom- level prediction layers, respectively.

We observe that performances gradually decay as we
remove intermediary prediction layers. Best performances
are obtained by the full model with all four layers as
presented in Figure 2, while the model equipped with
top-level prediction layer only (i.e., classical encoder-decoder
configuration) reports the worst metrics. Thus, multiplying
regression layers constitutes an efficient strategy to enable
more precise predictions. More synapses means more param-
eters but also more possible spikes to update the potentials of
output neurons, and therefore more degrees of freedom. This
strategy is translated into an improved accuracy compared to
standard encoder-decoder architectures, and could even be to
analog models.

2) SKIP CONNECTIONS
Skip connections are a standard feature of encoder-decoder
and residual neural network architectures in the field of
computer vision. However, they can be difficult to implement
on some neuromorphic hardware.With the concern of staying
close to low-level designers, we studied the effect of entirely
removing them from StereoSpike (cf. Table 3).
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TABLE 3. Test MDE on split 1 of indoor_flying sequence. Entries are
averaged over three randomized training trials.

Models trained without skip connections turned out to
overfitmore than standard StereoSpike on training data, to the
detriment of test accuracy. Therefore, skip connections seem
to act like a regularizer here. However, the test accuracy drop
is low, and a model without skip connections could still be
reliably used in real situations. In the future, we believe that
neuromorphic chips should be able to implement this typical
architectural feature.

C. StereoSpike - ANN COMPARISON
A lesson learnt from our study and [27] is that SNNs can
encode information very optimally, even with binary values.
While Spike-FlowNet used ANNs to decode the latent space
representation, we only use spiking neurons. In addition,
we do not mix real-valued intermediary predictions with
integer spikes as in [28]. SNNs can therefore efficiently
encode information as well as decode it, even for large scale
regression tasks.

TABLE 4. Comparative evaluation of our SNN vs equivalent ANN models
on split 1 of indoor_flying sequence. Entries are averaged over three
randomized training trials. Our fully spiking network surpasses by a large
margin all of its analog relatives.

In an attempt to compare our model with fully-fledged
ANNs, we trained equivalent ANN models. These models
had a exactly the same architecture and output paradigm
consisting in a pool of I-neurons; however, and with the
idea of using the full power of analog models, we replaced
IFNodes by common activation functions, Nearest-Neighbor
upsampling by bilinear upsampling, and used Batch Normal-
ization (BN) [45] and trainable biases in convolution layers.
As can be seen in Table 4, the ANNs outperform the SNN
on the training set, but not on the testing set. Specifically, the
StereoSpike network –equivalent to an ANN with Heaviside
step function as activation– achieves the best test loss
and MDE but also the worst training metrics, therefore
generalizing best, despite the absence of BN. In other
words, the ANNs overfit more than the SNN. This suggests
that spikes, in addition to increasing hardware-friendliness,
constitute an efficient regularization mechanism, causing the
SNN to generalize better. To the best of our knowledge,

it is the first time that this desirable regularization effect is
reported - but of course, other regularization methods could
be tried to limit overfitting in the ANNs (e.g. Dropout).
Training curves for our SNN and its ANN equivalents can
be found in Appendix A.

D. ENCOURAGING SPARSITY THROUGH SPIKE
PENALIZATION
A promising feature of SNNs is their ability to solve complex
tasks at performances comparable to conventional networks
(ANNs), but with sparse activations. In order to quantify
the computational efficiency of our network, we measure
the firing rates of its layers, i.e., the density of intermediary
tensors computed during inference on the test set. Sparse
volumes can be leveraged by dedicated hardware capable of
sparse computation, hence diminishing inference time as well
as energy consumption.

It appears that the firing rates of our best model grow as
layers become closer to the output I-neuron pool. That is,
convolution layers in the decoder report an average firing
rate of 23.5% compared to 8.1% in the encoder. We suggest
that in this large-scale regression task, a minimum number of
pre-synaptic spikes preceding output neurons is necessary to
faithfully render the visual scene. Similarly, a certain amount
of spikes could be necessary to encode the information
contained in the input histograms.

To encompass this trade-off and estimate these minimal
firing rates, we apply a regularization loss term explained
in [46] and train a new binocular model on split 1.
This secondary loss, which we also call quadratic spike
penalization loss, penalizes the mean of the squared spike
tensor. Therefore, for a given layer containing K spiking units
whose output at time-step n is Sk [n] ∈ {0 . . . 4}, it can be
defined as:

Lspikes =
1

2NK

∑
n

∑
k

Sk [n]2

=
1
2K

∑
k

Sk [n]2 (5)

Because the number of time-steps to do one prediction
is N = 1, as our model is purely stateless/feedforward.
We apply this loss on the tensor out of the bottleneck
and on the resulting tensors of the skip connections,
that are used by predictions layers at different scales.
Penalizing these tensors also indirectly affects the activity
of encoder layers, as their output conditions the density of
same-level encoder volumes because of the skip connec-
tions. Therefore, this regularization is less aggressive than
penalizing all intermediary tensors and performances are less
affected.

We then evaluate the network trained with spike penal-
ization on the test set and compare obtained firing rates
with our unconstrained model. More specifically, we plot
the average test accuracy as a function of the average firing
rate in Figure 5. Regularized models show a drastic decrease
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in spiking activity, at a very low cost on the task accuracy.
For instance, a network trained with a penalization weight
of 0.1 sees a drop in MDE of less than 1 cm compared to
the baseline (no penalization), but requires about 5 times
fewer spikes. Densities less than 5% are generally considered
sufficient to leverage efficient sparse matrix operations.
With these results, we can imagine our model implemented
efficiently on dedicated hardware.

FIGURE 5. Test accuracy as a function of the mean firing rate. Mean firing
rate is calculated as the average of the density of all activation (spike)
tensors calculated within the network during inference. Labels
correspond to the weight of the spike penalization loss in comparison to
the objective loss. Unconstrained models generally perform better than
models trained while encouraging sparsity. High weight values for the
spike penalization loss do not always result, on average, in higher
sparsity. Gradient descent on a non-convex problem does not always find
the global minimum, and as such a penalization weight of 2 can result in
both higher error and density than with a weight of 1.

V. DISCUSSION
In this last section, we discuss several aspects concerning the
computational efficiency of our model and its portability on
current neuromorphic hardware.

A. TARGET HARDWARE
StereoSpike has resolutely been developed in the philosophy
of spiking neural networks. As a result, it is essentially
implementable on dedicated neuromorphic hardware, such as
Intel Loihi [7], IBM TrueNorth [8]. These chips can leverage
the binarity and sparsity of spike tensors navigating through
the network. In addition, we believe that our model being
feedforward and requiring a reset on all of its neurons at each
timestep is not a problem, because resettingmembrane poten-
tials is actually less costly than applying a leak. Therefore,
statelessness can be seen as an advantage over recurrence in
spiking models with similar performances. However, we are
aware that current neuromorphic chips are initially designed
for the implementation of stateful units, and acknowledge that
we do not leverage this feature. Consequently, we believe
that it rather fits to dedicated hardware for stateless models
with sparse quantized activations. We therefore consider that
Brainchip’s Akida chip [9] is a good fit. As it imposes

weights to take at most 8 bit, we quantized StereoSpike’s
weights using PyTorch natively available post-training static
quantization. The process resulted in an even lighter model
with 8 bit wide unsigned integer weights, for the price
of a minor performance drop (i.e., MDE of 17.1 cm
on indoorflying split 1). Presumably, quantization-aware
training would do even better. This demonstrates the efficient
deployability on such hardware. Finally, we would like
to emphasize that our class of model with sparse binary
activations and less constrained weights provides a good
compromise between Spiking Neural Networks (SNNs) and
Binary Neural Networks (BNNs).

B. HANDLING INTEGER (NON-BINARY) SPIKE COUNTS
Because of the sum operations present in residual layers
of our architecture and at skip connections, bottleneck and
decoder tensors can contain integer (non-binary) numbers
of spikes. We explain here why we do not consider it as
a problem. On most digital neuromorphic chips, spikes are
represented by multi-bit messages containing destination
and/or source addressing, and a few bits for a graded-
value payloads; this is the case for Loihi, see [47]. In our
case, the spike counts are included in [0, 3] and thus can
be coded on 2 bits. For the chips that can only handle
binary spikes, a spike count of N could be handled by N
serial binary spike operations. Another possibility to make
our model fit in a small-size neuromorphic chip, could be
to cut the skip connections as indicated in section IV-B2,
or to remove intermediate prediction layers. The latter
are indeed necessary to reach near state-of-the-art perfor-
mances, but are not absolutely required to show reasonable
performances.

C. AN ESTIMATED LOWER NUMBER OF FLOPs
The ever-expanding size of deep neural networks combined to
the global energetic pressure has recently pushed researchers
to use the number of Floating Point Operations (FLOPs)
as a metric for algorithmic efficiency. Although this metric
has been growing in popularity and would perfectly fit in
StereoSpike’s philosophy of sober AI, we decided not to
include it in Table 1b.

The first reason is the lack of methodology regarding its
estimation; the literature gives it a lot of attention, yet no
conventions seems to have emerged from the community.
Some libraries compatible with popular deep learning
frameworks do exist [48], but we found out their estimations
were highly flawed and only work for the most basic layer
types. A second reason is that because of the low bit-width of
our activations, it would be unfair to count operations within
StereoSpike as full 32-bit FLOPs. Furthermore, the Heaviside
function that we use as activation throughout our network is
intuitively much cheaper to compute than the more popular
Sigmoid, Leaky ReLU, or GeLU activations; it is essentially
a simple comparison with zero of a floating point number
representing weighted spikes.
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Yet, with all these concerns raised, and applying a
worst-case estimation of the FLOPs necessary for one
forward-pass of our model, we estimate it to require one order
of magnitude less FLOPs than the average of our competitors.
This feature is explained by the exclusive use of separable 2D
convolutions, whereas other approaches have been built upon
a backbone using full 3D convolutions. As a result, we argue
that StereoSpike is more computationally lightweight than
the state-of-the-art.

VI. CONCLUSION AND FUTURE WORK
We have proposed StereoSpike, the first fully spiking, deep
neural network architecture for large scale regression task
with sparse activity. Lack of expressivity at the output has
indeed hindered the development of SNNs on regression task,
andwe tackle this problem by increasing the number of spikes
generated by deeper layers, with a pool of perfect integrator
neurons bearing the final prediction with their membrane
potential. The same strategy could presumably be used for
other dense regression problems with SNNs, for example
optic flow prediction.

The efficiency of our feedforward architecture combined
with simple encoding has shown that depth estimation from
DVS data can be brought back to a stateless, static, non-
temporal task. As a result, hardware implementations of
StereoSpike could consume substantially less than recurrent
versions. However, we are aware that our model neither
takes advantage of this implicit recurrence of SNNs to
capture temporal dependencies, nor of the very high temporal
resolution of DVSs; these two aspects deserve investigation
for further improvement of our algorithm.

Furthermore, our experiments hint towards the fact that
because of the constraint on their output (i.e. binarity)
SNNs might generalize better than their ANN counterparts.
Consequently, our work is yet another evidence that binary
encoding in latent space can represent input data as efficiently
as real-valued projections. This encourages more research in
the field of SNNs and neuromorphic computing in general,
or Binarized Neural Networks (BNNs).

Finally, the combination of event cameras and spiking
neural networks within the same framework is a more
biologically plausible approximation of the visual nervous
system, and could allow researchers to understand the
processing of depth in the brain with large-scale models.

APPENDIX A
The following figure completes Table 4 to further highlight
that equivalent analogmodels are prone to amore pronounced
overfitting phenomemon than StereoSpike.

Even if the the biggest part of the learning is made over the
first 30 epochs, it should be noted that themodel keeps getting
better afterwards, as both training and validation losses con-
tinue decreasing. We found that generally, no improvement
are made from epoch #70 onwards, thus explaining the
retained training schedule (cf. subsection III-F).

FIGURE 6. Learning curves of StereoSpike (blue) compared to equivalent
ANN models (orange). StereoSpike’s training and validation loss are
respectively higher and lower than their analog relatives by a large
margin. This observation is consistent throughout the training procedure
and demonstrate the better generalization ability of spiking networks for
this task.

LISTING 1. PyTorch-like code for Time Mirror data augmentation.

This figure can be found in our public weights and
biases report, accessible from our Github repository
https://github.com/urancon/stereospike.

APPENDIX B
The time mirror data augmentation can be further explained
by the following code snippet.
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