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Abstract

Euler and Betti curves of stochastic processes defined on a d-dimensional compact Rie-
mannian manifold which are almost surely in a Sobolev space Wn,s(X,R) (with d < n)
are stable under perturbations of the distributions of said processes in a Wasserstein met-
ric. Moreover, Wasserstein stability is shown to hold for all p > d

n for persistence diagrams
stemming from functions in Wn,s(X,R).
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1 Introduction

The study of random fields by Adler and Taylor using geometric and topological methods
gave rise to the following celebrated and interesting result.

Theorem 1.1 (Adler, Taylor, Theorem 12.4.1 [2]). Let f be a centered unit variance Gaussian
field on a d-dimensional C2-submanifold X of a C3 manifold. Suppose f satisfies the conditions
of [2, Corollary 11.3.5] (henceforth the GKF conditions), then,

E[χ({f ≥ x})] =
d∑
j=0

Lj(X) ρj(x) , (1.1)

where χ denotes the Euler characteristic and ρj(x) denotes some known functions of x and Lj
denote the Lipschitz-Killing curvatures of X.

In recent years, much work has been done to weaken the Gaussian assumption of the above
theorem. A notable step in this direction is the following remarkable result by Bobrowski and
Borman.

∗Email: daniel.perez@ens.fr
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Theorem 1.2 (Bobrowski, Borman, Theorem 4.1, [3]). Let X be a compact d-dimensional
stratified space, and let f : X → Rk be a k-dimensional Gaussian random field satisfying the
GKF conditions. For a piecewise C2-function G : Rk → R and let g = G ◦ f . Setting Du =
G−1 ]−∞, u], we have

E
[∫

X
g dχ

]
= χ(X)E[g]−

d∑
j=1

(2π)j/2Lj(X)

∫
R
Mj(Du) du , (1.2)

where E[g] has constant mean.

As pointed out by the authors of the above theorem in their original paper [3], the difficulty
in evaluating the expression above lies in computing the Minkowski functionalsMj(Du). In this
paper, we aim to somewhat compensate this difficulty by providing a stability result regarding
the above expectations, and moreover, the distributions of the Euler curves (i.e. the curves
x 7→ χ({f ≥ x})). More precisely, our main result is the following.

Theorem 1.3. Let X be a compact d-dimensional manifold and let (Ω,F ,P) be a probability
space. Consider two stochastic processes f, g : Ω → Wn,s(X,R) with d < n. Then, the Euler
curves of f and g are well-defined as elements of L1(R) and as distributions, and for every
d
n < α < 1, there exists a finite constant CX,n,s such that

‖E[χ({f ≥ x})]− E[χ({g ≥ x})]‖L1
x(R) ≤ CX,n,s

[
‖f‖αL1(Ω,Wn,s) + ‖g‖αL1(Ω,Wn,s)

]
W 1−α

1,L∞(f]P, g]P) ,

(1.3)
where W1,L∞ denotes the Wasserstein distance on the space of probability measures on the space
(L∞(X,R) ∩Wn,s(X,R), ‖·‖L∞). Moreover, the same statement holds for all Betti curves.

The key will be to adopt the point of view of persistent homology, for which we refer the
unfamiliar reader to the now classical references on the subject [5, 10] for an introduction. It
is noteworthy that the relevance of the study of persistence diagrams was already understood
by Bobrowski and Borman, and was later also elaborated upon by different authors [1, 9]. The
results of this paper can be seen as direct consequences of the theory developped in [11] and of
a recent result by Buhovsky et al. [4].

1.1 Glossary, definitions and conventions

Notation 1.4. We will interchangeably denote the persistent homology in degree k on X with
respect to a filtration function f : X → R by Hk(X, f) or Dgmk(f). We use persistence barcodes,
diagrams, modules and their decompositions interchangeably via the usual identifications [5].
We reserve the notation H∗(X) for the homology groups of X exclusively.

Convention 1.5. Unless otherwise specified, we will always consider the filtration by superlevel
sets induced by a function f : X → R.

Convention 1.6. Unless otherwise specified, we shall always consider the (infinite) bars of the
barcode to be truncated. That is, b = b ∩ [inf f, sup f ] for every b ∈ Dgmk(f).

Notation 1.7. The length of a bar b ∈ Dgmk(f) is denoted by `(b). With this definition, we
define

Perspp(Hk(X, f)) :=
∑

b∈Dgmk(f)

`(b)p . (1.4)

Notation 1.8. We equip R2 with a metric dR2,∞ defined by

dR2,∞((x, y), (x′, y′)) = max{
∣∣x− x′∣∣ , ∣∣y − y′∣∣} . (1.5)

and define the distance from a point (x, y) to the diagonal ∆ as dR2,∞((x, y),∆) = 1
2 |y − x|. We

will use the following notation to design different sets of R2. For superlevel set filtrations we
denote
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• X = {(x, y) ∈ R2 | y < x} and X its closure.

• Rx := [x,∞[ × ]−∞, x] ⊂ X .

The reader can adjust the statements by modifying the definitions in the following way if he
or she is considering sublevel set filtrations, as is customary in the topological data analysis
community.

• X = {(x, y) ∈ R2 |x < y} and X its closure.

• Rx := ]−∞, x]× [x,∞[⊂ X .

Definition 1.9. Define Dp to be the space of Radon measures on X (called persistence mea-
sures) with finite Persp [8, Equations 3 and 4]. We equip Dp with the topology of the optimal
partial transport distance dp. For persistence diagrams

dp(D,D
′) := inf

γ∈Γ(D,D′)

[∑
b∈D

dR2,∞(b, γ(b))p

]1/p

, (1.6)

where the infimum is taken over Γ(D,D′), the set of all bijections between D∪∂X and D′∪∂X .
We refer the reader to [8, Definition 2.1] for the definition of dp on general persistence measures.

Notation 1.10. Let D denote a persistence diagram, then N ε
D denotes the number of bars in

the diagram of length ≥ ε.

Notation 1.11. We note Wn,s(X,R) the Sobolev space with exponents (n, s), which is not
to be confused with the p-Wasserstein distance on the set of probability measures on a Polish
metric space (M, d), which we denote Wp,d.

2 Stability results

2.1 Preliminary results

The following important result was recently shown by Buhovsky et al.

Theorem 2.1 (Buhovsky, Payette, Polterovich, Polterovich, Shelukhin, Stojisavljević, [4]). Let
X be a compact Riemannian manifold of dimension d and let f ∈Wn,s(X,R) and n > d

s . Then,
f is continuous and for all ε > 0

N ε
Hk(X,f) ≤ CX,n,s ‖f‖

d/n
Wn,s ε

−d/n + dimHk(X) . (2.7)

This theorem gives us a bound of the Perspp-functional via the following lemma.

Lemma 2.2.

Perspp(Hk(X, f)) = p

∫ ∞
0

εp−1N ε
Hk(X,f) dε . (2.8)

Proof. The length of a bar b ∈ Hk(X, f) can be written as

`(b)p = p

∫ ∞
0

1[0,`(b)](ε) ε
p−1 dε . (2.9)

The result follows by summing over all bars b in the barcode of Hk(X, f) and applying the
Fubini theorem. �

Corollary 2.3. Let f ∈ Wn,s(X,R), then there exists a finite constant CX,n,s such that for all
p > d

n ,

Perspp(Hk(X, f)) ≤ CX,n,s
pn

d
‖f‖pWn,s + (2 ‖f‖∞)p dimHk(X) . (2.10)
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Remark 2.4. Corollary 2.3 means

f ∈Wn,s(X,R) =⇒ Dgmk(f) ∈
⋂

p>d/n

Dp . (2.11)

Remark 2.5. Examining the limiting case where n → ∞ and s → ∞, one can wonder whether
C∞-functions have finite Pers0 (in other words, a finite number of bars). However, this is not
the case as is shown by the example e−1/x2 sin(1/x) on [0, 1].

Finding the optimal degree of regularity for which Pers0 is finite is an interesting question.
As shown in [7], a sufficient condition is that the functions be subanalytic in an o-minimal
structure. Once Pers0 is finite, it follows that Perspp is a holomorphic function everywhere on C.

On the other side of the story, we can ask whether the Cα (up to reparametrization by
a homeomorphism) condition is necessary to establish that Perspp is finite for some p. This
question has been positively answered in [11] in the 1D case (in fact, the correct notion of
regularity is the p-variation, but is equivalent to asking that the function be Cα for some α, up
to reparametrization).

One can ask whether the bound p > d
n for the finiteness of Perspp is sharp within the degree

of regularity considered. This question amounts to asking whether the asymptotics provided by
theorem 2.1 are in some sense sharp. Indeed, lemma 2.2 entails

Proposition 2.6.

lim sup
ε→0

logN ε
Hk(X,f)

log(1/ε)
= inf{p | Persp(Hk(X, f)) <∞} . (2.12)

The sharpness of the asymptotics of N ε
Hk(X,f) was partially adressed in [4, §1.5] where a

positive answer was given (more precisely, explicit examples saturating the bound were given).
For α-Hölder functions, this sharpness was also adressed in [11], where it was shown that

inf{p | Persp(Hk(X, f)) <∞} =
d

α
generically in Cα . (2.13)

This parallel suggests the following conjecture, which might be adressed in a later work.

Conjecture 2.7. Let X be a compact Riemannian manifold of dimension d, then

inf{p | Persp(Hk(X, f)) <∞} ≤ d

r + α
(2.14)

and this inequality is saturated generically in the sense of Baire in Cr+α.

Remark 2.8. By the work performed in [11, §3.2], it suffices to exhibit a function g on the cube
(or the ball), such that the bound is saturated. We obtain a dense family by perturbating any
dense family to make it constant on a small open ball B ⊂ X and adding g to f on this ball.
For H0, such a function may be constructed by considering packings and smoothened versions of
distances to point clouds. In higher degrees of homology, exhibiting explicit examples might be
more difficult. Experience shows that it might be easier to find a random field which saturates
the bound, as done in [11].

2.2 Stability theorems

Having bounded Perspp, a stability result follows from the standard argument considered
in [6].

Theorem 2.9 (Wasserstein stability on compact Riemannian manifolds). Let X be a compact
Riemannian manifold of dimension d and let f, g ∈Wn,s(X,R). Then, for all p > q > d

n ,

dpp(Dgmk(f),Dgmk(g)) ≤ CX,n,s
(
‖f‖qWn,s ∨ ‖g‖qWn,s

)
‖f − g‖p−q∞ . (2.15)
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Proof. Following the proof of the stability theorem shown in [6], it is sufficient to show that
Persq(Dgmk(f)) and Persq(Dgmk(g)) can be bounded. This bound is provided by corollary 2.3,
yielding the result. �

Similarly, using [11, §5.2], this bound immediately entails a stochastic stability result.

Theorem 2.10 (Stochastic Wasserstein Stability). Let f and g be two a.s. Wn,s(X,R) stochas-
tic processes on a d-dimensional compact Riemannian manifold X, defined on a probability space
(Ω,F ,P). Then, for any 0 ≤ k < d, every d

n < q < p < ∞ and any r, s ∈ ]1,∞[ satisfying
1
r + 1

s = 1 and (p− q)s ≥ 1, there exists a constant C = CX,n,s such that

Wp,dp((Dgmk ◦f)]P, (Dgmk ◦g)]P) ≤ C
[
E
[
‖f‖qrWn,s

] 1
r + E

[
‖g‖qrWn,s

] 1
r

] 1
p
W

1− q
p

(p−q)s,∞(f]P, g]P)

(2.16)

≤ C
[
E
[
‖f‖qrWn,s

] 1
r + E

[
‖g‖qrWn,s

] 1
r

] 1
p ‖f − g‖

1− q
p

L(p−q)s(Ω,L∞(X,R))
.

(2.17)

Proof. Here, we follow the proof of [11, Theorem 5.9]. The proof is the same, replacing the
Cα-seminorms by the Sobolev norms. �

Theorem 2.11 (Stochastic stability of representations, [11]). Let B be a Banach space and
Ψ : Dp → B be an α-Hölder continuous functional. Let P,Q ∈ Pαq(Dp), then

‖EP[Ψ]− EQ[Ψ]‖B ≤Wq,‖·‖B(Ψ]P,Ψ]Q) ≤ ‖Ψ‖Cα(Dp,B)W
α
qα,dp(P,Q) . (2.18)

3 Euler and Betti curves

Degree-by-degree, we define the so-called Betti and Euler curves.

Definition 3.1. Let f ∈Wn,s(X,R) with n > d
s . The kth degree Betti curve of f , denoted

βk(x, f) is defined as
βk(f)(x) := βk(f, x) := Dgmk(f)(Rx) , (3.19)

where Dgmk(f) is seen as a persistence measure. The Euler curve of f is defined as

χ(f)(x) := χ(f, x) :=
d∑

k=0

(−1)k Dgmk(f)(Rx) (3.20)

Remark 3.2. We extend this definition to persistence measures in the obvious way.

Considered pointwise, showing a stability result for βk(f, x) is hopeless. This follows from
the fact that we may perturb f so that we displace the points in the diagram pushing them
over the boundary of Rx, thereby introducing a perturbation in βk(f, x) of a potentially infinite
number of points.

The correct point of view is to allow ourselves to consider the βk(f, x) as an element of
L1(R), or more generally as a distribution.

Proposition 3.3. Let X be a d-dimensional Riemannian manifold and let f ∈ Wn,s(X,R) for
d < n. Then, for every k, βk(f), χ(f) ∈ L1(R) and thus also in D′(R). Moreover,

‖βk(f)‖L1(R) = Pers1(Dgmk(f)) . (3.21)

Remark 3.4. βk(f) can be infinite for some values of x. Nonetheless, the degree of regularity con-
sidered ensures that we can still make sense of average values of βk around small neighbourhoods
of a level x. This justifies that we look at the Betti and Euler curves as distributions.
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Proof. We do the proof for sublevel sets, noticing that the proof for superlevel sets is completely
analogous. Since βk(f) is a positive function,

‖βk(f)‖L1(R) =

∫
R
βk(f, x) dx =

∫
R

Dgmk(f)(Rx) dx =

∫
R

[∫
X

1Rx(z) dDgm(f)(z)

]
dx

=

∫
X

[∫
R

1Rx(z) dx

]
dDgm(f)(z) .

For any z = (z1, z2) ∈ X ,

1Rx(z1, z2) = 1[0,∞[(z2 − x)1[0,∞[(x− z1) . (3.22)

Using the translation invariance of the Lebesgue measure on R, we get∫
R

1Rx(z1, z2) dx = z2 − z1 . (3.23)

This is nothing other than the distance dR2,∞ from (z1, z2) to the diagonal, so∫
X

(z2 − z1) dDgm(f)(z1, z2) = Pers1(Dgmk(f)) <∞ , (3.24)

as soon as d
n < 1 by virtue of corollary 2.3. �

Corollary 3.5 (No stability for dp-stability for p > 1). Let p > 1 and consider β : Dp → L1(R)
the map associating D 7→ [x 7→ D(Rx)]. Then, β is discontinuous.

Remark 3.6. This suggests that χ : Dp → L1(R) is discontinuous as well.

Proof. We give two different arguments which prove the statement. First, consider a diagram
D /∈ D1 such that D ∈ Dp and any other diagram D′ ∈ D1 ∩Dp. Then, dp(D,D

′) <∞, but the
reverse triangle inequality entails∥∥‖β(D)‖ −

∥∥β(D′)
∥∥∥∥

L1 ≤
∥∥β(D)− β(D′)

∥∥
L1 =∞ , (3.25)

since the lower bound is infinite. Second, suppose that β is continuous. Then the map Dp → R,
given by D 7→ ‖β(D)‖L1 must be continuous by continuity of the norm. However, by [8,
Proposition 5.1] this map cannot be continuous, since∫

R
1Rx(z1, z2) dx = z2 − z1 (3.26)

is linear in the distance to the diagonal, and in particular not O(|z2 − z1|p) as would be required
for continuity with respect to dp. �

Remark 3.7. Divol and Lacombe’s work [8, Proposition 5.1] also explain why it is necessary –
even within D1 – to regard the Betti and Euler curves as distributions. Indeed, notice that
pointwise in x, 1Rx doesn’t decrease to 0 at the required rate.

Corollary 3.8 (d1-stability of Betti and Euler curves). Let D,D′ ∈ D1, then∥∥β(D)− β(D′)
∥∥
L1(R)

≤ 2 d1(D,D′) . (3.27)

Remark 3.9. This shows that β : D1 → L1(R) is a 2-Lipschitz representation.

Proof. Consider a transport map π ∈ Γ(D,D′). Then,∥∥β(D)− β(D′)
∥∥
L1(R)

≤
∫
X 2

[∫
R
|1Rx(z)− 1Rx(w)| dx

]
dπ(z, w) .

We carefully check that ∫
R
|1Rx(z)− 1Rx(w)| dx ≤ 2 dR2,∞(z, w) , (3.28)

which entails the result by taking π to be an optimal transport for d1. �
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Proposition 3.10 (Interpolation for optimal transport). Let 0 < p < q ≤ ∞ and θ ∈ ]0, 1[.
Define pθ by

1

pθ
=
θ

p
+

1− θ
q

. (3.29)

Then, for µ, ν ∈ Dp ∩ Dq

dpθ(µ, ν) ≤ 21−θ dθp(µ, ν) (Persq(µ) + Persq(ν))1−θ (3.30)

dpθ(µ, ν) ≤ 2θ dq(µ, ν)1−θ (Persp(µ) + Persp(ν))θ . (3.31)

Consequently, if p ≤ r ≤ q, then Dp ∩ Dq ⊂ Dr.

Proof. We prove the first inequality, the second one following by analogy, by interverting the
roles of p and q. Let π be an optimal transport for dp. Applying Hölder’s inequality,

dpθ(µ, ν) ≤
∥∥dR2,∞

∥∥
Lpθ (π)

≤
∥∥dR2,∞

∥∥θ
Lp(π)

∥∥dR2,∞
∥∥1−θ
Lq(π)

= dp(µ, ν)θ
[∫
X 2
dqR2,∞(z, z′) dπ(z, z′)

] 1−θ
q

≤ dp(µ, ν)θ
[
2q
∫
X 2
dqR2,∞(z,∆) + dqR2,∞(∆, z′) dπ(z, z′)

] 1−θ
q

,

where the inequality on the last line holds everywhere on the support of π. This can be shown
by defining

S = {(z, z′) ∈ X 2 ∩ supp(π) | dR2,∞(z, z′) > dR2,∞(z,∆) + dR2,∞(z′,∆)} . (3.32)

This set S either has null or positive measure. If it has positive measure, then we can modify the
transport plan π by sending the projections of S to the diagonal, thereby producing a transport
plan of strictly inferior cost to that of π, which is a contradiction. Hence, S is of null measure,
so the equality holds over the support of the measure. This entails

dpθ(µ, ν) ≤ 21−θ dp(µ, ν)θ (Persq(µ) + Persq(ν))1−θ .

If q = ∞, since π is an optimal transport between µ and ν and µ, ν ∈ D∞, π itself must have
compact support and the diameter of the support is bounded above by Pers∞(µ) ∨ Pers∞(ν),
so the inequality of the proposition follows. �

Remark 3.11. Taking 0 < p < 1 ≤ q, proposition 3.10 allows us to say that, despite β being
discontinuous on Dq, this functional is continuous on (Dp ∩Dq, dq). As shown in this paper, we
may always do this for diagrams stemming from functions in Wn,s(X,R), provided that n > d.
This reconciles our results with the ones found in [7], where the case of subanalytic functions
was studied (in which case Dgm(f) ∈ D0 ∩ D∞).

Theorem 3.12 (Stability of Euler and Betti curves under perturbations in distribution). Let f
and g be two stochastic processes on a d-dimensional compact Riemannian manifold X, defined
on a common probability space (Ω,F ,P) such that almost surely f, g ∈ Wn,s(X,R) with d

n < 1.

Then, for every d
n < α < 1, there exists a constant C = CX,n,s such that,

W1,L1(βk(f)]P, βk(g)]P) ≤ C
[
‖f‖αL1(Ω,Wn,s) + ‖g‖αL1(Ω,Wn,s)

]
W 1−α

1,L∞(f]P, g]P) , (3.33)

and a similar inequality holds by replacing the Betti curves with the Euler curves χ.

Proof. Recognizing that βk are Lipschitz representations, it is a simple application of the stochas-
tic stability theorem and its analog for representations, where we set q = α, p = 1 and s = 1

1−α
and r = 1

α . �
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Remark 3.13. Using the Kantorovich-Rubenstein duality, a lower bound of W1,L1 can be easily
established. Recall that [12, Particular case 5.16]

sup
ψ∈Lip1(L1(R),R)

E[ψ(χ(f))− ψ(χ(g))] ≤W1,L1(χ(f)]P, χ(g)]P) . (3.34)

This point of view further justifies our view of βk and χ as distributions. Indeed, for ϕ ∈ D(R),
the map

ψ : χ 7→
∫
R
χ(x)ϕ(x)dx , (3.35)

is clearly Lipschitz. This distributional view of the Euler and Betti curves is (unsurprisingly)
also stable with respect to perturbations in the distributions of the random fields from which
they stem from.

A particularly interesting family of Lipschitz functionals (in light of recent developments [9])
to consider is

ψθ : χ 7→
∫
R
e−ixθχ(x) dx . (3.36)

Using the Kantorovich-Rubenstein duality on the real and imaginary components of the above
integral separately, and taking the supremum over all θ we arrive that the conclusion that

‖E[Fχ(f)−Fχ(g))]‖L∞(R) ≤
√

2W1,L1(χ(f)]P, χ(g)]P) , (3.37)

where F denotes the Fourier transform. Interestingly, one can apply the same reasoning for
different integral transforms, provided that their kernel is such that the transform is Lipschitz
on L1. Of course, these arguments are all also valid for the Betti curves as well. Applying the
stability of the Euler and Betti curves under perturbations in the distributions of f and g, we
arrive at the conclusion that these transforms are stable with respect to changes in distribution.

Remark 3.14. Looking at Euler curves, it is possible to recover the Euler characteristic of level
sets of f . Since for every ε > 0, {f > x − ε} ∩ {f < x + ε} = {x − ε < f < x + ε} and that
{f > x− ε}∪{f < x+ ε} = X, by the valuation property of the Euler characteristic, we recover

χ({x− ε < f < x+ ε}) + χ(X) = χ(f, x− ε) + χ(−f,−x− ε) , (3.38)

by taking ε→ 0, we obtain χ(f = x), whenever it is defined.
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