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Abstract

In this paper, initially, the impact of mask spoofing on face recognition is

analyzed. For this purpose, one baseline technique is selected for both 2D

and 3D face recognition. Next, novel countermeasures, which are based on

the analysis of different shape, texture and reflectance characteristics of real

faces and mask faces, are proposed to detect mask spoofing. In this paper,

countermeasures are developed using both 2D data (texture images) and 3D

data (3D scans) available in the mask database. The results show that each of

the proposed countermeasures is successful in detecting mask spoofing, and

the fusion of these countermeasures further improves the results compared

to using a single countermeasure. Since there is no publicly available mask

database, studies on mask spoofing are limited. This paper provides signifi-

cant results by proposing novel countermeasures to protect face recognition

systems against mask spoofing.
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1. INTRODUCTION1

In a spoofing attempt, a person tries to masquerade as another person2

and thereby, tries to gain access to recognition system. Face recognition is3

used in domains such as surveillance and access control. Since face data can4

be acquired easily in a contactless manner, spoofing is a real threat for face5

recognition systems.6

The most common spoofing attacks are photograph and video attacks7

due to their convenience and low cost. Based on the observations that 2D8

face recognition (FR) systems are vulnerable to these attacks, researchers9

started to work on countermeasures to reduce their impact on recognition10

performances.11

Proposed countermeasures against photo and video attacks are mainly12

based on liveness detection, motion analysis and texture analysis. Counter-13

measures based on liveness detection examine movements such as eye blinking14

[24] or lip movements [9]. In the literature, there are several countermeasures15

based on motion analysis [4, 22]. These countermeasures rely on the fact that16

the movement of a 2D plane is different compared to the movement of a 3D17

object. In [4], under the assumption that the test region is a 2D plane, the18

authors obtain a reference field from the actual optical flow field data. Then19

the degree of differences between the two fields is used to distinguish between20

a 3D face and a 2D photograph. In [22], a set of facial points are located auto-21

matically and their geometric invariants are used to detect attacks. The last22
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group is countermeasures based on texture analysis. In [3] and [19], images23

are examined to find printing artifacts and blurring, respectively. In [14], dif-24

ferent contrast and texture characteristics of photographs and real faces are25

analyzed to detect spoofing. Furthermore in [20, 21], micro-texture analysis26

is proposed to detect 2D attacks. The study [7] includes brief information27

about different types of 2D face countermeasures, which were developed for28

a competition on countermeasures against 2D facial spoofing attacks. Six29

teams participated to this competition. These teams are AMILAB, CASIA,30

IDIAP, SIANI, UNICAMP and UOULU. All teams used one or multiple31

clues obtained clearly from motion analysis, texture analysis and liveness32

detection. The CASIA team presented a method with the combination of33

motion and texture analysis techniques, and the method also allows switch-34

ing between detection schemes based on the scene context. The AMILAB35

and the UNICAMP teams used all motion analysis, texture analysis and live-36

ness detection in deriving the detection scheme. IDIAP and UOULU used37

texture analysis method and obtained zero percent Equal Error Rate (EER)38

on development set and zero percent Half Total Error Rate (HTER) on test39

set. This leads to the conclusion that, the attack videos in the database used40

for this competition (i.e. PRINT-ATTACK Database [26]) mainly consist of41

detectable texture patterns.42

When 3D masks are introduced as attacks, some of the countermeasures43

proposed for the detection of 2D attacks are no longer applicable. The study44

of Kollreider et al. [13] shows that a face recognition system relying on eye45
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blinking and lip movements can be defeated by using photographic masks46

wrapped over face with eyes and mouth regions cut out. Also, since motion47

based countermeasures depend on different movements of 2D and 3D surfaces,48

they are not applicable when masks are used instead of photos or videos. It49

appears that the detection of 3D mask attacks is more challenging compared50

to the detection of 2D facial attacks.51

3D mask attacks to FR systems is a considerably new subject. The main52

reason for the delay in mask spoofing studies is due to the unavailability of53

public mask databases. To our knowledge, in the literature, there are two54

countermeasure studies against 3D mask attacks [11, 29] excluding our stud-55

ies. These two studies are based on reflectance analysis. They utilize 2D data56

(texture images) in their approach to detect 3D mask attacks. Kim et al.57

[11] exploit the reflectance disparity based on albedo between real faces and58

mask materials (silicon, latex or skinjell). The feature vector, which is used59

in their approach for mask detection, consists of radiance measurements of60

the forehead region under 850 and 685 nm illuminations. They report 97.78%61

accuracy for mask detection. In [11], the experiments are done directly on62

the mask materials not on the real facial masks. Thus, it is not possible to63

report spoofing performances of the masks used. The measurements are done64

at exactly 30 cm and on the forehead region for mask detection. The require-65

ment for an exact distance and occlusion possibility in the forehead during66

the measurements are the limitations of this method. In [29], multi-spectral67

reflectance analysis is proposed. After measuring the albedo curves of facial68
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skin and mask materials with varying distances, two discriminative wave-69

lengths (850 and 1450 nm) are selected. Finally, a Support Vector Machine70

(SVM) [8] classifier is used to discriminate between real and fake samples.71

Experiments are conducted on a database of 20 masks from different materi-72

als (4 plastic, 6 silica gel, 4 paper pulp, 4 plaster and 2 sponge). The results73

show that this method can achieve 89.18% accuracy. The superiorities of74

[29] compared to [11] are the elimination of range limitation and the usage75

of real facial masks. However, spoofing performances of the masks are still76

not reported. In order to contribute to this compelling research problem and77

fill the missing portions of the existing studies, we have proposed several78

countermeasure techniques against 3D mask attacks in [15], [18] and [17].79

The spoofing performances of the masks used and the countermeasure80

which uses 3D data (3D scan) instead of 2D data (texture image) as input81

to detect mask spoofing were first analyzed in our previous studies [16, 15],82

respectively, using the mask database which was prepared within the context83

of the European Union (EU) research project TABULA RASA [28]. The84

mask database used in the present study and our previous studies [15, 16,85

18, 17] was created by MORPHO [23]. This database includes many high-86

quality mask samples. It consists of 3D masks of 16 real subjects. The scans87

of subjects were acquired by a 3D scanner, and the masks were manufactured88

using a 3D printer. In addition to texture images, it includes 3D scans for89

both real and mask samples. Thanks to the nature of this database, we90

were able to evaluate the impact of mask spoofing on both 2D and 3D face91
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recognition, and to develop our countermeasures using both 2D and 3D data.92

If a 3D mask is not able to spoof a recognition system, it is not a suc-93

cessful attack, and there is no need to develop a countermeasure against it.94

Therefore, in [16], we analyzed how well the spoofing performances of the95

masks used in our studies are. The results of this study show that the masks96

used have very similar texture and especially 3D face shape characteristics to97

their target faces. They are very successful to spoof face recognition systems.98

To the best of our knowledge, spoofing performances of the masks used were99

the first to be analyzed in this study. In [15], we proposed to apply micro-100

texture analysis on both texture and depth images, and obtained 88.12%101

and 86% accuracy, respectively, for the classification of mask and real faces.102

The novelty of this work is that it was the first time 3D data was utilized103

to discriminate mask and real samples. In our next study [18], which is the104

continuation of [15], we studied fusing the information extracted from both105

the texture and depth images, and obtained a higher classification accuracy106

of 93.5%. In addition to the increase in performance, it was the first time the107

performances of face recognition systems were analyzed with/without mask108

attacks and with/without the proposed countermeasure integrated to the109

recognition systems in [18]. By this way, it is possible to observe the positive110

impact of countermeasure on recognition performances in presence of mask111

attacks. Finally, in [17], we proposed a countermeasure based on reflectance112

analysis using the texture images in the same database. We obtained 94%113

classification accuracy in [17], which was the best score we had obtained so114
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far.115

In this paper, after showing the impact of attacks on the selected recog-116

nition systems; we provide an overview on our spoofing detection approaches117

which were introduced in the studies [15], [18] and [17]. We extend the118

works explained in these studies with some improvements, additional analy-119

sis, comparisons of performances of diverse countermeasures using the same120

protocol, and with a detailed analysis of the fusion scenarios. Additionally, a121

novel countermeasure is proposed in the present paper. In [15], micro-texture122

analysis is applied on texture images, whereas in this paper, we apply micro-123

texture analysis on reflectance components of texture images as a new coun-124

termeasure. We observe that higher accuracy is obtained using reflectance125

component instead of texture image (original image) itself. This proves that126

reflectance image provides more appropriate information than original im-127

age to discriminate mask and real samples. In the present study, we obtain128

98.99% classification accuracy, which is the best accuracy that have been re-129

ported in the literature for mask spoofing detection up to now. Also, in the130

present paper, we integrate the countermeasure with the best performance131

to the selected 3D FR system in order to show the positive impact of the132

countermeasure on the system under mask attacks, directly.133

The paper is organized as follows: Section 2 gives brief information on the134

mask database which is used in this study. Section 3 presents the selected 2D135

and 3D FR systems, and then evaluates the impact of mask spoofing on these136

systems. Section 4 gives brief information about the techniques that were137
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used to develop the proposed countermeasures. Section 5 explains each of138

the proposed countermeasures. Section 6 shows the experiments and results139

of all the proposed countermeasures together with the fusion scenarios for140

comparison purposes. Finally, conclusions are provided in Section 7.141

2. THE MASK DATABASE142

A mask used for 3D face spoofing purposes has to show very similar143

3D shape characteristics to the target face to be considered as a successful144

attack. The mask database used in this study was prepared to fulfill this145

objective. Initially, scans of the subjects in the mask database were taken146

by a 3D scanner which uses a structured light technology in order to obtain147

similar face shape characteristics to the target person. Then the 3D model148

(3D mesh) of each subject was sent to a 3D printer and the masks were149

manufactured by Sculpteo 3D Printing [27]. The material used for the masks150

is polychrome mineral powder, which is a 3D printing standard.151

The mask database is 2D+3D. For the sake of clarity, the database of real152

faces in 2D and 3D will be referred as DB-r2 and DB-r3, while the database153

of mask attacks will be referred as DB-m2 and DB-m3 in the rest of this154

paper.155

In the mask database, 20 subjects appear in total. The masks were156

manufactured for 16 of these subjects. For DB-r, an average of 10 scans157

of each subject were acquired. For DB-m, an average of 10 scans of each158

subject wearing either his/her own mask or masks of the other subjects that159
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Figure 1: Example from the mask database which is created by [23]. From left to right
(upper row) The real face, the cropped texture image, the 3D scan after preprocessing,
the cropped depth map estimated from the raw 3D scan (lower row) same images for the
corresponding mask attack.

appear in the same database were acquired. Finally, 200 real face acquisitions160

from 20 subjects and 198 mask acquisitions from 16 masks are used for the161

evaluations of this study. Figure 1 shows one example from this database for162

a real face access and the corresponding mask attack access.163

In the mask database, DB-r and DB-m are partitioned in train and test164

sets. 8 subjects out of 16 subjects whose masks are manufactured, and 2165

subjects out of 4 subjects whose masks are not manufactured are selected166

for DB-r. The samples of the selected subjects are assigned to the test set of167

DB-r, while the rest is used for the train set of DB-r. For DB-m, the mask168

attack accesses to the corresponding identities in the test set of DB-r are169

involved in the test set of DB-m, while the rest is used for the train set of170

DB-m. There is no overlap between the train and test sets, which makes the171

spoofing detection more challenging. Finally, there are 100 samples in each172

of the client (real accesses) test and train sets, and 99 samples in each of the173
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impostor (mask attack accesses) test and train sets.174

3. IMPACT ANALYSIS OFMASK SPOOFING ON FACE RECOG-175

NITION176

In this section, initially, we explain the pre-processing applied for the177

selected 3D and 2D FR techniques. Next, we give the details about these178

recognition techniques. Finally, we evaluate the impact of spoofing mask179

attacks on both 3D and 2D face recognition.180

3.1. Pre-Processing for the Selected Face Recognition Systems181

The pre-processing for the selected 3D FR system is based on the method182

given in [10]. In order to crop the face region, the tip of the nose is detected,183

and the facial surface is cropped by a sphere with radius 80 mm, centered 10184

mm away from the nose tip in +z direction. Note that the face looks towards185

+z direction. Next, the spikes are removed by thresholding, and then a hole186

filling procedure is applied. Finally, a bilateral smoothing filter is used to187

remove white noise while preserving edges. These pre-processed 3D scans188

(only shape, without texture) are used as input for 3D face recognition.189

For 2D face recognition, the texture images in the mask database are190

cropped as shown in Figure 1, and resized into 64×64 images. In this study,191

we aim to show first how vulnerable the systems are to spoofing mask attacks192

by evaluating the performances of the selected systems with/without attacks,193

and then how a countermeasure improves the performance in presence of194
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mask attacks by evaluating the performances of these systems with/without195

countermeasure. For micro-texture analysis applied inside the proposed196

countermeasures, which is explained in Section 4, images are resized into197

64 × 64 as proposed in [20]. Thus, although this resizing parameter may198

reduce the baseline performance in 2D, since our aim in this study is not199

to report high baseline performance, we preferred to use the same images as200

input for both the 2D baseline evaluation and proposed countermeasures.201

Figure 1 shows an example for the texture images and 3D scans which202

are used in 2D and 3D evaluations, respectively.203

3.2. Selected Face Recognition Systems204

The 3D FR system selected as baseline for this study is introduced in [10].205

It is also selected as baseline system in TABULA RASA project [28]. It uses206

the pre-processed 3D mesh of the face as input. Three landmark points are207

previously annotated at the nose tip and outer eye corners for each sample208

in the database. Initially, a linear transformation is computed in a least209

squares sense (LSS), based on two sets of landmarks (landmarks of generic210

model and subject’s face). Least squares means that the overall solution211

minimizes the sum of the squares of the errors made in the results of every212

single equation. The best fit in the LSS here is calculated by minimizing213

the squared distance between the point sets of generic model and subject’s214

face. For this purpose, the obtained transformation that includes rotation,215

translation and isotropic scaling is applied onto the generic model, aligning it216
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with the subject’s face. Next, the alignment is further improved by Iterative217

Closest Point (ICP) method [5]. Afterwards, 140 previously selected points218

on the generic model are coupled with the closest vertices on the face under219

analysis, and Thin Plate Spline (TPS) [6] warping is applied on the generic220

model resulting in warping parameters (WP) of size 140 × 3. WPs that221

represent the deviations from the common structure are given to the classifier222

for recognition. Finally, the distance between two face models is computed223

by taking the median of cosine distances between the corresponding feature224

vectors (WP), and recognition rates are computed. Figure 2 shows the feature225

extraction scheme on a sample model using this method, which is named WP.226

Figure 2: The feature extraction scheme and an illustration on a sample model: (a) The
subject’s face with and without texture (b) generic model before and after alignment (c)
generic model after warping with and without texture. This figure is taken from [10].
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For 2D face recognition, Local Binary Patterns (LBP) [1] is selected as227

baseline. The success of LBP in face description is due to the discriminative228

power, computational simplicity of the operator, and its robustness to mono-229

tonic gray scale changes caused by, for example, illumination variations. The230

use of histograms as features also makes the LBP approach robust to face231

misalignment and pose variations to some extent. For 2D FR, we use the232

operator LBP u2
8,2 on 8× 8 blocks. The similarity between each image pair is233

computed with chi-square distance metric. Performances are evaluated using234

the similarity scores between image pairs.235

3.2.1. Evaluation on 2D and 3D Face Recognition236

In this part, the evaluations are done for 2 modes. The first mode is237

the baseline mode: a standard biometric system with no spoofing and no238

countermeasure. The baseline performance is evaluated using DB-r. Perfor-239

mance is evaluated by verification all vs. all. Access from every identity in240

DB-r is tested against all other models in DB-r. The performance is mea-241

sured by observing the rate of users rejected when authenticating against242

their own template (False Rejection Rate - FRR) and by the rate of users243

accepted when authenticating against someone else’s template (False Accep-244

tance Rate - FAR). The second mode is the evaluation of FR systems under245

mask attacks (baseline under attacks in Figure 3). Both DB-r and DB-m246

are used. When spoofing attacks are applied, performance is expected to247

degrade. In this mode, the FAR corresponds to the rate of attacks that are248
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accepted by the system when spoofed. The FRR corresponds to the rate of249

real-access attempts that are incorrectly dismissed by the system as attacks.250

For the evaluations regarding 2D and 3D FR systems here, only test set251

is used. Train set is used for classifier training inside the proposed counter-252

measures. Figure 3 shows the behavior of the 3D and 2D baseline systems253

with/without attacks. All results are presented in terms of detection error254

trade-of (DET) profiles which illustrate the behavior of a system as the de-255

cision threshold is changed, i.e. how the false rejection rate varies according256

to the false acceptance rate.257

Figure 3: The DET Curves of the 3D and 2D face baseline biometric system with/without
mask attacks, respectively.

Figure 3 shows that:258

• Although the mask attacks are successful to spoof both 2D and 3D259

FR systems, the 3D FR system is more vulnerable to mask attacks260

compared to the 2D FR system (area between red and blue curves is261
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much more for 3D compared to 2D FR system).262

• Equal Error Rate (EER) at the baseline mode increases from 1.8% to263

25.1% for 3D and from 4.7% to 9.9% for 2D FR system under attacks.264

• 3D shape characteristics of a real face and corresponding mask at-265

tack are more similar compared to their texture characteristics. Hence,266

analysis on texture may reveal more information to detect mask attacks267

compared to analysis on 3D shape characteristic.268

• Robustness against mask spoofing is observed to be both method and269

modality dependent as also concluded in [16].270

• FR systems are vulnerable to spoofing mask attacks hence, counter-271

measures are necessary to reduce their impact on face recognition.272

For the baseline mode evaluations, we used the test set of DB-r, which273

contains 100 real samples from 10 subjects. In this study, we also report274

the baseline performances of the selected systems on the Face Recognition275

Grand Challenge Database (FRGC) v1.0 [25] database in order to check276

if the selected systems still provide satisfactory baseline performances with277

more number of subjects. The scans of the subjects in the mask database278

were acquired with a high quality laser scanner (technology of MORPHO).279

The FRGC database was also prepared using the high quality laser scanner280

Minolta. Therefore, the scan quality in the FRGC is quite similar to the scan281

quality in our mask database. Furthermore, FRGC v1.0 includes 943 samples282
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from 275 subjects and more challenging compared to the DB-r of the mask283

database. Table 1 shows the EER, verification rate at 0.001 FAR and rank-1284

identification rates computed with the selected systems using both the mask285

database (the DB-r of the mask database) and the FRGC database.286

Table 1: EER, Verification Rate at 0.001 FAR and Rank-1 Identification Rate (IR) for the
3D and 2D baseline systems using the Mask Database (MD) and the FRGC Database.

Techniques WP LBP
(MD) (FRGC) (MD) (FRGC)

EER (%) 1.79 2.41 4.68 2.96
VR at 0.001 FAR (%) 91.33 87.70 90.89 90.03
IR (%) 100 94.01 98.89 94.50

Table 1 shows that slightly better performances are obtained in terms of287

identification and verification using the mask database compared to the ones288

obtained using the FRGC. For each FR technique, EER computed for the two289

databases are quite similar. Although there is a high increase in the number290

of subjects/samples when the FRGC is used for the evaluation, the perfor-291

mances of the selected baseline systems on the FRGC are still satisfactory,292

even quite similar to the results obtained using the mask database. These293

results show that the selected systems provide significant performances hence294

they are appropriate for this study, and the number of subjects/samples in295

the mask database is sufficient enough to obtain consistent results in this296

study.297
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4. TECHNIQUES USED INSIDE THE PROPOSED COUNTER-298

MEASURES299

Mask attack is a 3D attack that can be used to spoof both 2D and 3D300

FR systems. Most of the existing 3D scanners do not provide only 3D scan,301

they also capture texture image. Figure 1 shows an example for the two302

outputs of a scanner. Thus, when there is only one camera for 2D and one303

scanner for 3D FR system, a countermeasure which uses texture images as304

input can be used to protect both 2D and 3D FR systems if texture images305

are provided as default output of a scanner. In the present study, we propose306

four countermeasures against 3D mask attacks, which use either the depth307

maps or texture images as input (Figure 5).308

In this section, we first explain the pre-processing applied for the proposed309

countermeasures. Then, we give a detailed information about the techniques310

that were used to develop the proposed countermeasures.311

4.1. Pre-Processing for the Countermeasures312

There are slight alignment differences between faces in the mask database.313

For the countermeasures, initially, all 3D faces in DB-r3 and DB-m3 are314

aligned to a generic face using LSS alignment, which makes the alignment of315

all faces identical.316

In this study, we want to benefit from the information that the mask317

surface is smoother than the real face surface to detect mask attacks. There-318

fore, the depth maps are estimated from the raw aligned 3D scans. Next, 2D319
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cropping is applied to extract face region from both the texture images and320

depth maps. Then all images are resized into 64× 64 grayscale image.321

In our previous studies [15, 17], we used normalized images. We notice322

that normalization has a positive impact in performances when the counter-323

measure is applied on depth maps, whereas it reduces performances slightly324

when applied on texture images. In the present paper, we did not apply nor-325

malization, and we improved our cropping code compared to the ones used326

in our previous studies. The final version of the texture images and depth327

maps used for the proposed countermeasures are shown in the second and328

fourth columns of Figure 1, respectively.329

4.2. The Variational Retinex Algorithm330

In the present paper, the image is decomposed into reflectance and il-331

lumination components using the variational retinex algorithm explained in332

the studies [2, 12].333

In this subsection, we first give information about minimizing energy334

functions. Then, we explain the variational retinex algorithm [2, 12].335

4.2.1. Minimizing Energy Functions336

The concept of minimizing the energy of a given system is used in image337

processing. Minimizing energy functions often includes solving partial differ-338

ential equations, more specifically, Euler-Lagrange differential equations.339

In the Euler-Lagrange problem, we usually have a continuous real-valued340

function y = f(x) with continuous derivative y′ = df/dx. Considering x, y,341
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and y′ as three independent variables, a new function g(x, y, y′) is defined.342

Using this function, the energy function is defined as: E =
∫
g(x, y, y′)dx.343

The energy function E has a minimal value if Euler-Lagrange equation:344

∂g

∂y
− ∂

∂x

(
∂g

∂y′

)
= 0 (1)

is satisfied. The left hand side of this equation is denoted as ∇E. Here f is345

introduced as a function of one independent variable x, the same concept is346

applied when f is a function of n independent variables: x1, x2, . . . , xn. In347

particular, when u = f(x, y), function of two independent variables x and y,348

Euler- Lagrange equation becomes:349

∇E =
∂g

∂u
− ∂

∂x

(
∂g

∂ux

)
− ∂

∂y

(
∂g

∂uy

)
= 0 (2)

The variational retinex algorithm is developed by defining and minimizing350

an energy function.351

4.2.2. The Variational Retinex Algorithm352

An image can be considered as a two dimensional function S(x, y), where353

(x, y) denotes a pixel on the image. The value of the function S = S(x, y)354

represents the intensity of the light at the pixel (x, y). As stated in [2], the355

intensity S may be characterized by two components which are;356

• the amount of source illumination falling on the object, the illumination357

component L(x, y).358
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• the amount of illumination reflected by the object, the reflectance com-359

ponent R(x, y).360

S(x, y) is computed using the illumination and reflectance components as361

shown in Eq. (3).362

S(x, y) = L(x, y)×R(x, y) (3)

In [2], it is stated that if images are assumed to be composed of illumina-363

tion and reflectance components, generating the retinex effect means being364

able to separate one component from another. A first step taken by most365

algorithms in such sort of problems is the conversion to the logarithmic do-366

main by s = log(S), l = log(L), and r = log(R). In the logarithmic domain367

the relation between these three images becomes: s = l + r.368

In [12], Kimmel et al. make the following assumptions:369

1. The logarithmic illumination l varies spatially smoothly.370

2. The logarithmic reflectance r consists of constant or smooth parts and371

discontinuous jump parts.372

3. l is greater than or equal to the logarithmic intensity s (l ≥ s).373

4. l is close to s (i.e. l does not deviate far away from s).374

Based on the assumptions listed above, in the studies [2, 12], the energy375

function is defined as follows:376

E(l) =

∫
(|∇l|2 + α(l − s)2 + β|∇(l − s)|2)dxdy (4)
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where α and β are positive constants. Since S is the given image, s here is377

constant. In this equation;378

• The first penalty term (|∇l|2) forces spatial smoothness on l.379

• The second penalty term (l − s)2 forces a proximity between l and s.380

The difference between these images is exactly r, which means that the381

norm of r should be small. Simultaneously, it forces the solution l to382

be l ≥ s. In [12], it is stated that in practice this term should be weak383

enough not to attract l down too much towards s. This is why the384

parameter α should be very small.385

• The third term forces r to be spatially smooth. In [12], it is stated386

that the parameter β should be a very small value to preserve the387

discontinuous jumps of r. Note that spatially smooth r contradicts388

spatially smooth l since r + l = s. However in practice adding this389

penalty term kicks in mainly on sharp edges and handles situations390

where the illumination is not smooth (as well as cases of direct light391

sources and specularities).392

The integrand of this energy function is:393

g(l, lx, ly) = |∇l|2 + α(l − s)2 + β|∇(l − s)|2

= (l2x + l2y) + α(l − s)2 + β((lx − sx)2 + (ly − sy)2)
(5)
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Euler-Lagrange equation becomes:394

∇E =
∂g

∂l
− ∂

∂x

(
∂g

∂lx

)
− ∂g

∂y

(
∂g

∂ly

)
= 2α(l − s)− ∂

∂x
(2lx + 2β(lx − sx))− ∂

∂y
(2ly + 2β(ly − sy))

= 2α(l − s)− 2lxx − 2β(lxx − sxx)− 2lyy − 2β(lyy − syy)

= 2 [α(l − s)−∆l − β∆(l − s)]

= 0

(6)

which means α(l− s)−∆l−β∆(l− s) = 0. In [2], to solve this equation, the395

idea of the steepest descent is applied with an auxiliary variable t:396

dl

dt
= −∇E = ∆l + β∆(l − s)− α(l − s) (7)

To find a local minimum of a function using steepest descent, one takes397

steps proportional to the negative of the gradient of the function at the398

current point. In our evaluation, l is computed via steepest descent as follows:399

ln = ln−1 − dt · ∇E (8)

Finally, projecting onto the constraint l ≥ s is done by ln = max(ln, s).400

In our experiments, the values 0.0001 and 0.1 are used for α and β,401

respectively, as suggested in [2, 12]. The initial value of l (l0) is taken as402

s. The step size dt and the total number of iterations are selected as 0.05403

and 5000, respectively. After the iterations, optimum l is obtained, and404
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r is computed from r = s − l. Finally, the reflectance and illumination405

components are evaluated from R = er and L = el, respectively.406

Figure 4: Example from the mask database which is created by [23] (a) The real face with
texture, the reflectance image and the illumination image of the real face (b) Same images
associated with the mask of the same person.

Figure 4 shows an example from the mask database for a real face and407

corresponding mask attack. First column shows the original images, sec-408

ond column and third column show the reflectance and illumination images,409

respectively, which are computed using the variational retinex algorithm.410

4.3. Micro-Texture Analysis Technique411

The micro-texture analysis, which was first proposed in [20] to detect 2D412

face attacks, is used to detect 3D mask attacks here. In [20], it is applied413

on texture images, whereas in this paper, we apply this technique not only414

on texture images but also on depth maps estimated from 3D scans and on415

reflectance components of texture images.416
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This LBP based micro-texture analysis technique emphasizes the micro-417

texture differences in the feature space. It aims at learning the differences418

between real and fake face, and designs a feature space which emphasizes419

those differences. The original LBP forms labels for the image pixels by420

thresholding the 3× 3 neighborhood of each pixel with the center value and421

considering the result as a binary number. The LBP operator has been422

extended to use neighborhoods of different sizes. LBPP,R is computed such423

that for a given central pixel in an image, a pattern number is computed by424

comparing its value with those of its neighbors. In Eq. (9), gc is the gray425

value of the central pixel, gp is the value of its neighbors, P is the number of426

neighbors around a circle of radius R. LBPP,R calculation is shown in Eq.427

(9) and (10):428

LBPP,R =
P−1∑
p=0

s(gp − gc)2p (9)

429

s(x) =


1, x ≥ 0

0, x<0

(10)

Uniform patterns are verified to be the fundamental patterns of local430

image texture. A local binary pattern is called uniform if the binary pattern431

contains at most two bitwise transitions from 0 to 1 or vice versa when the432

bit pattern is traversed circularly. The notation is LBP u2
P,R. u2 stands for433

using only uniform patterns and labeling all remaining patterns with a single434
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label.435

In [20], authors claim that micro-texture details that are needed to dis-436

criminate a real face from face print can best be detected using combination437

of different LBP operators. Thus, they derive an enhanced facial repre-438

sentation using multi-scale LBP operators. Their proposed representation439

computes LBP features from 3× 3 overlapping regions to capture the spatial440

information and enhances the holistic description by including global LBP441

histograms computed over the whole image. This is done as follows: the face442

is cropped and resized into a 64× 64 pixel image. Then, LBP u2
8,1 operator is443

applied on the face image and the resulting LBP image is divided into 3× 3444

overlapping regions (with an overlapping size of 14 pixels). The local 59-bin445

histograms from each region are computed and collected into a single 531-bin446

histogram. Then, two other histograms are computed from the whole face447

image using LBP u2
8,2 and LBP u2

16,2 operators, yielding 59-bin and 243-bin his-448

tograms that are added to the 531-bin histogram previously computed. In449

[20], the length of the final enhanced feature histogram is reported as 833450

(i.e. 531 + 59 + 243).451

4.4. Classification Technique452

Mask face detection is a two-class classification problem. Since SVM [8]453

are proven to be a powerful tool for discriminating two classes of data, we454

adopted an SVM classifier for this purpose. SVM finds the maximum margin455

hyper-plane to separate the training data in feature space and a decision for456
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a new test data x is classified. In our experiments, we adopted linear kernel457

since our feature vectors are high-dimensional and are hence likely to be458

linear separable.459

5. THE PROPOSED COUNTERMEASURES460

Four countermeasures are proposed in this study to discriminate mask461

and real samples. Three of them use the 2D data (texture images), and the462

remaining one uses the 3D data (depth maps estimated from the raw 3D463

scans) available in the mask database as input.464

Figure 5: The flowchart of the proposed countermeasures.

The flowchart of the countermeasures proposed in this paper are shown in465

Figure 5. In this figure, the micro-texture analysis (explained in Subsection466

4.3) applied on texture images is called CM1, applied on reflectance images467
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is called CM2, applied on depth maps is called CM4, and finally the counter-468

measure for which the pixel intensity values on reflectance images are used469

directly by the classifier is called CM3 (CM denotes countermeasure).470

CM1 and CM4 are first introduced in our study [15], and CM3 is first471

introduced in our study [17]. In the present paper, we provide an overview on472

our spoofing detection approaches introduced in the studies [15, 17]. We ex-473

tend the works explained in these studies with some improvements (e.g. bet-474

ter cropping, usage of non-normalized images instead of normalized images),475

additional analysis, comparisons of performances of diverse countermeasures476

using the same protocol, and with a detailed analysis of the fusion scenarios.477

Also, CM2 is first introduced in the present paper. It is a new counter-478

measure providing very satisfactory accuracy to classify mask and real faces.479

The results of CM2 show that reflectance component of an image provides480

more appropriate information than original image itself for mask detection.481

From the fusion results, we also observed that it provides complementary482

information on mask detection.483

5.1. CM1: Micro-Texture Analysis on Texture Images484

Captured image from mask may visually look very similar to the image485

captured from live face (e.g. the texture images in the first column of Fig-486

ure 4). A close look at the differences between faces in DB-r2 and DB-m2487

reveals that their surface properties are different. For mask manufacturing488

3D printers are used, hence they may contain printing quality defects that489
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can be detected with micro-texture patterns. For CM1, micro-texture anal-490

ysis is applied on texture images, and the feature histogram of length 833 is491

obtained. Finally, linear SVM classifier is applied to detect mask and real492

faces.493

5.2. CM2: Micro-Texture Analysis on Reflectance Images494

For CM2, initially, the illumination and reflectance components (Figure495

5) of the texture images are obtained using the variational retinex algorithm496

introduced in Subsection 4.2. Then, micro-texture analysis is applied on497

reflectance components of texture images rather than texture images itself.498

The reason of this analysis on reflectance images is that a close look at the499

differences between the reflectance images of the real and mask faces reveals500

that the texture characteristics on their reflectance components are also dif-501

ferent. The feature vectors of length 833, which are obtained by applying502

micro-texture analysis on reflectance images, are used as input by linear SVM503

classifier. This feature vector gives information from the reflectance image504

in the image texture level.505

5.3. CM3: Pixel Intensity Analysis on Reflectance Images506

Our observations on the reflectance components of mask and real faces507

reveal that reflectance characteristics of mask and real face samples are dif-508

ferent especially at some specific regions of the face (eyelashes, eyebrows and509

moustache). Based on these observations, in this study, we use the intensity510
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values on reflectance component of each image as input for linear SVM clas-511

sifier. Since the intensity values on reflectance images are between 0 and 1512

(R(x, y) ∈ [0, 1]), we stretched it to the interval [0, 255] by multiplying R513

with 255. The reflectance component, which is in the size of 64 × 64 pixel514

image, is reshaped as [1 4096] (64 × 64 = 4096). The resultant vector is515

the feature vector providing information in the pixel intensity level. Finally,516

linear SVM classifier is applied to detect real and mask faces.517

5.4. CM4: Micro-Texture Analysis on Depth Maps518

The 3D shape of high quality mask is also very similar to the 3D shape519

of corresponding real face (e.g. the 3D scans in the second column of Figure520

1). Our analysis on DB-r3 and DB-m3 show that the mask scan is smoother521

than the real face scan. Especially the parts of the face with facial hair are522

quite different. Since there is no real facial hair (e.g. mustache, eyebrow) on523

the masks, the 3D scan of mask is smoother in these parts compared to the524

real face scan. When high quality scanners are used for acquisition, although525

there is a decrease in the number of holes, it is still possible to observe some526

holes on the scan especially at the parts of the face with facial hair. Thus, in527

our study, micro-texture analysis is also applied on the depth maps which are528

estimated from the raw 3D scans, and the other feature histogram of length529

833 is obtained. Finally, linear SVM classifier is applied to detect real and530

mask faces.531
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6. EXPERIMENTS AND RESULTS532

In this section, we first show the stand-alone classification performances533

of the proposed countermeasures together with the fusion scenarios. Then,534

we integrate the countermeasure providing the best performance to the se-535

lected 3D FR system in order to observe the improvement in the recognition536

performance of the system in presence of mask attacks.537

6.1. Stand-Alone Classification Performances of the Countermeasures538

In the present study, we apply the proposed countermeasures (CM1, CM2,539

CM3, CM4) using the same database with the same train-test sets, hence an540

exact comparison between these countermeasures is possible. Train set is541

used for classifier training. This classifier is subject to two kind of errors:542

• FLR (False Living Rate), that represents the percentage of fake data543

misclassified as real. (similar to FAR)544

• FFR (False Fake Rate), which computes the percentage of real data545

assigned to the fake class. (similar to FRR)546

The lower these two errors, the better the performance of the counter-547

measures. In this section, we first evaluate the performances of the single548

countermeasures, and then evaluate the performances for the fusion scenar-549

ios. The Region of Convergence (ROC) curves in Figure 6 shows the stand-550

alone classification performances of the four countermeasures together with551

the fusion based countermeasure providing the best performance in Table 3.552
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Figure 6: The Classification Performances of the Countermeasures.

Area Under Curve (AUC), EER and best accuracy results using CM1,553

CM2, CM3, and CM4 are shown in Table 2.554

Table 2: AUC, EER and Accuracy Results Using the Four Countermeasures

Countermeasures AUC EER(%) Accuracy(%)
CM1 0.956 9.04 91.46
CM2 0.980 5.02 95.98
CM3 0.984 9.04 93.47
CM4 0.919 18.59 82.91

Table 2 and Figure 6 show that;555

• The best performances in terms of EER and accuracy are obtained556

using CM2, and the best performance in terms of AUC is obtained557

using CM3.558
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• The best performances are obtained with the countermeasures based559

on reflectance analysis (CM2 and CM3) compared to the performances560

obtained with CM1 and CM4. This shows that reflectance character-561

istics of the real and mask faces in the mask database provide more562

appropriate information than their texture and smoothness character-563

istics.564

• CM4, which is based on smoothness analysis, provides worse results565

compared to the other countermeasures. However, the performance of566

CM4 can be still considered as satisfactory.567

• 2D data (texture images) provide more information than 3D data (depth568

maps) to detect mask spoofing.569

After evaluating the performances of the single countermeasures, we an-570

alyze the performances for the fusion scenarios.571

For feature level fusion, the feature histograms computed from different572

types of images (texture, reflectance and depth) are concatenated and the573

classifier is applied on the resultant feature histogram. In Table 3, the fea-574

ture level fusion of 2 countermeasures, 3 countermeasures and finally all the575

4 countermeasures are reported for which the length of the final feature his-576

tograms are 1666, 2499 and 3332, respectively. Once the enhanced histogram577

is computed, a linear SVM classifier is used to determine whether the image578

corresponds to a live face or not.579
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For score level fusion, linear SVM classifier is applied using the features580

computed from each type of images (texture, reflectance and depth) sepa-581

rately, and then Z-score normalization is applied for each score group. Fi-582

nally, the weighted score level fusion is used for combining the outputs of the583

individual SVMs to determine whether the image corresponds to a live face584

or not.585

AUC, EER and best accuracy results are shown in Table 3 for the fusion586

scenarios.587

Table 3: AUC, EER and Accuracy Results for the Fusion Scenarios of the Proposed
Countermeasures

Countermeasures Feature Level Fusion Score Level Fusion
Involved in Fusion AUC EER Acc. AUC EER Acc.

(%) (%) (%) (%)
CM1, CM2 0.994 3.01 97.49 0.988 3.01 97.49
CM1, CM3 0.985 9.04 93.97 0.993 5.02 96.48
CM1, CM4 0.972 9.04 92.96 0.976 8.04 94.47
CM2, CM3 0.984 9.04 93.47 0.993 5.02 96.48
CM2, CM4 0.994 3.01 97.49 0.992 4.02 96.98
CM3, CM4 0.986 8.04 92.96 0.994 5.02 95.98
CM1, CM2, CM3 0.985 9.04 93.47 0.998 2.01 98.99
CM1, CM2, CM4 0.998 2.01 97.99 0.993 5.02 96.48
CM1, CM3, CM4 0.987 8.04 93.47 0.997 2.01 97.99
CM2, CM3, CM4 0.986 8.04 93.47 0.997 2.00 98.49
CM1, CM2, CM3, CM4 0.987 8.04 93.47 0.997 2.01 98.49

From the reported results in Table 3, we can remark the followings:588

• Both score and feature level fusion of the countermeasures improve the589

performance compared to using single countermeasure. For instance,590

CM4 provides a detection accuracy of 82.9% whereas when CM4 and591
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CM1 are fused, the accuracy is improved to 92.96% for feature and592

94.47% for score level fusion. This proves that when both the texture593

images and depth maps are provided by 3D scanners, more robust594

countermeasures can be obtained by fusion.595

• For feature level fusion, the best performances are obtained by the596

fusion of CM1, CM2 and CM4. In this part, we observed that when597

we concatenate the same type of features (micro-texture features of598

length 833 for each of CM1, CM2 and CM4), we observe a significant599

increase in the performance. In CM3, the features are pixel intensity600

values (features of length 4096). Therefore, when we apply feature level601

fusion using CM3 with the other countermeasures, the positive impact602

of CM3 in the performances was not observable as shown in Table 3.603

• For score level fusion, the best performances are obtained by the fu-604

sion of CM1, CM2 and CM3. All these countermeasures (CM1, CM2605

and CM3) uses texture images as input (reflectance image is computed606

from texture image). This proves that 2D data provides very beneficial607

information for mask spoofing detection.608

• CM3 increases the performances when it is used in score level fusion,609

whereas the impact of it in feature level fusion is not remarkable.610

• Although CM1, CM2 and CM3 provide very satisfactory results alone,611

the score level fusion of these countermeasures provides the best perfor-612

mance compared to all other scenarios in Table 2 and 3. Therefore, in613
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Figure 6, the ROC curve of this fusion based countermeasure is shown614

as the best one.615

• Since existing 3D scanners provide both 3D scan and corresponding616

texture image, more robust countermeasures can be developed by fusion617

of these two type of outputs (2D and 3D data).618

6.2. Integration of the Countermeasure to Face Recognition Systems619

In this subsection, we integrate the countermeasure with the best per-620

formance (fusion of CM1, CM2 and CM3) to the 3D FR system selected as621

baseline.622

The evaluations are done for 4 modes. The first two modes are the base-623

line mode and the mode under attacks, which are explained in Subsection624

3.3. The third mode illustrates performance when the countermeasure is625

applied against the attacks, that results in an improved performance with626

respect to the second mode. For the samples which are detected as attack627

by the countermeasure, a least similarity score, which is zero in this test,628

is assigned to those samples in verification tests. Last mode evaluates the629

performance of the baseline system together with the countermeasure in the630

normal operation mode of system, i.e., without attacks. The inclusion of the631

countermeasure may degrade the baseline performance when not confronted632

to attack (e.g. the countermeasure may consider as fake some real users.).633

For evaluations, we fix 3 different evaluation points at FFR = 1%, 5%,634

and 10% (FFR and FLR were defined in the previous subsection). Once635
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fixed, we incorporate the countermeasure as a first step into the baseline bio-636

metric systems oriented to discard fake data, and generate the performance637

evaluations for the 4 modes explained above.638

Figure 7 shows the behavior of the 3D face baseline system with/without639

attacks and with/without the countermeasure. The three figures represent640

the overall system performance under spoofing attacks when three differ-641

ent operating points (FFR = 1%, 5%, and 10%) are used for adjusting the642

countermeasure.643

It is clear from Figure 7 that the 3D FR system is vulnerable to mask644

attacks (more area between blue and red curves indicates more vulnerability645

to the attacks). Performance enhancement is obtained almost all regions of646

DET plots in Figure 7 when the countermeasure is introduced in presence of647

mask attacks (black curve compared to red curve). If we take an operating648

point where FFR = 1%, then FRR of the 3D FR system under attacks649

drops from around 65% to around 50% at FAR = 2%. For both of the two650

other plots (at FFR = 5% and 10%), the introduction of the countermeasure651

lowers FRR from around 65% to 4% and 7%, respectively, at FAR = 2%.652

The performance of the countermeasure is observed to be better at FFR =653

5% compared to the cases at FFR = 1% and 10%. Finally, the inclusion654

of the countermeasure improves the results of 3D FR system under attacks,655

whereas it degrades baseline performances of the system when not confronted656

to attack (pink curve compared to blue curve).657
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Figure 7: The DET Curves of the 3D face baseline biometric system when integrating the
countermeasure.

7. CONCLUSIONS658

In this study, a 2D+3D mask attack database is used to evaluate the per-659

formances of the proposed countermeasures for the protection of face recog-660

nition systems against mask attacks.661

The novelty of this study is that it is still one of the few studies that pro-662

poses countermeasures against 3D mask attacks. The analysis are done on663

depth maps, texture images and reflectance components of texture images,664

and 4 different countermeasures are proposed. Three of the proposed coun-665

termeasures use 2D data (texture images), and the remaining one uses 3D666

data (depth images) as input. These countermeasures can be used to protect667
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both 2D and 3D FR systems against mask attacks. The results of this study668

show that analysis on reflectance images provide the best results compared669

to analysis on texture and depth images. All of the 4 countermeasures pro-670

vide satisfactory information hence can be used as independent sources to671

discriminate masks from real faces. However with the fusion of these coun-672

termeasures, we observe a significant improvement in the performances. For673

instance, in this paper, a classification accuracy of 99% (almost perfect ac-674

curacy) is achieved for real face vs. mask face by fusing the information675

extracted from the reflectance images and texture images.676

Up to now, we have analyzed several characteristics of real and mask677

faces, and obtained almost perfect results on this mask database. The lim-678

itation of our study is that we were able to test the performances of the679

proposed countermeasures using the masks made from one type of material,680

which is polychrome mineral powder. When masks made from different ma-681

terials are used, we may obtain different performance accuracy. Our future682

works are first to test the performances of the proposed countermeasures us-683

ing masks made from different materials in order to observe if we can still684

obtain satisfactory results, and then to propose new countermeasures for685

more challenging mask databases with higher number of subjects as soon as686

available.687
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