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Abstract

Food webs, some scheduling problems and DNA molecules all have in common a “linear structure”
which can be captured through the idealized model of interval graphs (intersection graphs of intervals on a
line). However, real data is prone to errors and noise, thus raising the question of whether the algorithmic
results obtained for the interval graphs could be extended to more realistic models of “almost interval”
graphs. We address this question in the context of computing the vertex eccentricities, one of the most
studied centrality indices in order to determine the relative importance of nodes in a network. We
give a positive answer for the interval+kv graphs and a negative one (assuming plausible complexity
hypotheses) for the graphs of bounded interval number. In particular, we present an almost linear-time
algorithm for computing all vertex eccentricities in an interval+kv graph, for any fixed k, thus improving
on the recent quadratic-time algorithm of (Bentert & Nichterlein, 2022) for this problem.

1 Introduction

We study the feasibility of computing centrality indices in a network, a fundamental task in Network analysis
in order to determine the relative importance of every unit (the larger the centrality of a node is, the more
important it should be). As is standard in such theoretical investigations, we represent a network by a graph.
For any undefined graph notions and terminology in what follows, see [BM08]. Unless stated otherwise, all
graphs considered are undirected, simple (i.e., without loops or multiple edges), unweighted and connected.
Let G = (V,E) be an arbitrary graph. The distance between two vertices u and v (sometimes called their
“hop distance”) equals the minimum number of edges on a uv-path. We denote it in what follows by dG(u, v),
or simply d(u, v) if graph G is clear from the context. For communication networks in a broad sense (e.g.,
telecommunication networks, online social networks but also large-scale brain networks), the distance d(u, v)
may be regarded as the delay for transmitting a message with respective sender and recipient u and v. Let
the graph centrality of vertex v be defined as 1/eG(v), where eG(v) = maxu∈V dG(u, v) [HH95]. The value
eG(v) is also called the eccentricity of vertex v. Note that there also exist other centrality indices than the
one we discussed above [DSP18].

Distances in graphs play an important role in Location theory. For instance, in order to broadcast a
message, it is desirable to minimize the maximum distance of a node to the source. In this respect, an
optimal location for sending such a message would be at a vertex of minimum eccentricity or, equivalently,
one of maximum centrality. The center of a graph is the subset of all its vertices of minimum eccentricity.
In light of its aforementioned applications to networks, the problem of computing the graph center, or even
better, all vertex eccentricities, has received considerable attention. It is well-known that for every n-vertex
m-edge graph we can compute all vertex eccentricities in O(nm) time, simply by running a breadth-first
search from every vertex. This algorithm is not practical for huge complex networks such as Facebook, with
hundreds of millions of nodes and billions of links, for which even using a massively parallel implementation
of BFS it takes hours to complete [BBR+12]. The existence of a faster algorithm for computing all vertex
eccentricities was open for decades, until it was solved in the negative by [RVW13]. Specifically, they proved a
surprising connection between this problem and the Boolean Satisfiability problem, an important problem in
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electronic design automation and many other areas in computer science. The Boolean Satisfiability problem
asks whether a given logic formula is satisfiable. The Strong Exponential-Time Hypothesis (SETH) posits

that we cannot solve this problem in O(2cN ) time, for any c < 1, where N is the number of variables [IP01].
Assuming the SETH, we cannot compute the diameter (i.e., the maximum eccentricity of a vertex) in
O(n2−ε) time, for any ε > 0, even for n-vertex graphs with only n1+o(1) edges [RVW13].

This above hardness result only tells us that it is unlikely we can improve centrality computations for all
the graphs. However, with real data at hands, it is sometimes possible to break this quadratic barrier (in
the number m of edges) by exploiting some underlying structure in the data. An interval graph is a graph
G = (V,E) the vertices of which can be mapped to closed intervals on the real line, in such a way that two
vertices u, v ∈ V are adjacent in if and only if their respective intervals Iu, Iv intersect. Such a mapping is
called an interval model of graph G. We refer to Figure 1 for an illustration.

Figure 1: An interval graph along with a corresponding interval model [Cao21].

The first introduction of interval graphs is credited to Hajös and Benzer in the 1950’s. This class of graphs
has played a pivotal role in refining our understanding of the linear structure of DNA molecules [Ben59]. The
interval graphs were used as a mathematical model for food webs, a.k.a. consumer-resource systems [Coh78],
and ever since they found further applications in job scheduling in industry [BNBYF+01]. The first linear-
time algorithm for the recognition of these graphs, and the construction of an interval model, was quite
complicated due to its use of PQ-trees, an intricate tree-based data structure [BL76]. Since then, simpler
linear-time algorithms were found based on alternative characterizations of these graphs [Hsu92, HMPV00,
COS98].

As far as we are concerned in this paper, we can compute in linear time all vertex eccentricities in an
interval graph (and so, all graph centralities) with a very simple algorithm [Ola90]. We start presenting
a different algorithm for computing all vertex eccentricities in an interval graph (Theorem 1). It runs in
O(m + n log3 n) time on n-vertex, m-edge interval graphs. Although it is slightly slower than the state-of-
the-art algorithm for this problem, what makes this algorithm interesting is that it can be generalized to a
larger class of “almost” interval graphs. We discuss about two different extensions of interval graphs in the
paper. First, in his seminal work, Benzer considered 145 mutant strains of a bacteria-infecting virus, T4, for
which he experimentally uncovered an interval graph structure on 144 of the 145 strains. These results imply
that interval graphs are a suitable model for the interactions between most fragments of genetic materials
in some viruses, but not necessarily for all of it. Let us call a graph an interval+kv graph if it can be
made interval by removing at most k vertices. Second, subsequent works have evidenced that many genes
are better represented by a collection of unbroken sequences of nucleotides on the DNA strand rather than
just by one interval [Cha81]. Let us define a t-interval representation of a graph G as a mapping of its
vertices to subsets of at most t intervals, so that two vertices are adjacent in G if and only if some of their
respective intervals intersect. The interval number of a graph is the least t such that it admits a t-interval
representation.

Until this paper, the fastest known algorithm in order to compute all vertex eccentricities in an interval+kv
graph with n vertices was running in O(kn2) time, that is only interesting if the number of edges is at least
ω(n) [BN22]. The fine-grained complexity of computing all vertex eccentricities within graphs of bounded
interval number was left as an open problem [DHV21].

2



1.1 Contributions

Our main result is an almost linear-time algorithm for computing all vertex eccentricities in an interval+kv
graph, for any fixed k (Theorem 2). Specifically, if the input graph has n vertices and m edges, then for any
positive value of ε, we can upper bound the running time of the algorithm by an O(2δk(n+m)1+ε), for some
constant δ depending on ε. The exponential dependency on k is shown to be necessary assuming the SETH
(Lemma 7). For that we combine, it seems for the first time, the properties of interval models with some
range queries techniques used in previous works [CK09] and originating from database computing [Ben79].

However, in contrast to this above positive result, we revisit a known construction in the literature [ED16]
in order to show that assuming the SETH, the diameter of n-vertex m-edge graphs with interval number
two cannot be computed in O(n1−εm) time, for any positive value ε (Theorem 3).

1.2 Comparison with previous works

There is a growing literature on the relations between range queries techniques and faster centralities compu-
tation algorithms [AVWW16, BHM20, CK09, DHV22]. Applications of these techniques to the computation
of all shortest paths intersecting a bounded number of vertices were proposed [Duc22a]. This scenario is rele-
vant for transportation networks, where most shortest paths intersect a few “hubs” in the network [CHKZ03].
Other applications of range queries techniques to graph classes with small diameter and an interval-like rep-
resentation were proposed [DHV21]. To the best of our knowledge, our work is the first to combine both
approaches. Some authors also have studied the relations between faster centralities computation and other
techniques from Computational Geometry, such as network Voronoi diagrams [Cab18].

The only previous algorithm for centralities computation in an interval+kv graph [BN22] builds on the
existence of an optimal quadratic-time algorithm for computing all distances in an interval graph [RMPR92].
Therefore, for every fixed k, their algorithm requires quadratic work space. By contrast, our algorithm builds
on range queries techniques in order to store a compact version of the distance matrix of an interval graph,
which only requires quasi linear work space. The design of compact distance encodings for interval graphs
has predated our paper [GP08]. We here propose a different encoding than in previous works, see Lemma 4,
which looks easier to incorporate within our main algorithm.

1.3 Organization of the paper

In Section 2, we first present an almost linear-time algorithm for computing all eccentricities in an interval
graph. This algorithm is then extended to the interval+kv graphs, for any fixed k, in Section 3. In Section 4,
we show that assuming the SETH, the existence of a faster algorithm for this problem can be ruled out for
the graphs of interval number two. We end up discussing a few open questions in Section 5.

2 Interval models and graph centralities

Throughout the whole section, we assume dealing with an n-vertex interval graph G = (V,E), represented
as an interval model I(G) = (Iv)v∈V . For each vertex v ∈ V , its interval Iv is encoded as the ordered pair
(av, bv) of its two end-points, that we can alway assume to take integer values between 1 and 2n.

2.1 Representation of balls as intervals

The ball of center v and radius ℓ contains all vertices that are at distance at most ℓ from v. Formally,
N ℓ

G[v] = {u ∈ V | dG(u, v) ≤ ℓ}. The following folklore results on interval graphs are proved for completeness
of the paper:

Lemma 1. In any interval model of a graph G, for each vertex v and integer ℓ, the union
⋃
{Iu | u ∈ N ℓ

G[v]}
of all intervals representing a vertex at distance at most ℓ from v is itself an interval, denoted by Iℓ(v).
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Proof. We prove the property by induction on ℓ. If ℓ = 0, then we haveN0
G[v] = {v}, and therefore, I0(v) = Iv

is an interval. From now on let ℓ > 0. By the induction hypothesis, Iℓ−1(v) is an interval. Let u ∈ N ℓ
G[v] be

such that au is minimized. In the same way, let w ∈ N ℓ
G[v] be such that bw is maximized. Since u,w ∈ N ℓ

G[v],
there exist vertices u′, w′ ∈ N ℓ−1

G [v] such that dG(u, u
′), dG(w,w

′) ≤ 1. In particular, Iu ∩ Iu′ ̸= ∅ and
Iw ∩ Iw′ ̸= ∅, that implies Iu ∩ Iℓ−1(v) ̸= ∅ and Iw ∩ Iℓ−1(v) ̸= ∅. Therefore, Iℓ(v) = Iu ∪ Iℓ−1(v)∪ Iw is also
an interval.

In general, not all vertices u such that Iu ⊆ Iℓ(v) belong to N ℓ
G[v]. For instance, we may have Iu ⊆ Iu′ for

some u′ ∈ N ℓ
G[v], and u′ is on a shortest uv-path. However, we have the following slightly weaker property:

Lemma 2. Let u and v be distinct vertices in an interval graph G. We have that dG(u, v) ≤ ℓ if and only
if Iu ∩ Iℓ−1(v) ̸= ∅ (resp., Iℓ−1(u) ∩ Iv ̸= ∅).

Proof. Let us first assume dG(u, v) ≤ ℓ. Let u′ ∈ N ℓ−1
G [v] ∩ N1

G[u] (possibly, u′ = u). We have that

Iu ∩ Iℓ−1(v) ⊇ Iu ∩ Iu′ ̸= ∅. Conversely, let us now assume Iu ∩ Iℓ−1(v) ̸= ∅. Let u′ ∈ N ℓ−1
G [v] satisfy

Iu ∩ Iu′ ̸= ∅. We have dG(u, v) ≤ dG(u, u
′) + dG(u

′, v) ≤ 1 + (ℓ− 1) = ℓ.

Corollary 1. Let u and v be distinct vertices in an interval graph G and let ℓ > j ≥ 0 be integers. We have
that dG(u, v) ≤ ℓ if and only if Ij(u) ∩ Iℓ−j−1(v) ̸= ∅.

Proof. Clearly, dG(u, v) ≤ ℓ if and only if there exists a vertex u′ ∈ N j
G[u] such that dG(u

′, v) ≤ ℓ − j. By

Lemma 2, the latter is equivalent to have Iu′∩Iℓ−j−1(v) ̸= ∅. We are done as Ij(u) =
⋃
{Iu′ | u′ ∈ N j

G[u]}.

2.2 Fast computation of the balls

For each vertex v and integer ℓ ≥ 0, let aℓ(v), bℓ(v) denote the end-points of the interval Iℓ(v) (defined in the
previous Section 2.1). Next, we present a data structure in order to efficiently compute any interval Iℓ(v)
(encoded by the ordered pair of its two end-points). We start with an easy observation:

Lemma 3. Being given an interval model I(G) for some n-vertex graph G = (V,E) and an integer p ≥ 0,
we can compute all intervals I2j−1(v), I2j (v), for every vertex v and every 0 ≤ j ≤ p, in total O(np) time.

Proof. We consider all values j sequentially. Let us assume to be given the intervals I2j−1(v) (for j = 0,
I20−1(v) = I0(v) = Iv is already part of the interval model, and for j > 0 we may assume these intervals to
be computed at the previous step j − 1 of the algorithm). By Lemma 2,

a2j (v) = min{au | Iu ∩ I2j−1(v) ̸= ∅} = min{au | a2j−1(v) ≤ bu}.

We scan the points of the model, from left to right, and we do as follows for each i ∈ {1, 2, . . . , 2n}:

1. Case i = au for some u: We insert au at the end of some auxiliary list L. At any moment during the
scan, L contains all left points, in order, of all intervals Iu that are already started but not yet closed.

2. Case i = a2j−1(v) for some v: We simply set a2j (v) as the head au of list L.

3. Case i = bu for some u: We remove au from L. It can be done in O(1) time if we keep a pointer to its
position in L at the time of its insertion to this list.

The overall running time is in O(n). In the same way,

b2j (v) = max{bu | au ≤ b2j−1(v)}.

We can compute all values b2j (v) in O(n) time by scanning the model from right to left and replacing
au, a2j−1(v), bu by bu, b2j−1(v), au in the above procedure. Then, by Corollary 1,

a2j+1−1(v) = min{a2j−1(u) | a2j−1(v) ≤ b2j−1(u)}
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and
b2j+1−1(v) = max{b2j−1(u) | a2j−1(u) ≤ b2j−1(v)}.

We can compute all values a2j+1−1(v), b2j+1−1(v) in O(n) time by replacing the Iu’s by the I2j−1(u)’s in the
above procedures.

In practice, it suffices to set p = ⌈log n⌉. We now prove that in order to compute any interval Iℓ(u),
it suffices to store all intervals I2j−1(v), I2j (v) (pre-computed by applying Lemma 3) in some suitable data
structure. A 2-range tree stores a static collection P of 2-dimensional points on which we can perform the
following queries: Given as inputs ⟨α, β, γ, δ⟩, we can either output

min{a | (a, b) ∈ P ∩ ([α;β]× [γ; δ])} (min-query)

or
max{b | (a, b) ∈ P ∩ ([α;β]× [γ; δ])} (max-query).

Other types of queries can be also supported (see Section 3 for an example). If we need to store n points,
then we can construct a 2-range tree in O(n log n) time, so that any query can be answered in O(log n)
time [Cha90].

Lemma 4. Being given an interval model I(G) for some n-vertex graph G = (V,E), after a pre-processing
in O(n log2 n) time we can compute any interval Iℓ(u) in O(log2 n) time.

Proof. First, we apply Lemma 3 for p = ⌈log n⌉. For every 0 ≤ j ≤ p, we construct a 2-range tree in order
to store all the points (a2j−1(v), b2j−1(v)). In doing so, we construct O(log n) 2-range trees, that can be
done in O(n log2 n) time. Then, let us assume that we want to compute Iℓ(u), for some u and ℓ. We may
assume that ℓ ̸= 0 (else, I0(u) = Iu is already part of the model I(G)). Let us write ℓ =

∑q
i=1 2

ji for some

p ≥ j1 > j2 > . . . > jq ≥ 0. We construct the intervals Iℓt(u) sequentially, where ℓt =
∑t

i=1 2
ji for every

1 ≤ t ≤ q. Since ℓ1 is a power of two, we already pre-computed Iℓ1(u) for any u. From now on, we assume
that q > t > 1. By Corollary 1,

aℓt+1
(u) = min{a2jt+1−1(w) | aℓt(u) ≤ b2jt+1−1(w)}

and
bℓt+1

(u) = max{b2jt+1−1(w) | a2jt+1−1(w) ≤ bℓt(u)}.

In particular, we can compute aℓt+1
(u), bℓt+1

(u) in O(log n) time with two queries on the jtht+1 2-range tree.

Overall, the total time for computing Iℓq (u) = Iℓ(u) is in O(q log n) = O(log2 n).

2.3 The algorithm

Theorem 1. All eccentricities in an interval graph G = (V,E) with n vertices and m edges can be computed
in O(m+ n log3 n) time (resp., in O(n log3 n) time if an interval model is given in advance).

Proof. First, we compute in O(m + n) time an interval model I(G). We add all points (aw, bw), for every
vertex w ∈ V , in a 2-range tree. Then, we apply Lemma 4. Given some positive values (ℓu)u∈V , we present
an algorithm in order to determine for each vertex u separately whether eG(u) ≤ ℓu. Indeed, doing so we can
compute all eccentricities by applying O(log n) times this algorithm, performing on our way n simultaneous
binary searches. By Lemma 2 we have eG(u) ≤ ℓu if and only if Iℓu−1(u) ∩ Iw ̸= ∅ for every vertex w ∈ V .
In order to check whether it is the case, we apply Lemma 4 in order to compute the interval Iℓu−1(u). Then,
we test for the existence of an interval Iw such that either bw < aℓu−1(u) or aw > bℓu−1(u). It can be done
in O(log n) time with two queries on our 2-range tree. Overall, our intermediate algorithm runs in O(log2 n)
time per vertex, hence in O(n log2 n) time, and therefore the total running time in order to compute all
vertex eccentricities (being given I(G)) is in O(n log3 n).
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3 Generalization to almost interval graphs

The purpose of this section is to generalize Theorem 1 to the interval+kv graphs, for any fixed k. We first
need the following result:

Lemma 5 ([Cao16]). Let G = (V,E) be an n-vertex m-edge graph. For any k, we can decide whether G is
an interval+kv graph in O(6k(n+m)) time. If yes, we can compute in the same time a k-subset S such that
G \ S is an interval graph.

In general, the output interval graph G \ S may be disconnected, even if G is connected. However, we
observe that the techniques used for Theorem 1 can be applied to every connected component of G \ S
separately, with no overhead in the total running time. As for the vertices in S, we may compute their
eccentricities directly (and in fact, all the distances dG(s, v), for every vertices s ∈ S and v ∈ V ), in total
O(km) time. The main issue to be resolved is to determine, for every two vertices u, v ∈ V \ S, whether
some shortest path is fully into V \ S (in which case, we can apply Theorem 1), or all their shortest paths
go by S.

A k-range tree is a data structure storing a static set of k-dimensional points, on which we can perform
the following counting queries: given lower and upper bounds αi and βi for every dimension i, 1 ≤ i ≤ k,
return the number of points (x1, x2, . . . , xk) in the collection so that αi ≤ xi ≤ βi for every 1 ≤ i ≤ k. Other
types of queries can be also supported.

Lemma 6 ([BHM20]). Let B(n, k) =
(⌈logn⌉+k

k

)
. Being given n points, we can construct a k-range tree in

O(k2B(n, k)n) time, in such a way that each query can be answered in O(2kB(n, k)) time. Moreover, for
every ε > 0, there exists a δ > 0 such that B(n, k) = 2δknε.

We combine Lemma 6 and Theorem 1 in order to derive our main result in the paper:

Theorem 2. All eccentricities in an interval+kv graph G = (V,E), with n vertices and m edges, can be
computed in O(6k(m+ kB(n, k + 2)n log n)) time.

Proof. We first apply Lemma 5, that results in a k-subset S and an interval graph H = G \ S. Then, we
execute a breadth-first search from every vertex s ∈ S, thus computing the distances dG(v, s) for every
vertex v. It takes O(km) time. In doing so, we computed the eccentricities eG(s) for every vertex s ∈ S. We
also apply Lemma 4 to H. Now, in order to compute all remaining eccentricities, as already noticed in the
proof of Theorem 1, it suffices to call O(log n) times an algorithm solving the following decision problem:
being given positive values ℓu, u ∈ V \ S, decide for each vertex u separately whether eG(u) ≤ ℓu. For
that, for each vertex u we start computing the interval Iℓu−1(u) which represents N ℓu−1

H [u]. It can be done
in O(n log2 n) time by applying Lemma 4. Furthermore, we may assume without loss of generality that
ℓu ≥ max{dG(u, s) | s ∈ S} for every vertex u.

1. For every vertex u, we compute the number n0(u) of vertices in N ℓu
H [u]. By Lemma 2, these are exactly

the vertices w such that Iw ∩ Iℓu−1(u) ̸= ∅. Therefore, in order to compute all values n0(u), we first
add all points (au, bu) in a 2-range tree, in O(n log n) time. Then, for each vertex u we compute the
number of such points (aw, bw) such that either aw ≤ aℓu−1(u) ≤ bw or aℓu−1(u) < aw ≤ bℓu−1(u),
that is exactly n0(u). It only requires two counting queries per vertex.

2. Let S = {s1, s2, . . . , sk} be arbitrarily ordered. For every 1 ≤ i ≤ k and for every vertex u, we

compute the number ni(u) of vertices w in N ℓu
G [u]\

(
N ℓu

H [u] ∪ S
)
such that: dG(u, si)+dG(si, w) ≤ ℓu;

dG(u, sj) + dG(sj , w) > ℓu for every 1 ≤ j < i. For that, for every vertex u, we create a (k + 2)-
dimensional point

−→pu = (au, bu, dG(u, s1), dG(u, s2), . . . , dG(u, sk)),

that we add in some (k + 2)-range tree. It takes O(k2B(n, k + 2)n) time. Now, for every 1 ≤ i ≤ k
and for every vertex u, we count the number of such points −→pw that satisfy:
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• Either bw < aℓu−1(u) or aw > bℓu−1(u);

• dG(sj , w) > ℓu − dG(u, sj) for every 1 ≤ j < i;

• dG(si, w) ≤ ℓu − dG(u, si);

That is exactly ni(u). The last two constraints impose each of the last k coordinates of the point to
belong to some fixed range, while the first constraint enforces the two first coordinates to belong to
either of two disjoint ranges. As a result, we can compute ni(u) with two counting queries. It takes
O(2kB(n, k + 2)) time per vertex, and it needs to be done k times (once per index i).

For every vertex u, the number of vertices in N ℓu
G [u] \ S is exactly

∑k
i=0 ni(u). Hence, in order to decide

whether eG(u) ≤ ℓu, it suffices to check whether this number is equal to n− k.

We note that the dependency on k is exponential. We end up this section by showing this is unavoidable,
assuming the SETH. Recall for what follows that the diameter of a graph is its maximum eccentricity.

Lemma 7. Assuming the SETH, we cannot compute the diameter of interval+kv graphs, with n vertices
and n1+o(1) edges, in O(2o(k)n2−ε) time for any ε > 0.

Proof. A split graph is a graph G = (K ∪ S,E) that can be vertex-partitioned into a clique K and a stable

set S. Assuming the SETH, we cannot compute the diameter of n-vertex split graphs G in O(n2−ε) time,
for any ε > 0, even if |K| = k = O(log n) [AVWW16, BCH16]. Note that in this situation, G only has
O(nk + k2) = n1+o(1) edges. Furthermore, G is an interval+kv graph because it suffices to remove all
vertices in the clique K in order to obtain an edgeless graph, a special case of interval graph.

4 SETH-hardness results

We now prove that the existence of a faster algorithm for centralities computation is unlikely for the graphs
of bounded interval number, even if the latter is only two. For that, we use the following Orthogonal Vector
problem (OV): being given two set families A and B over a common universe C, decide whether there exist
sets a ∈ A, b ∈ B such that a ∩ b = ∅.

Lemma 8 ([AVWW16]). Assuming the SETH, for every ε > 0, there is some c > 0 such that we cannot
solve OV in O(n2−ε) time, even if |A| = |B| = n and |C| ≤ c · log n.

The following construction was inspired by Lemma 8. It transforms any instance (A,B,C) of OV, with
|A| = |B| = n and |C| = O(log n), into a graph G⟨A,B,C⟩, as follows:

• For every a ∈ A, we add a balanced binary rooted tree T a with root ra and |C| leaves, indexed by the
elements in C. Similarly, for every b ∈ B, we add a balanced binary rooted tree T b with root rb and
|C| leaves, also indexed by the elements in C.

• For every c ∈ C, we add two balanced binary rooted trees T c,A and T c,B , with n leaves each, that are
indexed by the sets in A and B respectively, and a common root vertex rc.

• We add two more trees TA, TB , with n leaves each, that are indexed by the sets in A and B respectively.

• Fix some p = ω(log n) for the remainder of the construction. For each a ∈ A and c ∈ a, we add a path
Pa,c of length p between the leaves of indices c and a in T a, T c,A respectively. Similarly, for each b ∈ B
and c ∈ b, we add a path Pb,c of length p between the leaves of indices c and b in T b, T c,B respectively.

• Finally, for every a ∈ A we add a path Pa,A of length p between ra and the leaf of index a in TA. We
further add a path Pa of length p between ra and some new node. In the same way, for every b ∈ B
we add a path Pb,B of length p between rb and the leaf of index b in TB . We also add a path Pb of
length p between rb and some new node.
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All graphs G⟨A,B,C⟩ can be constructed in n1+o(1) time; furthermore, assuming the SETH, we cannot
compute their diameter in O(n2−ε) time, for any ε > 0 [ED16]. We prove the following additional property
of these graphs:

Lemma 9. Every graph G⟨A,B,C⟩ has interval number at most two.

Proof. We start with the following useful construction. Namely, we construct a 2-interval representation
for any rooted tree T as follows. For every internal node x we create disjoint intervals I1y1

, I1y2
, . . . , I1yd

for

its children y1, y2, . . . , yd and then we create the interval I0x ⊇
⋃d

i=1 I
1
yi

for x. Let us call this model the
canonical 2-representation of tree T . All nodes in this canonical 2-representation have exactly two intervals,
except the root and the leaves which have only one interval each.

The graph G⟨A,B,C⟩ can be vertex-covered by the following collection of rooted trees:

• T a ∪ Pa ∪ Pa,A ∪ {Pa,c | c ∈ a}, for every a ∈ A, with root ra;

• T b ∪ Pb ∪ Pb,B ∪ {Pb,c | c ∈ b}, for every b ∈ B, with root rb;

• T c,A ∪ T c,B , for every c ∈ C, with root rc;

• TA, TB .

We now take the union of the canonical 2-representations of all these trees above. Every node that appears
in only one tree is associated to at most two intervals. The only nodes appearing in multiple trees are: the
leaves of TA (each appears as a leaf in the tree rooted at ra, for one set a ∈ A), the leaves of TB (each
appears as a leaf in the tree rooted at rb, for one set b ∈ B), the leaves of T c,A for every c ∈ C (each appears
as a leaf in the tree rooted at ra, for at most one set a ∈ A) and the leaves of T c,B for every c ∈ C for every
b ∈ B (each appears as a leaf in the tree rooted at rb, for at most one set b ∈ B). In particular, each such
node only appears in two trees, and as a leaf, therefore it is associated to two intervals. As a result, the
union of the canonical 2-representations of all trees above is a 2-interval representation of G⟨A,B,C⟩.

Overall, the following result is derived by the combination of [ED16] with Lemma 9:

Theorem 3. Assuming the SETH, we cannot compute the diameter of n-vertex graphs in O(n2−ε) time,
for any ε > 0, even if they only have n1+o(1) edges and interval number at most two.

5 Conclusion and open perspectives

In this paper, we completely settled the complexity of computing all vertex eccentricities (and therefore, all
graph centralities) within the interval+kv graphs for every fixed k and within the graphs of bounded interval
number. Let us briefly summarize what is known insofar for other important generalizations of the interval
graphs:

Boxicity. The boxicity of a graph G = (V,E) is the least integer k such that there exist interval graphs
G1, . . . , Gk with same vertex-set V and so that E is exactly the set of all common edges to E(G1), . . . , E(Gk).
Assuming the SETH, the diameter of n-vertex graphs with n1+o(1) edges cannot be computed in O(n2−ε)
time, for any ε > 0, even if the graphs considered are intersection graphs of axis-parallel line segments [BKK+22].
Such graphs have boxicity at most two [HNZ91].

Track number. The track number of a graph G = (V,E) is the least integer k such that there exist interval
graphsG1, . . . , Gk with same vertex-set V and so that E is exactly the union of all edges in E(G1), . . . , E(Gk).
Every bounded-degree graph also has bounded track-number [KD94], and therefore a faster algorithm for
computing all vertex eccentricities in these graphs is unlikely to exist [ED16]. However, either proving or
disproving the existence of such faster algorithms for the special case of graphs with track number two seems
to be open.
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Interval probe graphs. Last, we call a graph G = (V,E) an interval probe graph if for some bipartition
P ∪N of its vertices, where N is an independent set, we can make G an interval graph by only adding edges
between vertices in N . It follows from [She99] that every interval probe graph G = (P ∪N,E) has asteroidal
number at most |N | + 2. Therefore, we can compute its diameter in O(|N |3 · m3/2) time, where m is the
number of edges [Duc22b]. However, whether we can remove the dependency on N is an open problem.
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