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Word problem and parabolic subgroups in Dyer groups

LUIS PARIS

MIREILLE SOERGEL

Abstract One can observe that Coxeter groups and right­angled Artin groups share the same

solution to the word problem. On the other hand, in his study of reflection subgroups of Coxeter

groups Dyer introduces a family of groups, which we call Dyer groups, which contains both, Coxeter

groups and right­angled Artin groups. We show that all Dyer groups have this solution to the word

problem, we show that a group which admits such a solution belongs to a little more general family

of groups that we call quasi­Dyer groups, and we show that this inclusion is strict. Then we show

several results on parabolic subgroups in quasi­Dyer groups and in Dyer groups. Notably, we prove

that any intersection of parabolic subgroups in a Dyer group of finite type is a parabolic subgroup.

AMS Subject Classification Primary: 20F36, 20F55. Secondary: 20F10.

Keywords Coxeter groups, right­angled Artin groups, Dyer groups, word problem, parabolic

subgroups.

1 Introduction

There is an extensive literature on Coxeter groups as well as on right­angled Artin groups and, more

generally, on graph products of cyclic groups. A peculiarity of these two families of groups is that they

share the same solution to the word problem: that given by Tits [14] for Coxeter groups and that given

by Green [5] for graph products of cyclic groups. This common algorithm goes beyond the simple

solution to the word problem since it provides an effective criterion to determine if an expression is

reduced or not and it makes it possible to define normal forms.

It is therefore natural to ask the following questions. What do these two families of groups have in

common that makes them to have the same solution to the word problem? Which other groups have

this solution to the word problem?

To be more precise, our questions and study concern marked groups. Recall that a marked group is a

pair (G,X) where G is a group and X is a generating set for G . Note that Coxeter groups and graph

products of cyclic groups are actually marked groups. In the rest of the paper we will say that a marked

group (G,X) has Property D if it has the same solution to the word problem as Coxeter groups and as

graph products of cyclic groups. A precise definition of Property D is given in Section 2.

In his study of reflection subgroups of Coxeter groups Dyer [4] introduces a family of groups, that we

call Dyer groups, which contains both, Coxeter groups and graph products of cyclic groups. A careful

reading of the proof of [4, Lemma 2.8] completed with ideas from Tits [14] allows an informed reader

to show that these groups have Property D . A complete and explicit proof of this result is given in

Section 3 (see Theorem 2.2).
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This partially answers our questions in the sense that it says what Coxeter groups and graph products

of cyclic groups have in common that makes them to have the same solution to the word problem. It

remains to see whether Dyer groups are the only marked groups to have Property D , and, if not, which

other groups have it.

Examples of marked groups that are not Dyer groups and that have Property D can be easily found.

For example (Z, {1, 2}) has Property D and it is not a Dyer group (note that (Z, {1}) is a Dyer group).

However, in this context it is reasonable to restrict the study to marked groups (G,X) satisfying the

following property.

• For all x, y ∈ X and a, b ∈ Z such that xa 6= 1 and yb 6= 1, if xayb is a non­trivial power of an

element of X or if xayb = 1, then x = y.

In that case we say that (G,X) is a strongly marked group. Coxeter groups, graph products of cyclic

groups and, more generally, Dyer groups are strongly marked groups.

We introduce a family of marked groups a little more general than that of Dyer groups which we call

quasi­Dyer groups and in Section 4 we show that, if a strongly marked group (G,X) has Property D ,

then (G,X) is a quasi­Dyer group (see Theorem 2.3).

We do not know if all quasi­Dyer groups are strongly marked and/or if they all have Property D , but in

Section 5 we show a family of quasi­Dyer groups that are not Dyer groups, that are strongly marked,

and that have Property D (see Proposition 2.4).

The next question that motivates this work is: what properties common to Coxeter groups and right­

angled Artin groups can be extended to Dyer groups and, more generally, to groups with Property

D? A first answer can be found in Soergel [12] where actions of Dyer groups on CAT(0) spaces are

constructed that extend those of Coxeter groups on Davis–Moussong complexes (see Moussong [8])

and those of right­angled Artin groups on Salvetti complexes (see Charney–Davis [1]).

Parabolic subgroups play a prominent role in the study of Coxeter groups and in that of right­angled

Artin groups. Part of the results on these subgroups extends to groups with Property D . In particular

we show that a parabolic subgroup of a group having Property D has Property D (see Proposition

2.7) and that the intersection of two standard parabolic subgroups is a standard parabolic subgroup (see

Corollary 2.6). However, the uniqueness property for an element of minimal syllabic length in a coset

of a standard parabolic subgroup holds for Dyer groups (see Proposition 2.8) but not for all groups

having Property D (see Example 2.9).

In Section 6 we show that any intersection of parabolic subgroups in a Dyer group of finite type is a

parabolic subgroup (see Theorem 2.10). This property is known and widely used for Coxeter groups

(see Tits [15], Solomon [13], Krammer [6] and Qi [10]). It is also known for right­angled Artin groups

(see Duncan–Kazachkov–Remeslennikov [3]) but, as far as we know, it is new for graph products of

cyclic groups.

The paper is organized as follows. In Section 2 we give detailed and precise definitions and statements.

We also show that the intersection of two standard parabolic subgroups in a group with Property D is

a standard parabolic subgroup. In Section 3 we prove that Dyer groups have Property D . In Section 4

we show that any strongly marked group with Property D is a quasi­Dyer group. In Section 5 we show
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a family of quasi­Dyer groups that are strongly marked, that have Property D , and that are not Dyer

groups. In Section 6 we show that the intersection of a family of parabolic subgroups in a Dyer group

of finite type is a parabolic subgroup.

Acknowledgments Both authors are supported by the French project “AlMaRe” (ANR­19­CE40­

0001­01) of the ANR.

2 Definitions and statements

We first recall the definitions of a Coxeter group and of a graph product of cyclic groups.

Definition Let Γ be a simplicial graph with vertex set V(Γ) and edge set E(Γ). We assume that E(Γ)

is endowed with a map m : E(Γ) → N≥2 . To the pair (Γ,m) we associate a group W = W(Γ,m),

called a Coxeter group, defined by the following presentation:

W = 〈xv , v ∈ V(Γ) | x2
v = 1 for all v ∈ V(Γ) , (xuxv)m(e)

= 1

for all e = {u, v} ∈ E(Γ)〉 .

The pair (W,X) is called a Coxeter system, where X = {xv | v ∈ V(Γ)}.

Definition Let Γ be a simplicial graph with vertex set V(Γ) and edge set E(Γ). We assume that V(Γ)

is endowed with a map f : V(Γ) → N≥2 ∪ {∞}. To the pair (Γ, f ) we associate a group C = C(Γ, f ),

called a graph product of cyclic groups, defined by the following presentation:

C = 〈xv , v ∈ V(Γ) | xf (v)
v = 1 for all v ∈ V(Γ) such that f (v) 6= ∞ , xuxv = xvxu

for all e = {u, v} ∈ E(Γ)〉 .

If f (v) = ∞ for all v ∈ V(Γ), then C is called a right­angled Artin group.

We turn now to recall the solution to the word problem common to these two families of groups.

Throughout the paper we use the following notations. The order of an element g in a group is denoted

by o(g). If o(g) is finite, then Zo(g) = Z/o(g)Z is the cyclic group of order o(g), and if o(g) is infinite,

then Zo(g) = Z is the infinite cyclic group. Recall that a marked group is a group G endowed with a

generating set X ⊂ G . A marked group (G,X) is of finite type if X is finite. Let (G,X) be a marked

group. The set of syllables of X is

S(X) = {xa | x ∈ X , a ∈ Zo(x) \ {0}} .

It is clear that S(X) also generates G . Our solution to the word problem uses words on S(X) and not on

X , but in the concrete cases of Coxeter groups, of graph products of cyclic groups, and, more generally,

of Dyer groups, this is not a problem.

Let (G,X) be a marked group. We denote by S(X)∗ the free monoid on S(X). The elements of S(X)∗

are called syllabic words and they are written as finite sequences. The concatenation of two words

w,w′ ∈ S(X)∗ is written w · w′ . If w = (s1, s2, . . . , sℓ) ∈ S(X)∗ is a syllabic word, then we set

w = s1s2 · · · sℓ ∈ G and we say that w is represented by w . The shortest length of a syllabic word
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representing an element g ∈ G is called the syllabic length of g and it is denoted by lgS(X)(g). A

syllabic word w = (s1, s2, . . . , sℓ) is reduced if ℓ = lgS(X)(w). If a, b are two letters and m is an integer

≥ 2, then we denote by [a, b]m the alternating word (a, b, a, . . . ) of length m . Similarly, if a, b are two

elements of a group G , then we denote by [a, b]m the alternating product aba · · · of length m .

Definition Let (G,X) be a marked group and let w ∈ S(X)∗ be a syllabic word. Assume that w can

be written as w = w1 · (s, t) · w2 , where w1,w2 ∈ S(X)∗ , s, t ∈ S(X), and st ∈ S(X) ∪ {1}. Set

w′
=

{
w1 · (st) · w2 if st 6= 1 ,

w1 · w2 if st = 1 .

Then we say that we can go from w to w′ through an elementary M­operation of type I. Assume that w

can be written as w = w1 · [s, t]m · w2 , where w1,w2 ∈ S(X)∗ , s, t ∈ S(X), m ≥ 2, [s, t]m = [t, s]m and

lgS(X)([s, t]m) = m . Set

w′
= w1 · [t, s]m · w2 .

Then we say that we can go from w to w′ through an elementary M­operation of type II. We say that w

is M­reduced if its length cannot be shortened by any finite sequence of elementary M­operations.

Notice that elementary M­operations of type I strictly decrease lengths of syllabic words while elemen­

tary M­operations of type II preserve lengths. Furthermore, elementary M­operations of type II are

reversible but not those of type I. Notice also that, if we can go from w to w′ through a finite sequence

of elementary M­operations, then w = w′ .

Definition A marked group (G,X) is said to have Property D if

(a) for all w ∈ S(X)∗ , w is reduced if and only if w is M­reduced, and

(b) for all w,w′ ∈ S(X)∗ , if w and w′ are both reduced and w = w′ , then we can go from w to w′

through a finite sequence of elementary M­operations of type II.

Remark Property D for a marked group (G,X) of finite type solves the word problem in (G,X), but

the algorithm also solves the following two other questions.

• Given a syllabic word w , the algorithm determines a reduced syllabic word w′ such that w = w′ .

• Given a syllabic word w , the algorithm determines whether w is reduced or not.

The solutions to the word problem for Coxeter groups by Tits [14] and for graph products of cyclic

groups by Green [5] are summarized in the following theorem.

Theorem 2.1 (Tits [14], Green [5]) (1) Let W = W(Γ,m) be a Coxeter group and let X = {xv |

v ∈ V(Γ)} be its standard generating set. Then (W,X) has Property D .

(2) Let C = C(Γ, f ) be a graph product of cyclic groups and let X = {xv | v ∈ V(Γ)} be its standard

generating set. Then (C,X) has Property D .
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Definition Let Γ be a simplicial graph with vertex set V(Γ) and edge set E(Γ). We assume that E(Γ) is

endowed with a map m : E(Γ) → N≥2 and that V(Γ) is endowed with a map f : V(Γ) → N≥2 ∪ {∞}.

We further assume that, for each e = {u, v} ∈ E(Γ), if m(e) 6= 2, then f (u) = f (v) = 2. To the

triple (Γ,m, f ) we associate a group D = D(Γ,m, f ), called a Dyer group, defined by the following

presentation:

D = 〈xv , v ∈ V(Γ) | xf (v)
v = 1 for all v ∈ V(Γ) such that f (v) 6= ∞ ,

[xu, xv]m(e) = [xv, xu]m(e) for all e = {u, v} ∈ E(Γ)〉 .

Observe that any Coxeter group is a Dyer group and that any graph product of cyclic groups is a Dyer

group. Moreover, it is shown in Dyer [4] that the map V(Γ) → D , v 7→ xv , is injective, hence (D,X) is

a marked group, where X = {xv | v ∈ V(Γ)}. This marked group is called a Dyer system.

As pointed out in the introduction, an informed reader familiar with Coxeter groups will implicitly

find the proof of the following theorem in Dyer [4]. However, the groups studied in the present paper

include other groups such as right­angled Artin groups, and therefore the paper is not addressed only

to experts in Coxeter groups. So, we give an explicit and complete proof of the following theorem in

Section 3.

Theorem 2.2 Every Dyer system has Property D .

As mentioned in the introduction, it is quite easy to find marked groups that have Property D and that

are not Dyer systems. For example (Z, {1, 2}) is a marked group which has Property D but which is

not a Dyer system. So, to make the study more coherent we impose the following additional hypothesis

on marked groups.

Definition Let (G,X) be a marked group. We say that (G,X) is strongly marked if 1 6∈ X and it

satisfies the following condition:

• Let x, y ∈ X , s ∈ 〈x〉 \ {1} and t ∈ 〈y〉 \ {1}. If st ∈ S(X) ∪ {1}, then x = y.

In particular, if x, y ∈ X , x 6= y, then 〈x〉 ∩ 〈y〉 = {1}.

Let W = W(Γ,m) be a Coxeter group and let X = {xv | v ∈ V(Γ)} be its standard generating set.

Then (W,X) is strongly marked. Similarly, if C = C(Γ, f ) is a graph product of cyclic groups and

X = {xv | v ∈ V(Γ)} is its standard generating set, then (C,X) is strongly marked. More generally, if

D = D(Γ,m, f ) is a Dyer group and X = {xv | v ∈ V(Γ)}, then (D,X) is strongly marked (see Dyer

[4]).

For our next theorem we need to slightly extend the notion of Dyer group as follows.

Definition Let Γ be a simplicial graph with vertex set V(Γ) and edge set E(Γ). We assume that E(Γ)

is endowed with a map m : E(Γ) → N≥2 and that V(Γ) is endowed with a map f : V(Γ) → N≥2∪{∞}.

We further assume that, for each e = {u, v} ∈ E(Γ),

• if m(e) > 2 and m(e) is even, then f (u) = f (v) = 2,
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• if m(e) > 2 and m(e) is odd, then f (u) and f (v) are both finite and even and at least one of them

is equal to 2.

To the triple (Γ,m, f ) we associate a group QD = QD(Γ,m, f ), called a quasi­Dyer group, defined by

the following presentation:

QD = 〈xv , v ∈ V(Γ) | xf (v)
v = 1 for all v ∈ V(Γ) such that f (v) 6= ∞ , xuxv = xvxu

for all e = {u, v} ∈ E(Γ) such that m(e) = 2 , [x
f (u)/2
u , x

f (v)/2
v ]m(e) = [x

f (v)/2
v , x

f (u)/2
u ]m(e)

for all e = {u, v} ∈ E(Γ) such that m(e) > 2〉 .

The pair (QD,X) is called a quasi­Dyer system.

Remark In the above definition, if we replace the condition “if m(e) > 2 and m(e) is odd, then f (u)

and f (v) are both even and at least one of them is equal to 2” by the condition “if m(e) > 2 and m(e)

is odd, then f (u) and f (v) are both equal to 2” then QD(Γ,m, f ) = D(Γ,m, f ) is a Dyer group.

The main result of Section 4 is the following.

Theorem 2.3 Let (G,X) be a strongly marked group. If (G,X) has Property D , then (G,X) is a

quasi­Dyer system.

Let (G,X) be a strongly marked group having Property D . Let Γ be a simplicial graph and let

m : E(Γ) → N≥2 and f : V(Γ) → N≥2 ∪ {∞} be maps with the right conditions so that (Γ,m, f )

defines a quasi­Dyer group with G = QD(Γ,m, f ) and X = {xv | v ∈ V(Γ)}. Then we say that

QD(Γ,m, f ) is a quasi­Dyer presentation for (G,X).

We do not know if the reciprocal of Theorem 2.3 is true, that is, if all quasi­Dyer systems have Property

D . We do not know either if quasi­Dyer systems are all strongly marked groups. However, we know

a family of quasi­Dyer systems that are not Dyer systems, that are strongly marked, and that have

Property D . The following result is proved in Section 5.

Proposition 2.4 Let m ≥ 3 odd and k ≥ 2. Let

QDm,k = 〈x, y | x2
= y2k

= 1 , [x, yk]m = [yk, x]m〉 .

Then (QDm,k, {x, y}) is strongly marked and has Property D .

Definition If (G,X) is a marked group and Y ⊂ X , then we denote by GY the subgroup of G generated

by Y and we say that (GY ,Y) is a standard (marked) parabolic subgroup of (G,X). If Y ⊂ X and

g ∈ G , then (gGYg−1, gYg−1) is simply called a (marked) parabolic subgroup.

Let (G,X) be a strongly marked group having Property D . The support of a syllabic word w =

(x
a1

1 , x
a2

2 , . . . , x
aℓ
ℓ ) is Supp(w) = {x1, x2, . . . , xℓ}. This is well­defined since (G,X) is strongly marked.

Let g ∈ G . We choose a reduced syllabic form w = (x
a1

1 , x
a2

2 , . . . , x
aℓ
ℓ ) for g and we define the support

of g as Supp(g) = Supp(w) = {x1, . . . , xℓ} ⊂ X . Since one can go from a reduced syllabic form of g to

another through a finite sequence of elementary M­operations of type II and elementary M­operations

of type II do not change supports of syllabic words, the definition of Supp(g) does not depend on the

choice of the reduced syllabic form. On the other hand, it is easily seen that, if w and w′ are two syllabic

words such that one can go from w to w′ through a finite sequence of elementary M­operations, then

Supp(w) ⊃ Supp(w′). This proves the following.
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Lemma 2.5 Let (G,X) be a strongly marked group with Property D . Let Y ⊂ X and g ∈ G . We

have g ∈ GY if and only if Supp(g) ⊂ Y .

A direct consequence of this lemma is the following.

Corollary 2.6 Let (G,X) be a strongly marked group with Property D . For Y,Y ′ ⊂ X we have

GY ∩ GY′ = GY∩Y′ .

Let (G,X) be a strongly marked group with Property D and let QD(Γ,m, f ) be a quasi­Dyer presentation

for (G,X). For U ⊂ V(Γ) we denote by ΓU the full subgraph of Γ spanned by U , we denote by

mU : E(ΓU) → N≥2 the restriction of m to E(ΓU), and we denote by fU : V(ΓU) → N≥2 ∪ {∞} the

restriction of f to V(ΓU). The first result which is proved in Section 6 is the following.

Proposition 2.7 Let (G,X) be a strongly marked group with Property D and let QD(Γ,m, f ) be a

quasi­Dyer presentation for (G,X). Let U ⊂ V(Γ) and Y = {xu | u ∈ U}. Then (GY ,Y) is a strongly

marked group with Property D and QD(ΓU,mU, fU) is a quasi­Dyer presentation for (GY ,Y).

The second result of Section 6 concerns only Dyer systems and not strongly marked groups with

Property D . Indeed, as shown in Example 2.9, this result does not hold for all strongly marked groups

with Property D .

Proposition 2.8 Let (D,X) be a Dyer system, Y ⊂ X , and g ∈ D .

(1) There exists a unique element g0 in gDY of minimal syllabic length, and this element satisfies

lgS(X)(g0h) = lgS(X)(g0) + lgS(X)(h) for all h ∈ DY .

(2) There exists a unique element g0 in DYg of minimal syllabic length, and this element satisfies

lgS(X)(hg0) = lgS(X)(h) + lgS(X)(g0) for all h ∈ DY .

Example 2.9 Let G = QD3,2 = 〈x, y | x2 = y4 = 1 , xy2x = y2xy2〉 and X = {x, y}. We know by

Proposition 2.4 that (G,X) is strongly marked and has Property D . Let Y = {x} and g = yxy2 . Then

gGY has two elements, g = yxy2 and gx = y3xy2 , and lgS(X)(g) = lgS(X)(gx) = 3. In particular gGY

does not have a unique element of minimal syllabic length.

The main result of Section 6 is the following.

Theorem 2.10 Let (D,X) be a Dyer system of finite type and let {Pi | i ∈ I} be a non­empty collection

of parabolic subgroups of D . Then
⋂

i∈I Pi is a parabolic subgroup of D .

We do not know if this result remains true if we remove the hypothesis “to be of finite type”, however we

can prove that the intersection of two parabolic subgroups is always a parabolic subgroup (see Lemma

6.2).

The following consequence of Theorem 2.10 is widely used in the theory of Coxeter groups (see

Kammer [6], for example). On the other hand, an equivalent statement for Artin groups is one of the

central questions in the field.

Corollary 2.11 Let (D,X) be a Dyer system of finite type and let A be a subset of D . Then there

exists a smallest (for the inclusion) parabolic subgroup containing A .

Let (D,X) be a Dyer system and let A ⊂ D be a subset. As for Coxeter groups and for Artin groups the

smallest parabolic subgroup containing A is denoted by Pc(A) and is called the parabolic closure of A .
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3 Dyer systems

As mentioned in Section 2 the aim of the present section is to prove Theorem 2.2. We first recall some

results on Dyer groups proved in Dyer [4].

Let (D,X) be a Dyer system. Let R = {gxg−1 | g ∈ D , x ∈ X}. For each ρ ∈ R we take a copy

Hρ = {a [ρ] | a ∈ Zo(ρ)} of 〈ρ〉 whose operation is denoted additively. We consider the abelian group

M(D,X) =
⊕

ρ∈R

Hρ ,

that we endow with a structure of D­module, where the action of an element g ∈ D on an element

m =
∑

ρ∈R aρ[ρ] is defined by

g · m =

∑

ρ∈R

aρ[gρg−1] .

Let g ∈ D . Choose a syllabic representative w = (x
a1

1 , x
a2

2 , . . . , x
ap
p ) for g. For each i ∈ {1, . . . , p} we

set

ρi = x
a1

1 · · · x
ai−1

i−1 xix
−ai−1

i−1 · · · x
−a1

1 ∈ R .

Then we set

N(g) =

p∑

i=1

ai[ρi] ∈ M(D,X) .

The following theorem gathers together some results proved in Dyer [4].

Theorem 3.1 (Dyer [4]) Let (D,X) be a Dyer system.

(1) Let g ∈ D . Then the definition of N(g) ∈ M(D,X) does not depend on the choice of the syllabic

representative for g.

(2) Let g ∈ G . Let N(g) =
∑

ρ∈R aρ(g) [ρ]. Then lgS(X)(g) = |{ρ ∈ R | aρ(g) 6= 0}| .

(3) Let g, h ∈ D . Then N(gh) = N(g) + g · N(h).

Now using Theorem 3.1 we prove a version for Dyer groups of the so­called Exchange Lemma.

Lemma 3.2 Let (D,X) be a Dyer system. Let g ∈ D and let w = (x
a1

1 , . . . , x
aℓ
ℓ ) be a reduced syllabic

expression for g. For all i ∈ {1, . . . , ℓ} we set

ρi = x
a1

1 · · · x
ai−1

i−1 xix
−ai−1

i−1 · · · x
−a1

1 ∈ R .

Let s0 = x
a0

0 ∈ S(X). If lgS(X)(s0g) ≤ ℓ , then there exists i ∈ {1, . . . , ℓ} such that x0 = ρi . In that

case, if a0 + ai = 0, then (x
a1

1 , . . . , x
ai−1

i−1 , x
ai+1

i+1 , . . . , x
aℓ
ℓ ) is a reduced syllabic expression for s0g, and if

a0 + ai 6= 0, then (x
a1

1 , . . . , x
ai−1

i−1 , x
a0+ai
i , x

ai+1

i+1 , . . . , x
aℓ
ℓ ) is a reduced syllabic expression for s0g.

Proof We have N(g) =
∑ℓ

i=1 ai[ρi] and, by Theorem 3.1 (2), ρi 6= ρj for i 6= j. By Theorem 3.1 (3),

N(s0g) = a0[x0] +

ℓ∑

i=1

ai[s0ρis
−1
0 ] .
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Since the s0ρis
−1
0 are pairwise distinct for i ∈ {1, . . . , ℓ} and lgS(X)(s0g) ≤ ℓ , by Theorem 3.1 (2) there

exists i ∈ {1, . . . , ℓ} such that s0ρis
−1
0 = x0 , hence ρi = s−1

0 x0s0 = x0 .

Suppose a0 + ai = 0. From the equality x0 = ρi follows that s0g = x
a1

1 · · · x
ai−1

i−1 x
ai+1

i+1 · · · x
aℓ
ℓ , hence

w′ = (x
a1

1 , . . . , x
ai−1

i−1 , x
ai+1

i+1 , . . . , x
aℓ
ℓ ) is a syllabic expression for s0g. Furthermore,

N(s0g) =

i−1∑

j=1

aj[s0ρjs
−1
0 ] +

ℓ∑

j=i+1

aj[s0ρjs
−1
0 ] ,

and the [s0ρjs
−1
0 ] are pairwise distinct for j ∈ {1, . . . , ℓ}, hence, by Theorem 3.1 (2), lgS(X)(s0g) = ℓ−1.

So, w′ is a reduced syllabic word.

Suppose a0 + ai 6= 0. From the equality x0 = ρi follows that s0g = x
a1

1 · · · x
ai−1

i−1 x
a0+ai
i x

ai+1

i+1 · · · x
aℓ
ℓ ,

hence w′ = (x
a1

1 , . . . , x
ai−1

i−1 , x
a0+ai
i , x

ai+1

i+1 , . . . , x
aℓ
ℓ ) is a syllabic expression for s0g. Furthermore,

N(s0g) =

i−1∑

j=1

aj[s0ρjs
−1
0 ] + (a0 + ai)[s0ρis

−1
0 ] +

ℓ∑

j=i+1

aj[s0ρjs
−1
0 ] ,

and the [s0ρjs
−1
0 ] are pairwise distinct for j ∈ {1, . . . , ℓ}, hence, by Theorem 3.1 (2), lgS(X)(s0g) = ℓ .

So, w′ is a reduced syllabic word.

Proof of Theorem 2.2 Let (D,X) be a Dyer system. We start by showing that, if w and w′ are two

reduced syllabic words such that w = w′ , then we can go from w to w′ through a finite sequence of

elementary M­operations of type II. We denote by ℓ the common length of w and w′ , and we argue by

induction on ℓ . The cases ℓ = 0 and ℓ = 1 are trivial, hence we can assume that ℓ ≥ 2 and that the

induction hypothesis holds.

We set w = (s1, . . . , sℓ) and w′ = (t1, . . . , tℓ). If s1 = t1 , then w1 = (s2, . . . , sℓ) and w′
1 = (t2, . . . , tℓ)

are two reduced syllabic words such that w1 = w′
1 . Thus, by the induction hypothesis, we can go from

w1 to w′
1 through a finite sequence of elementary M­operations of type II. It follows that we can go

from w to w′ through a finite sequence of elementary M­operations of type II. So, we can assume that

s1 6= t1 .

We prove the following claim by induction on q ≥ 1.

Claim. Let q ≥ 1. If [s1, t1]p 6= [t1, s1]p for all p < q, then lgS(X)([s1, t1]q) = lgS(X)([t1, s1]q) = q

and there exist reduced syllabic words uq and u′q of length ℓ − q such that w = w′ = [s1, t1]q · uq =

[t1, s1]q · u′q .

Proof of the claim. The case q = 1 is obtained directly by setting uq = (s2, . . . , sℓ) and u′q = (t2, . . . , tℓ).

So we can assume that q ≥ 2 and that the induction hypothesis on q holds. By the induction

hypothesis lgS(X)([s1, t1]q−1) = lgS(X)([t1, s1]q−1) = q − 1 and there exist reduced syllabic words uq−1

and u′q−1 of length ℓ − q + 1 such that w = w′ = [s1, t1]q−1 · uq−1 = [t1, s1]q−1 · u′q−1 . We set

[t1, s1]q−1 · u′q−1 = (r1, . . . , rℓ). We have ri = t1 if i is odd and i ≤ q − 1, ri = s1 if i is even and

i ≤ q − 1, and u′q−1 = (rq, rq+1, . . . , rℓ). Since lgS(X)(s
−1
1 w) < ℓ and (r1, . . . , rℓ) is a reduced syllabic

expression for w , by Lemma 3.2 there exists i ∈ {1, . . . , ℓ} such that (r1, . . . , r̂i, . . . , rℓ) is a reduced

syllabic expression for s−1
1 w. Thus (s1, r1, . . . , r̂i, . . . , rℓ) is a reduced syllabic expression for w . If we
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had i = 1 and q ≥ 3, then we would have r2 = s1 , thus (s1, r̂1, r2, . . . , rℓ) = (s1, s1, r3, . . . , rℓ) would

not be a reduced syllabic word: contradiction. If we had 2 ≤ i ≤ q−2, then we would have ri−1 = ri+1 ,

hence (r1, . . . , r̂i, . . . , rℓ) would not be reduced: contradiction. If we had i = q − 1 (q = 2 and i = 1

included), then (s1, r1, . . . , r̂i, . . . , rℓ) = [s1, t1]q−1 · u′q−1 would be a reduced syllabic expression for

w = [t1, s1]q−1 · u′q−1 , hence we would have [s1, t1]q−1 = [t1, s1]q−1 , which would contradict the initial

hypothesis. So i ≥ q. Then lgS(X)([s1, t1]q) = q, uq = (rq, . . . , r̂i, . . . , rℓ) is a reduced syllabic word of

length ℓ− q, and w = [s1, t1]q · uq . We prove in the same way that lgS(X)([t1, s1]q) = q and that there

exists a reduced syllabic word u′q of length ℓ− q such that w = [t1, s1]q · u′q . This concludes the proof

of the claim.

In the above claim q is necessarily bounded by q ≤ ℓ , hence there exist q ≥ 2 and a reduced syllabic

word u of length ℓ − q such that [s1, t1]q = [t1, s1]q , lgS(X)([s1, t1]q) = q and w = [s1, t1]q · u =

[t1, s1]q · u. As in the case s1 = t1 treated at the beginning of the proof, we can go from w to [s1, t1]q ·u

through a finite sequence of elementary M­operations of type II, and we can go from [t1, s1]q · u to

w′ through a finite sequence of elementary M­operations of type II. Obviously we can also go from

[s1, t1]q · u to [t1, s1]q · u through a single elementary M­operation of type II. So, we can go from w to

w′ through a finite sequence of elementary M­operations of type II.

It remains to show that, if a syllabic word w = (xa1

1 , . . . , x
aℓ
ℓ ) is M­reduced, then w is reduced. We

argue by induction on the length ℓ of the syllabic word. The case ℓ = 1 is trivial, hence we can assume

that ℓ ≥ 2 and that the induction hypothesis holds.

Suppose w is not reduced. By the induction hypothesis w1 = (x
a2

2 , . . . , x
aℓ
ℓ ) is reduced. So, by Lemma

3.2, there exists i ∈ {2, . . . , ℓ} such that

x1 = x
a2

2 · · · x
ai−1

i−1 xix
−ai−1

i−1 · · · x
−a2

2 .

Let w2 = (x
a1

1 , x
a2

2 , . . . , x
ai−1

i−1 ) and w′
2 = (x

a2

2 , . . . , x
ai−1

i−1 , x
a1
i ). By the above equality we have w2 =

w′
2 . Moreover w2 is M­reduced since w is M­reduced, hence, by the induction hypothesis, w2 is

reduced. Then w′
2 is also reduced since it has the same length as w2 . Thus, by what is proved

above, we can go from w2 to w′
2 through a finite sequence of elementary M­operations of type II. Set

w′ = (x
a2

2 , . . . , x
ai−1

i−1 , x
ai+1

i+1 , . . . , x
aℓ
ℓ ) if a1 + ai = 0 and w′ = (x

a2

2 , . . . , x
ai−1

i−1 , x
a1+ai
i , x

ai+1

i+1 , . . . , x
aℓ
ℓ ) if

a1 + ai 6= 0. Then we can go from w to w′ through a finite sequence of elementary M­operations.

Since lgS(X)(w
′) < lgS(X)(w), this contradicts the hypothesis that w is M­reduced.

4 quasi­Dyer systems

Recall that the aim of this section is to prove Theorem 2.3.

Lemma 4.1 Let (G,X) be a strongly marked group with Property D . Let x, y ∈ X , x 6= y, a ∈

Zo(x) \ {0} and b ∈ Zo(y) \ {0}. If xayb = ybxa , then xy = yx.

Proof Suppose a 6= 1. Let w = (xa−1, yb, x−1) and w′ = (x−1, yb, xa−1). We have w = xa−1ybx−1 =

x−1ybxa−1 = w′ . Thus, since (G,X) has Property D , either we can reduce the length of both, w and w′ ,
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by applying elementary M­operations, if lgS(X)(w) = lgS(X)(w
′) < 3, or we can go from w to w′ through

a finite sequence of elementary M­operations of type II, if lgS(X)(w) = lgS(X)(w
′) = 3. In both cases we

must be able to apply an elementary M­operation to w . We cannot apply any elementary M­operation

of type I to w = (xa−1, yb, x−1) since x 6= y and (G,X) is strongly marked. Since a − 1 6= −1, the

only elementary M­operations that could be applied to w are

(xa−1, yb, x−1) → (yb, xa−1, x−1) or (xa−1, yb, x−1) → (xa−1, x−1, yb) .

So, either xa−1yb = ybxa−1 or x−1yb = ybx−1 . Any of these two equalities combined with the equality

xayb = ybxa implies xyb = ybx.

If b 6= 1, then we use the equality yb−1xy−1 = y−1xyb−1 to show in the same way that xy = yx.

Lemma 4.2 Let (G,X) be a strongly marked group with Property D . Let x, y ∈ X , x 6= y, a ∈ Zo(x) \

{0}, b ∈ Zo(y)\{0}, and m ≥ 3. Assume that xy 6= yx, [xa, yb]m = [yb, xa]m and lgS(X)([x
a, yb]m) = m .

Then o(x) and o(y) are both finite and even, a = o(x)/2, and b = o(y)/2. Moreover, m is unique in

the sense that, if [xa, yb]n = [yb, xa]n and lgS(X)([x
a, yb]n) = n, then n = m .

Proof We assume that a ∈ Zo(x) \ {0} and b ∈ Zo(y) \ {0} are fixed and we choose m minimal so that

[xa, yb]m = [yb, xa]m and lgS(X)([x
a, yb]m) = m . We have m ≥ 3 since x and y do not commute (see

Lemma 4.1). We start by showing that o(x) and o(y) are both finite and even, that a = o(x)/2, and that

b = o(y)/2. Suppose m is even. Let

w = (x−a) · [yb, xa]m−1 and w′
= [yb, xa]m−1 · (x−a) .

We have w = w′ . Since (G,X) has Property D , either we can reduce the length of both, w and w′ , by

applying elementary M­operations, if lgS(X)(w) = lgS(X)(w
′) < m , or we can go from w to w′ through a

finite sequence of elementary M­operations of type II, if lgS(X)(w) = lgS(X)(w
′) = m . In both cases we

must be able to apply an elementary M­operation to w . We cannot apply any elementary M­operation

of type I to w because x 6= y. If we had −a 6= a, then, by the minimality of m , we could not apply

any elementary M­operation of type II to w either. So, to be able to apply an elementary M­operation

to w we must have −a = a. This is possible only if o(x) is finite and even and a = o(x)/2. We show

in the same way that o(y) is finite and even and that b = o(y)/2. The case where m is odd is treated in

the same way with the words w = (x−a) · [yb, xa]m−1 and w′ = [yb, xa]m−1 · (y−b).

It remains to show that m is unique. Suppose there exists another integer n ≥ 3 different from m such

that [xa, yb]n = [yb, xa]n and lgS(X)([x
a, yb]n) = n. Since m was chosen minimal, we have n > m .

Assume m is even. Then we have the following sequence of elementary M­operations:

[xa, yb]n → [yb, xa]m · [xa, yb]n−m → [yb, xa]m−1 · [yb, xa]n−m−1 ,

hence [xa, yb]n is not M­reduced. This contradicts the hypothesis lgS(X)([x
a, yb]n) = n. The case where

m is odd is treated in the same way.

Lemma 4.3 Let (G,X) be a strongly marked group with Property D . Let x, y ∈ X , x 6= y, a ∈ Zo(x) \

{0}, b ∈ Zo(y)\{0}, and m ≥ 3 even. Assume xy 6= yx, [xa, yb]m = [yb, xa]m and lgS(X)([x
a, yb]m) = m .

Then o(x) = o(y) = 2 and a = b = 1.
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Proof We know by Lemma 4.2 that o(x) and o(y) are both finite and even, that a = o(x)/2 and that

b = o(y)/2. We also know that m is unique. Suppose o(x) 6= 2. We choose c ∈ Zo(x) such that c 6= 0

and c 6= a. Let

w = (xa−c) · [yb, xa]m−1 · (x−c) and w′
= (x−c) · [yb, xa]m−1 · (xa−c) .

Since [xa, yb]m = [yb, xa]m , we have w = w′ . So, either we can reduce the length of both, w and w′ ,

by applying elementary M­operations, if lgS(X)(w) = lgS(X)(w
′) < m + 1, or we can go from w to w′

through a finite sequence of elementary M­operations of type II, if lgS(X)(w) = lgS(X)(w
′) = m + 1. In

both cases we must be able to apply an elementary M­operation to w . We cannot apply any elementary

M­operation of type I to w since x 6= y. We cannot apply any elementary M­operation of type II

to w either since m is unique, a − c 6= a, and −c 6= a (recall that −a = a = o(x)/2). This is a

contradiction, hence we necessarily have o(x) = 2 and a = 1. We prove in the same way that o(y) = 2

and b = 1.

Lemma 4.4 Let (G,X) be a strongly marked group with Property D . Let x, y ∈ X , x 6= y, a ∈ Zo(x) \

{0}, b ∈ Zo(y) \{0} and m ≥ 3 odd. Assume xy 6= yx, [xa, yb]m = [yb, xa]m and lgS(X)([x
a, yb]m) = m .

Then either o(x) = 2 (and a = 1), or o(y) = 2 (and b = 1).

Proof We know by Lemma 4.2 that o(x) and o(y) are both finite and even, that a = o(x)/2 and that

b = o(y)/2. We also know that m is unique. Suppose o(x) 6= 2 and o(y) 6= 2. We choose c ∈ Zo(x)

and d ∈ Zo(y) such that c 6= 0, c 6= a, d 6= 0 and d 6= b. Let

w = (xa−c) · [yb, xa]m−1 · (y−d) and w′
= (x−c) · [yb, xa]m−1 · (yb−d) .

Since [xa, yb]m = [yb, xa]m , we have w = w′ . So, either we can reduce the length of both, w and w′ ,

by applying elementary M­operations, if lgS(X)(w) = lgS(X)(w
′) < m + 1, or we can go from w to w′

through a finite sequence of elementary M­operations of type II, if lgS(X)(w) = lgS(X)(w
′) = m + 1. In

both cases we must be able to apply an elementary M­operation to w . We cannot apply any elementary

M­operation of type I to w since x 6= y. We cannot apply any elementary M­operation of type II to w

either since m is unique, a−c 6= a, and −d 6= b (recall that −b = b = o(y)/2). This is a contradiction,

hence we necessarily have o(x) = 2 or o(y) = 2.

Proof of Theorem 2.3 Let (G,X) be a strongly marked group with Property D . We start by defining

a simplicial graph Γ and maps m : E(Γ) → N≥2 and f : V(Γ) → N≥2 ∪ {∞}. The set V(Γ) is a set

in one­to­one correspondence with X , and we set X = {xv | v ∈ V(Γ)}. We set f (v) = o(xv) for all

v ∈ V(Γ). A pair e = {u, v} belongs to E(Γ) if and only if there exist a ∈ Zf (u) \ {0}, b ∈ Zf (v) \ {0}

and m ≥ 2 such that [xa
u, x

b
v ]m = [xb

v , x
a
u]m and lgS(X)([x

a
u, x

b
v]m) = m . We know by Lemma 4.2 that such

an m is unique if it exists. In that case we set m(e) = m . It follows from Lemmas 4.2, 4.3 and 4.4 that

the triple (Γ,m, f ) defines a quasi­Dyer group QD = QD(Γ,m, f ).

In order to differentiate the standard generators of QD from the elements of X , we denote by Y = {yv |

v ∈ V(Γ)} the standard generating set for QD . By Lemmas 4.1, 4.3 and 4.4 we have a homomorphism

ϕ : QD → G which sends yv to xv for all v ∈ V(Γ). This homomorphism is surjective since X

generates G . On the other hand we define a set­map ψ : G → QD as follows. Let g ∈ G . We choose a

syllabic expression w = (x
a1
v1
, xa2

v2
, . . . , xaℓ

vℓ ) for g and we set ψ(g) = y
a1
v1

y
a2
v2
· · · y

aℓ
vℓ ∈ QD . The fact that
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(G,X) has Property D combined with Lemmas 4.1, 4.3 and 4.4 implies that ψ(g) is well­defined in the

sense that its definition does not depend on the choice of the syllabic expression. Now we show that

ψ ◦ ϕ = idQD . This implies that ϕ is also injective and therefore ends the proof of the theorem.

Let h ∈ QD . Let (y
a1
v1
, ya2

v2
, . . . , yaℓ

vℓ ) be a syllabic expression of h. Then (x
a1
v1
, xa2

v2
, . . . , xaℓ

vℓ ) is a syllabic

expression of ϕ(h), hence (ψ ◦ ϕ)(h) = y
a1
v1

y
a2
v2
· · · y

aℓ
vℓ = h. So, ψ ◦ ϕ = idQD .

5 Two generators quasi­Dyer groups

In this section we study the group

QDm,k = 〈x, y | x2
= y2k

= 1 , [x, yk]m = [yk, x]m〉 ,

where m ≥ 3 is odd and k ≥ 2. We start by showing that (QDm,k, {x, y}) is strongly marked.

Lemma 5.1 Let m ≥ 3 odd and k ≥ 2. Then (QDm,k, {x, y}) is strongly marked.

Proof We have X = {x, y} and S(X) = {x, y, y2, . . . , y2k−1}. We choose b ∈ {1, . . . , 2k − 1} and we

show that xyb 6∈ S(X) ∪ {1}. Let

Dm = 〈x, y′ | x2
= y′2 = 1 , [x, y′]m = [y′, x]m〉 , C2k = 〈y | y2k

= 1〉 , K = 〈z | z2
= 1〉 .

Observe that Dm is a dihedral group of order 2m , C2k is a cyclic group of order 2k , and K is a cyclic

group of order 2. We have an embedding of K into Dm which sends z to y′ , we have an embedding

of K into C2k which sends z to yk , and we have QDm,k = Dm ∗K C2k . If b 6= k , then yb ∈ C2k \ K

and x ∈ Dm \K , hence, by the general theory of normal forms in amalgamated products of groups (see

Serre [11]), xyb 6∈ Dm and xyb 6∈ C2k , hence xyb 6∈ S(X) ∪ {1}. Suppose b = k . Then yb = y′ ∈ Dm ,

hence xyb = xy′ is a non­trivial rotation, thus xyb 6∈ {x, y′, 1} = Dm ∩ (S(X) ∪ {1}), and therefore

xyb 6∈ S(X) ∪ {1}.

The rest of the proof of Proposition 2.4 uses rewriting systems. Since we do not assume the reader to

be familiar with them, we start by giving the necessary background for understanding our proof, and

we refer to Cohen [2] and Le Chenadec [7] for detailed explanations.

Let S be a finite set (called an alphabet) and let S∗ be the free monoid on S. The elements of S∗ are

called words and they are written as finite sequences, as for syllabic words. The empty word is denoted

by ǫ . The concatenation of two words w,w′ ∈ S∗ is written w · w′ . A rewriting system on S∗ is a

subset R ⊂ S∗ × S∗ . Let w,w′ ∈ S∗ . We set w →R w′ or simply w → w′ if there exist w1,w2 ∈ S∗

and (u, v) ∈ R such that w = w1 · u · w2 and w′ = w1 · v · w2 . More generally, we set w →∗
R w′ or

simply w →∗ w′ if w′ = w or if there exists a finite sequence w0 = w,w1, . . . ,wp = w′ in S∗ such

that wi−1 → wi for all i ∈ {1, . . . , p}. A word w ∈ S∗ is R­reducible if there exists a word w′ ∈ S∗

such that w → w′ . We say that w is R­irreducible otherwise. The pair (S,R) is a rewriting system for

a monoid M if 〈S | u = v for (u, v) ∈ R〉+ is a monoid presentation for M . A rewriting system for a

group G is a rewriting system for G viewed as a monoid. In particular, in that case S must generate G

as a monoid. If (S,R) is a rewriting system for a monoid M and w = (s1, . . . , sℓ) ∈ S∗ , then we denote

by w = s1s2 · · · sℓ the element of M represented by w .
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Let R be a rewriting system. We say that R is Noetherian if there is no infinite sequence w0 → w1 →

w2 → · · · in S∗ . On the other hand we say that R is confluent if, for all u, v1, v2 ∈ S∗ such that u →∗ v1

and u →∗ v2 , there exists w ∈ S∗ such that v1 →∗ w and v2 →∗ w . We say that R is complete if it is

both, Noetherian and confluent.

Theorems 5.2 and 5.3 below contain classical results on rewriting systems that we will use in our proof

of Proposition 2.4.

Theorem 5.2 (Newman [9]) Let (S,R) be a complete rewriting system for a monoid M .

(1) For each w′ ∈ S∗ there exists a unique R­irreducible word w ∈ S∗ such that w′ →∗ w .

(2) For each g ∈ M there exists a unique R­irreducible word w ∈ S∗ such that w = g.

Suppose S∗ is endowed with a total order ≤ such that:

(a) there is no infinite descending chain w0 > w1 > w2 > · · · in S∗ , and

(b) for all u, v,w1,w2 ∈ S∗ , if u > v, then w1 · u · w2 > w1 · v · w2 .

For instance, if S itself is endowed with a total order, then the graded lexicographical order on S∗ ,

denoted ≤glex , is a total order on S∗ satisfying Conditions (a) and (b). Then a rewriting system R on

S∗ satisfying u > v for all (u, v) ∈ R is Noetherian.

A critical pair in a rewriting system R is a quintuple (u1, u2, u3, v1, v2) of elements of S∗ satisfying one

of the following two conditions:

(a) (u1 · u2, v1) ∈ R , (u2 · u3, v2) ∈ R , and u2 6= ǫ ,

(b) (u1 · u2 · u3, v1) ∈ R and (u2, v2) ∈ R .

We say that a critical pair (u1, u2, u3, v1, v2) is resolved if there exists w ∈ S∗ such that

• v1 · u3 →∗ w and u1 · v2 →∗ w in Case (a),

• v1 →∗ w and u1 · v2 · u3 →∗ w in Case (b).

Theorem 5.3 (Newman [9]) Let R be a Noetherian rewriting system. If all critical pairs of R are

resolved, then R is confluent.

Proof of Proposition 2.4 Let m ≥ 3 odd and k ≥ 2, and let

QDm,k = 〈x, y | x2
= y2k

= 1 , [x, yk]m = [yk, x]m〉 .

We already know by Lemma 5.1 that (QDm,k, {x, y}) is strongly marked. So, it remains to show that

(QDm,k, {x, y}) has Property D .

We set S = S({x, y}) = {x, y, y2, . . . , y2k−1} that we totally order by x > y > y2 > · · · > y2k−1 , and

we endow S∗ with the graded lexicographic order ≤glex . Let R be the following rewriting system on

S∗ :

R = {(x, x) → ǫ, [x, yk]m → [yk, x]m} ∪ {(ya, y−a) → ǫ | a ∈ Z2k \ {0}}

∪ {(ya, yb) → (ya+b) | a, b ∈ Z2k \ {0} , a + b 6= 0} .
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It is clear that (S,R) is a rewriting system for QDm,k viewed as a monoid. It is also clear that R is

Noetherian since u >glex v for all (u, v) ∈ R . Another immediate observation is that, if w,w′ ∈ S∗ are

such that w →∗ w′ , then we can go from w to w′ through a finite sequence of elementary M­operations.

Now we prove that R is confluent.

We list below all critical pairs (u1, u2, u3, v1, v2) of type (a), and for each of them we give a word w ∈ S∗

such that u1 · v2 →∗ w and v1 · u3 →∗ w . There is no (non­trivial) critical pair of type (b), hence, by

Theorem 5.3, these calculations show that R is confluent.

• (u1, u2, u3, v1, v2) = ((x), (x), (x), ǫ, ǫ) and w = (x).

• (u1, u2, u3, v1, v2) = ((x), (x), [yk , x]m−1, ǫ, [y
k, x]m) and w = [yk, x]m−1 .

• (u1, u2, u3, v1, v2) = ([x, yk]m−1, (x), (x), [yk , x]m, ǫ) and w = [x, yk]m−1 .

• (u1, u2, u3, v1, v2) = ([x, yk]2a, [x, y
k]2b−1, [y

k, x]2a, [y
k, x]m, [y

k, x]m) and w = [yk, x]2b−1 , where

a, b ∈ N≥1 and 2a + 2b − 1 = m .

• (u1, u2, u3, v1, v2) = ((ya), (y−a), (ya), ǫ, ǫ) and w = (ya), where a ∈ Z2k \ {0}.

• (u1, u2, u3, v1, v2) = ((ya), (y−a), (yb), ǫ, (y−a+b)) and w = (yb), where a, b ∈ Z2k \ {0} and

−a + b 6= 0.

• (u1, u2, u3, v1, v2) = ((ya), (yb), (y−b), (ya+b), ǫ) and w = (ya), where a, b ∈ Z2k \ {0} and

a + b 6= 0.

• (u1, u2, u3, v1, v2) = ((ya), (yb), (yc), (ya+b), (yb+c)), w = ǫ if a + b + c = 0, and w = (ya+b+c)

if a + b + c 6= 0, where a, b, c ∈ Z2k \ {0}, a + b 6= 0 and b + c 6= 0.

In order to prove that QDm,k has Property D it suffices to show that, if w and w′ are two M­reduced

syllabic words representing the same element of QDm,k , then we can go from w to w′ through a finite

sequence of elementary M­operations of type II. Since R is confluent, by Theorem 5.2 there exists a

unique R­irreducible word w0 ∈ S∗ such that w →∗ w0 and w′ →∗ w0 . As previously indicated, this

implies that we can go from w to w0 through a finite sequence of elementary M­operations. Moreover,

lg(w) ≥ lg(w0) (since w ≥glex w0 ) and w is M­reduced, hence all these elementary M­operations must

be of type II. Similarly, we can go from w′ to w0 through a finite sequence of elementary M­operations

of type II. So, we can go from w to w′ through a finite sequence of elementary M­operations of type

II.

6 Parabolic subgroups

Let (G,X) be a strongly marked group with Property D and let QD(Γ,m, f ) be the quasi­Dyer presenta­

tion for (G,X). Recall that, for U ⊂ V(Γ), we denote by ΓU the full subgraph of Γ spanned by U , we de­

note by mU : E(ΓU) → N≥2 the restriction of m to E(ΓU), and we denote by fU : V(ΓU) → N≥2∪{∞}

the restriction of f to V(ΓU). We begin by proving Proposition 2.7.

Proof of Proposition 2.7 Let U ⊂ V(Γ). Let Y = {xu | u ∈ U}. From the inclusion S(Y) ⊂ S(X)

it follows that (GY ,Y) is strongly marked. Again, to show that (GY ,Y) has Property D , it suffices to
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show that, if w and w′ are two M­reduced syllabic words in S(Y)∗ representing the same element of

GY , then we can go from w to w′ through a finite sequence of elementary M­operations of type II. Let

w and w′ be two M­reduced syllabic words in S(Y)∗ representing the same element of GY . Since the

elementary M­operations preserve S(Y)∗ , w and w′ are M­reduced seen as elements of S(X)∗ . Since

(G,X) has Property D , it follows that we can go from w to w′ through a finite sequence of elementary

M­operations of type II, and these elementary M­operations preserve S(Y)∗ . So, (GY ,Y) has Property

D . Finally, the fact that QD(ΓU,mU, fU) is the quasi­Dyer presentation for (GY ,Y) follows from the

definition of a quasi­Dyer presentation.

As indicated in Section 2, the rest of the section concerns only Dyer systems. We start with the proof

of Proposition 2.8.

Proof of Proposition 2.8 Let (D,X) be a Dyer system. We first prove Part (2). Part (1) will follow

from Part (2). Let Y ⊂ X and let g ∈ G . Let g0 ∈ DYg be of minimal syllabic length in DYg. To prove

Part (2) it suffices to show that lgS(X)(hg0) = lgS(X)(h) + lgS(X)(g0) for all h ∈ DY .

We use the definitions and the notations of Section 3. Let (x
a1

1 , . . . , x
ap

p ) be a reduced syllabic expression

for g0 and let (y
b1

1 , . . . , y
bq

q ) be a reduced syllabic expression for h. For i ∈ {1, . . . , p} and j ∈

{1, . . . , q} we set

ρi = x
a1

1 · · · x
ai−1

i−1 xix
−ai−1

i−1 · · · x
−a1

1 and σj = y
b1

1 · · · y
bj−1

j−1 yjy
−bj−1

j−1 · · · y
−b1

1 .

We have

N(g0) =

p∑

i=1

ai[ρi] and N(h) =

q∑

j=1

bj[σj] .

By Theorem 3.1 the ρi are pairwise distinct and the σj are pairwise distinct.

Set RY = {kyk−1 | k ∈ DY and y ∈ Y}. Since elementary M­operations preserve S(Y)∗ it follows

from Theorem 2.2 that yj ∈ Y for all j ∈ {1, . . . , q}, hence σj ∈ RY for all j ∈ {1, . . . , q}. Suppose

there exists i ∈ {1, . . . , p} such that ρi ∈ RY . Let g′0 = x
a1

1 · · · x
ai−1

i−1 x
ai+1

i+1 · · · x
ap
p . Then lgS(X)(g

′
0) <

lgS(X)(g0) = p, g0 = ρai
i g′0 and ρai

i ∈ DY , which would contradict the minimalilty of the syllabic length

of g0 in DYg. So, ρi 6∈ RY for all i ∈ {1, . . . , p}. Since h ∈ DY , it follows that hρih
−1 6∈ RY for all

i ∈ {1, . . . , p}.

By Theorem 3.1,

N(hg0) = N(h) + h · N(g0) =

q∑

j=1

bj[σj] +

p∑

i=1

ai[hρih
−1] .

We know that the σj are pairwise distinct and we know that the hρih
−1 are pairwise distinct. We also

know that σj 6= hρih
−1 for j ∈ {1, . . . , q} and i ∈ {1, . . . , p}, since σj ∈ RY and hρih

−1 6∈ RY . By

Theorem 3.1 it follows that

lgS(X)(hg0) = q + p = lgS(X)(h) + lgS(X)(g0) .

Now we prove Part (1). Let g0 be an element of minimal syllabic length in gDY . Then g−1
0 is of

minimal syllabic length in DYg−1 . By Part (2) already proved, it follows that, for all h ∈ DY ,

lgS(X)(g0h) = lgS(X)(h
−1g−1

0 ) = lgS(X)(h
−1) + lgS(X)(g

−1
0 ) = lgS(X)(g0) + lgS(X)(h) .
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The rest of the section is dedicated to the proof of Theorem 2.10. Lemmas 6.1, 6.2 and 6.3 are

preliminaries to its proof, but they are also interesting by themselves. Note that Lemmas 6.1 and 6.2

hold for all Dyer groups, while Lemma 6.3 requires the Dyer group to be of finite type.

Lemma 6.1 Let (D,X) be a Dyer system, let Y,Y ′ ⊂ X , and let g0 ∈ D . Assume g0 is of minimal

syllabic length in the double coset DYg0DY′ . Set Z = Y ∩ (g0Y ′g−1
0 ). Then DY ∩ (g0DY′g−1

0 ) = DZ .

Proof The inclusion DZ ⊂ DY ∩ (g0DY′g−1
0 ) is obvious. So, we only need to prove the reverse

inclusion. Let g ∈ DY ∩ (g0DY′g−1
0 ). Let g′ ∈ DY′ such that g = g0g′g−1

0 . Let (x
a1

1 , . . . , x
ap
p ) be

a reduced syllabic expression for g, let (y
b1

1 , . . . , y
bq
q ) be a reduced syllabic expression for g′ , and let

(z
c1

1 , . . . , z
cℓ
ℓ ) be a reduced syllabic expression for g0 . Since elementary M­operations preserve S(Y)∗

and S(Y ′)∗ , by Theorem 2.2 we have xi ∈ Y for all i ∈ {1, . . . , p} and yi ∈ Y ′ for all i ∈ {1, . . . , q}.

Moreover, g0g′ = gg0 and g0 is of minimal syllabic length in both, DYg0 and g0DY′ , hence, by

Proposition 2.8,

p + lgS(X)(g0) = lgS(X)(gg0) = lgS(X)(g0g′) = lgS(X)(g0) + q ,

thus p = q. Now we show by induction on p that xi ∈ Z for all i ∈ {1, . . . , p}. This implies that

g ∈ DZ .

Assume p = q = 1. So, g = x
a1

1 and g′ = y
b1

1 . Let w = (z
c1

1 , . . . , z
cℓ
ℓ , y

b1

1 ). The word w is

a syllabic expression for g0g′ , which is of syllabic length ℓ + 1, hence w is reduced. Moreover,

x
−a1

1 · w = g−1g0g′ = g0 is of syllabic length ℓ , hence, by Lemma 3.2, either

(i) there exists k ∈ {1, . . . , ℓ} such that x1 = z
c1

1 · · · z
ck−1

k−1 zkz
−ck−1

k−1 · · · z
−c1

1 , or

(ii) x1 = g0y1g−1
0 ∈ Y ∩ g0Y ′g−1

0 = Z .

We cannot have x1 = z
c1

1 · · · z
ck−1

k−1 zkz
−ck−1

k−1 · · · z
−c1

1 with k ∈ {1, . . . , ℓ}, otherwise (x
a1

1 , z
c1

1 , . . . , z
cℓ
ℓ )

would not be a reduced syllabic word. So, x1 ∈ Z .

We assume that p ≥ 2 and that the induction hypothesis holds. Let w = (z
c1

1 , . . . , z
cℓ
ℓ , y

b1

1 , . . . , y
bp
p ).

The word w is a syllabic expression for g0g′ , which is of syllabic length ℓ + p, hence w is reduced.

On the other hand, x
−a1

1 · w = x
a2

2 · · · x
ap
p g0 is of syllabic length ℓ+ p − 1. So, by lemma 3.2, either

(i) there exists k ∈ {1, . . . , ℓ} such that x1 = z
c1

1 · · · z
ck−1

k−1 zkz
−ck−1

k−1 · · · z
−c1

1 , or

(ii) there exists j ∈ {1, . . . , p} such that x1 = g0y
b1

1 · · · y
bj−1

j−1 yjy
−bj−1

j−1 · · · y
−b1

1 g−1
0 .

Suppose there exists k ∈ {1, . . . , ℓ} such that x1 = z
c1

1 · · · z
ck−1

k−1 zkz
−ck−1

k−1 · · · z
−c1

1 . Let g′0 = z
c1

1 · · · z
ck−1

k−1

z
ck+1

k+1 · · · z
cℓ
ℓ . Then x

ck

1 ∈ DY and g0 = x
ck

1 g′0 . This contradicts the minimality of the syllabic length of

g0 in DYg0DY′ . So, there exists j ∈ {1, . . . , p} such that x1 = g0y
b1

1 · · · y
bj−1

j−1 yjy
−bj−1

j−1 · · · y
−b1

1 g−1
0 .

Since lgS(X)(x
−a1

1 gg0) = ℓ+ p − 1, by Lemma 3.2 we also have bj = a1 and

(z
c1

1 , . . . , z
cℓ
ℓ , y

b1

1 , . . . , y
bj−1

j−1 , y
bj+1

j+1 , . . . , y
bp

p )

is a reduced syllabic expression for x
−a1

1 gg0 . Let h = x
a2

2 · · · x
ap
p and h′ = y

b1

1 · · · y
bj−1

j−1 y
bj+1

j+1 · · · y
bp
p .

Then h ∈ DY (since x2, . . . , xp ∈ Y ), h′ ∈ DY′ (since y1, . . . , yj−1, yj+1, . . . , yp ∈ Y ′ ), (x
a2

2 , . . . , x
ap
p ) is

a reduced syllabic expression for h, (y
b1

1 , . . . , y
bj−1

j−1 , y
bj+1

j+1 , . . . , y
bp
p ) is a reduced syllabic expression for
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h′ , and h = g0h′g−1
0 . By the induction hypothesis it follows that xi ∈ Z for all i ∈ {2, . . . , p}. Finally,

since g ∈ DY∩g0DY′g−1
0 and xi ∈ DY∩g0DY′g−1

0 for all i ∈ {2, . . . , p}, we have x
a1

1 ∈ DY∩g0DY′g−1
0 ,

hence, by the case p = 1 previously proved, x1 ∈ Z .

Lemma 6.2 Let (D,X) be a Dyer system. Then a finite intersection of parabolic subgroups of D is a

parabolic subgroup of D .

Proof It suffices to show that, if Y,Y ′ ⊂ X and g ∈ D , then DY ∩ gDY′g−1 is a parabolic subgroup.

Let g0 be an element in DYgDY′ of minimal syllabic length. Let Z = Y ∩ g0Y ′g−1
0 . By Lemma 6.1 we

have DY ∩ g0DY′g−1
0 = DZ . Let h ∈ DY and h′ ∈ DY′ such that g = hg0h′ . Then

DY ∩ gDY′g−1
= (hDY h−1) ∩ (hg0h′DY′h′−1g−1

0 h−1) = h(DY ∩ g0DY′g−1
0 )h−1

= hDZh−1 .

Lemma 6.3 Let (D,X) be a Dyer system of finite type. Let Y,Y ′ ⊂ X and g, h ∈ D such that

gDY′g−1 ( hDYh−1 . Then |Y ′| < |Y|.

Proof Without loss of generality we can assume that h = 1, else we conjugate both sides with h−1

and we replace g by h−1g. Let g0 be an element in DYgDY′ of minimal syllabic length. Let k ∈ DY

and k′ ∈ DY′ such that g = kg0k′ . Then

gDY′g−1 ( DY ⇔ kg0k′DY′k′−1g−1
0 k−1 ( kDYk−1 ⇔ g0DY′g−1

0 ( DY .

So, we can assume that g0DY′g−1
0 ( DY . Let y ∈ Y ′ . There exists fy ∈ DY such that g0yg−1

0 = fy , that

is, g0y = fyg0 . Since g0 has minimal syllabic length in both, g0DY′ and DYg0 , by Proposition 2.8 we

have

1 + lgS(X)(g0) = lgS(X)(g0y) = lgS(X)(fyg0) = lgS(X)(fy) + lgS(X)(g0) ,

hence lgS(X)(fy) = 1, thus there exist x ∈ Y and a ∈ Zo(x) \ {0} such that fy = xa . Using the same

arguments as in the proof of Lemma 6.1, from the equalities xag0 = g0y and lgS(X)(x
ag0) = lgS(X)(g0y) =

lgS(X)(g0) + 1 it follows that a = 1 and x = g0yg−1
0 . So, g0Y ′g−1

0 ⊂ Y . Since conjugation by g0 is

a bijection, this inclusion implies that |Y ′| ≤ |Y|. Moreover, if |Y ′| = |Y|, then g0Y ′g−1
0 = Y , hence

g0DY′g−1
0 = DY , which is a contradiction. So, |Y ′| < |Y|.

Proof of Theorem 2.10 Let (D,X) be a Dyer system of finite type. Let {Pi | i ∈ I} be a non­empty

collection of parabolic subgroups of (D,X). Let P be the set of all finite intersections of elements

of {Pi | i ∈ I}. We know by Lemma 6.2 that the elements of P are all parabolic subgroups. We

choose P0 = g0DY0
g−1

0 in P with minimal |Y0| and we show that
⋂

i∈I Pi = P0 . Clearly, it suffices

to show that P0 ⊂ P for all P ∈ P . Let P = gDY g−1 ∈ P and P′ = P0 ∩ P . We have P′ ∈ P by

definition and by Lemma 6.2 there exist h ∈ D and Z ⊂ X such that P′ = hDZh−1 . We have |Z| ≥ |Y0|

by minimality of |Y0| and P′ = hDZh−1 ⊂ P0 = g0DY0
g−1

0 , hence, by Lemma 6.3, P′ = P0 . So,

P0 = P′ = P0 ∩ P ⊂ P .
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[12] M Soergel, A generalization of the Davis­Moussong complex, Preprint, 2022.

[13] L Solomon, A Mackey formula in the group ring of a Coxeter group, J. Algebra 41 (1976), no. 2, 255–264.

[14] J Tits, Le problème des mots dans les groupes de Coxeter, 1969 Symposia Mathematica (INDAM, Rome,

1967/68), Vol. 1, pp. 175–185, Academic Press, London.

[15] J Tits, Buildings of spherical type and finite BN­pairs, Lecture Notes in Mathematics, Vol. 386. Springer­

Verlag, Berlin­New York, 1974.
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Mireille Soergel, ETH Zürich, Mathematics Department, CH­8092 Zürich, Switzerland
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