Luis Paris 
  
Mireille Soergel 
  
Word problem and parabolic subgroups in Dyer groups

Keywords: AMS Subject Classification Primary: 20F36, 20F55. Secondary: 20F10 Coxeter groups, right-angled Artin groups, Dyer groups, word problem, parabolic subgroups

One can observe that Coxeter groups and right-angled Artin groups share the same solution to the word problem. On the other hand, in his study of reflection subgroups of Coxeter groups Dyer introduces a family of groups, which we call Dyer groups, which contains both, Coxeter groups and right-angled Artin groups. We show that all Dyer groups have this solution to the word problem, we show that a group which admits such a solution belongs to a little more general family of groups that we call quasi-Dyer groups, and we show that this inclusion is strict. Then we show several results on parabolic subgroups in quasi-Dyer groups and in Dyer groups. Notably, we prove that any intersection of parabolic subgroups in a Dyer group of finite type is a parabolic subgroup.

Introduction

There is an extensive literature on Coxeter groups as well as on right-angled Artin groups and, more generally, on graph products of cyclic groups. A peculiarity of these two families of groups is that they share the same solution to the word problem: that given by Tits [START_REF] Tits | Le problème des mots dans les groupes de Coxeter[END_REF] for Coxeter groups and that given by Green [START_REF] E R Green | Graph products of groups[END_REF] for graph products of cyclic groups. This common algorithm goes beyond the simple solution to the word problem since it provides an effective criterion to determine if an expression is reduced or not and it makes it possible to define normal forms.

It is therefore natural to ask the following questions. What do these two families of groups have in common that makes them to have the same solution to the word problem? Which other groups have this solution to the word problem?

To be more precise, our questions and study concern marked groups. Recall that a marked group is a pair (G, X) where G is a group and X is a generating set for G. Note that Coxeter groups and graph products of cyclic groups are actually marked groups. In the rest of the paper we will say that a marked group (G, X) has Property D if it has the same solution to the word problem as Coxeter groups and as graph products of cyclic groups. A precise definition of Property D is given in Section 2.

In his study of reflection subgroups of Coxeter groups Dyer [START_REF] Dyer | Reflection subgroups of Coxeter systems[END_REF] introduces a family of groups, that we call Dyer groups, which contains both, Coxeter groups and graph products of cyclic groups. A careful reading of the proof of [START_REF] Dyer | Reflection subgroups of Coxeter systems[END_REF]Lemma 2.8] completed with ideas from Tits [START_REF] Tits | Le problème des mots dans les groupes de Coxeter[END_REF] allows an informed reader to show that these groups have Property D. A complete and explicit proof of this result is given in Section 3 (see Theorem 2.2). This partially answers our questions in the sense that it says what Coxeter groups and graph products of cyclic groups have in common that makes them to have the same solution to the word problem. It remains to see whether Dyer groups are the only marked groups to have Property D, and, if not, which other groups have it.

Examples of marked groups that are not Dyer groups and that have Property D can be easily found. For example (Z, {1, 2}) has Property D and it is not a Dyer group (note that (Z, {1}) is a Dyer group). However, in this context it is reasonable to restrict the study to marked groups (G, X) satisfying the following property.

• For all x, y ∈ X and a, b ∈ Z such that x a = 1 and y b = 1, if x a y b is a non-trivial power of an element of X or if x a y b = 1, then x = y.

In that case we say that (G, X) is a strongly marked group. Coxeter groups, graph products of cyclic groups and, more generally, Dyer groups are strongly marked groups.

We introduce a family of marked groups a little more general than that of Dyer groups which we call quasi-Dyer groups and in Section 4 we show that, if a strongly marked group (G, X) has Property D, then (G, X) is a quasi-Dyer group (see Theorem 2.3).

We do not know if all quasi-Dyer groups are strongly marked and/or if they all have Property D, but in Section 5 we show a family of quasi-Dyer groups that are not Dyer groups, that are strongly marked, and that have Property D (see Proposition 2.4).

The next question that motivates this work is: what properties common to Coxeter groups and rightangled Artin groups can be extended to Dyer groups and, more generally, to groups with Property D? A first answer can be found in Soergel [START_REF] Soergel | A generalization of the Davis-Moussong complex[END_REF] where actions of Dyer groups on CAT(0) spaces are constructed that extend those of Coxeter groups on Davis-Moussong complexes (see Moussong [START_REF] Moussong | Hyperbolic Coxeter groups[END_REF]) and those of right-angled Artin groups on Salvetti complexes (see Charney-Davis [START_REF] Charney | Finite K(π, 1)s for Artin groups[END_REF]).

Parabolic subgroups play a prominent role in the study of Coxeter groups and in that of right-angled Artin groups. Part of the results on these subgroups extends to groups with Property D. In particular we show that a parabolic subgroup of a group having Property D has Property D (see Proposition 2.7) and that the intersection of two standard parabolic subgroups is a standard parabolic subgroup (see Corollary 2.6). However, the uniqueness property for an element of minimal syllabic length in a coset of a standard parabolic subgroup holds for Dyer groups (see Proposition 2.8) but not for all groups having Property D (see Example 2.9).

In Section 6 we show that any intersection of parabolic subgroups in a Dyer group of finite type is a parabolic subgroup (see Theorem 2.10). This property is known and widely used for Coxeter groups (see Tits [START_REF] Tits | Buildings of spherical type and finite BN-pairs[END_REF], Solomon [START_REF] Solomon | A Mackey formula in the group ring of a Coxeter group[END_REF], Krammer [START_REF] Krammer | The conjugacy problem for Coxeter groups[END_REF] and Qi [START_REF] Qi | A note on parabolic subgroups of a Coxeter group[END_REF]). It is also known for right-angled Artin groups (see Duncan-Kazachkov-Remeslennikov [START_REF] Duncan | Parabolic and quasiparabolic subgroups of free partially commutative groups[END_REF]) but, as far as we know, it is new for graph products of cyclic groups.

The paper is organized as follows. In Section 2 we give detailed and precise definitions and statements. We also show that the intersection of two standard parabolic subgroups in a group with Property D is a standard parabolic subgroup. In Section 3 we prove that Dyer groups have Property D. In Section 4 we show that any strongly marked group with Property D is a quasi-Dyer group. In Section 5 we show a family of quasi-Dyer groups that are strongly marked, that have Property D, and that are not Dyer groups. In Section 6 we show that the intersection of a family of parabolic subgroups in a Dyer group of finite type is a parabolic subgroup.
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Definitions and statements

We first recall the definitions of a Coxeter group and of a graph product of cyclic groups.

Definition Let Γ be a simplicial graph with vertex set V(Γ) and edge set E(Γ). We assume that E(Γ) is endowed with a map m : E(Γ) → N ≥2 . To the pair (Γ, m) we associate a group W = W(Γ, m), called a Coxeter group, defined by the following presentation:

W = x v , v ∈ V(Γ) | x 2 v = 1 for all v ∈ V(Γ) , (x u x v ) m(e) = 1 for all e = {u, v} ∈ E(Γ) . The pair (W, X) is called a Coxeter system, where X = {x v | v ∈ V(Γ)}.
Definition Let Γ be a simplicial graph with vertex set V(Γ) and edge set E(Γ). We assume that V(Γ) is endowed with a map f : V(Γ) → N ≥2 ∪ {∞}. To the pair (Γ, f ) we associate a group C = C(Γ, f ), called a graph product of cyclic groups, defined by the following presentation:

C = x v , v ∈ V(Γ) | x f (v) v = 1 for all v ∈ V(Γ) such that f (v) = ∞ , x u x v = x v x u
for all e = {u, v} ∈ E(Γ) .

If f (v) = ∞ for all v ∈ V(Γ), then C is called a right-angled Artin group.
We turn now to recall the solution to the word problem common to these two families of groups. Throughout the paper we use the following notations. The order of an element g in a group is denoted by o

(g). If o(g) is finite, then Z o(g) = Z/o(g)Z is the cyclic group of order o(g), and if o(g) is infinite, then Z o(g) = Z is the infinite cyclic group. Recall that a marked group is a group G endowed with a generating set X ⊂ G. A marked group (G, X) is of finite type if X is finite. Let (G, X) be a marked group. The set of syllables of X is S(X) = {x a | x ∈ X , a ∈ Z o(x) \ {0}} .
It is clear that S(X) also generates G. Our solution to the word problem uses words on S(X) and not on X , but in the concrete cases of Coxeter groups, of graph products of cyclic groups, and, more generally, of Dyer groups, this is not a problem.

Let (G, X) be a marked group. We denote by S(X) * the free monoid on S(X). The elements of S(X) * are called syllabic words and they are written as finite sequences. The concatenation of two words w, w ′ ∈ S(X) * is written w • w ′ . If w = (s 1 , s 2 , . . . , s ℓ ) ∈ S(X) * is a syllabic word, then we set w = s 1 s 2 • • • s ℓ ∈ G and we say that w is represented by w. The shortest length of a syllabic word representing an element g ∈ G is called the syllabic length of g and it is denoted by lg S(X) (g). A syllabic word w = (s 1 , s 2 , . . . , Definition Let (G, X) be a marked group and let w ∈ S(X) * be a syllabic word. Assume that w can be written as w = w 1 • (s, t) • w 2 , where w 1 , w 2 ∈ S(X) * , s, t ∈ S(X), and st ∈ S(X) ∪ {1}. Set

s ℓ ) is reduced if ℓ = lg S(X) (w). If
w ′ = w 1 • (st) • w 2 if st = 1 , w 1 • w 2 if st = 1 .
Then we say that we can go from w to w ′ through an elementary M-operation of type I. Assume that w can be written as

w = w 1 • [s, t] m • w 2 , where w 1 , w 2 ∈ S(X) * , s, t ∈ S(X), m ≥ 2, [s, t] m = [t, s] m and lg S(X) ([s, t] m ) = m. Set w ′ = w 1 • [t, s] m • w 2 .
Then we say that we can go from w to w ′ through an elementary M-operation of type II. We say that w is M-reduced if its length cannot be shortened by any finite sequence of elementary M-operations.

Notice that elementary M-operations of type I strictly decrease lengths of syllabic words while elementary M-operations of type II preserve lengths. Furthermore, elementary M-operations of type II are reversible but not those of type I. Notice also that, if we can go from w to w ′ through a finite sequence of elementary M-operations, then w = w ′ .

Definition A marked group (G, X) is said to have Property D if (a) for all w ∈ S(X) * , w is reduced if and only if w is M-reduced, and (b) for all w, w ′ ∈ S(X) * , if w and w ′ are both reduced and w = w ′ , then we can go from w to w ′ through a finite sequence of elementary M-operations of type II.

Remark Property D for a marked group (G, X) of finite type solves the word problem in (G, X), but the algorithm also solves the following two other questions.

• Given a syllabic word w, the algorithm determines a reduced syllabic word w ′ such that w = w ′ .

• Given a syllabic word w, the algorithm determines whether w is reduced or not.

The solutions to the word problem for Coxeter groups by Tits [START_REF] Tits | Le problème des mots dans les groupes de Coxeter[END_REF] and for graph products of cyclic groups by Green [START_REF] E R Green | Graph products of groups[END_REF] are summarized in the following theorem.

Theorem 2.1 (Tits [START_REF] Tits | Le problème des mots dans les groupes de Coxeter[END_REF], Green [START_REF] E R Green | Graph products of groups[END_REF]) [START_REF] Charney | Finite K(π, 1)s for Artin groups[END_REF] Let W = W(Γ, m) be a Coxeter group and let X = {x v | v ∈ V(Γ)} be its standard generating set. Then (W, X) has Property D.

(2) Let C = C(Γ, f ) be a graph product of cyclic groups and let X = {x v | v ∈ V(Γ)} be its standard generating set. Then (C, X) has Property D.

Definition Let Γ be a simplicial graph with vertex set V(Γ) and edge set E(Γ). We assume that E(Γ) is endowed with a map m : E(Γ) → N ≥2 and that V(Γ) is endowed with a map f : V(Γ) → N ≥2 ∪ {∞}. We further assume that, for each e = {u, v}

∈ E(Γ), if m(e) = 2, then f (u) = f (v) = 2.
To the triple (Γ, m, f ) we associate a group D = D(Γ, m, f ), called a Dyer group, defined by the following presentation:

D = x v , v ∈ V(Γ) | x f (v) v = 1 for all v ∈ V(Γ) such that f (v) = ∞ , [x u , x v ] m(e) = [x v , x u ] m(e)
for all e = {u, v} ∈ E(Γ) .

Observe that any Coxeter group is a Dyer group and that any graph product of cyclic groups is a Dyer group. Moreover, it is shown in Dyer [START_REF] Dyer | Reflection subgroups of Coxeter systems[END_REF] that the map

V(Γ) → D, v → x v , is injective, hence (D, X) is a marked group, where X = {x v | v ∈ V(Γ)}.
This marked group is called a Dyer system.

As pointed out in the introduction, an informed reader familiar with Coxeter groups will implicitly find the proof of the following theorem in Dyer [START_REF] Dyer | Reflection subgroups of Coxeter systems[END_REF]. However, the groups studied in the present paper include other groups such as right-angled Artin groups, and therefore the paper is not addressed only to experts in Coxeter groups. So, we give an explicit and complete proof of the following theorem in Section 3.

Theorem 2.2 Every Dyer system has Property D.

As mentioned in the introduction, it is quite easy to find marked groups that have Property D and that are not Dyer systems. For example (Z, {1, 2}) is a marked group which has Property D but which is not a Dyer system. So, to make the study more coherent we impose the following additional hypothesis on marked groups.

Definition Let (G, X) be a marked group. We say that (G, X) is strongly marked if 1 ∈ X and it satisfies the following condition:

• Let x, y ∈ X , s ∈ x \ {1} and t ∈ y \ {1}. If st ∈ S(X) ∪ {1}, then x = y.
In particular, if x, y ∈ X , x = y, then x ∩ y = {1}.

Let W = W(Γ, m) be a Coxeter group and let X = {x v | v ∈ V(Γ)} be its standard generating set. Then (W, X) is strongly marked. Similarly, if C = C(Γ, f ) is a graph product of cyclic groups and

X = {x v | v ∈ V(Γ)} is its standard generating set, then (C, X) is strongly marked. More generally, if D = D(Γ, m, f ) is a Dyer group and X = {x v | v ∈ V(Γ)}, then (D, X
) is strongly marked (see Dyer [START_REF] Dyer | Reflection subgroups of Coxeter systems[END_REF]).

For our next theorem we need to slightly extend the notion of Dyer group as follows.

Definition Let Γ be a simplicial graph with vertex set V(Γ) and edge set E(Γ). We assume that E(Γ) is endowed with a map m : E(Γ) → N ≥2 and that V(Γ) is endowed with a map f :

V(Γ) → N ≥2 ∪ {∞}.
We further assume that, for each e = {u, v} ∈ E(Γ),

• if m(e) > 2 and m(e) is even, then

f (u) = f (v) = 2,
• if m(e) > 2 and m(e) is odd, then f (u) and f (v) are both finite and even and at least one of them is equal to 2.

To the triple (Γ, m, f ) we associate a group QD = QD(Γ, m, f ), called a quasi-Dyer group, defined by the following presentation:

QD = x v , v ∈ V(Γ) | x f (v) v = 1 for all v ∈ V(Γ) such that f (v) = ∞ , x u x v = x v x u for all e = {u, v} ∈ E(Γ) such that m(e) = 2 , [x f (u)/2 u , x f (v)/2 v ] m(e) = [x f (v)/2 v , x f (u)/2 u ] m(e)
for all e = {u, v} ∈ E(Γ) such that m(e) > 2 .

The pair (QD, X) is called a quasi-Dyer system.

Remark

In the above definition, if we replace the condition "if m(e) > 2 and m(e) is odd, then f (u) and f (v) are both even and at least one of them is equal to 2" by the condition "if m(e) > 2 and m(e) is odd, then f (u) and f (v) are both equal to 2" then QD(Γ, m, f

) = D(Γ, m, f ) is a Dyer group.
The main result of Section 4 is the following.

Theorem 2.3 Let (G, X) be a strongly marked group. If (G, X) has Property D, then (G, X) is a quasi-Dyer system.

Let (G, X) be a strongly marked group having Property D. Let Γ be a simplicial graph and let m : E(Γ) → N ≥2 and f : V(Γ) → N ≥2 ∪ {∞} be maps with the right conditions so that (Γ, m, f ) defines a quasi-Dyer group with G = QD(Γ, m, f ) and

X = {x v | v ∈ V(Γ)}.
Then we say that QD(Γ, m, f ) is a quasi-Dyer presentation for (G, X).

We do not know if the reciprocal of Theorem 2.3 is true, that is, if all quasi-Dyer systems have Property D. We do not know either if quasi-Dyer systems are all strongly marked groups. However, we know a family of quasi-Dyer systems that are not Dyer systems, that are strongly marked, and that have Property D. The following result is proved in Section 5.

Proposition 2.4 Let m ≥ 3 odd and k ≥ 2. Let QD m,k = x, y | x 2 = y 2k = 1 , [x, y k ] m = [y k , x] m .
Then (QD m,k , {x, y}) is strongly marked and has Property D.

Definition If (G, X) is a marked group and Y ⊂ X , then we denote by G Y the subgroup of G generated by Y and we say that

(G Y , Y) is a standard (marked) parabolic subgroup of (G, X). If Y ⊂ X and g ∈ G, then (gG Y g -1 , gYg -1
) is simply called a (marked) parabolic subgroup.

Let (G, X) be a strongly marked group having Property D. The support of a syllabic word w =

(x a 1 1 , x a 2 2 , . . . , x a ℓ ℓ ) is Supp(w) = {x 1 , x 2 , . . . , x ℓ }. This is well-defined since (G, X) is strongly marked. Let g ∈ G.
We choose a reduced syllabic form w = (x a 1 1 , x a 2 2 , . . . , x a ℓ ℓ ) for g and we define the support of g as Supp(g) = Supp(w) = {x 1 , . . . , x ℓ } ⊂ X . Since one can go from a reduced syllabic form of g to another through a finite sequence of elementary M-operations of type II and elementary M-operations of type II do not change supports of syllabic words, the definition of Supp(g) does not depend on the choice of the reduced syllabic form. On the other hand, it is easily seen that, if w and w ′ are two syllabic words such that one can go from w to w ′ through a finite sequence of elementary M-operations, then Supp(w) ⊃ Supp(w ′ ). This proves the following. Lemma 2.5 Let (G, X) be a strongly marked group with Property D. Let Y ⊂ X and g ∈ G. We have g ∈ G Y if and only if Supp(g) ⊂ Y .

A direct consequence of this lemma is the following.

Corollary 2.6 Let (G, X) be a strongly marked group with Property D. For Y, Y ′ ⊂ X we have

G Y ∩ G Y ′ = G Y∩Y ′ .
Let (G, X) be a strongly marked group with Property D and let QD(Γ, m, f ) be a quasi-Dyer presentation for (G, X). For U ⊂ V(Γ) we denote by Γ U the full subgraph of Γ spanned by U , we denote by m U : E(Γ U ) → N ≥2 the restriction of m to E(Γ U ), and we denote by

f U : V(Γ U ) → N ≥2 ∪ {∞} the restriction of f to V(Γ U ).
The first result which is proved in Section 6 is the following. Proposition 2.7 Let (G, X) be a strongly marked group with Property D and let QD(Γ, m, f ) be a quasi-Dyer presentation for (G, X).

Let U ⊂ V(Γ) and Y = {x u | u ∈ U}. Then (G Y , Y) is a strongly marked group with Property D and QD(Γ U , m U , f U ) is a quasi-Dyer presentation for (G Y , Y).
The second result of Section 6 concerns only Dyer systems and not strongly marked groups with Property D. Indeed, as shown in Example 2.9, this result does not hold for all strongly marked groups with Property D. Proposition 2.8 Let (D, X) be a Dyer system, Y ⊂ X , and g ∈ D.

(1) There exists a unique element g 0 in gD Y of minimal syllabic length, and this element satisfies lg S(X) (g 0 h) = lg S(X) (g 0 ) + lg S(X) (h) for all h ∈ D Y . (2) There exists a unique element g 0 in D Y g of minimal syllabic length, and this element satisfies lg S(X) (hg 0 ) = lg S(X) (h) + lg S(X) (g 0 ) for all h ∈ D Y . The main result of Section 6 is the following.

Theorem 2.10 Let (D, X) be a Dyer system of finite type and let {P i | i ∈ I} be a non-empty collection of parabolic subgroups of D. Then i∈I P i is a parabolic subgroup of D.

We do not know if this result remains true if we remove the hypothesis "to be of finite type", however we can prove that the intersection of two parabolic subgroups is always a parabolic subgroup (see Lemma 6.2).

The following consequence of Theorem 2.10 is widely used in the theory of Coxeter groups (see Kammer [START_REF] Krammer | The conjugacy problem for Coxeter groups[END_REF], for example). On the other hand, an equivalent statement for Artin groups is one of the central questions in the field.

Corollary 2.11 Let (D, X) be a Dyer system of finite type and let A be a subset of D. Then there exists a smallest (for the inclusion) parabolic subgroup containing A.

Let (D, X) be a Dyer system and let A ⊂ D be a subset. As for Coxeter groups and for Artin groups the smallest parabolic subgroup containing A is denoted by Pc(A) and is called the parabolic closure of A.

Dyer systems

As mentioned in Section 2 the aim of the present section is to prove Theorem 2.2. We first recall some results on Dyer groups proved in Dyer [START_REF] Dyer | Reflection subgroups of Coxeter systems[END_REF].

Let (D, X) be a Dyer system. Let R = {gxg -1 | g ∈ D , x ∈ X}. For each ρ ∈ R we take a copy

H ρ = {a [ρ] | a ∈ Z o(ρ)
} of ρ whose operation is denoted additively. We consider the abelian group

M(D, X) = ρ∈R H ρ ,
that we endow with a structure of D-module, where the action of an element g ∈ D on an element m = ρ∈R a ρ [ρ] is defined by

g • m = ρ∈R a ρ [gρg -1 ] . Let g ∈ D.
Choose a syllabic representative w = (x a 1 1 , x a 2 2 , . . . , x ap p ) for g. For each i ∈ {1, . . . , p} we set

ρ i = x a 1 1 • • • x a i-1 i-1 x i x -a i-1 i-1 • • • x -a 1 1 ∈ R .
Then we set

N(g) = p i=1 a i [ρ i ] ∈ M(D, X) .
The following theorem gathers together some results proved in Dyer [START_REF] Dyer | Reflection subgroups of Coxeter systems[END_REF].

Theorem 3.1 (Dyer [START_REF] Dyer | Reflection subgroups of Coxeter systems[END_REF]) Let (D, X) be a Dyer system.

(1) Let g ∈ D. Then the definition of N(g) ∈ M(D, X) does not depend on the choice of the syllabic representative for g.

(

) Let g ∈ G. Let N(g) = ρ∈R a ρ (g) [ρ]. Then lg S(X) (g) = |{ρ ∈ R | a ρ (g) = 0}|. 2 
(3) Let g, h ∈ D. Then N(gh) = N(g) + g • N(h). Now using Theorem 3.1 we prove a version for Dyer groups of the so-called Exchange Lemma.

Lemma 3.2 Let (D, X) be a Dyer system. Let g ∈ D and let w = (x a 1 1 , . . . , x a ℓ ℓ ) be a reduced syllabic expression for g. For all i ∈ {1, . . . , ℓ} we set

ρ i = x a 1 1 • • • x a i-1 i-1 x i x -a i-1 i-1 • • • x -a 1 1 ∈ R .
Let s 0 = x a 0 0 ∈ S(X). If lg S(X) (s 0 g) ≤ ℓ, then there exists i ∈ {1, . . . , ℓ} such that x 0 = ρ i . In that case, if a 0 + a i = 0, then (x a 1 1 , . . . ,

x a i-1 i-1 , x a i+1
i+1 , . . . , x a ℓ ℓ ) is a reduced syllabic expression for s 0 g, and if a 0 + a i = 0, then (x a 1 1 , . . . ,

x a i-1 i-1 , x a 0 +ai i , x a i+1
i+1 , . . . , x a ℓ ℓ ) is a reduced syllabic expression for s 0 g.

Proof

We have N(g) = ℓ i=1 a i [ρ i ] and, by Theorem 3.1 (2), ρ i = ρ j for i = j. By Theorem 3.1 (3),

N(s 0 g) = a 0 [x 0 ] + ℓ i=1 a i [s 0 ρ i s -1 0 ] .
Since the s 0 ρ i s -1 0 are pairwise distinct for i ∈ {1, . . . , ℓ} and lg S(X) (s 0 g) ≤ ℓ, by Theorem 3.1 (2) there exists i ∈ {1, . . . , ℓ} such that s 0 ρ i s -1 0 = x 0 , hence ρ i = s -1 0 x 0 s 0 = x 0 . Suppose a 0 + a i = 0. From the equality x 0 = ρ i follows that s

0 g = x a 1 1 • • • x a i-1 i-1 x a i+1 i+1 • • • x a ℓ ℓ , hence w ′ = (x a 1 1 , . . . , x a i-1 i-1 , x a i+1
i+1 , . . . , x a ℓ ℓ ) is a syllabic expression for s 0 g. Furthermore,

N(s 0 g) = i-1 j=1 a j [s 0 ρ j s -1 0 ] + ℓ j=i+1 a j [s 0 ρ j s -1 0 ] ,
and the [s 0 ρ j s -1 0 ] are pairwise distinct for j ∈ {1, . . . , ℓ}, hence, by Theorem 3.1 (2), lg S(X) (s 0 g) = ℓ-1. So, w ′ is a reduced syllabic word. Suppose a 0 + a i = 0. From the equality x 0 = ρ i follows that s

0 g = x a 1 1 • • • x a i-1 i-1 x a 0 +ai i x a i+1 i+1 • • • x a ℓ ℓ , hence w ′ = (x a 1 1 , . . . , x a i-1 i-1 , x a 0 +ai i , x a i+1
i+1 , . . . , x a ℓ ℓ ) is a syllabic expression for s 0 g. Furthermore,

N(s 0 g) = i-1 j=1 a j [s 0 ρ j s -1 0 ] + (a 0 + a i )[s 0 ρ i s -1 0 ] + ℓ j=i+1 a j [s 0 ρ j s -1 0 ] ,
and the [s 0 ρ j s -1 0 ] are pairwise distinct for j ∈ {1, . . . , ℓ}, hence, by Theorem 3.1 (2), lg S(X) (s 0 g) = ℓ. So, w ′ is a reduced syllabic word.

Proof of Theorem 2.2 Let (D, X) be a Dyer system. We start by showing that, if w and w ′ are two reduced syllabic words such that w = w ′ , then we can go from w to w ′ through a finite sequence of elementary M-operations of type II. We denote by ℓ the common length of w and w ′ , and we argue by induction on ℓ. The cases ℓ = 0 and ℓ = 1 are trivial, hence we can assume that ℓ ≥ 2 and that the induction hypothesis holds.

We set w = (s 1 , . . . , s ℓ ) and w ′ = (t 1 , . . . , t ℓ ). If s 1 = t 1 , then w 1 = (s 2 , . . . , s ℓ ) and w ′ 1 = (t 2 , . . . , t ℓ ) are two reduced syllabic words such that w 1 = w ′ 1 . Thus, by the induction hypothesis, we can go from w 1 to w ′ 1 through a finite sequence of elementary M-operations of type II. It follows that we can go from w to w ′ through a finite sequence of elementary M-operations of type II. So, we can assume that s 1 = t 1 .

We prove the following claim by induction on q ≥ 1.

Claim. Let q ≥ 1. If [s 1 , t 1 ] p = [t 1 , s 1 ] p for all p < q, then lg S(X) ([s 1 , t 1 ] q ) = lg S(X) ([t 1 , s 1 ] q ) = q
and there exist reduced syllabic words u q and u ′ q of length ℓq such that w

= w ′ = [s 1 , t 1 ] q • u q = [t 1 , s 1 ] q • u ′ q .
Proof of the claim. The case q = 1 is obtained directly by setting u q = (s 2 , . . . , s ℓ ) and u ′ q = (t 2 , . . . , t ℓ ). So we can assume that q ≥ 2 and that the induction hypothesis on q holds. By the induction hypothesis lg S(X) ([s 1 , t 1 ] q-1 ) = lg S(X) ([t 1 , s 1 ] q-1 ) = q -1 and there exist reduced syllabic words u q-1 and u ′ q-1 of length ℓq + 1 such that w

= w ′ = [s 1 , t 1 ] q-1 • u q-1 = [t 1 , s 1 ] q-1 • u ′ q-1 . We set [t 1 , s 1 ] q-1 • u ′
q-1 = (r 1 , . . . , r ℓ ). We have r i = t 1 if i is odd and i ≤ q -1, r i = s 1 if i is even and i ≤ q -1, and u ′ q-1 = (r q , r q+1 , . . . , r ℓ ). Since lg S(X) (s -1 1 w) < ℓ and (r 1 , . . . , r ℓ ) is a reduced syllabic expression for w, by Lemma 3.2 there exists i ∈ {1, . . . , ℓ} such that (r 1 , . . . , r i , . . . , r ℓ ) is a reduced syllabic expression for s -1 1 w. Thus (s 1 , r 1 , . . . , r i , . . . , r ℓ ) is a reduced syllabic expression for w. If we had i = 1 and q ≥ 3, then we would have r 2 = s 1 , thus (s 1 , r 1 , r 2 , . . . , r ℓ ) = (s 1 , s 1 , r 3 , . . . , r ℓ ) would not be a reduced syllabic word: contradiction. If we had 2 ≤ i ≤ q-2, then we would have r i-1 = r i+1 , hence (r 1 , . . . , r i , . . . , r ℓ ) would not be reduced: contradiction. If we had i = q -1 (q = 2 and i = 1 included), then (s 1 , r 1 , . . . , r i , . . . , r ℓ ) = [s 1 , t 1 ] q-1 • u ′ q-1 would be a reduced syllabic expression for w = [t 1 , s 1 ] q-1 • u ′ q-1 , hence we would have [s 1 , t 1 ] q-1 = [t 1 , s 1 ] q-1 , which would contradict the initial hypothesis. So i ≥ q. Then lg S(X) ([s 1 , t 1 ] q ) = q, u q = (r q , . . . , r i , . . . , r ℓ ) is a reduced syllabic word of length ℓq, and w = [s 1 , t 1 ] q • u q . We prove in the same way that lg S(X) ([t 1 , s 1 ] q ) = q and that there exists a reduced syllabic word u ′ q of length ℓq such that w = [t 1 , s 1 ] q • u ′ q . This concludes the proof of the claim.

In the above claim q is necessarily bounded by q ≤ ℓ, hence there exist q ≥ 2 and a reduced syllabic word u of length ℓq such that [s 1 ,

t 1 ] q = [t 1 , s 1 ] q , lg S(X) ([s 1 , t 1 ] q ) = q and w = [s 1 , t 1 ] q • u = [t 1 , s 1 ] q • u.
As in the case s 1 = t 1 treated at the beginning of the proof, we can go from w to [s 1 , t 1 ] q • u through a finite sequence of elementary M-operations of type II, and we can go from [t 1 , s 1 ] q • u to w ′ through a finite sequence of elementary M-operations of type II. Obviously we can also go from [s 1 , t 1 ] q • u to [t 1 , s 1 ] q • u through a single elementary M-operation of type II. So, we can go from w to w ′ through a finite sequence of elementary M-operations of type II.

It remains to show that, if a syllabic word w = (x a 1 1 , . . . , x a ℓ ℓ ) is M-reduced, then w is reduced. We argue by induction on the length ℓ of the syllabic word. The case ℓ = 1 is trivial, hence we can assume that ℓ ≥ 2 and that the induction hypothesis holds. Suppose w is not reduced. By the induction hypothesis w 1 = (x a 2 2 , . . . , x a ℓ ℓ ) is reduced. So, by Lemma 3.2, there exists i ∈ {2, . . . , ℓ} such that

x 1 = x a 2 2 • • • x a i-1 i-1 x i x -a i-1 i-1 • • • x -a 2 2
.

Let w 2 = (x a 1 1 , x a 2 2 , . . . , x a i-1

i-1 ) and w ′ 2 = (x a 2 2 , . . . , x a i-1 i-1 , x a 1 i ). By the above equality we have w 2 = w ′ 2 . Moreover w 2 is M-reduced since w is M-reduced, hence, by the induction hypothesis, w 2 is reduced. Then w ′ 2 is also reduced since it has the same length as w 2 . Thus, by what is proved above, we can go from w 2 to w ′ 2 through a finite sequence of elementary M-operations of type II. Set w ′ = (x a 2 2 , . . . ,

x a i-1 i-1 , x a i+1 i+1 , . . . , x a ℓ ℓ ) if a 1 + a i = 0 and w ′ = (x a 2 2 , . . . , x a i-1 i-1 , x a 1 +ai i , x a i+1
i+1 , . . . , x a ℓ ℓ ) if a 1 + a i = 0. Then we can go from w to w ′ through a finite sequence of elementary M-operations. Since lg S(X) (w ′ ) < lg S(X) (w), this contradicts the hypothesis that w is M-reduced.

quasi-Dyer systems

Recall that the aim of this section is to prove Theorem 2.3. Proof Suppose a = 1. Let w = (x a-1 , y b , x -1 ) and w ′ = (x -1 , y b , x a-1 ). We have w = x a-1 y b x -1 = x -1 y b x a-1 = w ′ . Thus, since (G, X) has Property D, either we can reduce the length of both, w and w ′ , by applying elementary M-operations, if lg S(X) (w) = lg S(X) (w ′ ) < 3, or we can go from w to w ′ through a finite sequence of elementary M-operations of type II, if lg S(X) (w) = lg S(X) (w ′ ) = 3. In both cases we must be able to apply an elementary M-operation to w. We cannot apply any elementary M-operation of type I to w = (x a-1 , y b , x -1 ) since x = y and (G, X) is strongly marked. Since a -1 = -1, the only elementary M-operations that could be applied to w are (x a-1 , y b , x -1 ) → (y b , x a-1 , x -1 ) or (x a-1 , y b , x -1 ) → (x a-1 , x -1 , y b ) . We have w = w ′ . Since (G, X) has Property D, either we can reduce the length of both, w and w ′ , by applying elementary M-operations, if lg S(X) (w) = lg S(X) (w ′ ) < m, or we can go from w to w ′ through a finite sequence of elementary M-operations of type II, if lg S(X) (w) = lg S(X) (w ′ ) = m. In both cases we must be able to apply an elementary M-operation to w. We cannot apply any elementary M-operation of type I to w because x = y. If we had -a = a, then, by the minimality of m, we could not apply any elementary M-operation of type II to w either. So, to be able to apply an elementary M-operation to w we must have -a = a. This is possible only if o(x) is finite and even and a = o(x)/2. We show in the same way that o(y) is finite and even and that b = o(y)/2. The case where m is odd is treated in the same way with the words w

= (x -a ) • [y b , x a ] m-1 and w ′ = [y b , x a ] m-1 • (y -b ).
It remains to show that m is unique. Suppose there exists another integer

n ≥ 3 different from m such that [x a , y b ] n = [y b , x a ] n and lg S(X) ([x a , y b ] n ) = n. Since m was chosen minimal, we have n > m.
Assume m is even. Then we have the following sequence of elementary M-operations:

[x a , y b ] n → [y b , x a ] m • [x a , y b ] n-m → [y b , x a ] m-1 • [y b , x a ] n-m-1 , hence [x a , y b ] n is not M-reduced. This contradicts the hypothesis lg S(X) ([x a , y b ] n ) = n.
The case where m is odd is treated in the same way. Proof We know by Lemma 4.2 that o(x) and o(y) are both finite and even, that a = o(x)/2 and that b = o(y)/2. We also know that m is unique. Suppose o(x) = 2. We choose c ∈ Z o(x) such that c = 0 and c = a. Let

w = (x a-c ) • [y b , x a ] m-1 • (x -c ) and w ′ = (x -c ) • [y b , x a ] m-1 • (x a-c ) .
Since [x a , y b ] m = [y b , x a ] m , we have w = w ′ . So, either we can reduce the length of both, w and w ′ , by applying elementary M-operations, if lg S(X) (w) = lg S(X) (w ′ ) < m + 1, or we can go from w to w ′ through a finite sequence of elementary M-operations of type II, if lg S(X) (w) = lg S(X) (w ′ ) = m + 1. In both cases we must be able to apply an elementary M-operation to w. We cannot apply any elementary M-operation of type I to w since x = y. We cannot apply any elementary M-operation of type II to w either since m is unique, ac = a, and -c = a (recall that -a = a = o(x)/2). This is a contradiction, hence we necessarily have o(x) = 2 and a = 1. We prove in the same way that o(y) = 2 and b = 1. 

w = (x a-c ) • [y b , x a ] m-1 • (y -d ) and w ′ = (x -c ) • [y b , x a ] m-1 • (y b-d ) .
Since [x a , y b ] m = [y b , x a ] m , we have w = w ′ . So, either we can reduce the length of both, w and w ′ , by applying elementary M-operations, if lg S(X) (w) = lg S(X) (w ′ ) < m + 1, or we can go from w to w ′ through a finite sequence of elementary M-operations of type II, if lg S(X) (w) = lg S(X) (w ′ ) = m + 1. In both cases we must be able to apply an elementary M-operation to w. We cannot apply any elementary M-operation of type I to w since x = y. We cannot apply any elementary M-operation of type II to w either since m is unique, ac = a, and

-d = b (recall that -b = b = o(y)/2). This is a contradiction, hence we necessarily have o(x) = 2 or o(y) = 2.
Proof of Theorem 2.3 Let (G, X) be a strongly marked group with Property D. We start by defining a simplicial graph Γ and maps m : E(Γ) → N ≥2 and f : V(Γ) → N ≥2 ∪ {∞}. The set V(Γ) is a set in one-to-one correspondence with X , and we set

X = {x v | v ∈ V(Γ)}. We set f (v) = o(x v ) for all v ∈ V(Γ). A pair e = {u, v} belongs to E(Γ) if and only if there exist a ∈ Z f (u) \ {0}, b ∈ Z f (v) \ {0} and m ≥ 2 such that [x a u , x b v ] m = [x b v , x a u ] m and lg S(X) ([x a u , x b v ] m ) = m.
We know by Lemma 4.2 that such an m is unique if it exists. In that case we set m(e) = m. It follows from Lemmas 4.2, 4.3 and 4.4 that the triple (Γ, m, f ) defines a quasi-Dyer group QD = QD(Γ, m, f ).

In order to differentiate the standard generators of QD from the elements of X , we denote by Y = {y v | v ∈ V(Γ)} the standard generating set for QD. By Lemmas 4.1, 4.3 and 4.4 we have a homomorphism ϕ : QD → G which sends y v to x v for all v ∈ V(Γ). This homomorphism is surjective since X generates G. On the other hand we define a set-map ψ : G → QD as follows. Let g ∈ G. We choose a syllabic expression w = (x a 1 v 1 , x a 2 v 2 , . . . , x a ℓ v ℓ ) for g and we set ψ(g

) = y a 1 v 1 y a 2 v 2 • • • y a ℓ v ℓ ∈ QD.
The fact that (G, X) has Property D combined with Lemmas 4.1, 4.3 and 4.4 implies that ψ(g) is well-defined in the sense that its definition does not depend on the choice of the syllabic expression. Now we show that ψ • ϕ = id QD . This implies that ϕ is also injective and therefore ends the proof of the theorem.

Let h ∈ QD. Let (y a 1 v 1 , y a 2 v 2 , . . . , y a ℓ v ℓ ) be a syllabic expression of h. Then (x

a 1 v 1 , x a 2 v 2 , . . . , x a ℓ v ℓ ) is a syllabic expression of ϕ(h), hence (ψ • ϕ)(h) = y a 1 v 1 y a 2 v 2 • • • y a ℓ v ℓ = h. So, ψ • ϕ = id QD .

Two generators quasi-Dyer groups

In this section we study the group

QD m,k = x, y | x 2 = y 2k = 1 , [x, y k ] m = [y k , x] m ,
where m ≥ 3 is odd and k ≥ 2. We start by showing that (QD m,k , {x, y}) is strongly marked.

Lemma 5.1 Let m ≥ 3 odd and k ≥ 2. Then (QD m,k , {x, y}) is strongly marked.

Proof We have X = {x, y} and S(X) = {x, y, y 2 , . . . , y 2k-1 }. We choose b ∈ {1, . . . , 2k -1} and we show that xy b ∈ S(X) ∪ {1}. Let

D m = x, y ′ | x 2 = y ′2 = 1 , [x, y ′ ] m = [y ′ , x] m , C 2k = y | y 2k = 1 , K = z | z 2 = 1 .
Observe that D m is a dihedral group of order 2m, C 2k is a cyclic group of order 2k, and K is a cyclic group of order 2. We have an embedding of K into D m which sends z to y ′ , we have an embedding of K into C The rest of the proof of Proposition 2.4 uses rewriting systems. Since we do not assume the reader to be familiar with them, we start by giving the necessary background for understanding our proof, and we refer to Cohen [START_REF] Cohen | String rewriting -a survey for group theorists[END_REF] and Le Chenadec [START_REF] Le | Canonical forms in finitely presented algebras[END_REF] for detailed explanations.

Let S be a finite set (called an alphabet) and let S * be the free monoid on S. The elements of S * are called words and they are written as finite sequences, as for syllabic words. The empty word is denoted by ǫ. The concatenation of two words w, w ′ ∈ S * is written w • w ′ . A rewriting system on S * is a subset R ⊂ S * × S * . Let w, w ′ ∈ S * . We set w → R w ′ or simply w → w ′ if there exist w 1 , w 2 ∈ S * and (u, v) ∈ R such that w = w 1 • u • w 2 and w ′ = w 1 • v • w 2 . More generally, we set w → * R w ′ or simply w → * w ′ if w ′ = w or if there exists a finite sequence w 0 = w, w 1 , . . . , w p = w ′ in S * such that w i-1 → w i for all i ∈ {1, . . . , p}. A word w ∈ S * is R-reducible if there exists a word w ′ ∈ S * such that w → w ′ . We say that w is R-irreducible otherwise. The pair (S, R) is a rewriting system for a monoid M if S | u = v for (u, v) ∈ R + is a monoid presentation for M . A rewriting system for a group G is a rewriting system for G viewed as a monoid. In particular, in that case S must generate G as a monoid. If (S, R) is a rewriting system for a monoid M and w = (s 1 , . . . , s ℓ ) ∈ S * , then we denote by w = s 1 s 2 • • • s ℓ the element of M represented by w.

Let R be a rewriting system. We say that R is Noetherian if there is no infinite sequence w 0 → w 1 → w 2 → • • • in S * . On the other hand we say that R is confluent if, for all u, v 1 , v 2 ∈ S * such that u → * v 1 and u → * v 2 , there exists w ∈ S * such that v 1 → * w and v 2 → * w. We say that R is complete if it is both, Noetherian and confluent. Theorems 5.2 and 5.3 below contain classical results on rewriting systems that we will use in our proof of Proposition 2.4.

Theorem 5.2 (Newman [START_REF] Newman | On theories with a combinatorial definition of "equivalence[END_REF]) Let (S, R) be a complete rewriting system for a monoid M .

(1) For each w ′ ∈ S * there exists a unique R-irreducible word w ∈ S * such that w ′ → * w.

(2) For each g ∈ M there exists a unique R-irreducible word w ∈ S * such that w = g. Suppose S * is endowed with a total order ≤ such that: (a) there is no infinite descending chain

w 0 > w 1 > w 2 > • • • in S * , and (b) for all u, v, w 1 , w 2 ∈ S * , if u > v, then w 1 • u • w 2 > w 1 • v • w 2 .
For instance, if S itself is endowed with a total order, then the graded lexicographical order on S * , denoted ≤ glex , is a total order on S * satisfying Conditions (a) and (b). Then a rewriting system R on S * satisfying u > v for all (u, v) ∈ R is Noetherian.

A critical pair in a rewriting system R is a quintuple (u 1 , u 2 , u 3 , v 1 , v 2 ) of elements of S * satisfying one of the following two conditions:

(a) (u 1 • u 2 , v 1 ) ∈ R, (u 2 • u 3 , v 2 ) ∈ R, and u 2 = ǫ, (b) (u 1 • u 2 • u 3 , v 1 ) ∈ R and (u 2 , v 2 ) ∈ R.
We say that a critical pair (u 1 , u 2 , u 3 , v 1 , v 2 ) is resolved if there exists w ∈ S * such that

• v 1 • u 3 → * w and u 1 • v 2 → * w in Case (a), • v 1 → * w and u 1 • v 2 • u 3 → * w in Case (b).
Theorem 5.3 (Newman [START_REF] Newman | On theories with a combinatorial definition of "equivalence[END_REF]) Let R be a Noetherian rewriting system. If all critical pairs of R are resolved, then R is confluent. 

QD m,k = x, y | x 2 = y 2k = 1 , [x, y k ] m = [y k , x] m .
We already know by Lemma 5.1 that (QD m,k , {x, y}) is strongly marked. So, it remains to show that (QD m,k , {x, y}) has Property D.

We set S = S({x, y}) = {x, y, y 2 , . . . , y 2k-1 } that we totally order by x > y > y 2 > • • • > y 2k-1 , and we endow S * with the graded lexicographic order ≤ glex . Let R be the following rewriting system on S * :

R = {(x, x) → ǫ, [x, y k ] m → [y k , x] m } ∪ {(y a , y -a ) → ǫ | a ∈ Z 2k \ {0}} ∪ {(y a , y b ) → (y a+b ) | a, b ∈ Z 2k \ {0} , a + b = 0} .
It is clear that (S, R) is a rewriting system for QD m,k viewed as a monoid. It is also clear that R is Noetherian since u > glex v for all (u, v) ∈ R. Another immediate observation is that, if w, w ′ ∈ S * are such that w → * w ′ , then we can go from w to w ′ through a finite sequence of elementary M-operations. Now we prove that R is confluent.

We list below all critical pairs (u 1 , u 2 , u 3 , v 1 , v 2 ) of type (a), and for each of them we give a word w ∈ S * such that u 1 • v 2 → * w and v 1 • u 3 → * w. There is no (non-trivial) critical pair of type (b), hence, by Theorem 5.3, these calculations show that R is confluent.

• (u 1 , u 2 , u 3 , v 1 , v 2 ) = ((x), (x), (x), ǫ, ǫ) and w = (x).

• (u 1 , u 2 , u 3 , v 1 , v 2 ) = ((x), (x), [y k , x] m-1 , ǫ, [y k , x] m ) and w = [y k , x] m-1 . • (u 1 , u 2 , u 3 , v 1 , v 2 ) = ([x, y k ] m-1 , (x), (x), [y k , x] m , ǫ) and w = [x, y k ] m-1 . • (u 1 , u 2 , u 3 , v 1 , v 2 ) = ([x, y k ] 2a , [x, y k ] 2b-1 , [y k , x] 2a , [y k , x] m , [y k , x] m ) and w = [y k , x] 2b-1 , where a, b ∈ N ≥1 and 2a + 2b -1 = m. • (u 1 , u 2 , u 3 , v 1 , v 2 ) = ((y a
), (y -a ), (y a ), ǫ, ǫ) and w = (y a ), where a ∈ Z 2k \ {0}. In order to prove that QD m,k has Property D it suffices to show that, if w and w ′ are two M-reduced syllabic words representing the same element of QD m,k , then we can go from w to w ′ through a finite sequence of elementary M-operations of type II. Since R is confluent, by Theorem 5.2 there exists a unique R-irreducible word w 0 ∈ S * such that w → * w 0 and w ′ → * w 0 . As previously indicated, this implies that we can go from w to w 0 through a finite sequence of elementary M-operations. Moreover, lg(w) ≥ lg(w 0 ) (since w ≥ glex w 0 ) and w is M-reduced, hence all these elementary M-operations must be of type II. Similarly, we can go from w ′ to w 0 through a finite sequence of elementary M-operations of type II. So, we can go from w to w ′ through a finite sequence of elementary M-operations of type II.

• (u 1 , u 2 , u 3 , v 1 , v 2 ) = ((

Parabolic subgroups

Let (G, X) be a strongly marked group with Property D and let QD(Γ, m, f ) be the quasi-Dyer presentation for (G, X). Recall that, for U ⊂ V(Γ), we denote by Γ U the full subgraph of Γ spanned by U , we denote by m U : E(Γ U ) → N ≥2 the restriction of m to E(Γ U ), and we denote by f U : V(Γ U ) → N ≥2 ∪ {∞} the restriction of f to V(Γ U ). We begin by proving Proposition 2.7. As indicated in Section 2, the rest of the section concerns only Dyer systems. We start with the proof of Proposition 2.8.

Proof of

Proof of Proposition 2.8 Let (D, X) be a Dyer system. We first prove Part (2). Part (1) will follow from Part (2). Let Y ⊂ X and let g ∈ G. Let g 0 ∈ D Y g be of minimal syllabic length in D Y g. To prove Part (2) it suffices to show that lg S(X) (hg 0 ) = lg S(X) (h) + lg S(X) (g 0 ) for all h ∈ D Y .

We use the definitions and the notations of Section 3. Let (x a 1 1 , . . . , x ap p ) be a reduced syllabic expression for g 0 and let (y b 1 1 , . . . , y bq q ) be a reduced syllabic expression for h. For i ∈ {1, . . . , p} and j ∈ {1, . . . , q} we set

ρ i = x a 1 1 • • • x a i-1 i-1 x i x -a i-1 i-1 • • • x -a 1 1 and σ j = y b 1 1 • • • y b j-1 j-1 y j y -b j-1 j-1 • • • y -b 1 1 .
We have

N(g 0 ) = p i=1 a i [ρ i ] and N(h) = q j=1 b j [σ j ] .
By Theorem 3.1 the ρ i are pairwise distinct and the σ j are pairwise distinct.

Set R Y = {kyk -1 | k ∈ D Y and y ∈ Y}. Since elementary M-operations preserve S(Y) * it follows from Theorem 2.2 that y j ∈ Y for all j ∈ {1, . . . , q}, hence σ j ∈ R Y for all j ∈ {1, . . . , q}. Suppose there exists i ∈ {1, . . . , p} such that

ρ i ∈ R Y . Let g ′ 0 = x a 1 1 • • • x a i-1 i-1 x a i+1 i+1 • • • x ap p .
Then lg S(X) (g ′ 0 ) < lg S(X) (g 0 ) = p, g 0 = ρ ai i g ′ 0 and ρ ai i ∈ D Y , which would contradict the minimalilty of the syllabic length of g 0 in D Y g. So, ρ i ∈ R Y for all i ∈ {1, . . . , p}. Since h ∈ D Y , it follows that hρ i h -1 ∈ R Y for all i ∈ {1, . . . , p}.

By Theorem 3.1,

N(hg 0 ) = N(h) + h • N(g 0 ) = q j=1 b j [σ j ] + p i=1 a i [hρ i h -1 ] .
We know that the σ j are pairwise distinct and we know that the hρ i h -1 are pairwise distinct. We also know that σ j = hρ i h -1 for j ∈ {1, . . . , q} and i ∈ {1, . . . , p}, since σ j ∈ R Y and hρ i h -1 ∈ R Y . By Theorem 3.1 it follows that lg S(X) (hg 0 ) = q + p = lg S(X) (h) + lg S(X) (g 0 ) . Now we prove Part [START_REF] Charney | Finite K(π, 1)s for Artin groups[END_REF]. Let g 0 be an element of minimal syllabic length in gD Y . Then g -1 0 is of minimal syllabic length in D Y g -1 . By Part (2) already proved, it follows that, for all h ∈ D Y , lg S(X) (g 0 h) = lg S(X) (h -1 g -1 0 ) = lg S(X) (h -1 ) + lg S(X) (g -1 0 ) = lg S(X) (g 0 ) + lg S(X) (h) .

h ′ , and h = g 0 h ′ g -1 0 . By the induction hypothesis it follows that x i ∈ Z for all i ∈ {2, . . . , p}. Finally, since g ∈ D Y ∩g 0 D Y ′ g -1 0 and x i ∈ D Y ∩g 0 D Y ′ g -1 0 for all i ∈ {2, . . . , p}, we have x a 1 1 ∈ D Y ∩g 0 D Y ′ g -1 0 , hence, by the case p = 1 previously proved, x 1 ∈ Z . 

D Y ∩ gD Y ′ g -1 = (hD Y h -1 ) ∩ (hg 0 h ′ D Y ′ h ′-1 g -1 0 h -1 ) = h(D Y ∩ g 0 D Y ′ g -1 0 )h -1 = hD Z h -1 .
Lemma 6.3 Let (D, X) be a Dyer system of finite type. Let Y, Y ′ ⊂ X and g, h ∈ D such that gD Y ′ g -1 hD Y h -1 . Then |Y ′ | < |Y|.

Proof Without loss of generality we can assume that h = 1, else we conjugate both sides with h -1 and we replace g by h -1 g. Let g 0 be an element in D Y gD Y ′ of minimal syllabic length. Let k ∈ D Y and k ′ ∈ D Y ′ such that g = kg 0 k ′ . Then

gD Y ′ g -1 D Y ⇔ kg 0 k ′ D Y ′ k ′-1 g -1 0 k -1 kD Y k -1 ⇔ g 0 D Y ′ g -1 0 D Y .
So, we can assume that g 0 D Y ′ g -1 0 D Y . Let y Y ′ . There exists f y ∈ D Y such that g 0 yg -1 0 = f y , that is, g 0 y = f y g 0 . Since g 0 has minimal syllabic length in both, g 0 D Y ′ and D Y g 0 , by Proposition 2.8 we have 1 + lg S(X) (g 0 ) = lg S(X) (g 0 y) = lg S(X) (f y g 0 ) = lg S(X) (f y ) + lg S(X) (g 0 ) , hence lg S(X) (f y ) = 1, thus there exist x ∈ Y and a ∈ Z o(x) \ {0} such that f y = x a . Using the same arguments as in the proof of Lemma 6.1, from the equalities x a g 0 = g 0 y and lg S(X) (x a g 0 ) = lg S(X) (g 0 y) = lg S(X) (g 0 ) + 1 it follows that a = 1 and x = g 0 yg -1 0 . So, g 0 Y ′ g -1 0 ⊂ Y . Since conjugation by g 0 is a bijection, this inclusion implies that

|Y ′ | ≤ |Y|. Moreover, if |Y ′ | = |Y|, then g 0 Y ′ g -1 0 = Y , hence g 0 D Y ′ g -1 0 = D Y , which is a contradiction. So, |Y ′ | < |Y|.
Proof of Theorem 2.10 Let (D, X) be a Dyer system of finite type. Let {P i | i ∈ I} be a non-empty collection of parabolic subgroups of (D, X). Let P be the set of all finite intersections of elements of {P i | i ∈ I}. We know by Lemma 6.2 that the elements of P are all parabolic subgroups. We choose P 0 = g 0 D Y 0 g -1 0 in P with minimal |Y 0 | and we show that i∈I P i = P 0 . Clearly, it suffices to show that P 0 ⊂ P for all P ∈ P . Let P = gD Y g -1 ∈ P and P ′ = P 0 ∩ P. We have P ′ ∈ P by definition and by Lemma 6.2 there exist h ∈ D and Z ⊂ X such that P ′ = hD Z h -1 . We have |Z| ≥ |Y 0 | by minimality of |Y 0 | and P ′ = hD Z h -1 ⊂ P 0 = g 0 D Y 0 g -1 0 , hence, by Lemma 6.3, P ′ = P 0 . So, P 0 = P ′ = P 0 ∩ P ⊂ P.

  a, b are two letters and m is an integer ≥ 2, then we denote by [a, b] m the alternating word (a, b, a, . . . ) of length m. Similarly, if a, b are two elements of a group G, then we denote by [a, b] m the alternating product aba • • • of length m.

Example 2 . 9

 29 Let G = QD 3,2 = x, y | x 2 = y 4 = 1 , xy 2 x = y 2 xy 2 and X = {x, y}. We know by Proposition 2.4 that (G, X) is strongly marked and has Property D. Let Y = {x} and g = yxy2 . Then gG Y has two elements, g = yxy 2 and gx = y 3 xy 2 , and lg S(X) (g) = lg S(X) (gx) = 3. In particular gG Y does not have a unique element of minimal syllabic length.

Lemma 4 . 1

 41 Let (G, X) be a strongly marked group with Property D. Let x, y ∈ X , x = y, a ∈ Z o(x) \ {0} and b ∈ Z o(y) \ {0}. If x a y b = y b x a , then xy = yx.

  So, either x a-1 y b = y b x a-1 or x -1 y b = y b x -1 . Any of these two equalities combined with the equality x a y b = y b x a implies xy b = y b x. If b = 1, then we use the equality y b-1 xy -1 = y -1 xy b-1 to show in the same way that xy = yx. Lemma 4.2 Let (G, X) be a strongly marked group with Property D. Let x, y ∈ X , x = y, a ∈ Z o(x) \ {0}, b ∈ Z o(y) \{0}, and m ≥ 3. Assume that xy = yx, [x a , y b ] m = [y b , x a ] m and lg S(X) ([x a , y b ] m ) = m. Then o(x) and o(y) are both finite and even, a = o(x)/2, and b = o(y)/2. Moreover, m is unique in the sense that, if [x a , y b ] n = [y b , x a ] n and lg S(X) ([x a , y b ] n ) = n, then n = m. Proof We assume that a ∈ Z o(x) \ {0} and b ∈ Z o(y) \ {0} are fixed and we choose m minimal so that [x a , y b ] m = [y b , x a ] m and lg S(X) ([x a , y b ] m ) = m. We have m ≥ 3 since x and y do not commute (see Lemma 4.1). We start by showing that o(x) and o(y) are both finite and even, that a = o(x)/2, and that b = o(y)/2. Suppose m is even. Let w = (x -a ) • [y b , x a ] m-1 and w ′ = [y b , x a ] m-1 • (x -a ) .

Lemma 4 . 3

 43 Let (G, X) be a strongly marked group with Property D. Let x, y ∈ X , x = y, a ∈ Z o(x) \ {0}, b ∈ Z o(y) \{0}, and m ≥ 3 even. Assume xy = yx, [x a , y b ] m = [y b , x a ] m and lg S(X) ([x a , y b ] m ) = m. Then o(x) = o(y) = 2 and a = b = 1.

Lemma 4 . 4

 44 Let (G, X) be a strongly marked group with PropertyD. Let x, y ∈ X , x = y, a ∈ Z o(x) \ {0}, b ∈ Z o(y) \ {0} and m ≥ 3 odd. Assume xy = yx, [x a , y b ] m = [y b , x a ] m and lg S(X) ([x a , y b ] m ) = m. Then either o(x) =2 (and a = 1), or o(y) = 2 (and b = 1). Proof We know by Lemma 4.2 that o(x) and o(y) are both finite and even, that a = o(x)/2 and that b = o(y)/2. We also know that m is unique. Suppose o(x) = 2 and o(y) = 2. We choose c ∈ Z o(x) and d ∈ Z o(y) such that c = 0, c = a, d = 0 and d = b. Let

  2k which sends z to y k , and we have QD m,k = D m * K C 2k . If b = k, then y b ∈ C 2k \ K and x ∈ D m \ K , hence, by the general theory of normal forms in amalgamated products of groups (see Serre [11]), xy b ∈ D m and xy b ∈ C 2k , hence xy b ∈ S(X) ∪ {1}. Suppose b = k. Then y b = y ′ ∈ D m , hence xy b = xy ′ is a non-trivial rotation, thus xy b ∈ {x, y ′ , 1} = D m ∩ (S(X) ∪ {1}), and therefore xy b ∈ S(X) ∪ {1}.

Proof of Proposition 2 . 4

 24 Let m ≥ 3 odd and k ≥ 2, and let

  y a ), (y -a ), (y b ), ǫ, (y -a+b )) and w = (y b ), where a, b ∈ Z 2k \ {0} and -a + b = 0. • (u 1 , u 2 , u 3 , v 1 , v 2 ) = ((y a ), (y b ), (y -b ), (y a+b ), ǫ) and w = (y a ), where a, b ∈ Z 2k \ {0} and a + b = 0. • (u 1 , u 2 , u 3 , v 1 , v 2 ) = ((y a ), (y b ), (y c ), (y a+b ), (y b+c )), w = ǫ if a + b + c = 0, and w = (y a+b+c ) if a + b + c = 0, where a, b, c ∈ Z 2k \ {0}, a + b = 0 and b + c = 0.

  Proposition 2.7 Let U ⊂ V(Γ). Let Y = {x u | u ∈ U}. From the inclusion S(Y) ⊂ S(X) it follows that (G Y , Y) is strongly marked. Again, to show that (G Y , Y) has Property D, it suffices to show that, if w and w ′ are two M-reduced syllabic words in S(Y) * representing the same element of G Y , then we can go from w to w ′ through a finite sequence of elementary M-operations of type II. Let w and w ′ be two M-reduced syllabic words in S(Y) * representing the same element of G Y . Since the elementary M-operations preserve S(Y) * , w and w ′ are M-reduced seen as elements of S(X) * . Since (G, X) has Property D, it follows that we can go from w to w ′ through a finite sequence of elementary M-operations of type II, and these elementary M-operations preserve S(Y) * . So, (G Y , Y) has Property D. Finally, the fact that QD(Γ U , m U , f U ) is the quasi-Dyer presentation for (G Y , Y) follows from the definition of a quasi-Dyer presentation.

Lemma 6 . 2

 62 Let (D, X) be a Dyer system. Then a finite intersection of parabolic subgroups of D is a parabolic subgroup of D.Proof It suffices to show that, if Y, Y ′ ⊂ X and g ∈ D, then D Y ∩ gD Y ′ g -1 is a parabolic subgroup. Let g 0 be an element in D Y gD Y ′ of minimal syllabic length. Let Z = Y ∩ g 0 Y ′ g -1 0 . By Lemma 6.1 we have D Y ∩ g 0 D Y ′ g -1 0 = D Z . Let h ∈ D Y and h ′ ∈ D Y ′ such that g = hg 0 h ′ . Then

The rest of the section is dedicated to the proof of Theorem 2.10. Lemmas 6.1, 6.2 and 6.3 are preliminaries to its proof, but they are also interesting by themselves. Note that Lemmas 6.1 and 6.2 hold for all Dyer groups, while Lemma 6.3 requires the Dyer group to be of finite type. Lemma 6.1 Let (D, X) be a Dyer system, let Y, Y ′ ⊂ X , and let g 0 ∈ D. Assume g 0 is of minimal syllabic length in the double coset

) be a reduced syllabic expression for g, let (y b 1 1 , . . . , y bq q ) be a reduced syllabic expression for g ′ , and let (z c 1 1 , . . . , z c ℓ ℓ ) be a reduced syllabic expression for g 0 . Since elementary M-operations preserve S(Y) * and S(Y ′ ) * , by Theorem 2.2 we have x i ∈ Y for all i ∈ {1, . . . , p} and y i ∈ Y ′ for all i ∈ {1, . . . q}. Moreover, g 0 g ′ = gg 0 and g 0 is of minimal syllabic length in both, D Y g 0 and g 0 D Y ′ , hence, by Proposition 2.8, p + lg S(X) (g 0 ) = lg S(X) (gg 0 ) = lg S(X) (g 0 g ′ ) = lg S(X) (g 0 ) + q , thus p = q. Now we show by induction on p that x i ∈ Z for all i ∈ {1, . . . , p}. This implies that g ∈ D Z .

Assume

. The word w is a syllabic expression for g 0 g ′ , which is of syllabic length ℓ + 1, hence w is reduced. Moreover, x -a 1 1

• w = g -1 g 0 g ′ = g 0 is of syllabic length ℓ, hence, by Lemma 3.2, either (i) there exists k ∈ {1, . . . , ℓ} such that

with k ∈ {1, . . . , ℓ}, otherwise (x a 1 1 , z c 1 1 , . . . , z c ℓ ℓ ) would not be a reduced syllabic word. So, x 1 ∈ Z . We assume that p ≥ 2 and that the induction hypothesis holds. Let w = (z c 1 1 , . . . , z c ℓ ℓ , y b 1 1 , . . . , y bp p ). The word w is a syllabic expression for g 0 g ′ , which is of syllabic length ℓ + p, hence w is reduced. On the other hand, x -a 1 1

So, by lemma 3.2, either (i) there exists k ∈ {1, . . . , ℓ} such that

Suppose there exists k ∈ {1, . . . , ℓ} such that

This contradicts the minimality of the syllabic length of g 0 in D Y g 0 D Y ′ . So, there exists j ∈ {1, . . . , p} such that