
ViA: View-invariant Skeleton Action Representation Learning via
Motion Retargeting

Di Yang1,2 Yaohui Wang1,2,4* Antitza Dantcheva1,2 Lorenzo Garattoni3

Gianpiero Francesca3 François Brémond1,2
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Abstract

Current self-supervised approaches for skeleton action rep-
resentation learning often focus on constrained scenarios,
where videos and skeleton data are recorded in laboratory
settings. When dealing with estimated skeleton data in real-
world videos, such methods perform poorly due to the large
variations across subjects and camera viewpoints. To address
this issue, we introduce ViA, a novel View-Invariant Autoen-
coder for self-supervised skeleton action representation learn-
ing1. ViA leverages motion retargeting between different hu-
man performers as a pretext task, in order to disentangle the
latent action-specific ‘Motion’ features on top of the visual
representation of a 2D or 3D skeleton sequence. Such ‘Mo-
tion’ features are invariant to skeleton geometry and cam-
era view and allow ViA to facilitate both, cross-subject and
cross-view action classification tasks. We conduct a study fo-
cusing on transfer-learning for skeleton-based action recogni-
tion with self-supervised pre-training on real-world data (e.g.,
Posetics). Our results showcase that skeleton representations
learned from ViA are generic enough to improve upon state-
of-the-art action classification accuracy, not only on 3D lab-
oratory datasets such as NTU-RGB+D 60 and NTU-RGB+D
120, but also on real-world datasets where only 2D data are
accurately estimated, e.g., Toyota Smarthome, UAV-Human
and Penn Action.

Introduction
Human action recognition is a crucial task in real-world
video understanding. Recent works have made promising
progress by adopting spatio-temporal Convolutional Neu-
ral Networks (CNNs) (Ji et al. 2013; Carreira and Zisser-
man 2017; Hara, Kataoka, and Satoh 2017; Feichtenhofer
et al. 2019; Feichtenhofer 2020; Ryoo et al. 2020; Li et al.
2021a; Wang et al. 2021) or Transformer (Arnab et al. 2021)
to effectively extract features from RGB videos and opti-
cal flows (Karen and Andrew 2014; Feichtenhofer, Pinz, and
Zisserman 2016). However, such methods are generally poor
at recognizing actions performed by subjects or recorded
from viewpoints that are not present in the training data. One
of the open challenges is to design methods that are invari-
ant to subject and view. As an alternative, skeleton-based
action recognition methods have been demonstrated robust
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to changes in viewpoints and subjects (Vemulapalli, Ar-
rate, and Chellappa 2014; Caetano, Brémond, and Schwartz
2019; Yan, Xiong, and Lin 2018; Li et al. 2019; Shi et al.
2019; Song et al. 2020; Chen et al. 2021; Duan et al. 2022)
when the models were trained (and evaluated) on laboratory
indoor simulation datasets (Shahroudy et al. 2016; Liu et al.
2020; Wang et al. 2014), where high-quality 3D skeleton
data are accessible. Unfortunately, 3D skeleton-based mod-
els often fail to generalize to real-world videos (Carreira and
Zisserman 2017; Zhang, Zhu, and Derpanis 2013; Das et al.
2019; Li et al. 2021c) containing realistic and diverse condi-
tions, whereas acquiring high-quality 3D skeleton labeled
data is extremely expensive. On the contrary, many stud-
ies (Weinzaepfel and Rogez 2021; Yang et al. 2021c; Duan
et al. 2022) have shown that 2D estimated skeleton, although
sensitive to view and subject variations, is more accurate and
more effective for action recognition compared to estimated
3D counterparts in many real-world scenarios (Zhang, Zhu,
and Derpanis 2013; Das et al. 2019; Li et al. 2021c; Carreira
and Zisserman 2017). Based on this observation, we hypoth-
esize that action recognition, particularly based on 2D skele-
tons, could be improved by embedding a view-invariant rep-
resentation of skeleton sequences.

In this work we propose ViA, a novel framework to train
an embedding model that represents a view-invariant 2D
action without the need to explicitly reconstruct 3D skele-
tons or camera parameters. Given a pair of videos, we de-
note the temporal static information of a skeleton sequence,
i.e., ‘viewpoints’, ‘body size’, etc., as ‘Character’, while the
temporal dynamic information, i.e., the specifics of the ‘ac-
tion’ performed by the subject, as ‘Motion’. ViA is able
to make subjects perform each other’s action, while main-
taining viewpoint and body size invariance. As the learned
‘Motion’ representation is subject and view agnostic, it can
be effectively applied for cross-subject and cross-view ac-
tion recognition. Specifically, as shown in Fig. 1, ViA incor-
porates (i) an encoder that operates the skeleton sequences
extracted from source and driving videos, along with (ii) a
Latent Motion Disentanglement module (LMD) to learn the
‘Motion’ and ‘Character’ components by orthogonal decom-
position from the visual skeleton representations. (iii) A
lightweight skeleton sequence decoder is employed to gen-
erate the novel pair of skeleton sequences from the repre-
sentations where their ‘Motion’ features are swapped with
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Figure 1: General pipeline of ViA. Our framework consists of two steps. Firstly, we apply view-invariant motion retargeting as
a pretext task for pre-training a view- and subject-invariant autoencoder for given skeleton sequences. Secondly, the pre-trained
visual encoder is evaluated by transferring to downstream cross-view and cross-subject action classification tasks. LMD: Latent
Motion Disentanglement module. M: ‘Motion’ features, C: ‘Character’ features.

each other. In addition, towards independence from action
annotations, we propose to train the autoencoder of ViA in
a self-supervised manner by adopting contrastive loss and a
cycle of reconstruction loss.

Towards assessing the performance of our framework,
we first pre-train ViA on the large-scale real-world Poset-
ics dataset with a rich variety of subjects and viewpoints
and we evaluate the quality of the learned action represen-
tation by fine-tuning and linear evaluation protocols on un-
seen 2D real-world action recognition datasets (e.g., Toy-
ota Smarthome, UVA-Human and Penn Action). As ViA is
not limited to 2D skeletons, we additionally validate the ef-
fectiveness of ViA on laboratory 3D datasets (e.g., NTU-
RGB+D 60 and 120). Experimental analyses confirm that
through motion retargeting, ViA outperforms state-of-the-
art methods (Sun et al. 2020; Li et al. 2021b; Yang et al.
2021b; Su, Lin, and Wu 2021) on self-supervised action rep-
resentation learning and the learned video representations
can notably transfer to videos with cross-view and cross-
subject challenges.

In summary, the contributions of this paper are the follow-
ing. (i) We introduce ViA, a novel joint generative and dis-
criminative framework. ViA leverages motion retargeting as
a pretext task to learn view- and subject-invariant skeleton-
based action representations. (ii) We introduce a novel La-
tent Motion Disentanglement mechanism to decompose and
regroup the view-agnostic ‘Motion’ features for skeleton se-
quences by orthogonal decomposition on visual representa-
tions in the latent space. (iii) We set a new state-of-the-art for
self-supervised skeleton action recognition on the real-world
Posetics dataset. (iv) We conduct a study and show that pre-
training ViA on Posetics and transferring it onto an unseen
target dataset represents a generic and effective methodol-
ogy for view- and subject-invariant action classification.

Related Work
Self-supervised Skeleton Action Representation. Self-
supervised skeleton representation learning involves learn-
ing spatio-temporal features from numerous unlabeled data
by means of pretext tasks, e.g., motion consistency learn-
ing (Su, Lin, and Wu 2021) and skeleton colorization (Yang
et al. 2021d) for specific skeleton sequence processing.
These methods highly rely on the quality of pretext tasks.
Recently, contrastive learning and its variants (Wu et al.

2018; Hjelm et al. 2019; Bachman, Hjelm, and Buchwal-
ter 2019; Tian, Krishnan, and Isola 2020; He et al. 2020;
Chen et al. 2020; Jiao et al. 2020; Yang et al. 2021b) have
established themselves as an important direction for self-
supervised representation learning, due to their promising
performances. Inspired by (Tian, Krishnan, and Isola 2020),
CrosSCLR (Li et al. 2021b) trains action models (Yan,
Xiong, and Lin 2018) in three modalities including joint,
bone, and motion by encouraging cross-view consistency.
Recent techniques (Su, Lin, and Wu 2021; Yang et al. 2021d;
Li et al. 2021b) have only shown promising results on labo-
ratory datasets based on high-quality 3D skeleton sequences
that are more robust to view variations. They thus struggle to
deal with a large diversity of subjects and viewpoints when
generalizing onto real-world action recognition tasks espe-
cially on 2D skeleton datasets (Das et al. 2019; Li et al.
2021c; Zhang, Zhu, and Derpanis 2013).
View-invariant Skeleton Representation. To explore the
view-invariant representation ability of human skeletons,
previous methods (Li et al. 2018; Kundu et al. 2019; Nie,
Liu, and Liu 2020; Nie and Liu 2021) aim at disentangling
the view-dependent and pose-dependent features by two in-
dependent encoders on top of a single 3D skeleton using
probabilistic embedding for view-invariant action recogni-
tion. To further address inherent ambiguities in 2D skele-
ton due to 3D-to-2D projection for action recognition, re-
cent methods (Sun et al. 2020; Zhao et al. 2021; Sardari,
Ommer, and Mirmehdi 2021) perform the disentanglement
learning on specific sensors (e.g., motion capture system)
capturing multi-view 2D skeletons. However, The aforemen-
tioned methods all process the skeleton sequence frame by
frame, which are challenged in capturing the temporal fea-
tures of the sequence and they are often not available when
applying for common 2D datasets (Das et al. 2019; Li et al.
2021c; Zhang, Zhu, and Derpanis 2013) where collecting
data in multi-view is expensive and challenging.

In our work, ViA applies generative task for the disentan-
glement and does not need multi-view data and 3D recon-
struction. Moreover, unlike previous works only disentan-
gling static aspects ‘view’ and ‘pose’ for a single frame, the
disentanglement of ViA is designed for ‘Character’ (includ-
ing ‘view’ and ‘pose’) and ‘Motion’ coded in a sequence.
The important temporal dimension is considered to better
generalize to action understanding tasks. By disentangling
‘Motion’ features using orthogonal decomposition in the la-
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Figure 2: Overview of the proposed framework. ViA is an autoencoder consisting of two networks, a visual encoder EPose

and a decoder DPose. In the latent space, we apply Latent Motion Disentanglement (LMD) by learning a character dictionary
Dc, which is an orthogonal basis where each vector represents a basic visual transformation of the ‘Character’ aspects. (a) In
the pre-training stage, ViA takes two skeleton sequences pm,c and pm′,c′ as driving and source sequence respectively. Firstly,
the two samples are encoded into latent codes rm,c and rm′,c′ . Then, their projections Ac and Ac′ along Dc can be computed
and the linear combination of Ac (or Ac′ ) with Dc is considered as the ‘Character’ features. The ‘Motion’ features of the
driving sequence rm can be disentangled and regrouped with the ‘Character’ features of pm′,c′ to become the target code rm,c′ .
Finally, the target skeleton sequence pm,c′ is generated from rm,c′ by DPose. (b) In the action classification stage, we transfer
the pre-trained visual Encoder EPose stacked with LMD onto downstream tasks for fine-tuning or feature extraction.

tent space, ViA eliminates the requirement of explicit reg-
ularization terms (Sun et al. 2020; Zhao et al. 2021) that
encourage disentanglement and smoothness of the learned
representation.
Skeleton Generation by Motion Retargeting. Motion
retargeting is one of the important applications of video gen-
eration (Tulyakov et al. 2018; Wang et al. 2020; WANG et al.
2020; Yu et al. 2022; Skorokhodov, Tulyakov, and Elho-
seiny 2022). Recent methods have used both spatially struc-
tured representations (e.g., 2D skeleton sequences (Villegas
et al. 2018; Aberman et al. 2019; Chan et al. 2019)) and
non-structure representations (e.g., latent codes (Wang et al.
2022)) to transfer motion between humans. Current skele-
ton generation method (Aberman et al. 2019) shows that
transferring motion across characters can enforce view and
motion disentangling. In this work, we propose to leverage
such a generative task to improve action recognition down-
stream tasks. As opposed to finding directions correspond-
ing to individual visual transformations, we seek to learn a
set of directions that cooperatively allows for high-level vi-
sual transformations that can be beneficial in skeleton gen-
eration. Hence, deviating from existing methods (Villegas
et al. 2018; Aberman et al. 2019; Chan et al. 2019) using
separate networks to learn disentangled features, ViA inte-
grates both, latent motion code, as well as view features in a
single encoder, which highly reduces the model complex-
ity and simplifies training. In addition, we employ cycle-
consistency (Zhu et al. 2017; Ma et al. 2022) to generalize
to real-world videos using non-paired skeleton sequences as
the only training data.

Proposed Approach
In this section, we introduce the full architecture and the
training strategy of the ViA framework.
Overview. ViA is an autoencoder consisting of a visual
encoder and a decoder for skeleton (i.e., pose) sequences

(see Fig. 2). We aim at training the visual encoder that can
embed the input skeleton sequence to a view- and subject-
invariant representation, then transferring the visual encoder
for skeleton-based action classification tasks. To disentangle
‘Motion’ from ‘Character’, we apply motion retargeting as
the pretext task (i.e., transferring the motion of driving skele-
ton sequence to the source skeleton sequence maintaining
the source skeletons invariant in viewpoint and body size).
We note that input skeletons can be in 3D or 2D only. The
framework is learned with a cycle of reconstruction (the au-
toencoder is reused taking generated skeleton sequences as
the input to recover the original source and driving skeleton
sequences) and contrastive losses as self-supervision. We
present the architecture details in the following sections.

Motion Retargeting Architecture
Skeleton Sequence Modeling. The input skeleton se-
quence with ‘Character’ c and ‘Motion’ m is modeled by a
spatio-temporal matrix, noted as pm,c ∈ RT×V×Cin . T , V ,
and Cin respectively represent the length of the video, the
number of body joints in each frame, and the input channels
(Cin = 2 for 2D data, or Cin = 3 if we use 3D skeletons).
For each frame, the body joint coordinates are arranged in a
matrix, with consistent order between different frames. The
matrices of different frames are then stacked along the tem-
poral dimension to obtain the matrix pm,c.

Skeleton Sequence Embedding As shown in Fig. 2 a.(i),
ViA adopts a visual encoder EPose to extract features of the
input driving skeleton sequence pm,c and represents the fea-
tures as rm,c ∈ RT ′×Cout = EPose(pm,c). T ′ is the size
of temporal dimension after convolutions and Cout is the
output channel size. In order to encourage the motion re-
targeting, we select a source skeleton sequence pm′,c′ as
a contrastive sample. For the selection of this contrasitive
sample which is expected to have different motion with driv-
ing sequence, we first cluster the skeleton sequences in the



Stages EPose DPose

Input 2D sequence Rep.
[T × V, 2] [T ′, 256]

1 Conv
(

1× 1, 64
9× 1, 64

)
× 4

Upsample(2)
Conv( 7, 128 )

2 Conv
(

1× 1, 128
9× 1, 128

)
× 3

Upsample(2)
Conv( 7, 64 )

3 Conv
(

1× 1, 256
9× 1, 256

)
× 3

Upsample(2)
Conv( 7, 2V )

4 S-GAP (2× V, 256) -
Rep. [T ′, 256] -

5 T-GAP (T ′, 256) -
6 FC, Softmax -

Output Action Class 2D sequence
[T, 2V ]

Table 1: Main building blocks of the Encoder and De-
coder networks. The dimensions of kernels are denoted by
t× s, c (2D kernels) and t, c (1D kernels) for temporal, spa-
tial, channel sizes. S/T-GAP, FC denotes temporal/spatial
global average pooling, and fully-connected layer respec-
tively. Rep. indicates the learned representation.

training set using K-Means, and then randomly sample a se-
quence excluding the cluster where pm,c belongs. The vi-
sual representation of the contrastive sample is obtained as
rm′,c′ = EPose(pm′,c′).

Our goal is to learn the view-invariant and generalizable
skeleton action representation, which is generated by the vi-
sual encoder EPose. This encoder thus needs to have a strong
capability to extract skeleton spatio-temporal features. To
this end, we adopt the recent topology-free skeleton back-
bone network UNIK (Yang et al. 2021c) as the visual en-
coder. Specifically, the EPose is composed of 10 convolu-
tional building blocks. Each building block contains a spa-
tial network and a temporal convolutional network to ex-
tract both spatial and temporal multi-scale features from the
skeleton sequence (see Tab. 1). For the spatial processing,
we utilize 1×1 convolutions to expand the data channels and
then multiply the features by uniformly initialized (He et al.
2015) and learnable dependency matrices (which replace
the adjacency matrices used in GCN-based methods (Yan,
Xiong, and Lin 2018; Shi et al. 2019; Liu et al. 2020; Chen
et al. 2021)). For the temporal processing, we utilize 9 × 1
convolutions with strides. The size of the temporal dimen-
sion of embedded latent ‘Motion’ T ′ depends on the dura-
tion of the input sequence. For transfer-learning on down-
stream tasks, we attach the visual encoder to a temporal
global average pooling layer and a fully-connected layer fol-
lowed by a Softmax Layer. The output size of each fully-
connected layer depends on the number of action classes.
Then, we re-train the network with action labels.
Latent Motion Disentanglement. Latent Motion Disen-
tanglement (LMD) is the key module of ViA to obtain the
‘Motion’ features on top of the visual representations (see
Fig. 2 a.(ii)). Our insight is that the ‘Character’ and ‘Mo-
tion’ features are independent, these two components can
be explicitly discovered in the latent code using the vector
orthogonal decomposition method. As the ‘Character’ fea-
tures are temporal static, we simply represent such features
by a one-dimensional vector rc ∈ RCout for the skeleton

sequence pm,c. To model rc , we first pre-define a learn-
able orthogonal basis, noted as Dc = {d1,d2, ...,dK} with
K ∈ [1, Cout) where each vector indicates a basic visual
transformation of the ‘Character’ aspects of the skeletons.
Then, we consider the ‘Character’ features rc as a linear
combination between this orthogonal basis Dc, and associ-
ated magnitudes Ac = {a1, a2, ..., aK}. For pm′,c′ , we can
obtain its ‘Character’ component rc′ in the same way:

rc =

K∑
i=1

aidi, rc′ =

K∑
i=1

a′idi. (1)

Subsequently, the ‘Motion’ features rm ∈ RT ′×Cout can be
obtained by the vector decomposition: rm = rm,c − rc. As
rm,c has the temporal dimension of size T ′, for each feature
in the temporal dimension, we repeat the decomposition pro-
cess with the same ‘Character’ component. According to the
Gram-Schmidt algorithm, the set of magnitudes Ac and A′

c
can be computed as the projections of rm,c onto Dc (see
Eq. 2) to satisfy the orthogonality of rm and rc.

ai =
< rm,c · di >

∥di∥2
, a′i =

< rm′,c′ · di >

∥di∥2
. (2)

With such trained LMD, in the inference stage, we can gen-
erate skeleton sequences in multiple viewpoints with a single
input skeleton sequence by only changing the magnitudes
Ac along the orthogonal basis in the latent space without the
need for paired data.
Skeleton Sequence Generation. To generate skeleton se-
quences, the output rm and rc′ are composed and fed into
a decoder DPose (Fig. 2 a.(iii)). Unlike EPose, the Pose Se-
quence Decoder DPose is lightweight and designed by mul-
tiple 1D temporal convolutions with temporal global max
pooling and upsampling to respectively encode and decode
the skeletons as in (Aberman et al. 2019). The new retar-
geted skeleton sequence with ‘Motion’ m, and ‘Character’
c′, noted as pm,c′ is generated from the recombined features,
rm+rc′ . Similarly, pm′,c can also be generated by swapping
the source and driving sequences. The skeleton sequence
generation can be formulated as pm,c′ = DPose(rm, rc′)
and pm′,c = DPose(rm′ , rc).

Self-supervised Training
In this section, we introduce the self-supervised training loss
function L, which consists of three components, namely
reconstruction loss Lrec, contrastive triplet loss Ltrip, and
temporal velocity loss Lvel:

L = Lrec + Ltrip + Lvel. (3)

Reconstruction Loss. The reconstruction loss aims at
guiding the network towards a high generation quality at
the global sequence level. It consists of two components:
Lrec = Lself + Lcycle. Specifically, at every training iter-
ation, the decoder network DPose is firstly required to re-
construct each of the original input samples pm,c using its
representations rm and rc. This component of the loss is
denoted as Lself and formulated as a standard autoencoder
reconstruction loss (see Eq. 4). Moreover, at each iteration,



the decoder is also encouraged to re-compose new combina-
tions. To this end, we can explicitly apply the cycle recon-
struction loss Lcycle (see Eq. 4, 5) through the cycle gen-
eration. Specifically, the Embedding and LMD modules are
used again to disentangle and re-combine the features for
the previous generated skeleton sequence pm′,c and pm,c′ .
Then, the generation module is also used again to recon-
struct the original sequence pm,c.

Lself = E[∥DPose(rm, rc)− pm,c∥2],
Lcycle = E[∥DPose(r̂m, r̂c)− pm,c∥2],

(4)

where

r̂c =

K∑
i=1

< EPose(pm′,c) · di >

∥di∥2
di, r̂m′ = EPose(pm′,c)− r̂c,

r̂c′ =

K∑
i=1

< EPose(pm,c′) · di >

∥di∥2
di, r̂m = EPose(pm,c′)− r̂c′ .

(5)

Contrastive Triplet Loss. At the representation level, we
adopt a triplet loss Ltrip for the sampled skeletons (both
driving skeleton sequence and its contrastive sample) as
Ltrip = Ltrip M + Ltrip C . This loss aims to enhance the
mutual information of rm and r̂m, which are the represen-
tations of the same ‘Motion’ performed by different char-
acters, to produce view-invariant ‘Motion’ representations.
Specifically, we encourage the similarity between rm and
r̂m, while discouraging the similarity between r̂m and the
other ‘Motion’ performed in its contrastive sample, rm′ .
Similarly, we define the ‘Character’ triplet loss in the same
way. The loss components are described as follows (the
triplet margin α = 1.0):

Ltrip M = E[∥r̂m − rm∥ − ∥r̂m − rm′∥+ α]+,

Ltrip C = E[∥r̂c − rc∥ − ∥r̂c − rc′∥+ α]+.
(6)

Velocity Loss. As described in (Aberman et al. 2019), the
use of reconstruction loss only for sequence-level genera-
tion produces large errors for end joints such as hands and
feet, which gives rise to the foot-skating phenomenon. We
argue that the reconstruction loss constrains the network to
generate the original skeletons with minimum global errors
for all joints, however it misses the important temporal con-
sistencies of each individual joint. We thus explicitly adopt
a temporal consistency restriction loss for all V body joints
(noted as an ensemble J ), which constrains the velocity—
i.e., joints shifting along the temporal dimension—of the
skeleton sequence (see Eq. 7).

Lvel = λE[
∑
n∈J

∥∥Vn

(
DPose(r̂m, r̂c)

)
− Vn(pm,c)

∥∥2],
(7)

where Vn denotes the velocity of the n-th joint, which can
be calculated by the distance between this skeleton joint at
frame τ -th and at frame τ + 1-th. λ indicates the weighting
factor of the velocity loss.

Transfer-learning for Action Classification
ViA aims at pre-training a generic and view-invariant vi-
sual encoder. The model properties are verified by transfer-

learning of EPose (stacked with LMD) for action recogni-
tion tasks (see Fig. 2 (b)). In practice, we attach the visual
encoder, where the pre-trained weights are used as initializa-
tion, to a temporal global average pooling layer and a fully-
connected layer followed by a Softmax Layer. The output
size of each fully-connected layer depends on the number
of action classes. Then, we re-train the network with action
labels on the target datasets. Following common evaluation
protocols used in previous unsupervised action representa-
tion frameworks (Li et al. 2021b; Yang et al. 2021d; Su, Lin,
and Wu 2021; Yang et al. 2021b), we conduct both linear
evaluation by training only the fully-connected layer with
the backbone frozen, and fine-tuning evaluation by further
refining the whole network on downstream tasks.

Experiments and Analysis
We conduct extensive experiments to evaluate ViA. Firstly,
we compare ViA against the state-of-the-art self-supervised
models on the large-scale pre-training dataset Posetics, by
linear evaluation Secondly, we study the generalizability
of ViA to quantify the performance improvement obtained
by transfer-learning on the target 2D datasets (i.e., Toyota
Smarthome, UAV-Human and Penn Action) as well as 3D
datasets (i.e., NTU-RGB+D 60 and NTU-RGB+D 120) af-
ter pre-training on Posetics. Thirdly, we evaluate the quality
of the motion (i.e., action) generated by the retargeting mod-
ule on the synthetic dataset Mixamo. Finally, we provide an
exhaustive ablation study of ViA.

Datasets and Evaluation Protocols
Posetics (Yang et al. 2021c) is created on top of Kinetics-
400 (Carreira and Zisserman 2017) videos. It contains
142,000 real-world video clips of 320 action classes with
the corresponding 2D and 3D skeletons. We use the Posetics
dataset to pre-train our action representation learning frame-
work with skeleton data and we study the transfer-learning
on skeleton-based action classification. We use Top-1 and
Top-5 accuracy as evaluation metrics (Yang et al. 2021c).
Toyota Smarthome (Das et al. 2019) (Smarthome) is a real-
world dataset for daily living action classification and con-
tains 16,115 videos of 31 action classes. It provides RGB
videos, 2D and 3D skeleton data (Yang et al. 2021a). As the
provided 2D data is more robust for action recognition even
for cross-view evaluation (Yang et al. 2021a,c), unless oth-
erwise stated, we use 2D data for the experiments. For the
evaluation, we report mean per-class accuracy following the
cross-subject (CS) and cross-view (CV1 and CV2) evalua-
tion protocols.
UAV-Human (Li et al. 2021c) contains 22,476 video se-
quences collected by a flying UAV including 2D skeleton
data estimated by (Fang et al. 2017). In this work, we use
only 2D skeleton data and we follow Cross-subject (CS1 and
CS2) evaluation protocols.
Penn Action (Zhang, Zhu, and Derpanis 2013) contains
2,326 video sequences of 15 different actions. In this work,
we use 2D skeletons obtained by LCRNet++ (Rogez, Wein-
zaepfel, and Schmid 2019) for experiments and we report
Top-1 accuracy following the standard train-test split.



NTU-RGB+D 60 (Shahroudy et al. 2016) consists of 56,880
sequences of high-quality 3D skeletons, captured by the Mi-
crosoft Kinect v2 sensor. We only use sequences of 3D
skeletons in this work and we follow the cross-subject (CS)
and cross-view (CV) evaluation protocol.

NTU-RGB+D 120 (Liu et al. 2020) extends the number of
action classes and videos of NTU-RGB+D 60 to 120 classes
114,480 videos. We use 3D skeleton sequences and we fol-
low the cross-subject (CS) and cross-set (CSet) evaluation
protocols.

Mixamo (Inc. 2018) is a 3D animation collection, which
contains approximately 2,400 unique motion sequences, in-
cluding elementary actions, and various dancing moves.
Each of these motions may be applied to 71 distinct char-
acters, which share a human skeleton topology, but may
differ in their body size and proportions. We use such a
synthetic dataset, which includes the cross-reconstruction
ground truth (i.e., the same motion pattern performed by dif-
ferent characters and in different viewpoints obtained by ro-
tated 3D and projected 2D skeletons) for pre-training and
evaluating the motion retargeting module in ViA.

Evaluation on Self-supervised Action Classification

Our objective is to improve action recognition performance
on 2D skeleton datasets by learning an action representation
on a sufficiently large dataset. Hence, in this section, we
evaluate ViA on self-supervised action classification (i.e.,
linear evaluation) on the large-scale Posetics dataset and
then compare ViA with state-of-the-art approaches.

Comparison with State-of-the-art (SoTA). For fair com-
parison, we re-implement recent state-of-the-art skeleton-
based action representation learning approaches (Sun et al.
2020; Li et al. 2021b; Yang et al. 2021b) on the Poset-
ics dataset using 2D skeleton data. Results are depicted
in Tab. 2 (top): ViA is more effective when compared to
3D-based methods (Li et al. 2021b) applied onto 2D real-
world datasets. Intuitively, we think that the variation of
subject body sizes and of the viewpoints might weaken the
robustness of the SoTA embedding networks. In contrast,
ViA encourages similarity of the representation for actions
performed by different subjects under different viewpoints.
This shows that our model is more effective and robust to
real-world videos. Compared to previous view-invariant em-
bedding approaches (Sun et al. 2020) based on single frame,
our method considering temporal features is more robust
for action recognition. In Tab. 2 (bottom) we compare fine-
tuning results of ViA to other supervised methods (Kim and
Reiter 2017; Yan, Xiong, and Lin 2018; Shi et al. 2019;
Song et al. 2020; Liu et al. 2020; Yang et al. 2021c) that are
trained without representation learning (i.e., training from
scratch). Compared to the UNIK backbone model used in
our work (Yang et al. 2021c), the pre-training provides mi-
nor improvement, as the training data (i.e., Posetics) is suffi-
ciently large. However, when transferring ViA onto smaller
benchmark datasets, the impact of representation learning is
significant (see Sec. Evaluation on Transfer-learning).

Methods Posetics
Top-1(%) Top-5(%)

Linear (Baseline) 8.2 21.4
Pr-ViPE (Sun et al. 2020) 17.2 35.3
OR-VPE (Yang et al. 2021b) 14.6 31.2
3s-CrosSCLR (Li et al. 2021b) 18.8 38.1
ViA (Ours) 20.7 40.1
TCNs (Kim and Reiter 2017) 34.0 57.2
ST-GCN (Yan, Xiong, and Lin 2018) 43.3 67.3
2s-AGCN (Shi et al. 2019) 47.0 70.8
Res-GCN (Song et al. 2020) 46.7 70.6
MS-G3D Net (Liu et al. 2020) 47.1 70.0
UNIK (Yang et al. 2021c) 47.6 71.3
ViA (Ours ft.) 48.0 72.6

Table 2: Comparison of Top-1 and Top-5 classification ac-
curacy with state-of-the-art unsupervised methods (top)
on Posetics. Fully-supervised results (bottom) with fine-
tuning (reported as ft.) are also reported for reference.

Methods NTU-60 NTU-120
CS(%) CV(%) CS(%) CSet(%)

SeBiRe (Nie, Liu, and Liu 2020) - 79.7 - -
CrosSLR (Li et al. 2021b) 77.8 83.4 67.9 66.7
Colorization (Yang et al. 2021d) 75.2 83.1 - -
ViA (Ours) 78.1 85.8 69.2 66.9
W/o pre-training 86.5 94.6 80.1 84.5
Self-supervised pre-training 89.6 96.4 85.0 86.5

Table 3: Comparison with previous self-supervised state-of-
the-art by linear evaluation (top) on NTU-RGB+D 60 and
NTU-RGB+D 120. Transfer learning results by fine-tuning
(bottom) are also reported for reference.

Evaluation on Transfer-learning
In this section, we study the transfer ability of ViA by
both linear evaluation and fine-tuning evaluation with self-
supervised training on Posetics. We transfer the model
onto three 2D skeleton action classification benchmarks
i.e., Toyota Smarthome, UAV-Human and Penn Action with
no additional pre-training. As Smarthome and UAV-Human
mainly focus on the cross-subject and cross-view challenges,
the results measure the view- and subject-invariance of the
2D action representation of ViA models. We also report the
results with supervised pre-training for reference (i.e., we
add a classifier at the end of the visual encoder and adopt
cross entropy loss using action labels during training).
Linear Evaluation. Tab. 4 (top) shows the linear results
on the three datasets. This evaluates the effectiveness of
transfer-learning with fewer parameters (only the classifier
is trained) compared to classification from random initial-
ization. The results suggest that the weights of the model
can be well pre-trained without action labels, providing
a strong transfer ability especially on smaller benchmarks
(e.g., +31.9% Smarthome on CV2 and +70.4% on Penn Ac-
tion) and the pre-trained visual encoder is generic enough to
extract meaningful action features from skeleton sequences.
Fine-tuning. Tab. 4 (middle) shows the fine-tuning re-
sults, when the whole network is re-trained. These re-
sults suggest that pre-training can improve upon previous
SoTA (Yang et al. 2021c) with no pre-training. The self-
supervised pre-trained model also performs competitively



Methods Pre-training Toyota Smarthome UAV-Human Penn Action
#Params CS(%) CV1(%) CV2(%) #Params CS1(%) CS2(%) #Params Top-1(%)

Random init. Scratch 7.97K 24.6 17.2 20.7 39.85K 3.8 4.1 3.85K 29.8
Supervised Posetics w/ labels 7.97K 51.9 35.4 52.2 39.85K 32.9 56.1 3.85K 97.3
Self-supervised Posetics w/o labels 7.97K 49.5 33.6 52.6 39.85K 29.5 46.7 3.85K 90.2
Random init. Scratch 3.45M 63.1 22.9 61.2 3.45M 39.2 67.3 3.45M 94.0
Supervised Posetics w/ labels 3.45M 64.5 36.1 65.2 3.45M 42.6 69.5 3.45M 98.0
Self-supervised Posetics w/o labels 3.45M 64.0 35.6 65.4 3.45M 41.3 68.5 3.45M 97.7

Previous SoTA - (Yang et al. 2021c) (Cheng et al. 2020) (Sun et al. 2020)
- - 63.1 22.9 61.2 - 38.0 67.0 - 97.5

ViA (Ours) - - 64.5 36.1 65.4 - 42.6 69.5 - 98.0
Table 4: Transfer learning results by linear evaluation (top) and fine-tuning (middle) on Smarthome, UAV-Human and Penn
Action with self-supervised pre-training on Posetics compared to Baseline (random initialization). Results with supervised pre-
training and previous state-of-the-art (bottom) are also reported.

Methods Pre-training Training data Toyota Smarthome UAV-Human Penn Action
CS(%) CV1(%) CV2(%) CS1(%) CS2(%) Top-1 Accuracy(%)

Random init. (Yang et al. 2021c) Scratch 5% 22.9 5.6 33.7 10.9 10.4 32.4
Self-supervised Posetics w/o labels 5% 38.6 16.8 42.6 21.7 33.3 65.8
Random init. (Yang et al. 2021c) Scratch 10% 33.8 8.5 39.5 17.8 25.6 39.8
Self-supervised Posetics w/o labels 10% 45.3 22.7 46.6 31.0 43.7 85.2

Table 5: Transfer learning results by fine-tuning on all benchmarks of Smarthome, UAV-Human and Penn Action with randomly
selected 5% (top) and 10% (bottom) of labeled training data.

compared to supervised pre-trained models. From these re-
sults we conclude that collecting a large-scale video dataset,
without the need of action annotation, can be beneficial
to downstream tasks, especially when using our proposed
view-invariant ViA for the 2D action classification task (e.g.,
+12.7% on Smarthome CV1 and +4.2% on CV2). Further-
more, we compare our fine-tuning results to other SoTA
skeleton-based supervised approaches (Yang et al. 2021c;
Cheng et al. 2020; Sun et al. 2020). The results in Tab. 4
(bottom) show that ViA outperforms all previous approaches
on all the three real-world datasets.

Training with Fewer Labels. In some real-world applica-
tions, labeled data may be lacking, which makes it challeng-
ing to train models with good performance. To evaluate ViA
in such cases, we pre-train with Posetics and then fine-tune
the visual encoder with 5% and 10% of the labeled data. As
shown in Tab. 5, without pre-training, the accuracy of the
baseline (Yang et al. 2021c) significantly decreases with the
amount of training data. In contrast, ViA still achieves good
performance on all three datasets.

3D Skeleton Action Classification. As ViA can be sim-
ply extended to take 3D skeleton sequence as input, we
further analyze the transfer ability of ViA onto 3D skele-
ton action recognition tasks. We firstly compare (Li et al.
2021b), (Yang et al. 2021b) and ViA on Posetics using offi-
cially provided 3D data (we get 17.1%, 12.9% and 19.3%,
respectively for linear evaluation). These results are lower
than related results in Tab. 2 using 2D data. We argue that,
although 3D skeletons are more robust to the view varia-
tion, 2D skeletons extracted from images or videos tend to
be more accurate than extracted 3D skeletons. In contrast,
laboratory datasets (e.g., NTU-RGB+D 60 & 120) provide
3D skeleton data obtained by RGBD sensors that have a
higher quality than the one provided by 2D data. To study
the impact of action representation learning, we also trans-

Methods Sup. Unsup.
NKN (Villegas et al. 2018) 1.51 -
MotionRetargeting2D (Aberman et al. 2019) 0.96 2.56
ViA w/o Dc (Ours) 2.42 -
ViA w/ Dc (Ours)

size K = 2 1.16 -
size K = 64 0.89 -
size K = 32 0.86 2.47

Table 6: Quantitative comparisons of Mean Square Error
(MSE) show that our framework outperforms other SoTA
motion retargeting methods on Mixamo.

fer the ViA pre-trained on Posetics (3D skeletons) with-
out action labels onto NTU-RGB+D-60 and NTU-RGB+D-
120 by fine-tuning. The action recognition performance can
still be improved (e.g., +4.9% on NTU-RGB+D-120 CS,
see Tab. 3 (bottom)). To compare with other recent self-
supervised methods (Nie, Liu, and Liu 2020; Li et al. 2021b;
Yang et al. 2021d), we follow the same pre-training setting
and linear evaluation protocol and report state-of-the-art ac-
curacy (see Tab. 3 (top)).

Evaluation on Motion Retargeting
As motion retargeting is our pretext task, we here evaluate
the proposed LMD mechanism of ViA by motion retarget-
ing performance. We randomly split training and test sets on
the Mixamo dataset and follow the same setting and protocol
described in (Aberman et al. 2019). As previous SoTA (Vil-
legas et al. 2018; Aberman et al. 2019) are supervised ap-
proaches, for fair comparison, we also train ViA using cross
reconstruction loss on (Inc. 2018) in a supervised manner. To
validate the impact of proposed Dc, we learn rc by decom-
posing rm,c on a pre-defined and fixed subspace without the
learnable Dc. From the evaluation results reported in Tab. 6,
we observe that in the absence of Dc, model fails to gen-
erate high-quality skeletons, which proves the effectiveness



Figure 3: Qualitative results on Motion Retargeting. (a) and
(b) are the input pair of videos and corresponding 2D skele-
ton sequences. (c) is the generated 2D skeleton sequence that
represents the character of (b) performing the motion in (a)
while maintaining the viewpoint and body size invariance.
(d) is the generated 2D skeleton sequence that represents the
character of (a) performing the motion in (b).

(b) `Motion’
(𝐴𝑐 = 0)

𝐴𝑐 +−

(a) Source 
2D sequence

(c) Generated 2D sequences

Figure 4: Qualitative results on 2D Motion Generation.
Given a source skeleton sequence, we can generate multi-
ple sequences by latent space manipulation on disentangled
‘Motion’ and ‘Character’ magnitudes (Ac).

of Dc. Then we conduct an ablation analysis on the size of
Dc. The results suggest that motion retargeting by ViA (w/
Dc in including 32 directions) performs the best and achieve
SoTA accuracy. We also report unsupervised results by cycle
consistency learning.

Qualitative Evaluation. To demonstrate that the ‘View/-
Subject’ and ‘Motion’ are well disentangled by the proposed
framework, we visualize an example of motion retargeting
inference of two Penn Action’s videos (see Fig. 3). Then
we visualize the representations of all the skeletons on Mix-
amo with t-SNE (see Fig. 5 with both supervised and un-
supervised motion retargeting). Qualitative results validate
that the ‘View/Subject’ and ‘Motion’ parts of 2D skeleton
sequences have been effectively disentangled. To further un-
derstand the learned ‘Motion’ features, we generate skele-
tons for each single input sequence with only rm (see Fig. 4
(b)), and then with rm combined by different rc obtained
by a linearly grown Ac (see Fig. 4 (c)). We observe that
rm represents the motion in a ‘canonical view’, regardless
of original views of the input skeleton sequences. As such
a ‘canonical view’ can be considered as a normalized form
of the given skeleton sequence, learning transformations be-
tween generative sequence and source sequence using Dc

and Ac is considerably more efficient than directly genera-
tion once the ‘canonical view’ is fixed.

Ablation Study
To understand the contribution of each loss function in ViA,
we conduct ablation experiments on Smarthome CV2 with
fine-tuning protocol. To perform more studies on the char-
acteristics of view-invariant representations, we additionally

Motion View Motion View

Figure 5: Skeleton representations (marked by different col-
ors with ‘Motion’ and ‘View’) on Mixamo with ViA by su-
pervised (left) and unsupervised (right) motion retargeting.

Methods Lself Lcycle Ltrip Lvel
Smarthome Mixamo

CV2(%) CV(%)
L0: Baseline 61.7 71.7
L1: +Self ✓ 62.9 76.5
L2: +Cycle ✓ ✓ 63.8 82.5
L3: +Trip ✓ ✓ ✓ 65.0 85.8
L4: +Vel (Full) ✓ ✓ ✓ ✓ 65.4 87.2

Table 7: Ablation study of ViA on Smarthome CV2 and
Mixamo CV with transfer learning (fine-tuning).

set a Cross-view (CV) action recognition protocol on the
Mixamo dataset (i.e., Top-1 classification accuracy) using
two different 2D skeleton projections generated by random
3D rotations of the same action for 2D cross-view evalua-
tion. We start from a baseline model that has been previously
pre-trained on the synthetic dataset (i.e., Mixamo) using mo-
tion retargeting annotations for cross-character reconstruc-
tion. Already this visual encoder has a strong capability to
embed the 2D skeleton sequence into a view-invariant rep-
resentation. The results in Tab. 7 (see L0) suggest that the
generalizability is hindered by the lack of action diversity
in the synthetic training dataset if directly transferring the
baseline visual encoder for action classification. Therefore,
from the full results in Tab. 7, we infer that additional self-
supervised training on Posetics can improve the real-world
generalizability. Specifically, a self reconstruction loss (L1)
can help the visual encoder learn the global characteristics of
the real-world data and thus facilitate the classification. The
cycle reconstruction loss (L2) and the triplet loss (L3) aim
at maximizing the embedding similarity between the same
action performed from two viewpoints, while minimizing
the embedding similarity between different actions. These
losses are instrumental in extracting a more generic repre-
sentation for the downstream action classification task. Fi-
nally, The velocity loss (L4) contributes to minor boosts.

Conclusion
In this work, we presented ViA, a generic framework aimed
at learning view-invariant skeleton action representation
via Latent Motion Disentanglement. We showed that self-
supervised motion retargeting with contrastive learning can
be an effective pretext task to learn view-invariant action
representation for real-world 2D skeleton sequences. Exper-
imental analysis confirmed that a visual encoder extracting
such representation on large-scale datasets such as Poset-
ics significantly boosts the performance when transferred
onto downstream target datasets for cross-subject and cross-
view action classification tasks. Future work will extend our
method to RGB data in order to capture the information on
objects used to perform actions, while maintaining view-
and subject-invariance.
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