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Brief Report
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Abstract: Human Anelloviridae is a highly prevalent viral family, including three main genera—
Alphatorquevirus (Torque teno virus, TTV), Betatorquevirus (Torque teno mini virus, TTMV), and
Gammatorquevirus (Torque teno midi virus, TTMDV). To date, the characterization of Anelloviridae in
the respiratory tract of children with acute respiratory infection (ARI) has been poorly reported and
mainly focused on TTV. We performed a metagenomic analysis of eight respiratory samples collected
from children with an ARI of unknown etiology (eight samples tested negative with a multiplex PCR
assay, out of the 39 samples initially selected based on negative routine diagnostic testing). A total
of 19 pediatric respiratory samples that tested positive for respiratory syncytial virus (RSV, n = 13)
or influenza virus (n = 6) were also sequenced. Anelloviridae reads were detected in 16/27 samples,
including 6/8 negative samples, 7/13 RSV samples and 3/6 influenza samples. For samples with
a detection of at least one Anelloviridae genus, TTMV represented 87.1 (66.1–99.2)% of Anelloviridae
reads, while TTV and TTMDV represented 0.8 (0.0–9.6)% and 0.7 (0.0–7.1)%, respectively (p < 0.001).
Our findings highlight a high prevalence of TTMV in respiratory samples of children with an ARI
of unknown etiology, as well as in samples with an RSV or influenza infection. Larger studies are
needed to explore the role of TTMV in childhood respiratory diseases.

Keywords: torque teno virus; torque teno mini virus; Anelloviridae; metagenomics; acute respiratory
infection; respiratory virus

1. Introduction

Human Anelloviridae is a highly prevalent viral family characterized by an important
genetic diversity. More than eighty species are grouped into three main genera: Alpha-
torquevirus (Torque teno virus, TTV), Betatorquevirus (Torque teno mini virus, TTMV) and
Gammatorquevirus (Torque teno midi virus, TTMDV) [1,2]. The viral load of TTV in plasma
or blood is considered as a surrogate marker of immune competence and might be used to
assess the immune status of transplant patients [3,4]. TTMV and TTMDV have been less
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studied, but the prevalence in blood is considerably lower than that of TTV [5,6]. Anelloviri-
dae has also been detected in almost all parts of the human body, including the respiratory
tract, and is recognized as the main component of the human viral flora [5,7,8]. While
considered to be non-pathogenic, Anellovriridae might be associated with the occurrence of
some disorders, including respiratory disorders in childhood [9–13]. Co-infection between
TTV and common respiratory viruses have been reported, but the detailed composition
of Anelloviridae, including the characterization of TTMV and TTMDV, has been poorly
explored in children with respiratory virus infections [14,15].

Due to a complex genetic diversity, PCR-based detection of Anelloviridae genera might
be difficult to optimize, and no diagnostic PCR has been validated in respiratory samples so
far [5,8,16]. As untargeted methods, metagenomic next-generation sequencing (mNGS) has
become a powerful tool for the characterization of the whole viral communities in clinical
samples, and has been used to describe the abundance and/or dynamics of TTV, TTMV
and TTMDV [4,6,17,18]. Herein, we aim to describe the Anelloviridae composition within
the respiratory virome of children under five years presenting an ARI with or without
identified etiologic agents.

2. Materials and Methods
2.1. Samples Selection

A retrospective study was conducted on samples received at the virology laboratory
at the University Hospital of Lyon, France, between 2010 and 2016. Nasopharyngeal aspi-
rates from hospitalized children under five years old with ARI were selected according to
the following criteria: (1) absence of documented infections on two consecutive samples
(collected up to two weeks apart) with routine techniques that included bacterial/viral
cultures, reverse-transcriptase polymerase chain reaction (RT-PCR) assay detecting hu-
man rhinovirus, and respiratory syncytial (RSV) and influenza viruses (MWS r-gene™
respiratory panel; bioMérieux, Lyon, France); (2) negative results with a large screening
multiplex PCR (FilmArray® Respiratory Panel, bioMérieux, Lyon, France). This assay
allows to detect the main viral and bacterial respiratory pathogens, including adenovirus,
human coronavirus (229E, HKU1, OC43, NL63), human metapneumovirus, human rhi-
novirus/enterovirus, influenza (A, A/H1, A/H1-2009, A/H3, B), human parainfluenza
virus, RSV, bordetella pertussis, chlamydophila pneumonia and mycoplasma pneumonia.

Nineteen respiratory samples from hospitalized children under five with ARI that
tested positive with RSV RT-PCR (n = 13) or influenza RT-PCR (n = 6) were also sequenced.

2.2. Metagenomic Workflow

A metagenomic workflow including quality controls, evaluated for the detection of
a comprehensive panel of DNA and RNA viruses in respiratory samples, was used [19].
Briefly, after sample viral enrichment, total nucleic acid was extracted, randomly amplified,
and Illumina libraries were prepared using the Nextera XT DNA Library preparation
kit, according to the manufacturer’s recommendations (Illumina, San Diego, CA, USA).
Libraries were sequenced on Illumina NextSeq500™ platform with mid-output 2 × 150 bp
flowcells. Raw fastq files generated were cleaned with cutadapt (version 1.18). The host
reads were then removed using bwa mem (version 0.7.8) alignment to the human genome
(GRCh37.p2). Unmapped reads extracted with samtools tool (version 1.3.1) were then
mapped to the nr database (non-redundant protein sequences database) (downloaded on
25 September 2018) using Diamond (version 0.9.22). We also explored the prevalence of
Anelloviridae species, as previously described [6]. Briefly, non-human NGS reads were
aligned using BLAST on a manually curated database composed of 56 reference sequences
of human Anelloviridae (TTV-1 to TTV-29, TTMV-1 to TTMV-12, TTMDV-1 and TTMDV-15).

To correct the difference in sequencing depth between samples, the number of reads
were normalized in reads per million mapped reads (RPM). To reduce false positive results,
only viruses with a count of >1 RPM were considered.
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2.3. Statistical Analysis

Statistical analyses were conducted using R software, version 4.0.5 (R Foundation for
Statistical Computing). Continuous variables are presented as the median with interquartile
range (IQR) and compared using non-parametric Kruskal–Wallis or Mann–Whitney tests.
Differences are considered significant at p < 0.05.

3. Results
3.1. Study Population

Between 2010 and 2016, 39 hospitalized patients with ARI were tested negative on two
successive samples with routine diagnostic techniques. Among them, eight remained negative
after testing with a large multiplex PCR assay and were analyzed in mNGS. The median (IQR)
age was 12.0 (6.3–22.5) months; three patients had comorbidities, including spinal muscular
atrophy, sickle cell anemia and cardiac congenital disease. Two patients presented severe
respiratory distress that required admission in the intensive care unit (ICU).

Nineteen respiratory samples from hospitalized children with ARI that tested positive
for RSV (n = 13) or influenza (n = 6) were sequenced. The median age was 2.3 (1.3–2.8)
months and 1.3 (1.0–4.1) months for RSV and influenza patients, respectively; no ICU
admission nor comorbidities were noticed.

3.2. Composition of Metagenomic Sequences

Libraries were sequenced to a median of 11,880,612 (9,085,799–15,865,360) reads,
passing quality filters. Viral reads represented 0.7 (0.2–1.8)% of the total reads generated
from samples that tested negative (vs. 1.2 (0.3–4.2)% and 0.3 (0.03–0.7)% for RSV and
influenza samples, respectively, p = 0.63). Of note, viral reads mapping to RSV or influenza
were detected in all samples of the RSV or influenza groups, respectively.

Viral contamination represented 0.04% of total reads detected in the no-template
control and mainly (97.5%) derived from bacteriophages. General metagenomic data are
summarized in Table 1.

Table 1. Composition of metagenomic reads generated from samples that tested negative and samples
that tested positive for RSV or influenza.

Group Sample ID
Total

Number of
Reads

Number of Reads
for PCR-Positive

Virus

%
Human

%
Viruses

%
Bacteria

Negative
samples (n = 8)

Ab1_S1 13,242,872 NA 68.1 0.2 39.8
Ab2_S2 21,124,748 NA 53.7 1.0 36.1
Ab3_S3 18,613,428 NA 88.5 2.7 32.7
Ab4_S4 5,729,468 NA 40.9 2.1 38.3
Ab5_S5 6,506,898 NA 74.6 0.4 38.6

Ab6_S18 9,719,338 NA 58.1 0.2 36.8
Ab8_S20 12,453,484 NA 58.9 0.2 50.2
Ab9_S21 5,124,554 NA 42.2 1.7 42.1

RSV samples
(n = 13)

Ab12_S24 10,533,108 232,827 67.6 1.6 35.2
V10 4,547,410 102 87.0 0.0 3.7
V32 14,911,096 57,606 88.5 0.4 2.1
V53 10,826,666 361,365 88.8 3.4 1.5

V89_1 6,622,864 58,284 87.5 0.9 2.2
V47 11,747,124 182,776 85.9 1.6 3.1

V22_1 16,819,624 77 87.6 0.0 2.8
V124 19,598,588 540,934 84.3 2.8 3.0
V121 14,490,590 62,279 87.9 0.4 2.1
V24 8,452,260 81,253 8.6 24.0 7.0

V85_1 19,138,760 892 83.8 0.0 4.2
V114 12,516,284 1,673,602 52.0 13.6 9.7
V21 16,928,282 406,594 64.9 6.6 6.0

Influenza
samples (n = 6)

V126 7,910,142 1125 87.2 0.01 3.6
V23 18,131,472 103 90.7 0.001 0.6

V26_2 13,672,726 53,556 82.7 0.5 4.8
V34_2 11,880,612 8058 90.0 0.1 1.4

V113_2 10,944,276 78,193 49.6 0.7 16.0
V115_1 11,403,046 2108 3.0 59.9 6.7

NTC NTC 7,210,744 NA 8.5 0.04 46.5

NTC: No-template control, RSV: respiratory syncytial virus, NA: not applicable.
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3.3. Anelloviridae Abundance and Composition within the Respiratory Virome

Among the 27 patients included in the present study, Anelloviridae reads were detected
in 16/27 (59.3%) samples, including 6/8 (75%) negative samples, 7/13 (53.8%) RSV samples
and 3/6 (50%) influenza samples (Figure 1). The median abundances of Anelloviridae reads
were 48.2 (24.6–6066.0) RPM for influenza samples, 51.4 (27.0–370.3) RPM for RSV samples
and 1131.8 (181.6–2761.7) RPM for negative samples (p = 0.4).
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Figure 1. Abundance of Anelloviridae, TTV, TTMV and TTMDV in negative, RSV and influenza
samples. Anelloviridae reads include TTV, TTMV, TTMDV reads, as well as reads from unclassified
Anelloviridae. To correct the difference of sequencing depth between samples, the number of reads
were normalized in reads per million mapped reads (RPM). Only viruses with a count of >1 RPM
were considered.

To investigate the composition of Anelloviridae, relative abundances of TTMV, TTV and
TTMDV were computed according to the normalized number of reads identified as genus
level. For samples with a detection of specific reads mapping to at least one Anelloviridae
genus (n = 13), TTMV represented 87.1 (66.1–99.2)% of Anelloviridae reads, while TTV and
TTMDV represented 0.8 (0.0–9.6)% and 0.7 (0.0–7.1)%, respectively (p < 0.001; Figure 2). No
significant differences were observed between the relative abundance of TTV vs. TTMDV
(p = 0.57). Of note, for 2/13 samples, the main genus detected was not TTMV (TTMDV for one
negative sample and TTV for one RSV sample, Figure 2). No significant differences regarding
Anelloviridae genus abundances were noticed between negative, RSV and influenza samples.
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Figure 2. Relative abundance of Anelloviridae genera among negative, RSV and influenza samples.
Relative abundances of TTMV, TTV and TTMDV were computed according to the normalized number
of reads identified as genus level. The three groups (negative, RSV and influenza) are represented by
dots of different colors.
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At the species level, a high inter-individual variability was noticed with multiple
species detection for most individuals. TTMV-10 and TTMV-5 were the two most frequent
species detected in the negative group, while the most prevalent species in the RSV group
were TTMV-10, followed by TTMV-11, TTMV-6, and TTMV-5. Regarding the two patients
with a detection of Anelloviridae species in the influenza group, TTMV-10, TTMV-5, TTMV-4,
TTMV-3 and TTMV-1 were co-detected (Figure 3).
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Figure 3. Abundance of Anelloviridae species in negative, RSV and Influenza samples. Species are
ranked by frequency of detection in each group. To correct difference of sequencing depth between
samples, number of reads were normalized in read per millon mapped read (RPM). Only viruses
with a count >1 RPM were considered.

4. Discussion

In this present study, Anelloviridae was detected in about 60% of respiratory samples
of children under five, highlighting a high inter-individual variability in Anelloviridae
detection, as previously reported in blood or plasma samples [6,8,14]. Furthermore, we
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found a high abundance of TTMV in samples associated with or without viral pathogen
detection (RSV or influenza). Although considered as commensal virome, Anelloviridae
might contribute to respiratory diseases by activating the production of inflammatory
cytokines [11,13]. TTMV has already been identified in several pathogenic settings, includ-
ing empyema, encephalitis and periodontitis, suggesting a possible association of TTMV
infection with inflammation [10,20,21]. In addition, in vitro replication of TTMV in alveolar
epithelial cells has been demonstrated [10] and a recent mNGS study found that the upper
respiratory virome composition of children with pneumonia was mainly represented by
TTMV [12].

In contrast, Wang et al., showed that the majority of Anelloviridae reads mapped to TTV
in children with severe ARI as well as in the control group constituted of 15 children without
respiratory symptoms [9]. In addition, no differences in TTMV detection were noticed in
respiratory samples of febrile pediatric patients compared to afebrile controls [22]. The
differences in the Anelloviridae composition within the respiratory tract might be explained
by clinical features, including the level of immunosuppression and the presence of viral
co-infections, as well as by age, sex, geographical, or environmental factors which may
influence the virome composition [23]. Importantly, we used the same mNGS methods
as a previous study performed on the plasma samples of autologous stem cell transplant
patients where TTV represented the most abundant genus (91.7% of Anelloviridae reads),
while TTMDV and TTMV represented 6.4% and 1.9%, respectively [6].

As TTMV were found in all groups herein and in line with the limited number of
patients included, we could not draw a conclusion regarding the respiratory pathogenicity
of TTMV. This needs to be investigated in larger pediatric cohorts, including a healthy
control group. The impact of TTMV levels, TTMV species diversity and TTMV co-infection
(found in about 50% of influenza and RSV samples herein) on disease severity also need
to be explored. Studies focusing on TTV found that a higher level or a co-infection with
common respiratory viruses were associated with a more severe disease [14,24].

Overall, the present study emphasizes the high prevalence of Anelloviridae within the
respiratory tract of children with ARI, and that the Anelloviridae composition is mainly
represented by TTMV in the presence, or not, of common respiratory viruses. The charac-
terization of whole viral communities is crucial for understanding the complex role of the
human virome in respiratory diseases.
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