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Introduction

We consider here numerical approximations of an evolution logarithmic equation that reads (1) 

u t -i∂ x (ν(x)∂ x u) -iu log |u| 2 = 0.
The unknown u(t, x) maps R × R into C. This evolution equation has two singularities. First, we consider a discontinuity at x = 0 that reads ν(x) = ν + > 0 if x > 0 and ν -> 0 if x < 0. Then we have to handle a nonlinearity whose derivative is not bounded at 0.

We rst discuss logarithmic Schrödinger equations (here in one dimension). For ν(x) = 1 constant and λ in {-1, 1}, these equations that read in one dimension, (2)

u t -iu xx = iλu log |u| 2 ,
are models in nonlinear wave mechanics or in nonlinear optics (see [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] and the references therein). According to the terminology introduced in [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF], the case λ = is conserved along the ow of the solutions of [START_REF] Antonelli | Well-posedness and averaging of NLS with time periodic dispersion management[END_REF]. Despite the fact that the second term in the energy above has no denite sign, it was rigorously proved in [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] that the nonlinearity enhanced the classical decay dispersion estimate (over the linear case), and then this equation has to be called defocusing. Here we are interested in the focusing case that was introduced and studied in [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF].

Here beyond the classical case we are interested in the case of some impurity in the material that aects the propagation of the wave. Various models of impurity has been studied in the literature. Let us rst point out the case where the classical dispersion operator iu xx is perturbed by a Dirac mass at 0 and replaced by iu xx + iZuδ 0 for some constants Z (see [START_REF] Genoud | Stable NLS solitons in a cubic-quintic medium with a delta-function potential, Nonlinear Anal Theory Methods[END_REF], [START_REF] Holmer | Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity I, basic theory[END_REF], [START_REF] Le Coz | Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential[END_REF] and the references therein). In the present article we also have a singularity at the origin but that corresponds to a discontinuity of the parameter ν with respect to x. The problem of the study of the corresponding linear operator has been addressed in [START_REF] Banica | Dispersion and Strichartz inequalities for Schrödinger equations with singular coecients[END_REF] and [START_REF] Burq | Smoothing and dispersive estimates for 1D Schrödinger equations with BV coecients and applications[END_REF]. Let us point out that this problem diers from the one where we have rough coecients, that are time dependent but space independent, in front of the dispersion operator (see [START_REF] Antonelli | Well-posedness and averaging of NLS with time periodic dispersion management[END_REF], [START_REF] De Bouard | The nonlinear Schrödinger equation with white noise dispersion[END_REF] and the references therein).

In the present article we are interested in the approximation of the solution of the equation by a classical Crank-Nicolson scheme. We keep for the theoretical aspects the space variable x continuous To begin with, as in the articles [START_REF] Bao | Error estimates of a regularized nite dierence method for the logarithmic Schrödinger equation[END_REF], [START_REF] Bao | Regularized numerical methods for the logarithmic Schrödinger equation[END_REF], we introduce a regularized version of the equation, replacing the logarithmic nonlinearity by a regularized version at u = 0. This regularization depends on a small parameter ε. We now that the Crank-Nicolson scheme provides an order 2 in time approximation of the solution of the regularized equation, but the drawbacks is that the error estimates depend on some functions of ε -1 . Our main result is to provide a precise error estimate depending on τ and ε. These results compare, with better estimates in ε -1 , to a semi-implicit Crank-Nicolson type order 2 scheme used in [START_REF] Bao | Error estimates of a regularized nite dierence method for the logarithmic Schrödinger equation[END_REF], [START_REF] Bao | Regularized numerical methods for the logarithmic Schrödinger equation[END_REF]; in these articles were also studied suitable splitting schemes.

This article outcomes as follows. In a rst section we handle the initial value problem for our non standard logarithmic Schrödinger equation. In a second section we introduce and discuss the properties of the Crank-Nicolson scheme applied to our equation. In a third section we provide some numerical illustrations. We end this article by the proof of the main result that is the error estimate for the Crank-Nicolson the scheme.

We complete this introduction by introducing some notations. A generic constant C is independent of ε, τ but may depend on the solution and of the time t. Besides, C may change from one line to one another without notice.

Initial Value Problem for logarithmic equation

In this section we study the initial value problem for equation (1) above, following the method introduced and described in [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF] and [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF].

A linear unbounded operator. Consider

A = -∂ x (ν(x)∂ x .) the unbounded operator dened as, for u, v in H 1 (R) (3) (Au, v) L 2 (R) = Re R ν(x)u x (x)v x (x)dx.
It is standard to prove that the domain of A is (4)

D(A) = {u ∈ H 1 (R) ∩ H 2 (R -{0}); ν + u x (0 + ) = ν -u x (0 -)}.
Besides due to (3), we have that D(A 1 2 ) = H 1 (R) and that (Au, u) L 2 (R) denes a seminorm that is equivalent to the Poincaré seminorm, i.e.

( 5)

min(ν -, ν + ) R |u x (x)| 2 dx ≤ (Au, u) L 2 (R) ≤ max(ν -, ν + ) R |u x (x|) 2 dx.
The operator A is a nonnegative self-adjoint unbounded operator and then classical functional calculus applies and the powers A m are well-dened (see [START_REF] Rudin | Functional Analysis[END_REF] and the references therein). Moreover the solution of the equation for τ ∈ R (6)

v + iτ Av = u, satises ||v|| L 2 (R) = ||u|| L 2 (R) and (Av, v) L 2 (R) = (Au, u) L 2 (R) .

2.2.

Handling the initial value problem. Formally there are two quantities that are conserved along the ow of the solutions of (1), the mass ||u|| L 2 (R) and the energy ( 7)

E(u) = R ν(x)|u x (x)| 2 dx - R |u(x)| 2 log |u(x)| 2 dx.
Following [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF] we seek solutions whose energy is nite. The nonnegative part of the energy is

R ν(x)|u x (x)| 2 dx - {|u|≤1} |u(x)| 2 log |u(x)| 2 dx.
Besides, let us point out that the negative part of the energy is bounded for u ∈ H 1 (R) by Sobolev embeddings. It is then natural to seek a solution that belongs to [START_REF] Brézis | Monotonicity methods in Hilbert spaces and some applications to nonlinear partial dierential equations[END_REF] W = {u ∈ H 1 (R) such as |u| 2 log(|u|) ∈ L 1 (R)}. We recall from [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF], [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF], [START_REF] Hayashi | A note on the nonlinear Schrödinger equation in a general domain Nonlinear Analysis[END_REF] that this space is a reexive Orlicz Banach space. We now recall Theorem 3.3 in [START_REF] Hayashi | A note on the nonlinear Schrödinger equation in a general domain Nonlinear Analysis[END_REF] (stated in the case ν(x) = 1 but that works also in our case; we emphasize that in our case ν(x) ≥ min(ν -, ν + ) > 0.) Theorem 2.1. For every u 0 ∈ W an initial data, then it exists a unique solution u ∈ C(R, W ) ∩ C 1 (R, W * ) for the problem (1), such that the following properties hold true (i) we have the conservation of the mass and energy, i.e. for every t ∈ R, the following identities are valid

(9) ||u(t)|| L 2 (R) = ||u 0 || L 2 (R) and E(u(t)) = E(u 0 ). (ii)
The ow map S(t) : u 0 → S(t)u 0 = u(t) is continuous in W , i.e. that if u m 0 converges towards u 0 in W, then the corresponding solution u m (t) = S(t)u m 0 converge towards u(t) = S(t)u 0 uniformly on bounded intervals. We refer to [START_REF] Hayashi | A note on the nonlinear Schrödinger equation in a general domain Nonlinear Analysis[END_REF] for a proof that uses a regularization of the nonlinearity at a neighborhood of zero and a limiting argument. An alternate route following the maximal operator theory ( [START_REF] Barbu | Nonlinear dierential equations of monotone types in Banach spaces[END_REF], [START_REF] Benilan | Completely accretive operators[END_REF], [START_REF] Brézis | Monotonicity methods in Hilbert spaces and some applications to nonlinear partial dierential equations[END_REF])can be found in [1], as in [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF] for the case ν(x) = 1. In both proofs it is instrumental to use the following inequality that is valid for a pair of complex numbers (10)

Im R z -z (z log |z| 2 -z log |z | 2 ) 2|z -z | 2 ,
that leads to the estimate

||S(t)u 0 -S(t)v 0 || L 2 (R) ≤ e 2t ||u 0 -v 0 || L 2 (R) .
2.3. Introducing a regularized equation. In order to avoid numerical round-o errors, we introduce a regularized nonlinearity that reads for a given ε > 0,

u log(|u| 2 + ε 2 ) = uf ε (|u| 2 ).
The new equation reads [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF] 

u t -i∂ x (ν(x)∂ x )u -iu log(|u| 2 + ε 2 ) = 0.
This regularized nonlinearity is similar but diers from 2u log(|u| + ε) that is used in [START_REF] Bao | Error estimates of a regularized nite dierence method for the logarithmic Schrödinger equation[END_REF], [START_REF] Bao | Regularized numerical methods for the logarithmic Schrödinger equation[END_REF]. The regularization above was used in [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] in the defocusing case. For the reguralized equation, the classical theory developed in [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF] for ν = 1 (see a sketch of the proof below the statement of the theorem) applies and we have Theorem 2.2. For every u 0 ∈ H 1 (R) an initial data, then it exist a unique solution

u ∈ C(R, H 1 (R)) ∩ C 1 (R; H -1 (R)
for the problem [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF], such that the following properties hold:

(i) we have the conservation of the mass [START_REF] Burq | Smoothing and dispersive estimates for 1D Schrödinger equations with BV coecients and applications[END_REF] and energy, indeed for every t ∈ R, we have ( 12)

E(u) = ||A 1 2 u|| 2 L 2 (R) - R F ε (|u| 2 )dx,
where

F ε (s) = s log(s + ε 2 ) -s + ε 2 log(1 + s ε 2 ).
(ii) The ow map S ε (t) :

u 0 → S ε (t)u 0 = u(t) is continuous in H 1 (R), i.e. that if u m 0 converges towards u 0 in H 1 (R), then the corresponding solution u m (t) = S ε (t)u m 0 converge towards u(t) = S ε (t)u 0 uniformly on bounded intervals.
Let us sketch why this theorem holds true. Using as in [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] the change of unknown v(t, x) = ε exp(-2it log ε)u(t, x) solving [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF] amounts to solve the equation

v t -i∂ x (ν(x)∂ x v) -iv log(1 + |v| 2 ) = 0 in H 1 (R).
Introduce the linear operator dened as exp(-itA)u 0 = v if and only if

v t + iAv = 0, v(0) = v 0 .
This linear operator is an isometry in L 2 (R) or in H 1 (R) (for the modied norm

||u|| 2 L 2 + (Au, u) according to (5)). Since the nonlinear term v → v log(1 + |v| 2 ) is locally Lipschitz in the Banach algebra H 1 (R),
it is standard to construct a mild solution of the equation on a bounded interval of time [-T, T ]. Following [START_REF] Cazenave | An introduction to semilinear evolution equations[END_REF], since this nonlinearity is smooth, we can prove that this mild solution is a weak solution in C(-T, T ; H 1 (R)) of [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF]. Moreover since ξ 2 log(1 + ξ 2 ) ≤ ξ 4 we are in the subcritical H 1 (R) case. Then the conservation of the mass and of the energy imply that the solution exists for all times.

The Crank-Nicolson numerical scheme

We are interested in a conservative scheme (see [START_REF] Delfour | Finite dierence solutions to a nonlinear Schrödinger equation[END_REF], [START_REF] Delfour | Numerical simulation of a nonlinear Schrödinger systems: a new conservative scheme[END_REF]) that reads for the regularized equation ( 13)

u n+1 -u n τ + iA( u n+1 + u n 2 ) -if ε (| u n+1 + u n 2 | 2 ) u n+1 + u n 2 = 0.
Here we have kept the space variable x continuous. Then the analysis will work for suitable discretization in space of the operator. For smooth nonlinearities, this scheme is of order 2. The drawbacks of the Crank-Nicolson scheme is that we have to solve a xed point at each time step, since this scheme is an implicit scheme.

Remark 3.1. One may wonder why to regularize the nonlinearity for the Crank-Nicolson scheme. On the one hand, the theoretical results in Section 3.1 and 3.2 are valid if ε = 0. On the other hand to implement the scheme requires to solve a nonlinear xed point by an iterative scheme. The non-regularized nonlinearity is not dierentiable at 0.

3.1.

Well-posedness of the scheme. We plan to prove that the map

u n → u n+1 is well-posed. Set v = u n+1 +u n 2
. Solving (13) amounts to solve

(14) v -u n τ 2 + iAv -if ε (|v| 2 )v = 0,
and then to write u n+1 = 2v -u n . To solve [START_REF] De Bouard | The nonlinear Schrödinger equation with white noise dispersion[END_REF] we rely on (see [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF], [START_REF] Cazenave | Semilinear Schrödinger equations[END_REF]) Lemma 3.2. Consider the nonlinear operator

M ε v = iAv -if ε (|v| 2 )v whose do- main is D(A). Then for λ > 2π, the operator M ε + λId is maximal monotone in L 2 (R).
Proof. We just check the monotonicity that we will use in the sequel. Consider v, w in D(A). Then ( 15)

|(M ε v -M ε w, v -w)| = 2|Im R vw log( ε 2 + |v| 2 ε 2 + |w| 2 )|.
We have, since

f ε (y) -f ε (x) = ( 1 0 f ε (x + s(y -x)ds)(y -x), | log( ε 2 + |v| 2 ε 2 + |w| 2 )| ≤ |v -w| 1 0 |v| + |w| ε 2 + s|v| 2 + (1 -s)|w| 2 ds. Since |Imvw|(|v| + |w|)| = |Im(v -w)w||v| + |Im(w -v)v||w| ≤ 2|v||w||v -w|, we have |2Im(vw) log( ε 2 + |v| 2 ε 2 + |w| 2 )| ≤ |v -w| 2 1 0 4|v||w| s|v| 2 + (1 -s)|w| 2 ds.
We then have, using

2 s(1 -s)|v|w| ≤ s|v| 2 + (1 -s)|w| 2 , ( 16 
) | R 2Im(vw) log( ε 2 + |v| 2 ε 2 + |w| 2 )| ≤ ( 1 0 2ds √ s √ 1 -s )||v -w|| 2 L 2 (R) .
This concludes the proof of the Lemma since 14) is well posed.

1 0 2ds √ s √ 1-s = 2π. Corollary 3.3. For 1 τ > π, the map u n → v dened in (
3.2. Stability and error estimate. Consider ũn = u(nτ ) the interpolation of the solution of the continuous equation [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF]. Then ũn solves the equation ( 13) up to a consistency error denoted by ε n+ 1 2 . Set w n = ũn -u n . We then have

w n+1 -w n τ + iM ε ũn+1 + ũn 2 -iM ε u n+1 + u n 2 = ε n+ 1 2 . ( 17 
)
Considering the scalar product of this equation with w n + w n+1 we obtain, using Lemma 3.2 above

||w n+1 || 2 L 2 (R) -||w n || 2 L 2 (R) τ ≤ 4π|| w n + w n+1 2 || 2 L 2 (R) + ||ε n+ 1 2 || L 2 (R) ||w n + w n+1 || L 2 (R) , (18) 
that leads to

(1 -τ π)||w n+1 || L 2 (R) ≤ (1 + τ π)||w n || L 2 (R) + τ ||ε n+ 1 2 || L 2 (R) . (19) 
For τ small enough, we use

1 + τ π ≤ (1 -τ π)(1 + 3τ π) and 1 ≤ 2(1 -τ π).
Starting from w 0 = 0 we then have by the discrete Gronwall lemma (20)

||w n || L 2 (R) ≤ 2τ k≤n (1 + 3τ π) n-k ||ε k+ 1 2 || L 2 (R) ≤ 1 π sup k ||ε k+ 1 2 || L 2 (R) .
3.3. Consistency. We now compute the consistency error, i.e. the estimate on

ε n+ 1 2 .
We assume that the initial data u 0 belongs to D(A m ) for m large enough.

Theorem 3.4. There exists a constant C that depends on the initial data u 0 and on T , but that is independent of ε and of τ such that for kτ ≤ T we have

||ε k+ 1 2 || L 2 (R) ≤ Cτ 2 ε -8 3 Remark 3.5.
Combining this with estimate [START_REF] Le Coz | Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential[END_REF] provides the error estimate for the Crank-Nicolson scheme. We can compare this estimates with those obtained in [START_REF] Bao | Error estimates of a regularized nite dierence method for the logarithmic Schrödinger equation[END_REF], [START_REF] Bao | Regularized numerical methods for the logarithmic Schrödinger equation[END_REF] where an order 2 semi-implicit scheme is used. As long as L 2 (R) error estimates are considered our result is better, i.e. with respect to the dependence in ε -1 for the constant. Besides, it is worth to point out that in [START_REF] Bao | Error estimates of a regularized nite dierence method for the logarithmic Schrödinger equation[END_REF], [START_REF] Bao | Regularized numerical methods for the logarithmic Schrödinger equation[END_REF] the author consider also a discretization in space. For numerical implementations the semi-implicit scheme used is [START_REF] Bao | Error estimates of a regularized nite dierence method for the logarithmic Schrödinger equation[END_REF], [START_REF] Bao | Regularized numerical methods for the logarithmic Schrödinger equation[END_REF]is more convenient, since it does not requires to solve a xed point problem for the nonlinear term that is explicit.

Proof. Throughout the computations, various norms of u and its derivatives are computed and depend on ε. We have aggregated these results in Section 5 below. To begin with, integrating in time the continuous equation [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF], we have, setting

ũn = u(nτ ) ũn+1 -ũn τ + i τ (n+1)τ nτ Au(s)ds = i τ (n+1)τ nτ u(s)f ε (|u(s)| 2 )ds. (21) 
To have an upper bound on the consistency estimate in L 2 requires to have an upper bound on

I 1 = ||A( ũn+1 + ũn 2 ) - 1 τ (n+1)τ nτ Au(s)ds|| L 2 (R) ,
and on

I 2 = || 1 τ (n+1)τ nτ u(s)f ε (|u(s)| 2 )ds -f ε (| ũn+1 + ũn 2 | 2 ) ũn+1 + ũn 2 || L 2 (R) .
For this we use the following trapezoidal formula This implies that in one hand due to Corollary 5.6 below (22)

I 1 ≤ Cτ 2 sup t ||Au tt || L 2 (R) ≤ Cτ 2 ε -8 3 .
We now tackle I 2 by the two following estimates. On the one hand due to Propositions 5.1, 5.3 and 5.4.

|| ũn+1 f ε (|ũ n+1 | 2 ) + ũn f ε (|ũ n | 2 ) 2 - 1 τ (n+1)τ nτ u(s)f ε (|u(s)|)ds|| L 2 (R) ≤ Cτ 2 sup t ||(uf ε (|u| 2 )) tt || L 2 (R) ≤ Cτ 2 | log ε| ε 4 3 , (23) 
since by mere computations

||(uf ε (|u| 2 )) tt || L 2 (R) ≤ c(| log ε|||u tt || L 2 (R) + ε -1 ||u t || 2 L 4 (R) ).
On the other hand, for C that depends on the L ∞ bound for u, due to Propositions 5.1, 5.3 and 5.4.

|| ũn+1 f ε (|ũ n+1 | 2 ) + ũn f ε (|ũ n | 2 ) 2 - ũn+1 + ũn 2 f ε (|ũ n+ 1 2 | 2 )|| L 2 (R) ≤ sup t ||u(t)|| L ∞ sup n ||f ε (|ũ n | 2 ) -f ε (|ũ n± 1 2 | 2 )|| L 2 (R) ≤ Cτ 2 sup t ||(f ε (|u| 2 )) tt || L 2 (R) ≤ Cτ 2 ε -7 3 ( 24 
)
since by mere computations

||(f ε (|u| 2 )) tt || L 2 (R) ≤ C(ε -1 ||u tt || L 2 (R) +ε -2 ||u t || 2 L 4 (R) ).
This completes the proof of the Proposition.

Numerical experiments

In this section, we describe the numerical experiments for the Crank-Nicolson scheme applied to the regularized equation [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF]. As pointed above, for ε = 0 the code may have problem; then we focus on the regularized equation. We perform the computations for x in a nite box [-L, L] with L large enough and homogeneous Dirichlet boundary conditions; since in the sequel we run the code with test solutions that are numerically zero outside a compact set this does not introduce any spurious reection waves at the boundary. We complete the Crank-Nicolson scheme in time with a nite dierence approximation in space that we describe now. Let N ∈ N -{0} and set δx = 2L N +1 . We mesh [-L, L] with nodes x j = jδx for |j| ≤ N + 1.

To approximate Au we use standard nite dierence scheme. We dene a discrete dierential operator à as, for any vector U dened on the grid, setting respectively ν(x j ) = ν + if j positive and respectively ν -if j negative

( ÃU ) j = ν(x j ) 2U j -U j+1 -U j-1 δx 2 ifj = 0, ( ÃU ) 0 = (ν + + ν -)U 0 -ν + U 1 -ν -U -1 δx 2 .
(25)

Therefore the numerical scheme reads, setting U n j u(nδt, x j ) for n ≥ 0 and

|j| ≤ N (26) U n+1 j -U n j τ + i( Ã U n + U n+1 2 ) j -if ε (| U n+1 j + U n j 2 | 2 ) U n+1 j + U n j 2 = 0.
This scheme is supplemented with boundary conditions U n N +1 = U n -N -1 = 0 and initial condition U 0 . Let us point out that solving (26) requires to solve at each time step a xed point procedure.

It is standard to prove that this Crank-Nicolson scheme preserves the mass ||U n || L 2 where here the subscript L 2 stands for the discrete nite-dierence L 2 norm and the discrete energy

E n = || Ã 1 2 U n+1 || 2 L 2 (R) -||f ε (|U n+1 | 2 )|U n+1 | 2 || L 1 .
4.1. Test solutions. We begin with a true solution for equation (1). Recalling ν(x) = ν + > 0 if x > 0 and ν -> 0 if x < 0 we consider the following Standing Wave Solution (SWS) As observed in [START_REF] Carles | Universal dynamics for the defocusing logarithmic Schrödinger equation[END_REF] if u s is solution then qu s (t, x) exp(2it log q) is also a solution. We then chose to normalize q = 1.

(27) u s (t, x) = exp -it - |x| 2 2ν(x) .
This SWS allows us to make numerical tests for a discontinuous viscosity. The drawbacks of this true solution is that its modulus does not depend on time and then we actually solve a linear equation.

Besides, to build the second test solution we introduce (28)

u -(t, x) = u s (t, x + 20 -2vt) exp( ivx ν - ) exp( -iv 2 t ν - ),
with v > 0 the constant speed. Indeed this is a solution to the equation when the viscosity is constant on the line: ν(x) = ν -for any x in R. It is then not a true solution for (1) because here ν(x) = ν -in R + . We refer as Gausson Solution (GS) the solution obtained solving our equation with u 0 (x) = u -(0, x) and v = 3.

The solution u -starts from a position x 1 < 0, moves to the right, then reaches the hyperplane x = 0 at time t = t 1 where a wave reection occurs. We expect that u -will be an approximate solution of our equation for t < t 1 .

It is worth to point out that GS denes a test solution with a time-dependent L 2 norm. Here the diculty is that we do not have an explicit expression of a solution which is dened for all position x and all time t. To overcome this we compute an approximate solution in [-L, L] × [0, T ] with a much thinner mesh and consider it as the reference solution.

4.2. Numerical Tests. Throughout this section we will take ε = 10 -6 and ν -= 1 and ν + = 3.

We rst start with an accuracy test, we plot in Figure 1 the SWS and the numerical solution when L = 10 and the time and space steps are τ = δx = 2×10 392 0.0510204. We can see that the both solutions are matching.

We now move to the test with the Gausson solution. We consider the initial data given by (28) with t = 0 and v = 3. The spatial domain is [-25, 25] and the time and space steps are δx = 2×25 51200 9.765625 • 10 -4 . This GS (28) allows us to test the accuracy of the schema for t < t 1 and to visualize the behavior of the numerical approximated wave after crossing the hyperplane x = 0. The Figure 2 shows u -and the numerical solution for x < 0 and t < t 1 and the Figure 3 shows the numerical solution behavior during the reection process. We now give some numerical evidence that the Crank-Nicolson scheme is order 2 in time. We introduce the error function ( 29)

e(t n , •) = U (t n , •) -U n num ,
where U n num is the numerical solution at time nτ and U the reference solution (either the true solution or a numerical solution computed in a much thinner grid). In Figure 4 we can see ||e|| L ∞ t,x as a function of τ for the two solutions. In the SWS case the numerical solution is compared to the exact solution while in the GS case the numerical solution is compared to a reference solution computed on the thin mesh δx = 2×25 51200 9.765625 • 10 -4 . We nally give some numerical proofs of the conservation properties. We plot in gures 5 and 6 the variation of mass and the discret energy corresponding to [START_REF] Benilan | Completely accretive operators[END_REF] over time for the SWS solution and for the GS solution. 

Annex

In this last section we quantify how various norms of the solution u of ( 11) and its derivative depend on ε. We begin with Proposition 5.1. Consider an initial data u 0 in D(A). For any T > 0 there exists a constant C that may depend on u 0 and on T , but that is independent of ε in (0, 1) such that for t ∈ [0, T ]

||u t (t)|| L 2 (R) + ||u(t)|| L 2 (R) + ||Au(t)|| L 2 (R) ≤ C.
Proof. To begin with we have the conservation of mass that reads ||u(t)|| L 2 (R) = ||u 0 || L 2 (R) . We now consider the equation for v = u t that reads, dierentiating [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF], (30)

v t + iAv -ivf ε (|u| 2 ) -2iuf ε (|u| 2 )Reuv = 0.
Considering the scalar product of this equation with v in L 2 (R) we then have (31)

1 2 d dt ||v|| 2 L 2 (R) ≤ | R f ε (|u| 2 )Im(u 2 v 2 )|. Since f ε (s) = 1 ε 2 +s we then have f ε (|u| 2 )|Im(u 2 v 2 )| ≤ |v| 2 . Therefore by Gronwall Lemma ||v(t)|| 2 L 2 (R) ≤ exp(2t)||v 0 || 2 L 2 (R) .
It remains to prove the estimate on Au. Due to the previous estimate we know that Au -uf ε (|u| 2 ) = iu t remains in a bounded set of L 2 (R). We prove that both Au and uf ε (|u| 2 ) remain in a bounded set of L 2 (R). The Lemma 5.2 below completes the proof of Proposition 5.1.

Lemma 5.2. Assume that u in D(A) satises Au -uf ε (|u| 2 ) = g ∈ L 2 (R).
Then there exists C that depends on ||g|| L 2 (R) and ||u||

H 1 (R) such that ||Au|| L 2 (R) + ||uf ε (|u| 2 )|| L 2 (R) ≤ C.
Proof. Due to the identity (32)

||g|| 2 L 2 (R) = ||Au|| 2 L 2 (R) -2(Au, uf ε (|u| 2 )) L 2 (R) + ||uf ε (|u| 2 )|| 2 L 2 (R)
we just have to bound by below the second term in the right hand side of (32). We set X = -2(Au, uf ε (|u| 2 )) L 2 (R) . Integrating by parts we have (33)

-X = 2 R ν(x)|∇u(x)| 2 f ε (|u| 2 )dx + 4 R ν(x) (Reuu x ) 2 ε 2 + |u| 2 dx.
The second term in the right hand side of (33) is bounded by above by c||A

1 2 u|| 2 L 2 (R)
. The positive part of the rst term reads

2 {ε 2 +|u| 2 >1} ν(x)|∇u(x)| 2 f ε (|u| 2 )dx.

Let us observe that since

log(ε 2 + |u| 2 ) ≤ |u| 2 + ε 2 -1 ≤ |u| 2 then the function 1 1 {ε 2 +|u| 2 >1} log({ε 2 + |u| 2 > 1}) ≤ |u| 2 remains bounded in L ∞ (R) since D(A 1 2 ) = H 1 (R) ⊂ L ∞ (R).
The the second term is also bounded by above by c||A 1 2 u|| 2 L 2 (R) . We need also some L ∞ estimates. ). For any T > 0 there exists a constant C that may depend on u 0 and on T , but that is independent of ε such that for

t ∈ [0, T ] ||u(t)|| L ∞ (R) + ε 1 3 ||u t (t)|| L ∞ (R) + ||Au(t)|| L ∞ (R) ≤ C.
Proof. The L ∞ bound for u comes from the bound in D(A 1 2 ) and the embedding H 1 (R) ⊂ L ∞ (R). We now consider the scalar product of (30) with iv t . This leads to, setting

J = R ν|v x | 2 - R Re(ūv) 2 ε 2 + |u| 2 - R |v| 2 log(ε 2 + |u| 2 ), ( 34 
) 1 2 d dt J = -2 R Re(ūv)|v| 2 ε 2 + |u| 2 + R Re(ūv) 3 (ε 2 + |u| 2 ) 2 .
We rst use ( 35)

Re(ūv) 2 ε 2 + |u| 2 + |v| 2 log(ε 2 + |u| 2 ) ≤ |v| 2 (1 + (ε 2 -1 + |u| 2 )).
Appealing Proposition 5.1 yields that there exists C that does not depend on ε such that J

≥ R ν|v x | 2 -C. Besides, since |ξ| ε 2 +ξ 2 ≤ 1
2ε the right hand side of (34) is bounded by above by 3(2ε) -1 ||v|| 3 L 3 (R) . Appealing the classical inequality (36)

||v|| L ∞ (R) ≤ √ 2||v|| 1 2 L 2 (R) ||v x || 1 2 L 2 (R)
and Proposition 5.1 we have that

ε -1 ||v|| 3 L 3 (R) ≤ √ 2ε -1 ||v|| 5 2 L 2 (R) ||v x || 1 2 L 2 (R) ≤ Cε -1 ||v x || 1 2 L 2 (R) .
Gathering these we have that

d dt J ≤ Cε -1 ||v x || 1 2 L 2 (R) ≤ Cε -1 (J + C) 1 4 
.

Therefore

||v x || 3 2 L 2 (R) ≤ cJ 3 4 ≤ Cε -1 .
Appealing inequality (36) gives the L ∞ bound for u t . To complete the proof of Proposition 5.3, it remains to bound ||Au|| L ∞ (R) . This comes from the identity [START_REF] Cazenave | Haraux Equation d'évolution avec nonlinéarité logarithmique[END_REF] and from the previous estimates (observing that for ε ≤ 1 and |ξ| ≤ C then |ξ log(ε 2 + ξ 2 )| ≤ C).

We now iterate, dierentiating in time Proposition 5.4. Consider an initial data u 0 in D(A 2 ). For any T > 0 there exists a constant C that may depend on u 0 and on T , but that is independent of ε such that for t ∈ [0, T ] Proof. Dierentiating (30) and setting w = v t = u tt we have

w t + iAw -iwf ε (|u| 2 ) -2iuf ε (|u| 2 )Reuw -2iuf ε (|u| 2 )|v| 2 - 4ivf ε (|u| 2 )Reuv -4iuf ε (|u| 2 )(Reuv) 2 = 0. (37)
Considering the scalar product of this with w we have (

) 38 
Since |s| 3 f ε (s 2 ) ≤ ε -1 the last term in the right hand side of (37) is bounded by above by 4ε -1 ||w|| L 2 (R) ||v|| 2 L 4 (R) . The rst and second terms in the right hand side of (37) have the same upper bound since |s|f ε (s 2 ) ≤ ε -1 . The third term is bounded by above by c||w|| L 2 (R) ||v|| L 2 (R) . We then have, (39)

d dt ||w|| L 2 (R) ≤ c(||v|| L 2 (R) + ε -1 ||v|| 2 L 4 (R) ) ≤ c||v|| L 2 (R) (1 + ε -1 ||v|| L ∞ (R) ).
Using Proposition 5.3 we then bound by above ||w|| L 2 (R) . Actually (30) yields

||Au t || L 2 (R) ≤ ||w|| L 2 (R) + (||f ε (|u| 2 )|| L ∞ (R) + 2)||v|| L 2 (R) .
Since v remains bounded in L 2 (R) and ||f ε (|u| 2 )|| L ∞ (R) ≤ C -2 log ε then we see that ||Au t || L 2 (R) is of same order as ||w|| L 2 (R) . This completes the proof of the proposition.

We also have the L ∞ (R) corresponding estimate Proposition 5.5. Consider an initial data u 0 in D(A

2 ). For any T > 0 there exists a constant C that may depend on u 0 and on T , but that is independent of ε such that for t ∈ [0, T ] ε Proof. We consider the scalar product of (37) with iw t to obtain 1 
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 36 Consider E a Banach space. There exists C > 0 such that for any g in C 2 (R; E) b) + g(a))|| E ≤ C(b -a) 3 sup t ||g || E .
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 1 Figure 1. SWS: The real and imaginary parts of the exact and numerical solution at t = 15 × τ (left) and at t = 45 × τ (right).
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Figure 2 .

 2 Figure 2. GS: The real and imaginary parts of the numerical solution and of u -at t = 15τ (left) and at t = 1510τ (right).

Figure 3 .

 3 Figure 3. GS: The real and imaginary parts of the numerical solution at t = 3200τ (left) and at t = 4800τ (right).

Figure 4 .

 4 Figure 4. Errors ||e|| L ∞ t,x as a function of τ on a logarithmic scale for the SWS (on left) and GS (on right) solutions.

Figure 6 .

 6 Figure 6. GS: L 2 norm of u (left) and of the discrete energy (right) as a function of time.
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 53 Consider an initial data u 0 in D(A 3 2

  ε

4 3 ||u

 43 tt (t)|| L 2 (R) + ||Au t (t)|| L 2 (R) ≤ C.

R

  vwf ε (|u| 2 )Reuv + 2Im R uwf ε (|u| 2 )|v| 2 + 2Im R uwf ε (|u| 2 )Reuv + 4Im R uwf ε (|u| 2 )(Reuv) 2 .

16 9 ||u

 169 tt (t)|| L ∞ (R) + ||Au t (t)|| L ∞ (R) ≤ C.

2 d 8 R 8 R

 288 dt H = G setting H(w) = R ν|w x | 2 -R (f ε (|u| 2 )|w| 2 + 2f ε (|u| 2 )Re(ūw) 2 )+ -f ε (|u| 2 )Re(vw)Re(ūv) -4 R f ε (|u| 2 )Re(ūw)|v| 2 + -f ε (|u| 2 )Re(ūv) 2 Re(ūw).

- 5 R 10 R 8 R 8 R

 51088 f ε (|u| 2 )|w| 2 Re(ūv) -10 R f ε (|u| 2 )Re(ūv)Re(ūw) 2 + -f ε (|u| 2 )Re(ūw)Re(vw) -12 R f ε (|u| 2 )Re(ūv) 2 Re(vw)+ -f ε (|u| 2 )Re(vw)|v| 2 -12 R f ε (|u| 2 )Re(ūv)Re(ūw)|v| 2 + -f ε (|u| 2 )Re(ūv)3 Re(ūw).

  to (35) and Propositions 5.1 and 5.4 we rst have
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We now handle the rst order terms in w in (40). The modulus of these three terms can be bounded by above by, using Propositions 5.4 and 5.3

We now handle G(w). The modulus of the quadratic terms in w can be bounded by above by, Propositions 5.4, 5.3 and (36)

Analogously the modulus of the rst order terms in w can be bounded by above by

Gathering these inequalities yields that 12 ) and that

Integrating in time leads to

and the bound on the L ∞ norm of w follows from inequality (36) and Proposition 5.4. Going back to (30) we see that Au t = iu tt +lower order terms. This completes the proof of the proposition. Proposition 5.6. Consider an initial data u 0 in D(A 3 ). For any T > 0 there exists a constant C that may depend on u 0 and on T , but that is independent of ε such that for t ∈ [0, T ]

Proof. The proof is very similar to the proof of Proposition 5.4 and then omitted for the sake of conciseness. We rst dierentiate (37) with respect to t, to obtain setting z = u ttt

We consider the scalar product of equation with z. We have the following upper bound for the fourth term in the left hand side of (43)

Let us consider for instance the rst term in the right of side of (43). Its contribution is, appealing Propositions 5.3 and 5.4

We carefully bound from above each term using the propositions above. We get the L 2 bound on z. Since u ttt and Au tt have the same order, the proof of the proposition is completed.