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Abstract

To face the dependency on fossil fuels and limit carbon emissions, fuel cells
are a very promising technology and appear to be a key candidate to tackle
the increase of the energy demand and promote the energy transition. To
meet future needs for both transport and stationary applications, the time to
market of fuel cell stacks must be drastically reduced. Here, a new concept
to shorten their development time by introducing a disruptive and high-
efficiency data augmentation approach based on artificial intelligence is pre-
sented. Our results allow reducing the testing time before introducing a
product on the market from a thousand to a few hours. The innovative con-
cept proposed here can support engineering and research tasks during the fuel
cell development process to achieve decreased development costs alongside a
reduced time to market.
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PACS: 0000, 1111
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1. Introduction

In 2021, more than 20 countries had already published or were actively
preparing their national strategies relating to hydrogen [1]. These strategies
are commonly based on three pillars: hydrogen production [2, 3, 4], hydrogen
storage and distribution [5, 6, 7], and hydrogen usages [8]. Regarding the
latter, hydrogen can be used directly in chemical industry and in combus-
tion engines, but also converted to electricity (and heat) through fuel cells
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dedicated to stationary [9, 10] and transport applications [11, 12, 13, 14].
The global fuel cell market has been sharply increasing in the last couple of
years [15] considering the very large range of possible applications. In this
dynamic framework and to meet the market requirements as well as possible,
two main research areas are still strongly investigated from the industrial and
academic point of views: the increase of efficiency and durability of fuel cell
stacks and systems together with the reduction of their cost [15, 16]. Obvi-
ously, in the V-model of a project aiming at developing a new fuel cell stack,
testing and verification of both performances and durability of the developed
product play a key role in terms of duration and costs. To reach these objec-
tives, a disruptive solution involving generative adversarial networks (GAN)
to decrease these fuel cells’ test duration and validation costs is developed.
GAN have been already used for the real-time smart generation control of
microgrids [17, 18, 19, 20] as well as for the electricity prices forecasting [21]
even by including data augmentation for time series regression [22]. It is also
used for diagnostic tasks such as in [23],to detect failures on chiller systems
to significantly reduce energy consumption and improve energy efficiency of
buildings. GAN are also applied in the lithium-ion battery field for capacity
estimation. GAN is utilized to obtain meaningful latent variables extracted
from the impedance spectroscopy [24]. However, this approach has not yet
been applied to fuel cells. However, it seems quite appropriate method to
contribute significantly reducing the time to market for a given new genera-
tion of fuel cell stack.

2. Time to market for fuel cell systems - state of the art

Without any reusable previous experiment, it is estimated that the devel-
opment time for a new fuel cell system is 15 to 20 years [25]. This very long
development time includes all stages, from the selection of the best materi-
als for the catalyst to the integration into a complete system, including the
development of bipolar plates and their industrialization. When considering
integration of existing fuel cell stacks into systems by OEM (Original Equip-
ment Manufacturer), this development time can be reduced to about 18 to 24
months. Nevertheless, in both situations, functional and performance testing
of the fuel cell stack is required, mostly done according to international test
protocols [26]. These tests, even excluding long duration tests, are highly
costly and time-consuming. A full characterization of a stack in various op-
erating conditions, as defined in these international test protocols, can be



estimated to a couple of weeks.

Moreover, focusing on industrial production, and according to an analy-
sis made for the US Department of Energy in 2017 [27], total testing time
per produced fuel cell stack is assumed to be about 2.5 hours. This testing
and validation time includes the connection of the stack to the appropriate
air, hydrogen, and cooling subsystems and to an appropriate controlled load
bank. This figure must also be put in parallel with the time required to man-
ufacture a whole fuel cell stack, estimated to 13 minutes for an automotive
fuel cell stack in 2021 [28], leading to an end-of-line test time 10x greater
than assembly time.

Once a stack is assembled and validated on the production line, the next
step is to characterize its performance under different operating conditions,
in order to qualify it for integration in various kind of power modules. The
reference test is primarily the stack voltage obtained for different values of the
drawn current (so-called polarization curves) under the applied test condi-
tions. Polarization curves are often baseline measurements to qualify PEMFC
(Proton Exchange Membrane Fuel Cell) stacks and components (e.g. cata-
lyst, membrane, membrane electrode assembly, bipolar plates, etc) for given
test conditions. To perform a polarization curve, a normalized test proce-
dure has to be followed. It consists in different steps: start-up, conditioning,
stabilization and measurements. Other recommended tests, also in different
operating conditions, are the measurement of the voltages of the individual
cells, the coolant outlet temperature (considered as the stack temperature),
the outlet temperatures of the reactants (hydrogen and air) and the inlet and
outlet pressures of the reactants.

With a rapidly expanding market, recent studies are looking at ways to
further reduce the time required to break-in a fuel cell which is currently
not suitable for large scale industrial applications. The time spent on the
conditioning bench and the associated costs, mainly based on hydrogen con-
sumption, must also be reduced [29].

3. Results

We have built and tested a data generator capable of producing artificial
data in a short time that offer a high degree of statistical fit to the results
of real experiments. These results come directly from the test bed, which
produced data during five consecutive days of testing under normal operating
conditions. The retained experimental design consists in the variation of 10



input variables (i.e. Touteooringwaters Tip,, Tinai, Ping,, Pings, Qinag.,
Qing,, RHin 4, RHings, Qeoolingwater) across value ranges considered valid by
the experimenter. 52 physical measurements including the previous 10 input
variables, the main output variable representing the stack output voltage,
and 41 other output variables (Table A.2) were recorded at a frequency of ~
1Hz. In total, we have 30,901 observations corresponding to the stabilization
and polarization steps of the fuel cell. Depending on the experiment, extra
categorical features (day and step name) are added to the continuous ones.

3.1. Training

Model training is performed on stabilization and polarization data taken
on a five days span (very short period compared to the expected lifetime of the
fuel cell). Input continuous data are standardized and categorical variables
are one-hot encoded before being fed to a Generative Adversarial Network
(GAN). In this work, the data reproduced are not time series (an attempt to
reproduce synthetic energy time series using recurrent GANs can be found
n [30]), but synchronous snapshots of all the variables of interest from the
stabilization and polarization phases. The measurements do not show any
time dependency - besides the particular schedule retained for the physical
inputs (temperature, pressure, current) in the experiments. Therefore, the
choice made for this experiment was to validate some physical, non-temporal
relationships between variables (e.g cell output voltage and stream intensity).
The training ends after 25,000 epochs (each epoch corresponds to one batch
of training data used to update the parameters of both networks once), when
the critic can no longer improve its ability to distinguish artificial data from
real data (their critic scores are very close), and the generator can no longer
improve the quality of artificial data sent to the critic. On a local machine
with a NVIDIA GeForce GTX 1080 Ti equipped with 12GB of video memory,
the full training takes ~ 1 hour. The architecture and the hyperparameters
of the network are detailed in the Methods section.

3.2. Inference

Once the training is finished, the GAN model is completely described
by ~ 218,000 parameters. The generator is then detached and saved as a
stand-alone function that can be called at will. This function takes as input
a vector of 150 coordinates corresponding to independent draws of normal-
ized Gaussian variables called the latent space. It is often agreed [31] that
increasing the dimension of the latent space decreases the distortion of data,
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at the cost of a polynomial increase in the computation time. The latent
space is mapped onto the space of real variables by the non-linear genera-
tor function. The latter provides as output vectors of length 52 (as many
entries as continuous variables to reproduce), which are supposed to mimic
experimental data performed at different physical conditions. The generator
function can be called on a machine with a much smaller configuration than
the one used for training. This situation is typical of neural networks, which
require large computational resources (RAM and GPU) in training phase,
but much smaller resources in inference phase. For example, the detached
generator can produce 100,000 vectors of 52 artificial data on a 12 cores CPU,
in 671.12ms £0.024 (statistics obtained for 500 runs), while requiring at most
2 GB of RAM.

3.3. Results qualification

The quality assessment of data produced by a GAN has been mostly stud-
ied in the field of image generation [32, 33, 34, 35]. Establishing the quality
of artificial tabular data representing physical quantities requires different
methods from those usually used for image processing. The qualitative role
of the human eye cannot be directly transposed to the evaluation of physical
tabular data. The verification of the closeness between the distributions of
the real and generated data focuses on the quality of reproduction of the
correlations between the variables. We introduce several useful metrics for
data comparison.

3.4. Correlation matrices

The accordance of correlation matrices is the first test to pass for the eval-
uation of tabular data. The signs of these correlations are corroborated by
physical relationships between the variables. Failure by the GAN to repro-
duce correlations of the same sign would signal failure to learn the structural
relations linking the data. The visual representation of those matrices (Fig-
ure 1) indicates the absence of any sign error. All the variables are considered
in the calculation of the correlations, but for visualization purpose, only a
subset are shown: the ten input variables set by the experimental design
along with the stack output voltage (Vgier). The Kendall similarity score
is used to test the similarities in the ordering of data when it is ranked by
quantities [36]. It originally lies within [—1, 1] and is mapped in [0, 1], the
higher the better. In this first experiment, 100,000 data are generated and
the Kendall similarity score is computed for the two matrices. The score is



0.95 (the p-value being less than 1%). For all the pairs of variables expected
to show a significant correlation (e.g greater than 0.50 in absolute value), no
sign error is found and the absolute difference is always less than 0.20.
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(a) Real data. (b) Generated data.

Figure 1: Correlation matrices of continuous features (stabilization step).

3.5. Proximity study

Another way to appreciate the closeness of the generated data to the real
data is to use the critic scores assigned to them. The left part of Figure 2
depicts the overlay of the distributions of critic scores assigned to real and
100,000 generated data. Then, a random subset of 10,000 generated data is
considered. For each of those vectors of artificial data, the k = 20 closest real
data are found in the training set using the L2 norm restricted to the set of
experimental input variables mentioned in the previous section. Then, the
GAN critic is called to score the artificial data row and its nearest neighbors
selected from the real data. A statistic on the difference over the generated
dataset defines a proximity score (the closer to 0 the better). Proximity score
distribution is depicted in the right part of Figure 2.

3.6. Triangle plot

Unlike images, tabular data have no natural visual representation. The
graphical representation of the bivariate distributions calculated on all pairs
of variables nevertheless provides a visual tool for assessing the closeness
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Figure 2: Proximity study results (stabilization and polarization steps).

between real and generated data. The triangle plot depicted in Figure 3
illustrates the replication of univariate modes and complex correlations be-
tween variables, and visually extends the comparison of correlation matrices.
One can also appreciate the great similarity between the 68% and the 95%
confidence levels as an indication of the good performance of the generative
model.

3.7. Polarization curve

Among the characteristics that we wish to replicate, the most important
are the polarization curves. Indeed, these are used routinely to test and trou-
bleshoot fuel cell systems. In order to assess the quality of the reproduction
of the polarization curve, a polarization closeness error metric is defined (see
Section Methods). Figures 4 and 5 illustrate respectively a very good and
poor replication of the polarization curve from the GAN. In Figure 5, the
learning set has been filtered so as to only keep observations having the vari-
able Ij,4g within [110A,120A]. One important finding of this experiment is
about data distribution: the GAN can be successfully trained on a reduced
set of data, as shown in the subsampling study (Table 1), as long as the
training data are sufficiently well distributed in space. The GAN shows in
this case an interesting capacity to interpolate between experimental points.
Conversely, when the training is restricted to a small region of the space, the
GAN fails to reproduce the data, even within the training area.
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Figure 3: Triangle plot (stabilization and polarization steps): comparison between the real
(blue) and generated (red) datasets via visual inspection of the respective marginal dis-
tributions. The one-dimensional (diagonal panels) and the two-dimensional (off-diagonal
panels) marginal distributions are sorted by couples of continuous features. In each sub-
plot, the 68% (solid line) and the 95% (dash-dotted line) confidence levels are also shown.
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Figure 4: Polarization curve replication (= 25,000 polarization data vs. = 25,000 gen-
erated data). Polarization closeness errors are equal to 0.41% and 0.66%, for Vigack and
Toad, respectively. These error rates are to be compared with the measurement errors for
cell voltages and load currents which are less than 1%. The highest discrepancies appear
at both ends of the range, but the non-linear relationship is overall well captured.
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Figure 5: Polarization curve replication (= 25,000 polarization data vs. = 25,000 gen-
erated data). The same model has been trained only on data points having their load
current variable in [110A, 120A]. This is an example of a bad sampling strategy, leading to
a polarization closeness error of 18.8% for Viiack, way beyond the acceptable measurement
error for cell voltages of 1%.



3.8. Subsampling study

The objective of this study is to analyze the impact of the number of real
data available on the performance of the GAN. The real data are randomly
and uniformly selected from the original dataset (preserving the original dis-
tribution for both classes — 20% for stabilization, 80% for polarization) and
serve for training the GAN. This operation is equivalent to gradually lowering
the original data acquisition factor, here from 1 down to 1/4. Performance
metrics are shown in Table 1. What we can learn from this study is that,
despite some statistical fluctuations, those performance metrics remain high,
proving that the GAN does not need as much data as the original dataset
(five days of experiments) to generate artificial data with a high level of
similarity.

Data acquisition factor f=1 f=1/2 f=1/4
Real data (1) 30,901 15,450 7,725
Generated data (2) 100,000 100,000 100,000
Ratio (2) / (1) 3.24x 6.47x 12.9%
Epochs 25,000 25,000 25,000
Batch size 256 256 256
Training time (min) 60.2 60.0 60.8

KS score 0.87 (£1.5e—3) 0.88 (£1.5e—3) 0.87 (£1.0e—3)
Dim red score 0.97 (£4.1e—3) 0.91 (£6.4e—3) 0.97 (£1.7e—5)
Kendall score 0.90 (£3.5e—4) 0.89 (£1.9e—4) 0.90 (£2.3e—4)
Pola error (%) 0.64 (£2.6e—5) 0.44 (£2.0e—5) 0.65 (£2.8e—5)

Table 1: Performance results for the subsampling study on stabilization and polarization
steps. In each experiment, one GAN model is trained and 100,000 data are generated and
compared to the original dataset (with 30,901 real data). Performance metrics are given
in terms of means and standard deviations over 100 different inferences. The Kendall
score is mapped in the range [0, 1] and the polarization closeness error metric (see Section
Methods) utilizes polarization data only.

4. Discussion

In fuel cell systems, many parameters must be set in specific ranges in
order to achieve an optimal performance of the device, such as the reactants’
temperatures, pressures, flows, and hydration levels, the stack temperature,
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the current, and the voltage. One of the challenges of this study is to find
relationships between the artificial variables that are dictated by the under-
lying physics. For instance, the gas flow is proportional to the current.

The proposed GAN architecture produces artificial data that faithfully re-
produces the joint distribution of the real ones. A high replication quality is
achieved, as illustrated by the calculation of several statistical metrics. It is
however important to underline the strong dependence of the resulting gen-
erator on the experimental design used to produce the data. The analysis of
the joint distributions shows that for each pair of input variables, only a small
fraction of the respective ranges of variation was explored. There are at least
two reasons for this. The first is related to the number of acquisitions. If for
every input variable their entire range of values must be explored, the total
amount of acquisitions would increase exponentially which is clearly unfeasi-
ble. The second reason is physical and involves the experimenter’s know-how:
not all combinations of variables are valid experimental conditions, some of
them not allowing the stabilization of the stack, or even leading to physical
degradations. The experimental design appears therefore far from arbitrary.
If it is improperly chosen, like in the example presented for the Polarization
Curve, the GAN may lose its ability to replicate data. The main strength
of the current generator is its ability to interpolate data within the multi-
dimensional experimental space, thus reducing the time spent by the fuel
cells on the test bench.

As mentioned above, the bivariate plots show a visually very high degree of
replication of the experimental design by the GAN (Figure 3). For example,
the marginal distribution of the couple of variables (Vigack, floaq) is captured
with a very good precision. In order to be generalized in higher dimension,
this visual fit can be translated into image similarity scores. In this par-
ticular case, the most important physical relationships involve at most two
variables, which makes the verification of the trivariate marginal distribu-
tions less crucial, keeping in mind that this verification has cubic complexity
with respect to the number of variables.

The polarization curve is replicated with a relative error that is, on average,
less than the measurement uncertainty (Figure 4). A maximum distortion of
1.5% appears on the output voltage in the region of low currents (less than
5A). This distortion is very likely to be reduced by further improvements in
the GAN architecture.

Considering the objective of reducing as much as possible the time spent on
the test bench and the associated costs, it is possible to go from 4 hours
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of measurements (relative to one polarization curve) to almost one hour. It
is important to note that once the model is trained, it only takes less than
35 ms to generate a polarization curve with 5,000 points . This guarantees
a considerable time saving when evaluating the performances of a fuel cell
stack.

5. Conclusion

The fast generation of reliable and consistent artificial data paves the
way to promising developments and operational improvements in fuel cell
qualification. According to Table 1, the characterization time can be con-
servatively cut by 4. A next step will be the extension of the generator to
non-nominal operating modes (e.g. air and fuel varying stoichiometries, high
and low operating temperatures) to ensure the ability to map the behavior of
the fuel cell stack in all operating conditions. The expected benefits of data
generation are even greater in default mode than in normal operation, since
experiments under fault conditions degrade the equipment and can therefore
only be performed a limited number of times. A further step will be to use
these artificial data collected in normal and default modes to train a model
of the fuel cell performance throughout its lifetime.

6. Methods

6.1. Data from experimental tests

We consider a proton exchange membrane fuel cell (PEMFC) with an ac-
tive area of 220cm?, a nominal operating temperature of 80°C, and a nominal
current density of 0.5A/cm?. It is composed of 40 cells and delivers up to
3kW of electric power. On the test bench, various parameters are supervised
and regulated such as the pressures, the flow rates, the gas humidity, and
the dew points. The data generation is based on several experimental tests
done on the fuel cell stack, in various operating conditions. First, an ex-
periment under nominal operating conditions is performed. To evaluate the
performances of the fuel cell stack, a polarization curve (voltage vs. current
curve) is performed. Then, it is required to investigate the behavior of the
fuel cell stack under degraded operating conditions. Thus, the values of the
parameters are progressively increased or decreased up to a given threshold,
defined by the physical limits of the test bench and by the fuel cell speci-
fications. The full generated dataset is thus divided into several parts: i)
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start-up of the fuel cell, i7) stabilization of the fuel cell at nominal operating
conditions, #i7) polarization curves and iv) shutdown. The start-up time of
the fuel cell depends on its subsequent use. Indeed, if the fuel cell is brand
new, it will be necessary to break it in. Even if some optimization methods
can be applied to the fuel cell manufacturing process to reduce this time,
it will take multiple hours. If the time to perform a polarization curve is
added to the ”"break-in” process then this will further increase the time on
the test bench. To consider a mass production of fuel cells at low cost, it
is mandatory to reduce the time spent per fuel cell on a test bench or to
use the concept presented in this paper. After data merging, this currently
represents approximately 4 hours.

6.2. GANs architecture

Generative Adversarial Networks (GANs) were first introduced[37] in
2014 by Ian Goodfellow. They belong to the family of generative models and
are still considered to be the state of the art for approximating real data dis-
tributions. They allow to sample multivariate probability distributions with
implicit density. GANs involve two actors: one is called the generator, the
other the discriminator. The goal of the generator is to create fake samples
that are supposed to come from the same distribution as the original training
data. The discriminator tries to determine whether its input data are real or
fake. The competition in this game pushes both entities to improve them-
selves until the fake data are indistinguishable from the real ones. This sweet
spot is called the Nash equilibrium[38] and corresponds to the moment when
the model has completed its training. In practice, the generator and the dis-
criminator are represented by differentiable functions such as a deep neural
networks. In this work, we adopt as a blueprint a Wasserstein-GAN with gra-
dient penalty (WGAN-GP)[39] (the discriminator is call the critic) in which
we customize the architecture to handle continuous and categorical variables
simultaneously. The WGAN-GP brings strong modeling performance and
more stability for training compared to its predecessors. Moreover, it has a
loss function based on the concept of optimal transport [40, 41], well suited
to approximate the shape of statistical distributions which correlates with
generated samples quality. Detailed structure of both the generator and the
critic are available in Table B.3 and Table B.4 from the appendix, respec-
tively. Regarding the generator architecture, The sub-module dedicated to
the processing of a categorical variable is kept generic, indicating with k; the
number of classes for the " categorical variable. At training time, the out-
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put layer of the generator is a concatenation of the layers B and C;=;,_n, for
a total dimension of D = d + Zﬁ\; k;, d being the number of non-categorical
variables. The abbreviation Conn. stands for Connected. As far as the critic
architecture is concerned, the abbreviation dr. stands for dropout rate.

6.3. GANs training parameters

The model is trained for 25,000 epochs. It was verified that without
adding any further complexity to the overall architecture, pushing the train-
ing for more epochs was useless and could even lead to worse performance
results. A batch size of n;, = 256 data is chosen as a good compromise be-
tween rapidity and quality of the training. Adam optimizer [42] is used with
a learning rate of [, = 0.001 for both the generator and the critic. The dimen-
sion of the latent space is set to Lgimm, = 150 which, even if it is higher than
the number of variables, helps to improve performance results by decreas-
ing the distortion of the generated data, as mentioned in [31]. The gradient
penalty is set to A = 10, in line with previous literature [42] while the critic
/ generator training ratio is equal to 15. The total number of parameters of
the model is 218,418 (120,769 for the generator and 97,649 for the critic).

6.4. Kolmogorov-Smirnov score

The two-sample Kolmogorov—Smirnov (KS) test [43] is used to verify
whether two one-dimensional samples come from the same distribution. This
metric compares the distributions of continuous features using the empirical
cumulative distribution function (CDF). For each feature, the similarity score
is computed as one minus the KS test D-statistic, which indicates the maxi-
mum distance between the real data CDF (CDF,,) and the generated data
CDF (CDFye,) values. The output score Sis lies in [0,1] (the higher the
better) and is computed as the minimum score across all the features:

Sks = min(1 — sup |CDFreai(2;) — CD Fyen(x;)]) (1)

The minimum is taken instead of the mean that would smooth errors. Thus, if
this score is low, we would have the information that at least one feature has
not been approximated correctly. This metric quantitatively complements
the visual inspection of the triangle plot (Figure 3) to assess the quality of
the reproduction of marginal distributions.

14



6.5. Dimension reduction score

The dimension reduction score aims to reflect how well the model has
captured the correlations between the different features. First, a Principal
Component Analysis (PCA) [44] is performed on both real and generated
data such that 99% of the variance is explained by the first n eigenvectors.
Then, real and generated eigenvectors are normalized by the square root
of their corresponding eigenvalues (resp. mMyea and mge,) before a cosine
similarity Scogine 18 computed between them. The output score Sy, lies within
[0,1] (the higher the better) and is computed as follows:

§ % i %
w; X Scosme Myeals mgen)
Saim = = i=1...n (2)

>u
i=1

with X
Scosine €,y :_(—+1) € 07]- 3
(z,9) =3 e [0, 1] (3)

where w; corresponds to the explained variance ratio of the ith real eigenvec-
tor.

6.6. Proximity score

In the neighborhood study, the critic score from one generated row S&™*
is compared to the distribution of the critic scores of its k-nearest neighbors
Sknn ysing a proximity score S8.0x computed as follows:

gen __ .. knn
g S8 min {Sk"™" } (4)

Prox max {Skon} — min {Skon}

6.7. Polarization closeness error

To compute the polarization closeness error, we divide the currents in
ne = max ([Lpaq]) bins, and compute the average of the currents and of the
voltages for both real and generated data in each bin (which we will note
Vreal’z, Vgenﬂ, I reali, and [ gem) This allows us to produce the box plots
visible in Figure 4. We then take the average of the relative error between
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real and generated data in each bin, which gives us the average percentage
error e between both data types :

nc
1
e = — E
nc “
=1

Vreali - Vgeni
+ 5
. )

real,i
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L1

Feature name Description Unit Range Histogram
Toutcoolingwater | Outlet temperature of the water °C [25 - 95] L-
Ting, Inlet temperature of the hydrogen °C [25 - 95] A J
Tina;r Inlet temperature of the air °C [25 - 95] A‘A
Pina;, Inlet pressure of the air mbarg | [0 - 1000] J .
Pingo Inlet pressure of the hydrogen mbarg | [0 - 1000] J i,
Qin g, Total inlet air flow rate NI/min | [0 - 300] _ jh
Qingy, Total inlet hydrogen flow rate NI/min | [0 - 100] - M
RHin 4;, Relative humidity of the air (inlet of the stack) % [0 - 100] m
RHingo Relative humidity of the hydrogen (inlet of the stack) | % [0 - 100] JL
Qcoolingwater Deionized water flow rate 1/min [0 - 15] 4L
Vstack Stack voltage A% [0 - 40] J—m
Lioad Current load A [0 - 200] L 1
Veell; Cell voltage of the cell #i (i =1...40) \4 [0-1] _dk. Jllll.

Table A.2: Description of the continuous real data involved in the PEMFC experiments (stabilization step).




Appendix B. GANs Architecture
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Layer type Output shape Parameters Info.

Input sub-module

Input (np, 150) 0

Dense (np, 256) 38656

Batch Norm. (1, 256) 1024

(s=41)-SLR  (np, 256) 2

Dense (np, 128) 32896

Batch Norm. (ny, 128) 512

(s=—1)-SLR  (np, 128) 2

Dense (np, 64) 8256

Batch Norm. (np, 64) 256

(s=41)-SLR  (nw, 64) 2

Dense (np, 32) 2080

Batch Norm. (np, 32) 128

(s=—-1)-SLR  (np, 32) 2 Layer A

d continuous variables

Dense (ny, 4d) 4d - 33 Conn. to A

Batch Norm. (np, 4d) 4d - 4

(s=—-1)-SLR  (np, 4d) 2

Dense (np, 2d) (4d+1)-2d

Batch Norm. (np, 2d) 2d -4

(s=41)-SLR  (np, 2d) 2

Dense (np, d) (2d+1)-d Layer B
ith categorical variable of k; classes (i =1,...,N)

Dense (np, 4k;) 4k; - 33 Conn. to A

Batch Norm. (nn, 4k;) 4k; - 4

LeakyReLU (n, 4k;) 0

Dense (np, 2k;)  (4k; + 1) - 2k;

Batch Norm. (N, 2k;) (4k; +1) -4

LeakyReLU (nn, 2k;) 0

Dense (np, k;) (2k; + 1) - k;

Batch Norm (nb, ki) (2k; +1)-4

Softmax (np, k;) 0 Layer C;

Concatenate (np, D) 0 Output (B, Ci=1,...n)

Table B.3: Generator architecture as function of the batch size ny.
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Layer type Output shape Parameters  Info.

Input (np, 59) 0

Dense (np, 256) 15360
LeakyReLU  (np, 256) 0

Dropout (np, 256) 0 No
Dense (np, 128) 32896
LeakyReLU  (np, 128) 0

Dropout (np, 128) 0 No
Dense (np, 128) 16512
LeakyReLU  (np, 128) 0

Dropout (np, 128) 0 No
Dense (ny, 128) 16512
LeakyReLU  (np, 128) 0

Dropout (n,, 128) 0 dr=0.5
Dense (np, 64) 8256
LeakyReLU  (ny,, 64) 0

Dropout (np, 64) 0 dr=0.5
Dense (np, 64) 4160
LeakyReLU  (ny,, 64) 0

Dropout (np, 64) 0 dr=0.2
Dense (np, 32) 2080
LeakyReLU  (ny, 32) 0

Dropout (np, 32) 0 dr=0.2
Dense (np, 32) 1056
LeakyReLU  (np, 32) 0

Dropout (np, 32) 0 No
Dense (np, 16) 528
LeakyReLU (np, 16) 0

Dropout (np, 16) 0 No
Dense (np, 16) 272
LeakyReLU  (ny,, 16) 0

Dropout (np, 16) 0 No
Dense (np, 1) 17 Output

Table B.4: Critic architecture.
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