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Abstract

This study investigates the issue of optimal preventive replacement scheduling for a repairable sys-

tem, considering its failure/repair history and its environment or degradation, as characterised by

covariates. The proposed approach is developed within a recurrent event modelling framework, in

which the failure behaviour of the system is defined by its failure intensity, and perfect preventive

replacements and imperfect corrective repairs are integrated following a virtual age assumption.

The observed heterogeneity between systems is integrated through covariates by following a pro-

portional hazard assumption. These covariates are assumed to be either fixed and represent, for

example, the manufacturer origin, or to be dynamic and represent the monitored degradation

process.

The contributions of this study are twofold. First, a dynamic condition-based preventive re-

placement policy is developed. The maintenance decision rule integrates the available information

on both the corrective repair history and covariate behaviour to determine the optimal preventive

replacement time. This policy extends the state-of-the-art model of Gilardoni et al. (2016), which

considers only the corrective repair history without integrating covariates. Second, the results of

this study demonstrate how different levels of knowledge and information regarding the covariates

can be integrated into the maintenance decision and lead to different optimal replacement times

that are associated with different cost performances of the preventive replacement policy. This per-

formance evaluation enables the optimisation of the monitoring policy and inspection frequency of

the covariates. The proposed approach, which follows steps of increasing complexity, is developed

and investigated first on static and then on dynamic covariates, considering minimal and imperfect

repairs.
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Acronyms

ABAO As bad as old

AGAN As good as new

ARA Arithmetic reduction of age

NHPP Non-homogeneous Poisson process

PLP Power law process

Notations

τ0
P , τ̃0

P , τ0
D, τ fixP , τ̃ fixP ,

τ fixD , τ̃ fixD , τdynP , τdynD

Next optimal preventive maintenance time point following dif-

ferent policies

T1, . . . , Tn Successive failure times

{Nt}t≥0 Counting process of failures

Ft History of failure process

{λt}t≥0 Conditional failure intensity

{Λt}t≥0 Cumulative failure intensity

Vi(t) Virtual age at time t after ith failure

h(t) Initial failure rate of new unmaintained system

η, β, α Scale and shape parameters of PLP, and α = η−β

ρ Maintenance efficiency parameter

γ Coefficient of influence of covariates

{Xt}t≥0, X Dynamic covariate path or fixed covariate

CPrev, CCorr, CI Costs of preventive maintenance, corrective maintenance, and

inspection (all costs in arbitrary units)

{τr}r≥0 Successive renewal times

{xr}r≥1 Time duration between two successive renewal time points: xr =

τr − τr−1

{Rt}t≥0 Counting process of renewals

{Mr}r≥1 Maintenance cost on each renewal cycle

C(t) Total cost with respect to time

G(τ) Mean asymptotic cost per time unit

Φ(t), φ(t) Expected value of cumulative intensity and its derivative

Φ(t|Fs), φ(t|Fs) Conditional expected value of cumulative intensity and its

derivative

sλ Intensity threshold for preventive maintenance planning

χ, χl Observed value of fixed covariate or dynamic one on step l

M , N Number of simulated paths for computation of threshold and

optimization of inspection frequency

dtcov Step of piece-wise constant dynamic covariates

a, b Shape and rate parameters of Gamma process

l(t) = dt/dtcove Positive integer such that (l(t) − 1)dtcov < t ≤ l(t)dtcov
Ii, i ≥ 1 Successive inspection dates

dtins Covariate inspection step

τ0 Mean time for intensity to hit threshold sλ

{N (I)
t }t≥0 Counting process of covariate inspections
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1. Introduction

Technological or industrial equipment or structural components (e.g. dikes and dams) are sub-

ject to degradation because of intrinsic wear, usage imposed by operating conditions, or exposure

to environmental factors. For such repairable industrial equipment, an important issue that was

recently reviewed by de Jonge and Scarf (2020) is maintaining the system in working order con-

ditions in accordance with safety, availability, and cost constraints. At present, as highlighted by

Hong et al. (2018), wide access to information and data on systems opens new research perspectives

on this classical reliability and maintenance issue.

Two main approaches have been used in the reliability literature to address the above issues.

One is based on recurrent event models, and is centred on probabilistic lifetime modelling of succes-

sive discrete event times and types (the successive times of failure, maintenance or replacement).

Corresponding models can be uniquely defined through their conditional (failure) intensity, which

generalises the failure time hazard rate as a conditional rate given the system history. The other

considers stochastic processes (or even dynamic state-space models) that represent continuously

time-varying degradation, in which the failures correspond to the first hitting time of a given

threshold. Classical continuous degradation processes include Gamma processes, as reviewed by

van Noortwijk (2009), and monotone Levy or Wiener processes, as in Zhang et al. (2018). In

particular, the discrete degradation models considered by Zhang and Revie (2017) use Markov or

semi-Markov chains and discretise the system health conditions into a finite number of states.

However, in many practical situations, the link between the degradation level and system

failure is not direct, and the degradation does not lead automatically (with probability 1) to a

failure when the degradation level reaches a given threshold. For example, this is the case when

considering a crack length in a piece of structure, corrosion in a metallic part, or fatigue phenomena

in mechanical parts. Hence, from a modelling perspective, such degradation/failure behaviour

cannot be represented by a deterioration-threshold failure model, but rather, using a recurrent

event model with a conditional failure intensity in which the degradation level is integrated as a

covariate. This is the class of degradation/failure model that is used in this study. The above

concept has already been used in the literature; see, for example, Liu et al. (2019), Zheng et al.

(2020),Golmakani and Fattahipour (2011), Makis and Jardine (1992), Tian and Liao (2011), Tian

et al. (2012), Vlok et al. (2002), and Lam and Banjevic (2015). Moreover, Liu et al. (2019)

presented a real case application study for locomotive wheels of a Swedish company. According to

the authors, the diameter of a wheel usually indicates the degradation level, where soft failure is

defined when the diameter is reduced to a pre-specified threshold. However, during operation, the

wheels are occasionally reprofiled owing to increased roughness, even if the wheel diameter remains

above the tolerance level. Various factors affect the roughness of the wheels, including the weather

conditions, surface smoothness of the track, and running speed, all of which may cause sudden

failure even before the failure threshold is reached. Motivated by this limitation of degradation-

threshold models, Zheng et al. (2020) proposed the integration of the degradation level effect into

the failure time hazard rates.

Preventive maintenance actions and repairs may not all have the same effect on the system.

Indeed, if the repair consists of a minimal intervention that is simply aimed at restarting the

system without seeking to improve its condition, it will remain in the same state as directly before

the failure. Such a repair action is termed as bad as old (ABAO); the repair is minimal and

the failure time process is a non-homogeneous Poisson process (NHPP). Conversely, preventive
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maintenance action, such as a replacement that completely renews the system, is termed as good

as new (AGAN), which is then perfect, and the failure time process is a renewal process. However,

the reality may fall between these two situations, whereby the system directly after maintenance

is better than old but worse than new and the maintenance is said to be imperfect. Many failure

time process models exist to deal with imperfect maintenance, such as the Brown–Proschan model

in Brown and Proschan (1983), where the maintenance is ABAO or AGAN with a probability p or

1 − p. However, the present work relies on virtual age models, as exposed in Kijima (1989), and

more precisely, on the parameterisation presented in Doyen et al. (2020), whereby the maintenance

effect is characterised by an efficiency parameter ρ.

Many references can be found in the literature regarding the optimisation of preventive mainte-

nance dates. These dates may follow a schedule that can be static and fixed beforehand or evolve

dynamically throughout the life of the system. Among static schedules, periodic maintenance poli-

cies consider preventive replacements occurring at a fixed time interval, as presented in Barlow and

Hunter (1960): preventive maintenance actions are periodic renewals of the system, and corrective

maintenance actions are either minimal (ABAO) or perfect (AGAN). The aim is to determine the

optimal replacement period τP . Preventive maintenance actions are performed at times τP , 2τP , . . ..

Many studies have assumed, as in Barlow and Hunter (1960), that preventive maintenance actions

are perfect. With minimal corrective maintenance actions, Gilardoni and Colosimo (2007) studied

a periodic policy, including the estimation of the model parameters. In Gilardoni et al. (2016)

and Zhang and Wang (2006), the corrective maintenance actions were imperfect. Gilardoni et al.

(2016) proposed a dynamic policy that considered the failure process history to schedule the re-

placements. Zhang and Wang (2006) developed a model with two components that relieved one

another following a failure, in which the repair durations were taken into account. The system

is renewed either after a fixed number of failures or a certain working time. Conversely, several

studies have investigated minimal corrective and imperfect preventive maintenance actions. For ex-

ample, in Liao et al. (2010), preventive maintenance actions occur as soon as the system reliability

reaches a threshold, and in Moghaddam and Usher (2011), either a minimisation of the cost under

a reliability constraint or a maximisation of the reliability under a budgetary constraint is applied.

Finally, certain authors have considered imperfect corrective and preventive maintenance actions

simultaneously. We can cite Nguyen et al. (2017), who proposed three maintenance policies with

the ARA∞-PLP model and relied on the properties of this model to solve the optimisation prob-

lem, or Safaei et al. (2019), in which the dual goal was to find the optimal preventive maintenance

period and to decide whether the system should be renewed or imperfectly repaired. Furthermore,

we cite Love et al. (2000), in which at each failure, the decision must be made to renew or imper-

fectly repair the system, but without considering preventive maintenance, and Zhou et al. (2020),

in which a periodic maintenance policy was outlined whereby the preventive maintenance actions

have a variable effect, but without providing the optimal replacement period for a system.

The principle of condition-based maintenance is to integrate updated condition-monitoring

information into the maintenance optimisation procedure. In the recurrent event modelling frame-

work considered in this work, the proportional hazard model in Cox (1972) in particular has been

used in situations where the hazard rate of a system also depends on degradation processes such

as erosion, corrosion, crack growth, and wear: these degradation processes (that can be modelled,

for example, by Gamma processes or Markov chains) are treated as covariates and integrated into

the hazard function through a link function. In almost all studies considering such condition-based
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maintenance policies, corrective maintenance actions are assumed to be perfect, as in Golmakani

and Fattahipour (2011), Makis and Jardine (1992), Tian and Liao (2011), Tian et al. (2012), Vlok

et al. (2002) and Lam and Banjevic (2015). In the final article, the covariate inspection cost was

also considered. To the best of our knowledge, only Zheng et al. (2020) studied minimal corrective

maintenance actions and time-dependent covariates (or degradation processes) in preventive re-

placement scheduling. However, no study has considered imperfect corrective maintenance actions

in this context.

From a general perspective, covariates allow the heterogeneity among several independent repli-

cas of identical systems to be accounted for (i.e., with the same failure model and the same pa-

rameters), whether or not this heterogeneity is observed. For example, Liu et al. (2020) considered

unobserved heterogeneity in virtual age models. In the case of observed heterogeneity, the covari-

ates can either be fixed or time varying. Fixed static covariates can represent heterogeneity, such

as the manufacturing origin or geographical location. Time-varying dynamic covariates can either

integrate the effect of a degradation process (which can often be viewed as a composite degradation

index) or directly variable operating conditions such as the temperature, pH, pressure, and work-

load. In this study, we focus on the dynamic covariates that represent degradation and we do not

consider the case of variable operating conditions. In Brenière et al. (2020), a simulation method

and an estimation procedure were established for virtual age models with observed fixed or time-

dependent covariates. Building on the same modelling framework, the present work investigates

condition-based replacement policies; that is, how to use the information originating from different

types of covariates to schedule preventive replacements. When developing a condition-based main-

tenance policy, the issue is not only to optimise the maintenance dates, but also to determine the

optimal inspection time points at which covariates should be observed; for example, by considering

the inspection cost in the formulation of the maintenance optimisation problem. Indeed, additional

inspections would lead to better knowledge of the system, which should allow for more efficient

scheduling of preventive maintenance actions. However, the gain in terms of maintenance costs

may be exceeded by the cost of the inspections; thus, it is necessary to optimise the inspection and

maintenance dates.

Thus, in this study, we develop a framework that aims to formulate and solve the optimisation

of preventive replacement dates for systems that are influenced by covariates and undergo imperfect

corrective repairs. We adopt a recurrent event modelling approach, and by extending the initial

proposition of Gilardoni et al. (2016), we propose a procedure to optimise preventive replacement

dates by considering both the covariate information that is available online and imperfect corrective

maintenance effects. The underlying principle of the proposed maintenance decision rule consists

of determining the replacement time from a threshold criterion based on the conditional failure

intensity of the maintained system. The case of static covariates is first investigated, and it is

demonstrated how different levels of knowledge of the fixed covariates can be integrated into the

maintenance decision and lead to different optimal replacement time points that are associated with

different cost performances of the preventive replacement policy. A complete analysis of the design

and performance of the different replacement policies is initially presented in the case of minimal

repairs and then extended to the case of imperfect repairs. Subsequently, the proposed approach

is generalised to condition-based maintenance, in which the dynamic covariates corresponding

to the degradation process are integrated. We first examine the case of minimal repair and, in

particular, the computation of the intensity threshold beyond which preventive maintenance must
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be triggered. Thereafter, we focus on optimising the covariate inspection period or date when the

covariates are not completely known and must be inspected. Finally, a general case of imperfect

repair is considered.

The remainder of this paper is organised as follows: Section 2 is dedicated to the background of

this study. In particular, Sections 2.2 and 2.4 present the arithmetic reduction of age (ARA) model

of Doyen and Gaudoin (2004) and its generalisation to the case in which covariates are considered.

The objective cost criteria are described in detail in Section 2.1. Section 2.3 summarises the work

conducted by Gilardoni et al. (2016) on the optimisation of preventive replacements with imperfect

repairs, but without covariates, which is the starting point of our work. Section 3 analyses the

case of fixed covariates, considering different levels of information on the covariates and minimal

or imperfect repairs. Section 4 deals with the optimisation of preventive replacement dates with

dynamic covariates and minimal repairs. It also presents a numerical procedure for the optimisation

of the covariate inspection period and for the determination of the optimal date in the case of a

single inspection. Section 5 extends the proposed approach to include imperfect repairs. Finally,

Section 6 presents conclusions and provides insights for future work.

2. Background & problem statement

2.1. Preventive replacement policy and cost criterion

We consider a system undergoing imperfect corrective repairs after failure, which is eventually

preventively replaced at the end of a maintenance cycle. Let us assume that the preventive re-

placements are perfect in the sense that they completely renew the system and incur a cost CPrev.

These imperfect corrective repairs incur a cost CCorr. If CCorr represents the cost of a corrective

maintenance action only; that is, with a lower efficiency than a perfect replacement, it is reasonably

smaller than CPrev, which represents the total system renewal. If CCorr also considers all costs

associated with a failure (such as unscheduled intervention and failure consequences), it can be

higher than CPrev.

Let T1, . . . , Tn denote the n first system failure times, with T0 = 0, and {Nt}t≥0 be the counting

process of failures. Maintenance durations are not considered, and failure time points also corre-

spond to corrective repair time points. Let {τr}r≥0 be the successive replacement dates induced by

preventive maintenance, with τ0 = 0 (as the system is supposed to be new at the beginning of its

life), {xr}r≥1 be the duration between two successive renewals; that is, for all r ≥ 1, xr = τr−τr−1,

{Rt}t≥0 is the counting process of replacements, and Mr = CPrev + CCorr(Nτr −Nτr−1), r ≥ 1 be

the maintenance costs of each renewal cycle. Because the system is renewed by preventive replace-

ments, the durations {xr}r≥1 and costs {Mr}r≥1 are independent and have the same distributions.

The total cost at time t ≥ 0 is equal to

C(t) =

Rt∑
r=1

Mr =

Rt∑
r=1

(CPrev + CCorr(Nτr −Nτr−1)) + CCorr(Nt −NτRt
). (1)

According to the renewal theorem (see, e.g. Tijms (2003)) with probability 1,

lim
t→∞

C(t)

t
=

EM

EX
, (2)

where M is a random variable with the same distribution as {Mr}r≥1 and X has the same distri-

bution as {xr}r≥1.
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The preventive replacement date τ is the only decision variable of this preventive maintenance

policy, which can be optimised by determining the value of τ that minimises the mean asymptotical

cost per time unit:

G(τ) =
EM

EX
=

E[CPrev + CCorrNτ ]

Eτ
=
CPrev + CCorrENτ

Eτ
. (3)

2.2. Virtual age models

To model the corrective maintenance action efficiency; that is, imperfect repairs with interme-

diate effects between the ABAO and AGAN cases, we resort to virtual age models in this work.

The conditional failure intensity λt of the counting process is defined as the conditional instan-

taneous failure rate:

λt = lim
∆t→0

1

∆t
P(Nt+∆t −Nt− = 1 | Ft−), (4)

where Ft− and Nt− are the process history and failure counting process directly before t, respec-

tively. This representation characterizes the distribution of the next failure time given the process

history. Let Λt =
∫ t

0 λsds denote the cumulative intensity.

In the virtual age model setting Kijima (1989), the system after a failure is in the same state as

a new system that has survived until the virtual age without failure. This virtual age is denoted by

Vi(t), where t is the time and i is the number of failures. Following Doyen et al. (2020), a generic

parameterisation of these models is given by

λt = V ′Nt− (t)h(VNt− (t)), (5)

where h(·) is the failure rate of the first failure time and is assumed to be differentiable. We use the

Weibull distribution for the first failure time. Thus, the initial failure rate is a power law process

(PLP):

h(t) =
β

η

(
t

η

)β−1

= αβtβ−1, (6)

where η is the scale parameter and β is the shape parameter. The form with α is another pa-

rameterisation that is more convenient in certain computations, with α = η−β. The effect of the

maintenance actions on the failure process is characterised by a particular virtual age parameteri-

sation.

Several forms can be assigned to the virtual age. The arithmetic reduction of age model with

memory 1 (ARA1) was presented in Doyen and Gaudoin (2004). This corresponds to the Type

I Kijima model Kijima (1989) with a deterministic constant maintenance effect. In this case,

the maintenance is supposed to reduce the virtual age by an amount that is proportional to the

accumulated age since the previous failure, and we obtain

Vi(Ti) = Vi−1(Ti)− ρ(Vi−1(Ti)− Vi−1(Ti−1)). (7)

Its virtual age at time t after the ith failure is given by

Vi(t) = t− ρTi, (8)

where ρ denotes the efficiency parameter. If ρ = 1, we return to the AGAN case and the mainte-

nance is perfect. If ρ = 0, we are in the ABAO case and maintenance is minimal. The maintenance

is efficient between 0 and 1, although not perfect. If ρ is negative, the maintenance is harmful and

the system becomes older after maintenance.

7



For illustration purposes, we use the ARA1 model in our work, but other virtual age models

can be used, such as the ARA∞ model of Doyen and Gaudoin (2004) or the quasi-renewal model

of Wang and Pham (1996), with the parameterisation given in Doyen et al. (2020).

2.3. Optimal preventive maintenance planning without covariates

Let us first consider the classical case in which the conditional failure intensity is not influenced

by any covariate to recall several existing results on which we build our contribution.

2.3.1. Minimal repair and periodic replacement

In the case of minimal repair with periodic preventive replacements, Λt is no longer random

and G(τ) = CPrev+CCorrΛτ
τ . Barlow and Hunter (1960) optimised this cost function and showed

that τ0
P = B−1(CPrev/CCorr), where B(τ) := λττ − Λτ , is the optimal replacement period when

the corrective repairs are minimal.

2.3.2. Imperfect repair and dynamic replacement date

Both periodic and dynamic preventive replacement policies can be considered in the presence

of imperfect repairs.

Periodic replacement. For non-minimal but imperfect corrective repairs, the failure process be-

tween two renewals is no longer an NHPP, and thus, the cumulative intensity is random. Therefore,

we let

Φ(t) = E[Nt] = E[Λt] and (9)

φ(t) = Φ′(t). (10)

We assume that φ(·) is strictly increasing and differentiable for all t ≥ 0. The mean asymptotic

cost per time unit for the periodic maintenance policy is now

G(τ) =
CPrev + CCorrΦ(τ)

τ
. (11)

Then, G′(τ) = CCorrφ(τ)τ−(CPrev+CCorrΦ(τ))
τ2

, where G′(τ) = 0 is equivalent to B(τ) := φ(τ)τ −
Φ(τ) = CPrev

CCorr
(the expression of B(t) defined in Section 2.3.1 corresponds to the particular case in

which Λt is no longer random). By studying the second derivative G′′(τ), we can show that the

optimal periodic replacement date becomes τ̃0
P = B−1(CPrev/CCorr), where B(t) := tφ(t)−Φ(t) is

monotonic.

Dynamic replacement. In the presence of imperfect corrective repairs, and as illustrated in Gi-

lardoni et al. (2016), the optimal replacement policy is no longer periodic, but it should use the

failure process history. The rationale for an optimal dynamic replacement policy is that if the

system fails directly before a preventive replacement scheduled at τ̃0
P , efficient corrective mainte-

nance can decrease the conditional system failure intensity, and thus, the preventive replacement

should be postponed. To consider the system history, we denote, for all t ≥ 0, the σ-algebra

Ft = σ{Ns, s ≤ t}, and for all 0 ≤ s ≤ t,

Φ(t|Fs) = E[Nt|Fs] (12)

φ(t|Fs) = lim
h→0

1

h
(Φ(t+ h|Fs)− Φ(t|Fs)). (13)
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Again, we assume that φ(t|Fs) is strictly increasing and differentiable for all 0 ≤ s ≤ t.
With knowledge of the failure/repair process history until time s, let us consider the preventive

maintenance policy until time s+ T (T > 0), which consists of n preventive replacements at times

s+x1, s+x1 +x2, . . . , s+x1 + . . .+xn with x1 + . . .+xn ≤ T . Gilardoni et al. (2016) demonstrated

that the mean conditional cost of such a policy is

C(n;x1, . . . , xn|s, T ) = nCPrev + CCorr

Φ(s+ x1|Fs)−Ns +
n∑
i=2

Φ(xi) + Φ

T − n∑
j=1

xj


(14)

and that the optimal policy satisfies

x∗2 = . . . = x∗n∗ =
T − x∗1
n∗

, (15)

φ(s+ x∗1|Fs) = φ

(
T − x∗1
n∗

)
, (16)

and

n∗ =
T − x∗1

B−1(CPrev/CCorr)
+ ε(s, T ), where |ε(s, T )| < 1. (17)

Moreover, for any i ∈ {2, . . . , n∗},

lim
T→∞

T

n∗
= lim

T→∞
x∗i = B−1(CPrev/CCorr) (18)

and

lim
T→∞

φ(s+ x∗1|Fs) = φ(B−1(CPrev/CCorr)). (19)

This means that after the first preventive replacement (performed at time s + x∗1), the following

preventive maintenance dates are periodic, with an asymptotic period of τ̃0
P = B−1(CPrev/CCorr)

for an infinite time horizon. This is because each preventive replacement is a renewal, which resets

the system history to zero, and after s, no new information will be obtained from the system.

At this point, let us assume that at each time s, Fs is known. After each failure/corrective repair

event, the previously scheduled time point of preventive maintenance may be revised according

to the new information that corrective maintenance has been performed. Using the fact that

λt = φ(t|Ft−), it was shown in Gilardoni et al. (2016) that with this continuous information, the

next dynamically updated preventive maintenance date τ0
D is defined as the first hitting time for

the conditional failure intensity:

τ0
D = inf{t > 0 : λt ≥ φ(B−1(CPrev/CCorr))}, (20)

where the corresponding preventive maintenance intensity threshold is

sλ = φ(B−1(CPrev/CCorr)). (21)

Subsequently, the dynamic maintenance policy can be implemented in two steps. First, the

intensity threshold sλ must be computed. Subsequently, during the system life, the conditional

intensity must be continuously evaluated and compared to sλ. As soon as the intensity reaches

this threshold, preventive maintenance is triggered. In practice, the conditional intensity is not

continuously computed but only determined at each corrective maintenance time point. Indeed,

the conditional intensity is a deterministic function of the virtual age, which is only modified by a

9



failure/corrective maintenance event. Therefore, the conditional intensity is dynamically updated

and computed with the current virtual age following each corrective maintenance to determine the

threshold hitting time, which sets the next preventive maintenance date. This tentative replacement

date is then either reached without any other corrective maintenance occurrence (and the system is

replaced), or corrective maintenance occurs beforehand and the conditional intensity is computed

again to determine the newly planned preventive maintenance date. This dynamic policy is less

expensive than the periodic policy corresponding to criterion (11) in Gilardoni et al. (2016).

The threshold sλ for a given failure intensity cannot be computed analytically in the general

case of imperfect maintenance models. Instead, as proposed in Gilardoni et al. (2016), it can be

estimated by Monte Carlo simulation using the fact that Φ(·) is convex; see Algorithm 1.

Algorithm 1 Computation of preventive maintenance intensity threshold

1: Simulate M failure paths with the same model and the same parameters as the studied system

2: Compute Φ̂(t) as the greatest convex minorant of the Nelson–Aalen estimator of Φ(t) from the

M simulated paths

3: Compute φ̂(t) as the right derivative of Φ̂(t)

4: Compute B̂(t) = tφ̂(t)− Φ̂(t);

5: Invert B̂ to compute an estimation of B−1(CPrev/CCorr) and then of sλ

Fig. 1 depicts the optimisation principle of preventive maintenance dates within this framework.

The estimated mean intensity φ̂(t) is represented by a thin black dotted curve. It reaches the

estimated threshold ŝλ, which is denoted by the horizontal grey dotted line, at the time marked by

the vertical grey line. This time point corresponds to the theoretical preventive maintenance time

τ0. However, the observed intensity in red reaches the estimated threshold slightly before τ0. Hence,

the observed preventive maintenance time instant, which is denoted by the vertical red dotted line,

occurs before τ0 at the time when the observed intensity hits the estimated threshold. After this

first preventive maintenance, the observed intensity, denoted in orange, decreases after 15000 time

units: a failure occurs and corrective maintenance is performed, thereby lowering the intensity.

Therefore, this observed intensity hits the estimated threshold later than the mean intensity, and

the second preventive maintenance date, which is denoted by the vertical orange dotted line, is

postponed.
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Figure 1: Schematic optimisation principle of preventive maintenance dates with imperfect repairs
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2.4. Virtual age models with covariates

When designing a dynamic preventive maintenance policy that is adapted to each individual

maintained system, it is interesting to consider the differences between the systems owing to their

specific failure/repair history as well as the heterogeneity between systems. Such heterogeneity

between the systems can be considered with covariates. This information may be constant when

it represents, for example, the manufacturer of a system, or dynamic in the case of a covariate

corresponding to a degradation process. A modelling framework for virtual age models with time-

dependent covariates was proposed in Brenière et al. (2020), together with the associated simulation

procedure to generate synthetic datasets and an inference method to estimate the model param-

eters. The hypothesis is that covariates can be represented satisfactorily by a stepwise constant

model (in which constant covariates are a particular case). Within this framework, and following a

Cox proportional hazard model approach Cox (1972), the covariates are included in the conditional

failure intensity with the following expression:

λt = V ′Nt− (t)h(VNt− (t)) exp(γ′Xt), (22)

where γ is the coefficient measuring the influence of the covariates and Xt, t ≥ 0 is the path of the

covariates.

The remainder of this paper presents the contribution of this work, whereby covariate informa-

tion is introduced into the preventive maintenance decision-making procedure.

3. Optimal preventive maintenance planning with fixed covariates

In this section, we introduce fixed covariates in the optimisation of the preventive replacement

date. Different levels of information on these covariates can be considered: their value may be

known, only their distribution may be known, or no information may be available. This infor-

mation on the covariates may also be available at different stages of the preventive maintenance

decision-making procedure (threshold computation or intensity evaluation). Thus, we study how

the information on the covariates can be integrated into the decision and lead to different replace-

ment times depending on the available information, as well as the impact of the information level

on the cost of the preventive replacement policy.

3.1. Minimal repair

We first consider the case of minimal repair, and assume that for each system, the covariates

take a new value after each preventive maintenance (renewal). The failure intensity between the

two preventive renewals is expressed as

λt = exp(γ′X)h(t) (23)

and the cumulative intensity is

Λt = exp(γ′X)H(t), (24)

where X is the covariate value after the last renewal, γ is the coefficient of influence of the covariates,

h(·) is the failure rate of the first failure time without covariates, H(·) is its primitive, which is null

in 0, and t is the time elapsed since the last renewal. Two cases must be distinguished depending

on the available level of information on the covariates at the beginning of the system life; that is, at

the time of computation of the maintenance threshold. The value χ that is taken by the covariates

after the different successive renewals; that is, at the beginning of each cycle, can either be known

or not.
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3.1.1. Covariates as a priori unknown random variables

In the case in which the value χ of the covariates is unknown at the time of the threshold com-

putation, only the knowledge of its probability law can be used in the failure intensity expression.

Thus, we obtain

Φ(t) = E[Λt] = E[exp(γ′X)]H(t) (25)

and

φ(t) = Φ′(t) = E[exp(γ′X)]h(t), (26)

because H(·) is a deterministic time function. We can then write

B(t) = tφ(t)− Φ(t) = E[exp(γ′X)](th(t)−H(t)). (27)

By writing B∗(t) := th(t)−H(t), we obtain

B−1(t) = B−1
∗

(
t

E[exp(γ′X)]

)
, (28)

and thus, the maintenance threshold expression for the failure intensity becomes

sλ = φ(B−1(CPrev/CCorr)) = E[exp(γ′X)]h

(
B−1
∗

(
CPrev/CCorr
E[exp(γ′X)]

))
. (29)

The observed failure intensity can now be compared to this threshold sλ to determine the preventive

maintenance date, and two cases must be distinguished depending on whether the covariate values

are known at the decision-making time; that is, at the time of this comparison.

Covariate value unknown at decision-making stage. If the new value χ of the covariate is still

unknown when the system is returned to work after preventive replacement, the expected value of

the failure intensity (innovation theorem; see Andersen et al. (2012)) must be used to determine

the preventive maintenance date τ̃ fixP such that

E[exp(γ′X)]h(τ̃ fixP ) = E[exp(γ′X)]h

(
B−1
∗

(
CPrev/CCorr
E[exp(γ′X)]

))
, (30)

and hence,

τ̃ fixP = B−1
∗

(
CPrev/CCorr
E[exp(γ′X)]

)
, (31)

because we assume that h(·) increases. Note that τ̃ fixP is periodic, as nothing modifies its value

during the life of the system. This result can be compared to the case in which the knowledge of

the covariate distribution is not considered; that is, when it is considered that γ = 0, which leads

to

τ fixP = B−1
∗ (CPrev/CCorr). (32)

τ̃ fixP is a periodic maintenance time point, similar to τ fixP ; however, compared to expression (32) of

τ fixP , expression (31) of τ̃ fixP clearly shows the effect of the covariates on the preventive maintenance

date.
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Covariate value known at decision-making stage. Conversely, if the value χ of the covariates after

each preventive maintenance (renewal) is known, it can be integrated into the failure intensity

expression, and the preventive maintenance date τ fixD is such that

exp(γ′χ)h(τ fixD ) = E[exp(γ′X)]h

(
B−1
∗

(
CPrev/CCorr
E[exp(γ′X)]

))
, (33)

and hence,

τ fixD = h−1

(
E[exp(γ′X)]

exp(γ′χ)
h

(
B−1
∗

(
CPrev/CCorr
E[exp(γ′X)]

)))
. (34)

In the case with covariates, the structure of this maintenance policy corresponds to that proposed

by Gilardoni et al. (2016) and is summarised in subsection 2.3.2. Indeed, the obtained policy

is dynamic and no longer periodic because the covariate value is known only after preventive

maintenance; that is, after system renewal. In this case, again, comparing expression (34) of

τ fixD with expression (20) of τ0
D clearly demonstrates the effect of the available knowledge on the

covariates on the preventive maintenance date determination.

3.1.2. Covariates as a priori known random variables

In a full-information situation, the value χ is known at both the threshold computation time

and decision-making time. By using this value in the failure intensity expression, we obtain

Φ̃(t) = exp(γ′χ)H(t) (35)

and

φ̃(t) = exp(γ′χ)h(t). (36)

Hence,

B̃(t) = exp(γ′χ)B∗(t), (37)

and thus,

s̃λ = φ̃(B̃−1(CPrev/CCorr)) = exp(γ′χ)h

(
B−1
∗

(
CPrev/CCorr

exp(γ′χ)

))
. (38)

By comparing the observed intensity (thus, with χ) to this threshold, we obtain the expression of

the preventive maintenance date for this fully informed policy:

τ̃ fixD = B−1
∗

(
CPrev/CCorr

exp(γ′χ)

)
. (39)

As the covariate value χ changes at each renewal, the replacement policy τ̃ fixD is not periodic.

3.1.3. Comparison of four replacement policies

A numerical comparison of the maintenance costs that are incurred by the four replacement

policies is presented in this section. For comparison purposes, Table 1 displays the covariate

knowledge levels for each policy.

Experimental protocol. To compare the mean cost per time unit incurred by the four maintenance

policies, N system histories were simulated until their first preventive maintenance dates, which

was equivalent to simulating a single system undergoing N preventive replacements, as they were

supposed to be perfect. Following (1), the total cost of system j = 1, . . . , N until its first observed

preventive maintenance date τ (j) was equal to

C(j)(τ (j)) = CPrev + CCorrN
(j)

τ (j)
, (40)
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τ fixP τ̃ fixP τ fixD τ̃ fixD

E[exp(γ′X)] known no yes yes yes

χ known for threshold computation no no no yes

χ known for decision-making no no yes yes

Table 1: Level of knowledge of covariates for computation of different preventive replacement time instants

where N
(j)

τ (j)
denotes the number of observed failures in system j until time τ (j). Following (2), the

mean asymptotic cost per time unit was estimated from the simulation results of the N system

histories, as follows:

Ĝ(τ) =

∑N
j=1C

(j)(τ (j))∑N
j=1 τ

(j)
. (41)

This procedure was repeated for the four policies with N = 100 and a Weibull initial intensity

of η = 15000 for the scale parameter and β = 2 for the shape parameter. With such an initial

intensity, B−1
∗ (t) could be explicitly computed and it was not necessary to estimate Φ(t) based on

simulations, as in Gilardoni et al. (2016). The preventive renewal and minimal repair costs were

CPrev = 1 and CCorr = 3 (in arbitrary units), respectively.

A single covariate was considered, for which the value on a system between two successive

renewals followed a uniform distribution on {−5,−4, . . . , 4, 5}, which means that for each system

history, a new covariate value was drawn from this uniform distribution in the simulation. Of

course, this covariate value was used differently according to the different policies and the associated

assumed level of covariate knowledge. Furthermore, to study the influence of coefficient γ on the

maintenance cost, different values of γ ∈ {−2,−1, 0, 1, 2} were considered.

Numerical results and discussion. Fig. 2 presents the mean cost per time unit obtained in each

configuration, plotted as a function of the γ coefficient. The symmetry of the cost as a function
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Figure 2: Mean asymptotic cost per time unit with respect to used policy and γ, minimal repair

of γ arose from the fact that the possible covariate values were symmetric and had a uniform

distribution on {−5,−4, . . . , 4, 5}. Thus, taking γ = 1 or γ = −1 amounted to taking the opposite

of the covariate, and because the same weight existed on both the negative and positive covariate

values, a symmetry appeared in the costs. This observation of symmetry is relevant to all policies.

Moreover, when γ > 0, the policy that yielded τ fixP (red curve) performed a replacement too late
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(too many failures would occur beforehand) if χ > 0 and too early (the preventive maintenance

would be too hasty) if χ < 0. This was reversed if γ < 0. In both cases, the cost was higher than

when the covariate had a null effect (i.e. γ = 0). This behaviour was observed for all maintenance

policies except for τ̃ fixD , which is discussed in Appendix A.

Moreover, the mean costs per time unit in all policies were equal for γ = 0, which can be

explained by examining the expression of the preventive maintenance date in each policy and

replacing γ with 0, and it can be observed that τ fixP = τ̃ fixP = τ fixD = τ̃ fixD = B−1
∗ (CPrev/CCorr).

Apart from γ = 0, the curves piled up into a clear classification. The periodic policy, which

considered E[exp(γ′X)], thereby yielding τ̃ fixP (orange curve), was better than that of Barlow and

Hunter (1960), resulting in τ fixP (red curve), which considered no covariate information, especially

when the absolute value of γ was large. Thus, the integration of the knowledge of the covariate

distribution into the maintenance decision had a positive impact on the costs. Furthermore, the

dynamic policy corresponding to the approach of Gilardoni et al. (2016) adapted to covariates,

resulting in τ fixD (green curve), was better than the previous one, where the observed value of χ

was not considered at all. In this case, the optimality theorem of Gilardoni et al. (2016) proves that

the policy τ fixD was superior in terms of cost compared to τ fixP . Therefore, observing χ is useful for

planning preventive maintenance. Finally, the blue cost curve, which corresponded to τ̃ fixD , and

therefore, to the case in which χ was known since the threshold computation stage, was the lowest,

demonstrating that this policy was the best and incurred the lowest cost. These observations

demonstrate that integrating at best the monitoring information that is available online (in this

static case, the covariate value after a preventive renewal) in the maintenance decision-making

enables the optimisation of the preventive maintenance replacement time points. Gilardoni et al.

(2016) proposed a dynamic policy adapted to imperfect corrective repairs but without considering

covariates. It can be observed in this case that when the covariates intervened, this policy was no

longer the best and our proposed policy outperformed it in the presence of covariates.

3.2. Imperfect repair

Now, consider the case in which corrective maintenance actions are implemented by imperfect

repairs. In this case, the observed system failure times also provide valuable information on the

failure intensity evolution, and hence, for maintenance decision-making. Let us assume that these

dates are known progressively for decision-making during the system life. In this setting, closer

to that adopted in Gilardoni et al. (2016) but with a system influenced by fixed covariates, we

compare the cases in which the covariates are completely unknown (which yields the τ fixP policy)

and the case in which they are known at the threshold computation stage (which yields the τ̃ fixD

policy).

Maintenance decision-making. In this new setting including imperfect repairs, we denote

B∗(t) = tE[VNt− (t)′h(VNt− (t))]−E[

∫ t

0
VNs− (s)′h(VNs− (s))ds]. (42)

When the covariates are observed, B(t) = exp(γ′χ)B∗(t); when they are not observed, B(t) =

B∗(t). The computation of B−1
∗ (t) is no longer explicit and Φ∗(t) = E[

∫ t
0 V
′
Ns−

(s)h(VNs− (s))ds],

which is the expected value of the cumulative intensity without covariates, is estimated using the

method of Gilardoni et al. (2016). For the policy with unknown covariates, the preventive replace-

ment date is determined as the time point at which the conditional intensity without covariates
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reaches the threshold φ∗(B−1
∗ (CPrev/CCorr)). For the policy in which the covariates are known,

exp(γ′χ) is a factor of both the failure intensity and its threshold, which is simply computed as

the time point at which V ′Nt− (t)h(VNt− (t)) reaches the threshold φ∗
(
B−1
∗
(
CPrev/CCorr

exp(γ′χ)

))
.

Numerical study. For the numerical study, we considered the ARA1 model with ρ = 0.5 as the

repair efficiency parameter2 and a Weibull initial intensity with η = 15000 and β = 2. The mainte-

nance costs were CPrev = 1 and CCorr = 3 (in arbitrary units), the coefficient γ ∈ {−2,−1, 0, 1, 2},
and the covariate took uniformly distributed values in {−5,−4, . . . , 4, 5}. A total of N = 100

system histories were simulated.

Fig. 3 presents the mean costs per time unit obtained in the two cases of covariate knowledge

with respect to γ. Symmetry can be observed in the cost curves and the replacement policies

were equivalent for γ = 0. Furthermore, the information contributed by the covariate was crucial,

as it enabled a drastic reduction in the maintenance cost if it was properly integrated into the

maintenance decision process; the mean cost per time unit was approximately 17 times higher

when γ = 1 and more than 66500 times higher when γ = 2.
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Figure 3: Mean asymptotic cost per time unit with respect to used policy (known vs. unknown covariate) and γ,

imperfect repair

3.3. Conclusions

In this section, we demonstrated that the knowledge of fixed covariates that have an influence

on a system enables the development of preventive maintenance policies that incur lower costs

when the covariates are known and properly used in the decision-making procedure. Therefore,

the information contained in the covariates is of high value for the optimisation of preventive main-

tenance replacements that are performed on a system, and must be used at best, as progressively

available, in the maintenance decision process.

4. Optimal preventive maintenance planning with dynamic covariates, minimal repair

In this section, we again consider the optimisation of preventive maintenance dates, but for

time-dependent dynamic covariates corresponding to degradation or wear indicators. The dynamic

2We draw the attention of the reader to the fact that the θ parameter of Gilardoni et al. (2016) corresponds to

1 − ρ
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information contained in the monitored covariates is subsequently considered as it becomes available

to plan preventive replacements, following a condition-based maintenance approach. This section

also assumes minimal repair for corrective maintenance actions, whereas Section 5 deals with

imperfect repair.

4.1. Preventive maintenance decision with dynamic covariates

4.1.1. Assumptions and decision principle

We assume that the entire covariate path is not observed, but that the covariates are monitored

through periodic inspections. Moreover, we assume that the covariates are not observed upon a

failure. At each inspection, the observed covariate value is used to compute and update the failure

intensity in the same manner as in the failure process history in Gilardoni et al. (2016). If the

observed intensity reaches the threshold sλ before the next inspection, preventive maintenance is

triggered; otherwise, no action is performed on the system and the next inspection is scheduled.

This maintenance decision process extends that proposed in Gilardoni et al. (2016) (where after

each failure, the virtual age and the conditional intensity are updated to determine preventive

maintenance) to integrate the information from the covariate monitoring. To this end, we also

assume that the covariates are positive and monotonically increasing, that they are restored to zero

by a preventive replacement (as is indeed the case if the covariate corresponds to, e.g. a degradation

or wear indicator) and subsequently maintain the same distribution, and that the paths between

two preventive replacements are independent. In Gilardoni et al. (2016), an analytical proof that

the proposed dynamic maintenance policy is better than the periodic policy was presented. This

proof relies on a property of the conditional intensity that cannot be proven in the case of the

dynamic covariates considered in the present work. Therefore, the performance of our proposed

policy was assessed through numerical simulations, and it was also compared to the performance

of a periodic policy corresponding to the policy obtained by using our maintenance optimisation

procedure without any covariate inspection; that is, with only the knowledge of the covariate

distribution. The first replacement time instant was determined from the beginning of the system

life, and because the preventive maintenance was a renewal, the replacement dates occurred at

fixed intervals.

The principle of the preventive maintenance optimisation based on knowledge of the covariate

value is presented in Fig. 4 for a system with minimal repairs. The mean intensity, denoted by the

thin black dotted curve, reached the threshold, denoted by the grey dotted line, at the theoretical

preventive maintenance date τ0, denoted by the vertical grey line. However, the observed intensity,

indicated in red, only reached the threshold later. The effective preventive maintenance date,

denoted by the vertical red line, was thus postponed owing to the knowledge of the true covariate

path. Conversely, after the first preventive renewal, the observed intensity, indicated in orange,

increased faster than the mean intensity. The preventive maintenance date, denoted by the vertical

orange line, therefore occurred sooner than initially scheduled.

4.1.2. Integration of covariates into decision

To illustrate the integration of the covariates into the decision process, let us assume a single co-

variate following a stochastic Gamma process with shape and rate parameters a and b, respectively,

sampled and held at a period dtcov, which means that the covariate values at kdtcov are the values

of a Gamma process on these points, and maintained constant in the interval [kdtcov; (k+ 1)dtcov[.

In practice, considering such a piecewise constant covariate is not restrictive (because dtcov can be
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Figure 4: Schematic of optimization principle for preventive maintenance dates with covariates

selected to be arbitrarily small), and it enables the use of the failure simulation algorithm proposed

in Brenière et al. (2020), which only works with stepwise constant covariates.

Let Xt be the covariate value at time t. The system failure intensity between the two preventive

renewals is expressed as

λt = h(t) exp(γXt), (43)

where γ is the coefficient measuring the covariate influence and t is the time elapsed since the last

renewal.

Recall that l(t) := dt/dtcove is a positive integer such that

(l(t) − 1)dtcov < t ≤ l(t)dtcov. (44)

At time t = 0, the covariate value is assumed to be X0 = 0 and it remains the same until

t = dtcov. After inspection at I1 > 0, the covariate value XI1 is known for the entire time interval

[(l(I1) − 1)dtcov, l(I1)dtcov]. However, in the interval ]0, (l(I1) − 1)dtcov[, the covariate path remains

unknown. At this stage, there are two possibilities to predict this path: either assuming that the

covariate is constant between two inspections and takes the last known value on the interval, or

using the knowledge on the covariate distribution. In the second case, we assume that the observed

covariate has the following value:

Xt = XIi +
a

b
(l(t) − l(Ii))dtcov (45)

for all t ∈ [(l(Ii) − 1)dtcov, (l(Ii+1) − 1)dtcov[, where Ii and Ii+1 are two successive inspection time

points, with dtcov � Ii+1 − Ii for all i ≥ 1. This corresponds to taking the mean covariate path

from Ii, knowing that the covariate had the value XIi at time Ii and that it moved step by step,

as illustrated in Fig. 5. We adopted the second approach in the following study.

4.1.3. Computation of threshold on conditional failure intensity

In the case of minimal repairs, as considered in this section, and in the presence of a covariate,

two methods are available for computing the intensity threshold sλ (see Appendix B): one proposed

by Gilardoni et al. (2016) (“Method 1”) and our proposition (“Method 2”), which consists of

estimating φ(t) and Φ(t) directly from the simulated covariate paths and then computing B̂(t) =

tφ̂(t)− Φ̂(t), from which the threshold sλ on the conditional failure intensity can be estimated as
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Figure 5: Inspection dates and assumed covariate value

ŝλ = φ̂(B̂−1(CPrev/CCorr)). Both computation procedures of this threshold allow the integration

of information on the dynamic covariate behaviour, which enables the replacement date to be

determined dynamically. The results obtained using both methods are reported and compared in

the numerical experiments section.

4.1.4. Dynamic determination of replacement date

The replacement date is determined differently depending on whether or not the dynamic

covariate value is known by inspection.

• If there is no covariate inspection, it is supposed to follow the mean path provided by its

distribution, and the preventive maintenance date is periodic and equal to

τdynP = B−1(CPrev/CCorr). (46)

• In contrast, if the covariate is known by inspection with time step dtins, the knowledge of the

real covariate value (and no longer of its mean path only) at an inspection point enables the

re-evaluation and adaptation of τdynD upwards if the observed value is lower than the mean

value and downwards otherwise (in both cases with a positive γ).

Knowing that the covariate level at the last inspection time point tI is χ and that the next

inspection will take place at time tnextI , the next preventive maintenance date can be (re-

)planned after each inspection following Algorithm 2.

Algorithm 2 Preventive maintenance date optimisation on system with dynamic covariates, min-

imal repair

1: The current covariate step is l ← dtI/dtcove and it will be lnext ← dtnextI /dtcove at the next

inspection

2: if h(tI) exp(γχ) ≥ sλ then

3: The next preventive maintenance is planned immediately

4: else if h(tnextI ) exp(γ(χ+ (lnext − l) ∗ dtcov ∗ a/b)) ≥ sλ then

5: lPM ← l+1

6: while h(dtcov ∗ lPM ) exp(γ(χ+ (lPM − l) ∗ dtcov ∗ a/b)) < sλ

7: lPM ← lPM+1

8: end while

9: The next preventive maintenance is planned at time h−1(sλ/ exp(γ(χ+(lPM−l)∗dtcov∗a/b)))
10: else

11: No preventive maintenance is planned before the next inspection

12: end if
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4.2. Maintenance optimisation: numerical experiments

The proposed dynamic maintenance policy was evaluated through numerical experiments, and

two means of optimising its performance were investigated: i) the optimisation of the covariate

inspection period and ii) the optimal scheduling of a single inspection between two replacements.

4.2.1. Optimal covariate inspection period

Experimental protocol. In this first numerical experiment for studying the effect of the inspec-

tion period on the policy performance, the inspection period was selected with respect to τ0 =

B−1(CPrev/CCorr), the mean time for the intensity to hit threshold sλ, with the aim of observing

a number of inspections close to the a priori selected value. This procedure enabled the policy

performance assessment on a set of simulated histories that were consistent in terms of the number

of performed inspections. If one inspection was sought during a maintenance cycle (i.e. between

two replacements), the inspection period was taken as dtins = τ0/2, and in most of the system-

simulated histories, one inspection occurred around the middle of the system life. Other inspections

could occur if τdynD exceeded τ0. If n inspections were sought on average, the inspection period was

taken as dtins = τ0/(n + 1). In the numerical study, cases with n ∈ {1, 2, 4, 8, 16}, in addition to

the case without inspections (i.e. n = 0), were considered.

Without inspection cost. We first consider the case in which inspections are performed at no cost;

it is advantageous to inspect as often as possible, so as to follow the covariate evolution closely and

update the conditional failure intensity to schedule the best preventive maintenance date, thereby

avoiding too many failures or too early preventive maintenance, which would increase the total

cost in both cases. This situation was simulated with η = 15000 and β ∈ {1.5, 2, 2.5, 3} for the

PLP parameters, with different maintenance cost settings (CPrev = 1 and CCorr ∈ {3, 5, 15} or

CPrev ∈ {3, 5, 15} and CCorr = 1, all in arbitrary units), γ = 1 for the covariate influence, a = 10−3,

b = 8, and dtcov = 10 for the covariate simulation, M = 10000 for the number of simulations for

the threshold computation, n ∈ {0, 1, 2, 4, 8, 16} for the inspection number, and N = 106 for the

number of simulated system histories for estimating the mean total cost. It was verified that with

these parameters, dtinsp = τ0/(n + 1) lay between 234 and 2725 time units, which was still much

larger than the covariate discretisation step dtcov = 10.
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Figure 6: Example of cost per time unit, β = 1.5, CCorr = 3, CPrev = 1, minimal repair (vs. number of inspections)
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Fig. 6a presents a characteristic example of the mean cost per time unit that was obtained

in one of the cost configurations with respect to the number of inspections and with the two

methods of threshold computation. The red curve corresponds to the method of Gilardoni et al.

(2016), whereas the blue curve corresponds to our method. As expected, a lower inspection period

(i.e. more inspections on the system life) resulted in a lower maintenance cost, which enabled

the quantification of the covariate information impact on the system preventive maintenance date

optimisation. However, not all of the studied configurations had exactly the same type of cost

curves; in some cases, instabilities occurred (i.e. the cost curve was not smoothly decreasing), even

with N = 106 simulated system histories, which is visible from the blue curve in Fig. 6a. It was

found that such instability was heavily dependent on the parameters, and the curve in Fig. 6a

represents a particular case in which the cost was smoothly decreasing. For example, a lower ratio

CPrev/CCorr led to more unstable results. In fact, if CCorr (the corrective maintenance cost) was

high, preventive maintenance had to be performed as early as possible to avoid failures. However,

the inspection dates were set with respect to the theoretical preventive maintenance date τ0, and if

n inspections were sought before τ0, they were planned periodically with period τ0/(n+ 1). Thus,

if τ0 was low, the inspections were close to one another, even when n was not high, and therefore,

there was no striking difference between the different inspection periods and the curve cost would

possibly not be smoothly decreasing.

Regarding the threshold computation method, in most cases, our proposed method led to lower

costs than the method of Gilardoni et al. (2016) (see Appendix B), although it remained unclear

in certain configurations owing to the instabilities.

With inspection cost. We consider the case in which the inspections have a cost CI . It would

be interesting to optimise the inspection period to determine the optimal trade-off between too

frequent inspections (which would be too expensive with respect to the gain resulting from the

additional information) and too sparse inspections (which would not allow proper adaptation of

the maintenance decision). The simulation study presented above was repeated, this time including

the inspection cost. The total cost between the two preventive replacements was

C(τ) = CPrev + CCorrNτ + CIN
(I)
τ , (47)

where N
(I)
τ denotes the number of inspections performed during the cycle.

Fig. 6b presents the cost curves that were obtained with the same configuration as in Fig.

6a, but with an inspection cost set to CI = 0.003 (in arbitrary units). These cost curves clearly

indicate the minimum for n = 2, which was the optimal number of inspections before τ0 in this

configuration. Beyond this number, new inspections would be too costly with respect to the value

of the information they contributed, and below this number, information on the system would not

be sufficient.

Figs. 6a and 6b illustrate the fact that the proposed preventive replacement decision rule en-

abled the efficient use of the available covariate information to schedule the preventive replacement

date, leading to lower maintenance costs than a covariate-blind decision rule (i.e. with n = 0

inspection).

Covariate with random effect. If the cost curve shown in Fig. 6b exhibited a clear minimum,

the improvement was only 2.72% between the cost in the case without inspection (i.e. a periodic

replacement policy) and the minimum cost reached with two inspections. This low improvement
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in the cost was assumed to be owing to the too low variability of the covariate from one path

to another; in such a situation, monitoring the covariate returned information with limited added

value. To increase the variability in the covariate, a new simulation study was established, in which

the covariate was modified to add more path-to-path variability. Each path started from a random

centred value, with a random effect on the shape parameter a. The computation of the threshold

used both our method and that adapted from Gilardoni et al. (2016), with a mean value of a and

assuming no offset at the origin. Note that this mean value of a was the only data available on this

modification of the covariate; during the optimisation of the preventive replacements, covariate

path prediction was still performed with the observed value of the covariate and the mean value of

a. However, each simulated path of the covariate used a value of a and an offset at the origin that

was randomly selected before the beginning of the system life.

The simulation was performed with β = 2, CPrev = 1, CCorr = 3 (in arbitrary units). The

offset was uniformly drawn between {−1,−0.5, 0, 0.5, 1} and a between {0.001, 0.002, . . . , 0.005}.
Figs. 7a and 7b show the mean cost per time unit with the inspection cost CI = 0.003 as a

function of n. The cost improvement between the cases with and without inspection was much
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Figure 7: Cost per time unit with inspection cost, β = 2, CCorr = 3, CPrev = 1, minimal repair, covariate with

random effect (vs. number of inspections)

more marked, flattening the remainder of the curve. A magnified view of this curve is shown in Fig.

7b. The cost improvement on the blue curve (obtained using our proposed threshold computation

method) between the case without inspection (i.e. periodic replacement policy) and that with

two inspections was approximately 21.0%. This higher cost improvement demonstrates the fact

that in a situation of higher variability in the covariate behaviour, covariate inspection contributes

information with greater added value for maintenance optimisation purposes.

4.2.2. Optimal covariate inspection date

Consider the issue of optimally scheduling a single inspection on the entire system life; that is,

before its replacement. Intuitively, an inspection at the beginning of the system life does not have

the same impact as when the system has already worked for some time. Initially, the covariate may

not have evolved along its path to offer useful information. Conversely, if the inspection occurs

too late, the covariate may have exceeded a critical level and preventive maintenance would be

scheduled too late, after several costly failures of the system. The issue of determining the best
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inspection scheduling time was investigated through Monte Carlo simulations.

The simulation study was run with the same parameters as in Section 4.2.1, devoted to the

optimisation of the inspection period. It was again assumed that the corrective maintenance

action was more expensive than the preventive maintenance action (CCorr > CPrev). The possible

inspection dates were defined in proportion to the theoretical preventive maintenance date τ0; the

inspection could occur in 0.1τ0, 0.2τ0, . . . , τ0. The algorithm that was used to deal with this

situation was the same as Algorithm 2, with lines 4 (but not 5 to 9) and 10 to 12 removed because

there would not be a next inspection.

As a characteristic configuration, Fig. 8 presents the mean cost per time unit as a function

of the date of inspection (more precisely, of the proportion of τ0), and with the two threshold

computation methods. The cost curve exhibits a minimum that was observed for an inspection at

0.2 0.4 0.6 0.8 1.0

0.
00

03
64

0.
00

03
68

0.
00

03
72

proportion of τ0

m
ea

n 
co

st
 p

er
 ti

m
e 

un
it

threshold method 1
threshold method 2

Figure 8: Example of cost per time unit, β = 2, CCorr = 3, CPrev = 1, minimal repair (vs. date of inspection)

0.8τ0 using our threshold computation method.

It should be noted again that the minimum is not clearly marked for all parameter configura-

tions, and unsmooth cost curves could be obtained when CPrev/CCorr was low. To explain this

phenomenon, recall that the date of a single inspection was set with respect to the theoretical pre-

ventive maintenance date τ0: the inspection was performed at x % of τ0, with x ∈ {10, 20, . . . , 100}
(the different values of x constitute the cost curve abscissa). Hence, if CCorr was high, τ0 was low,

and the covariate variations were not sufficiently significant between the different values of x to

constitute valuable information, which led to a less marked minimum.

5. Optimal preventive maintenance planning with dynamic covariates, imperfect re-

pair

This section considers the optimisation of preventive maintenance dates for time-dependent

dynamic covariates and imperfect repairs, which is the most complete situation investigated in this

study. Imperfect repairs are assumed to have no effect on the covariate’s level and evolution: in

contrast to replacements, they modify the failure intensity without affecting the covariate itself.

5.1. Preventive maintenance decision procedure

In the case of imperfect repair, our proposed method for threshold computation is no longer

relevant and the method of Gilardoni et al. (2016), including covariate simulations in the compu-
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tations, must be used. As this method is more computationally demanding, the simulations were

performed with a larger covariate simulation time step, dtcov = 100.

Algorithm 3 outlines the modified procedure to optimise the preventive maintenance dates in the

case of imperfect repair and dynamic covariates. As an imperfect repair modifies the conditional

failure intensity, and contrary to Algorithm 2, in this case, the preventive maintenance date is

modified at each corrective repair, even though the covariate is not observed. The remainder of

the algorithm is very similar. It is presented for an ARA1 virtual age model, but it can easily be

adapted to other virtual age models. Knowing that

• the covariate level at the last inspection time point tI is χ,

• the next inspection will take place at time tnextI , and

• the last corrective maintenance took place at time TCM ,

the next preventive maintenance date can be (re-)planned after each inspection or corrective main-

tenance following Algorithm 3.

Algorithm 3 Preventive maintenance date optimisation on system with dynamic covariates, im-

perfect repair

1: The current covariate step is l ← dtI/dtcove and it will be lnext ← dtnextI /dtcove at the next

inspection

2: The current time is t ← max(tI , TCM )

3: if h(t− ρTCM ) exp(γχ) ≥ sλ then

4: The next preventive maintenance is planned immediately

5: else if h(tnextI − ρTCM ) exp(γ(χ+ (lnext − l) ∗ dtcov ∗ a/b)) ≥ sλ then

6: lPM ← l+1

7: while h(dtcov ∗ lPM − ρTCM ) exp(γ(χ+ (lPM − l) ∗ dtcov ∗ a/b)) < sλ

8: lPM ← lPM+1

9: end while

10: The next preventive maintenance is planned at date h−1(sλ/ exp(γ(χ + (lPM − l) ∗ dtcov ∗
a/b))) + ρTCM

11: if a failure occurs before the planned preventive maintenance then

12: Return to line 1

13: end if

14: else

15: No preventive maintenance is planned before the next inspection

16: end if

5.2. Optimal covariate inspection period: numerical experiment

In this section, as in Section 4.2.1, the inspection period optimisation is investigated. The

inspection period dtins was set with respect to τ0 = B−1(CPrev/CCorr); i.e., dtins = τ0/(n + 1),

with n ∈ {1, 2, 4, 8, 16}, in addition to the case without any inspection.

5.2.1. Without inspection cost

Consider the case with no inspection cost. The numerical experiments were performed with

same parameters as in Section 4.2.1, but with an ARA1 imperfect maintenance model with an
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efficiency parameter ρ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. As discussed previously, only the case in which

CCorr > CPrev (repair is more expensive than preventive replacement) was considered.
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Figure 9: Example of cost per time unit, ρ = 0.5, β = 2, CCorr = 3, CPrev = 1, imperfect repair (vs. number of

inspections)

Fig. 9a presents the mean cost per time unit as a function of the number of inspections within

a replacement cycle for a characteristic configuration example. It can be observed that the main-

tenance cost rate decreased with the number of inspections. Some parameter configurations were

more stable than others, but the global curve shape remained the same in all studied configurations.

This work is at the confluence of Gilardoni et al. (2016) and Section 4.2.1, and the results show

how both the covariate information and failure/repair history knowledge can be used with profit

in an imperfect maintenance context with dynamic covariates to schedule preventive replacement

more effectively.

5.2.2. With inspection cost

Consider the case in which inspections are performed at a cost CI , as in Section 4.2.1. Fig.

9b presents the costs that were obtained in the same configuration as in Fig. 9a, but with an

inspection cost set to CI = 0.005 (in arbitrary units). The cost curve clearly shows a minimum that

corresponds to the optimal inspection period for the system considered. With fewer inspections,

important information on the covariate evolution would be missed. More inspections would result

in an excessive total inspection cost with respect to the gain in terms of maintenance costs. In

particular, Fig. 9b compares the proposed dynamic replacement policy integrating the covariate

information with a covariate-blind one proposed by Gilardoni et al. (2016) (obtained for the n = 0

inspection case).

6. Conclusions

A procedure to optimise preventive replacements in a system with fixed or dynamic covariates

and with minimal or imperfect repairs has been proposed. This procedure is implemented in two

steps. First, the knowledge of the statistical properties of the covariate (or its value if it is fixed) is

used to compute an intensity threshold, beyond which preventive maintenance is to be triggered.

Subsequently, during the system life, the conditional intensity, which is computed with the true
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values of the observed covariates (known at some inspection points), is compared to the threshold,

and preventive maintenance is performed as soon as it is exceeded.

The numerical experiments demonstrated that the knowledge of the covariate enabled the

cost performance of the preventive replacement policy to be improved compared to the periodic

“covariate-blind” policies (for minimal repairs, Barlow and Hunter (1960)) or dynamic ones (for

imperfect repairs, Gilardoni et al. (2016)). The influence of the level of covariate information

on the cost-optimal solution was also highlighted. Therefore, the use of dynamic information on

failures and covariates is of great interest to optimise preventive replacement scheduling and to

reduce maintenance costs. In particular, for costly inspections, it was found that it is possible to

determine an optimal covariate inspection period or the optimal time to schedule an inspection

when a single inspection can be performed during the system life.

This final point opens the research field. Indeed, if it is possible to implement a single inspection,

a second, third, and so on could be performed until it no longer improves the total cost; that is,

when too many inspections are performed. This could allow us to depart from periodic inspection

policies and determine the optimal number of inspections to be performed along the system life,

as well as their dates.

Furthermore, in this study, we assumed that the virtual age model parameters, those of the

initial intensity, and the covariate coefficient were known. However, the estimation of these param-

eters would introduce an additional bias into diverse optimisations, which would be interesting to

investigate in a deeper analysis. Moreover, the parameters of the covariate stochastic process could

be estimated dynamically based on the information provided by inspections to develop a dynamic

adaptive maintenance optimisation procedure Liu et al. (2019)).
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Appendix A. Elements on shape of curve cost as function of γ for fixed covariate –

Fig. 2

In this Appendix, details are presented regarding the case with known fixed covariates and

minimal repair, as discussed in Section 3.1.2 and studied (with other policies) in Section 3.1.3.

To understand the reason for the blue curve in Fig. 2 (the cost rate curve as a function of γ

in the case of a completely known covariate, i.e. when the replacement date τ̃D) is not convex,

we replicated the study but with different ranges of covariate values: we selected either a centred

range (from −10 to 10), a positive range (from 0 to 10), or a negative range (from −10 to 0). The

mean cost per unit time as a function of γ corresponding to these three possible ranges is plotted

in Fig. A.10. For a centred covariate range, we obtained the (plain) curve shown in Fig. 2, with a

maximum cost for γ = 0. However, the curves differed significantly for the non-centred ranges of

covariates. For a positive covariate (dashed curve), the cost increased with γ, and conversely for a

negative covariate (dotted curve). This is easily understandable because, for a positive covariate, a
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Figure A.10: Mean asymptotic cost per time unit with respect to covariate range and to γ, minimal repair

higher γ results in a worse effect on the system. We observe that for a centred range of covariates,

the curve lies in between but is closer to that of the positive range when γ is negative and closer to

that of the negative range when γ is positive, which results in the overall appearance of the plain

curve.

Furthermore, we can examine the mathematical expression for the mean cost per time unit.

With a Weibull distribution for the first corrective maintenance time point, as in this study, the

expected value of the number of failures that occurred before the preventive maintenance time

point is constant and depends on neither γ nor the covariate value. Indeed, because the corrective

repairs are minimal,

B∗(t) = th(t)−H(t) = αβtβ−1 − αtβ = α(β − 1)tβ; (A.1)

E[N
τ̃fixD

] = Λ(τ̃ fixD ) = α exp(γ′χ)

(
B−1
∗

(
CPrev/CCorr

exp(γ′χ)

))β
=
CPrev/CCorr

β − 1
, (A.2)

where Λ(t) =
∫ t

0 λt denotes the cumulative intensity of the failure process. Then, the numerator

of the cost in (3) is constant. The denominator is simply the expected value of the preventive

maintenance date, the expression of which is presented in (39). Fig. A.11 plots the mean preventive

maintenance time instant for the three covariate range cases. We again observe that the centred
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Figure A.11: Mean preventive maintenance time point with respect to covariate range and to γ, minimal repair
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range case (plain curve) lies between the two other cases. For a positive covariate, the curve

decreases: a higher γ resulted in a smaller preventive maintenance time point because the system

was wearing faster. This is the opposite of the negative covariate. These elements may explain the

non-convex blue curves plotted in Fig. 2.

Appendix B. Computation of threshold in case of minimal corrective repairs and

dynamic covariate

This appendix presents some technical details of the computation of the threshold sλ on the

conditional failure intensity in the case of minimal corrective repairs in the presence of a dynamic

covariate.

As discussed in Sections 2.3 and 3, the computation of the threshold sλ requires the estimation

of the function B = tφ(t) − Φ(t). Because the repairs are minimal, the estimation procedure for

B (and therefore, B−1) can be simplified with respect to that proposed by Gilardoni et al. (2016)

(see Algorithm 1). The principle of this simplification is to estimate φ(t) and Φ(t) directly from

the failure intensity and covariate path using the fact that Φ(t) = E[Λt], and not, as in Gilardoni

et al. (2016), from M failure process simulations (using the fact that Φ(t) = E[Nt]). To this end,

we simulate M covariate paths, denoted as {X(j)
t }t≥0,1≤j≤M , for which we use λ

(j)
t and Λ

(j)
t to

denote the corresponding intensity and cumulative intensity, respectively. In the case of minimal

repair, we can estimate φ(t) and Φ(t) directly from simulations of the covariate paths:

φ̂(t) =
1

M

M∑
j=1

λ
(j)
t =

1

M

M∑
j=1

αβtβ−1 exp(γX
(j)
t ) = αβtβ−1 1

M

M∑
j=1

exp(γX
(j)
t ) (B.1)

and

Φ̂(t) =
1

M

M∑
j=1

Λ
(j)
t =

1

M

M∑
j=1

∫ t

0
αβsβ−1 exp(γX(j)

s )ds =

∫ t

0
αβsβ−1 1

M

M∑
j=1

exp(γX(j)
s )ds

=

l(t)−1∑
l=1

∫ ldtcov

(l−1)dtcov

αβsβ−1 1

M

M∑
j=1

exp(γχ
(j)
l )ds+

∫ t

(l(t)−1)dtcov

αβsβ−1 1

M

M∑
j=1

exp(γχ
(j)
l(t)

)ds

= α

l(t)−1∑
l=1

 1

M

M∑
j=1

exp(γχ
(j)
l )

((ldtcov)
β − ((l − 1)dtcov)

β
)

+ α

 1

M

M∑
j=1

exp(γχ
(j)
l(t)

)

(tβ − ((l(t) − 1)dtcov)
β
)
, (B.2)

where we use the notation

∀l ≥ 1, ∀t ∈ [(l − 1)dtcov, ldtcov[, Xt = χl. (B.3)

Finally, B(t) can be estimated as B̂(t) := tφ̂(t)−Φ̂(t) and we can then compute ŝλ = φ̂(B̂−1(CPrev/CCorr)).

To achieve this, we must first determine in which time interval (denoted as l(t) in (B.2)) the inverse

of the function B̂ must be computed. As B̂ increases, we may compute B̂(ldtcov) iteratively at the

end of each time interval from l ≥ 1 and stop as soon as this quantity exceeds CPrev/CCorr:

l0 = inf(l ≥ 1 | B̂(ldtcov) ≥ CPrev/CCorr). (B.4)
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Subsequently, with gl = 1
M

∑M
j=1 exp(γχ

(j)
l ),

B̂−1(CPrev/CCorr) =

(
1

(β − 1)gl0

(
CPrev
CCorr

− ((l0 − 1)dtcov)
βgl0

+

l0−1∑
l=1

gl((ldtdov)
β − ((l0 − 1)dtcov)

β)

)) 1
β

. (B.5)

Thus, two methods are available for estimating the intensity threshold sλ in the case of minimal

repair: the general method proposed by Gilardoni et al. (2016) (see Algorithm 1) and the proposed

method. We can compare them from different perspectives: the computation time, value of the

threshold, or costs achieved with such thresholds. We now provide insights into the first two

perspectives, whereas the costs are examined in Section 4.2.1. For both methods, we computed

the same threshold 100 times with η = 15000, β = 2, CPrev = 1, CCorr = 4 (in arbitrary units),

dtcov = 100, a = 0.001, and b = 8. Fig. B.12 presents boxplots of the threshold obtained using

the two methods, where 1 (red box) represents the method of Gilardoni et al. (2016) and 2 (blue

box) indicates our new method. Moreover, Fig. B.12 presents boxplots of the computation times

using the two methods. First, we observe that the dispersion was much higher in the method of
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Figure B.12: Intensity thresholds and computation times of threshold with two different methods: proposed method

in blue and Gilardoni’s method in red

Gilardoni et al. (2016) than in our method. This is because of the simulation of the failure times.

In our experiment, we simulated M = 10000 failure paths. We could have used more time, but the

computation would have been longer. Furthermore, we observe that the medians were not equal;

they were 8.82 × 10−5 in the method of Gilardoni et al. (2016) and 8.49 × 10−5 in our method.

However, our method remained in the lower whisker of the red boxplot, which is one time of the

interquartile range. Regarding the computation time, the results are clear: the method of Gilardoni

et al. (2016) was by far the longest, with a median of 9.56 s, whereas the median in our method

was 4.78× 10−1 s. Therefore, our method was 20 times faster.
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