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Abstract. We consider here semilinear Schrödinger equations with a
non standard dispersion that is discontinuous at x = 0. We first estab-
lish the existence and uniqueness of standing wave solutions for these
equations. We then study the orbital stability of these standing wave
into a subspace of the energy space that where classical methods as the
concentration-compactness method of P.L. Lions can be used.

1. Introduction

We consider here a class of Schrödinger equations that read

(1) ut − i∂x(ν(x)∂xu)− ig(|u|2)u = 0,

where either g(ξ) = |ξ|
p−1
2 for p > 1 (pure power case) or g(ξ) = log(ξ)

(logarithmic case; we do not address here the case g(ξ) = − log(ξ) as in [7]).
The unknown u(t, x) maps R× R into C.

These semilinear Schrödinger equations are models in nonlinear optics
(see [9] and the references therein). The classical case is when ν(x) = 1.
Here we are interested in the case of some impurity in the material that
affects the propagation of the wave; here we model the impurity as follows:
we consider a discontinuity at x = 0 that reads ν(x) = ν+ > 0 if x > 0 and
ν− > 0 if x < 0. To fix ideas we assume in the sequel that 0 < ν− < ν+.

Various models of impurity has been studied in the literature. Let us first
point out the case where the classical dispersion operator i∂2xu is perturbed
by a Dirac mass at 0 and replaced by i∂2xu + iZuδ0 for some constants
Z (see [4], [11], [12], [14], [15], [16], [18] and the references therein). In the
present article we have a singularity at the origin that involves the first space
derivative of u at x = 0. The problem of the study of the corresponding
linear operator (with ν(x) non constant) has been addressed in [5] and [6].
Let us point out that our problem differs from the one where we have rough
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2 STANDING WAVES FOR NLS EQUATIONS

coefficients, that are time dependent but space independent, in front of the
dispersion operator (see [2], [10] and the references therein).

We are interested here in standing wave solutions to Schrödinger equa-
tions (1) that read u(t, x) = exp(iωt)ϕ(x) where ϕ(x) is the profile of the
solution. In the classical case where ν+ = ν−, solutions are unique up to a
multiplication by a complex number of modulus 1 and up to space transla-
tions; actually these solutions read u(t, x) = exp(iωt+iθ)ϕ(x−y) for any y, θ
in R where the profile ϕ is uniquely determined (see [9] and the references
therein). Moreover these standing wave solutions are orbitally stable in the
H1 subcritical case (p < 5) in the pure power case and in the logarithmic
case, i.e. stable up to the transformations that leave the equation invariant
(see the definition below in our case or in [9] in the classical case).

Here we study the existence and uniqueness of standing wave solutions
for (1), and the issue of orbital stability for these particular solutions. Since
our problem is not invariant by space translations our case differs from the
classical one.

Before stating the main result of the article we need to introduce some
notations. Consider the bilinear form defined as

(2) (u, v) 7→ Re

∫
R
ν(x)ux(x)vx(x)dx.

This bilinear form is symmetric continuous coercive in H1(R). Setting

(Au, v)L2(R) = Re

∫
R
ν(x)ux(x)vx(x)dx,

then the domain of A is

{u ∈ H1(R); v 7→ (Au, v)L2(R) is continuous in L2(R)}.

Then the associated unboudedA = −∂x(ν(x)∂x.) operator satisfiesD(A
1
2 ) =

H1(R) and it is standard to prove that its domain is

(3) D(A) = {u ∈ H1(R) ∩H2(R− {0}); ν+ux(0+) = ν−ux(0−)}.

Remark 1.1. Our problem can be understood as follows: we solve two equa-
tions respectively for x < 0 and x > 0 that read respectively

(4) ut − iν∓∂2xu− ig(|u|2)u = 0,

and we couple these equations by transmission condition of Neumann type
ν+ux(0+) = ν−ux(0−) .

We seek a standing wave solution whose profile ϕ belongs to D(A). Our
first result reads as follows

Theorem 1.2. Up to a multiplication by a complex number of modulus 1,
there exists a unique solution of (1). Moreover this solution reads ϕ(x) =

ψ(
√
ν(x)x) where ψ is the classical (even) solution for ν(x) = 1.
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We then address the issue of orbital stability for the equation. Orbital
stability reads as follows for the standing wave in some Banach space E.

Definition 1.3. The standing wave is orbitally stable in E if for any ε > 0
there exists α > 0 such that for u0 in E that satisfies ||u0 − ϕ||E < α we
have that infθ∈R ||u(t)eiθ − ϕ||E < ε, where u(t) is the solution of (1) that
starts at t = 0 from initial data u0.

This definition means that up to the invariance of the equation (here the
multiplication by a complex number of modulus 1) if the initial data are
close the orbits {eiωtϕ} and {u(t)} remain close to each other. Proving
the orbital stability requires to establish that the profile is solution to some
minimization problem. We will see in the sequel that we cannot establish
such a result in the energy space H1(R) (or in the suitable Orlicz space in the
logarithmic case); actually our problem is not translation invariant in space.
Therefore we have to restrict the energy space to a closed subspace H that
contains the profile. We define H = {u ∈ H1(R);x 7→ u(

√
ν(x)x) is even}.

Our second main result states as follows

Theorem 1.4. In the pure power case if p < 5 or in the logarithmic case,
the standing wave solution of (1) is orbitally stable (in H in the pure power
case or in a suitable Orlicz space in the logarithmic case).

This article is organized as follows. The next section is devoted to prove
Theorem 1.2 either in the pure power case or in the logarithmic case. In a
last section we introduce the new mathematical framework, i.e. the space of
functions that have some symmetries, and we prove Theorem 1.4 following
the guidelines in [9] for the pure power case and in [3] for the logarithmic
case.
We complete this introduction by some notations. We set log+ x = max(0, log x)
and log− x = −min(0, log x). We set o(1) for any sequence of real numbers
that converges to 0. Since we are dealing we complex valued functions the
scalar product on L2(R) reads

(5) (u, v)L2(R) = Re

∫
R
u(x)v(x)dx.

For a non negative function µ(x) the weighted space L2(µ) is endowed with
the scalar product

(6) (u, v)L2(µ) = Re

∫
R
u(x)v(x)µ(x)dx.

For any function u, we write either ∂xu or u′ for the space derivative of u.

2. Existence of standing wave solutions
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2.1. Mathematical framework. Let us first recall that D(A
1
2 ) = H1(R)

and that (Au, u)L2(R) defines a seminorm that is equivalent to the Poincaré
seminorm, i.e. since ν− < ν+

(7) ν−

∫
R
|u′(x)|2dx ≤ (Au, u)L2(R) ≤ ν+

∫
R
|u′(x|)2dx.

We now recall some results about the initial value problem associated with
(1). For the pure power case, the classical method for ν(x) = 1 as described
in [9] works straightforwardly. For p < 5 (the so-called H1-subcritical case)
for any initial data in H1(R) there exists a unique global solution u(t) in

C(R;H1(R). Moreover the mass ||u(t)||L2(R) and, setting G(ξ) =
∫ ξ
0 g(s)ds,

the energy

(8) E(u) =

∫
R
ν(x)|u′(x)|2dx−

∫
R
G(|u(x)|2)dx,

are conserved along the flow of solutions. For the logarithmic case, the
method introduced in [8] gives that the initial value problem is well posed
for intial data in H1(R) ∩W where W is the Orlicz space

W = {u ∈ L1
loc(R);

∫
R
|u(x)|2| log(|u(x)|)|dx < +∞}.

See [1] for details. Once again the mass and the energy are conserved along
the flow.

2.2. The pure power case. We prove Theorem 1.2 in the case g(ξ) = ξ
p−1
2 .

Setting u(t, x) = exp(iωt)ϕ(x) in (1) with polynomial nonlinearity leads to
the following equation for the profile ϕ

(9) −ωϕ+ (νϕ′)′ + |ϕ|p−1ϕ = 0.

For x > 0, we multiply by ϕ′ and integrate the real part of the resulting
equation between x and +∞. Since ϕ and ϕ′ vanish at +∞ we obtain

(10) −ω|ϕ(x)|2 + ν+|ϕ′(x)|2 +
2

p+ 1
|ϕ(x)|p+1 = 0.

Due to the embedding H1(R) ⊂ C
1
2 (R) ∩ L∞(R) then ϕ is continuous at

x = 0. Thus we infer from (10) and from its analogous for x < 0 that

(11) ν−|ϕ′(0−)|2 = ν+|ϕ′(0+)|2.
Since ϕ belongs to D(A) then the following transmission condition

(12) ν−ϕ
′(0−) = ν+ϕ

′(0+)

is valid. Using the fact that ν− < ν+, then from (11) and (12) we deduce
that ϕ′(0−) = ϕ′(0+) = 0. Therefore ϕ is continuously differentiable on R.
Let us observe that setting x = 0 in (10) leads to ω > 0.
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We now set ψ(x) = ϕ(
√
ν(x)x). Then ψ is solution to the ODE, defined

for x ∈ R, such that ψ′(0) = 0,

(13) −ωψ + ψ′′ + |ψ|p−1ψ = 0.

Appealing the results for the classical case ν(x) = 1 (see [9] and the refer-
ences therein) we have that ψ (up to a multiplication by a complex number of
modulus 1 and a space translation) is uniquely determined. Since ψ′(0) = 0
then there is no translation and the proof of the theorem is completed.

2.3. The logarithmic case. We prove Theorem 1.2 in the case g(ξ) =
log ξ. Setting u(t, x) = exp(iωt)ϕ(x) in (1) with logarithmic nonlinearity
leads to the following equation for the profile ϕ

(14) −ωϕ+ (νϕ′)′ + log(|ϕ|2)ϕ = 0.

For x > 0, we multiply by ϕ′ and integrate the real part of the resulting
equation between x and +∞. Since ϕ and ϕ′ vanish at +∞ we obtain

(15) −ω|ϕ(x)|2 + ν+|ϕ′(x)|2 + |ϕ(x)|2(log(|ϕ(x)|2)− 1) = 0.

Due to the embedding H1(R) ⊂ C
1
2 (R) ∩ L∞(R) then ϕ is continuous at

x = 0. Thus we infer from (15) and from its analogous for x < 0 that
ν−|ϕ′(0−)|2 = ν+|ϕ′(0+)|2. Since ϕ belongs to D(A) then ν−ϕ

′(0−) =
ν+ϕ

′(0+) and then ϕ′(0−) = ϕ′(0−) = 0. Therefore ϕ is continuously
differentiable on R.

We now set ψ(x) = ϕ(
√
ν(x)x). Then ψ is solution to the ODE, defined

for x ∈ R, such that ψ′(0) = 0.

(16) −ωψ + ψ′′ + ψ log(|ψ|2) = 0.

Appealing the results for the classical case ν(x) = 1 (see [9] and the refer-
ences therein) we have that ψ (up to a multiplication by a complex number of
modulus 1 and a space translation) is uniquely determined . Since ψ′(0) = 0

then there is no translation then ψ(x) = exp(iθ + 1+ω
2 −

x2

2 ) and the proof
is completed.

3. Stability of standing waves

3.1. A new mathematical framework. The classical method to prove
the orbital stability is to prove that the profile is solution to a minimization
problem. We first have the following negative result

Proposition 3.1. There is no function u that achieves the infimum of the
energy function E(u) under the constraint ||u||L2 = 1.
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Proof. Let us argue by contradiction. Consider u that achieves the infimum.
Consider for y in R the translate of u that reads uy(x) = u(x+ y). Then uy
has the same mass than u but

(17) E(uy) = E(u) + (ν+ − ν−)

∫ y

0
|u′(x)|2dx.

We then can chose y such that E(uy) < E(u) and then the contradiction
occurs. �.

Therefore it is difficult to prove the orbital stability of the standing
wave among all functions in the energy space. For this purpose we change
the framework as follows. We introduce the change of variable u(t, x) =
v(t, x√

ν(x)
). Hence (1) yields

(18) ivt +
1√
ν
∂(
√
ν∂v) + g(|v|2)v = 0,

associated to the Hilbert space L2(
√
ν). It is worth to point out that the

unbounded operator v 7→ 1√
ν
∂(
√
ν∂v) is self-adjoint in L2(

√
ν). We then

introduce

(19) H0 = {v ∈ L2(
√
ν); v(x) = v(−x)}.

The space H0 is an Hilbert space that contains the profile associated to the
standing wave. Moreover if the initial data v0 belongs to H = H0 ∩H1(R)
(or to H ∩W in the logarithmic case) the solution v(t) of (18) belongs also
to H (or to H ∩W in the logarithmic case). Then we shall prove the orbital
stability in the space H. For the new equation (18) the new energy that
reads

E(v) =

∫
R
|v′(x)|2

√
ν(x)dx−

∫
R
G(|v(x)|2)

√
ν(x)dx,

and the mass ||v||H0 = ||v||L2(
√
ν) are invariant along the flow of solutions.

3.2. Proof of Theorem 1.4 in the pure power case. We assume in this
section that p < 5, i.e. that we are in the H1(R) subcritical case. To begin
with we state and prove

Proposition 3.2. The profile ϕ achieves the minimum of the energy E(v)
among all functions in H that satisfies ||v||H0 = ||ϕ||H0. The set of all
minimizers reads {ϕ(x)eiθ} for θ a real number.

Proof. Introduce C = {v ∈ H; ||v||H0 = ||ϕ||H0}. Let us observe that if v
belongs to H

(20) E(v) =

√
ν− +

√
ν+

2

(∫
R
|v′(x)|2dx− 2

p+ 1

∫
R
|v(x)|p+1dx

)
.
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Since

(21)

∫
R
|v(x)|p+1 ≤ ||v||

p+3
2

L2(R)||v
′||

p−1
2

L2(R),

and p−1
2 < 2 we have that for ||v||H0 = ||ϕ||H0 the energy E(v) is bounded

by below and µ = infC E(v) > −∞.

Remark 3.3. The estimate (21) above is instrumental to prove that if p < 5
the solutions cannot blow up in H1(R) and then that the solutions are global,
i.e. defined for any t ∈ R. This is the reason why this is called the H1

subcritical case.

Let us prove that µ < 0. The set C is invariant by dilation ε 7→
√
εv(εx) =

vε(x). Since, for a given v in C

(22) E(vε) =

√
ν− +

√
ν+

2

(
ε2
∫
R
|v′(x)|2dx− 2

p+ 1
ε

p−1
2

∫
R
|v(x)|p+1dx

)
we have that for ε > 0 small enough E(vε) < 0 and then µ < 0. Consider
now {vk} a minimizing sequence, i.e. such that vk belongs to C and satisfies

(23) µ ≤ E(vk) < µ+ o(1)

when k diverges to ∞. Let us observe that since µ < 0 we have that

(24) lim inf

∫
R
|vk|p+1 = α > 0.

Observing that |vk| is also a minimizing sequence we may assume that
vk takes values in [0,+∞). We now apply the concentration-compactness
lemma of P.L. Lions (see section 1.7 in [9]). Up to a subsequence extraction
the following alternative occurs

(1) Vanishing: vk → 0 in Lp+1(R).
(2) Dichotomy: vk splits into two parts ak, bk ( |vk| ≥ |ak|+ |bk|) whose

supports are disjoints, such that lim infk(E(ak)+E(bk)−E(vk)) ≤ 0,
and such that there exists θ in (0, 1) such that ||ak||2H0

= ||ϕ||2H0
θ +

o(1) and ||bk||2H0
= ||ϕ||2H0

(1− θ) + o(1).
(3) Compactness: there exists yk in R such that vk(x− yk) converges in

L2(R) strongly to a function v that is non zero.

Vanishing is impossible due to (24). Let us prove that Dichotomy is impos-

sible. Actually writing E(
||ϕ||H0
||ak||H0

ak) ≥ µ we have

(25)

µ
||ak||2H0

||ϕ||2H0

≤ ν− + ν+
2

∫
R
|a′k(x)|2dx− 2

p+ 1

||ak||H0

||ϕ||H0

)1−p
∫
R
|ak|p+1(x)dx.

Gathering with the analogous estimate for bk we have
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µ(
||ak||2H0

+ ||bk||2H0

||ϕ||2H0

) ≤ ν− + ν+
2

∫
R

(|a′k(x)|2 + |b′k(x)|2)dx−

2

p+ 1
min((

||ak||H0

||ϕ||H0

)1−p, (
||bk||H0

||ϕ||H0

)1−p)

∫
R

(|ak|p+1(x) + |bk|p+1(x))dx.

(26)

Therefore passing to the limit when k diverges towards ∞ we have the
following contradiction

(27) µ+ o(1) ≤ µ+
2

p+ 1
(1−min(θp−1, (1− θ)1−p))α < µ.

Therefore we have compactness and the minimum is achieved; to check this
assertion let us define the symmetric rearrangement v∗k of x 7→ vk(x−yk) that
is an even function that satisfies, since the rearrangement map conserves the
L2 norm and decays the Poincaré seminorm (see [17])

µ ≤ E(v∗k) ≤ E(vk) ≤ µ+ o(1),

and v∗k converges towards v∗ strongly in L2(R), since the rearrangement
map is a contraction in L2 (see [17]). Then v∗ belongs to H and achieves
the minimum of the energy. This proves that the set of minimizers is non
empty.

For any minimizer v, there exists then a Lagrange multiplier ω such that

(28) E′(v) = ωv.

Then v solves the equation in section 2.2. Then v is equal to eiθϕ that has
the same energy than ϕ. The proof of the proposition is then completed.�

We now complete the proof of the orbital stability. Let us argue by con-
tradiction. Assume that there exists a sequence vk in H1(R), two sequences
of real numbers tk, θk such that for vk(t) the solution of (18) starting from
vk at t = 0

||ϕ− vk||H1(R) = o(1),

||ϕ− vk(tk)eiθk ||H1(R) ≥ ε > 0.
(29)

Let us observe that due to the first equation in (29) the sequence ṽk =
||ϕ||H0
||vk||H0

vk is a minimizing sequence for the energy under the constraint C.

Set wk = vk(tk). Due to the conservation of the energy and of the mass
we have that E(vk) = E(wk) and ||vk||H0 = ||wk||H0 . Therefore w̃k =
||ϕ||H0
||wk||H0

wk is also a minimizing sequence for the energy under the constraint

C. Applying the method in the proof of Proposition 3.2 we have that up to
a subsequence extraction wk converges towards a solution of (28). This is
in contradiction with the second equation in (29). The proof of the theorem
is then completed.
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3.3. An instability result if p ≥ 5 in the pure power case. We recall
the following classical result essentially due to Weinstein [19] and that relies
on the viriel method of Glassey [13]. For the sake of simplicity we give a
complete proof only in the H1 critical case p = 5.

Proposition 3.4. Assume here p = 5. Assume u0 be in H1(R) ∩ L2(x2)
and E(u0) < +∞. Then the trajectory starting from u0 blow ups in finite
time.

Proof. First we prove that as long as the solution remains in H1(R) then
the solution remains in the weighted space L2(x2). Introducing

q(t) =

∫
R
x2|u(t, x)|2 dx

ν(x)
,

we have that

qt = 2Re

∫
R
x2u(t, x)ut(t, x)

dx

ν(x)
= 2Im

∫
R
u(t, x)∂x(ν(x)∂xu(t, x))

dx

ν(x)
.

Integrating by parts and using that ( x2

ν(x))
′ = 2x

ν(x) we obtain that, with

u′ = ∂xu

(30) qt = 4V = 4Im

∫
R
xu′(t, x)u(t, x)dx.

Therefore by Cauchy-Schwarz inequality

(31) qt ≤ 4||u′||L2(R)
√
q,

and q remains bounded in any compact subinterval [−T, T ] of R and the
L2(x2) norm of the solution cannot blow up in finite time, as long as the
solution remains in H1(R).

We now differentiate V with respect to t. We have

(32) Vt = Im

∫
R
xu′t(t, x)u(t, x)dx+ Im

∫
R
xu′(t, x)ut(t, x)dx

Integrating by parts the first integral in the right hand side of (32) leads to

(33) Vt = Im

∫
R
u(t, x)ut(t, x)dx+ 2Im

∫
R
u(t, x)ut(t, x)dx.

Integrating by parts

(34) Im

∫
R
u(−i(νu′)′ − i|u|4u)dx =

∫
R
ν|u′|2dx−

∫
R
|u|6dx.

Integrating by parts twice



10 STANDING WAVES FOR NLS EQUATIONS

(35) 2Im

∫
R
xu′(−i(νu′)′ − i|u|4u)dx =

∫
R
ν|u′|2dx+

1

3

∫
R
|u|6dx.

Therefore Vt = 2E(u0) and q(t) = 4E(u0)t
2+4V (u0)t+q(u0) cannot remain

non negative for all t. �

Proposition 3.5. The standing wave ϕ is not orbitally stable if p = 5.

Proof. As pointed out in [9] in the critical case E(ϕ) = 0. Since for λ > 1,
λ close to 1.

(36) E(λϕ) = λ2(E(ϕ)− 1− λ4

3

∫
R
ϕ6dx) < 0.

We then have a trajectory issue from λϕ which is close to the standing wave
at t = 0 and that blows up in finite time. �

3.4. Proof of Theorem 1.4 in the logarithmic case. We follow here
[3] and the Nehari’s manifold method. Here we deal with the Orlicz space
V = H ∩W . Introduce for ω > 0 the modified energy

(37) Eω(v) = E(v) + ω||v||2H0
,

where

E(v) =

∫
R

√
ν(x)|v′(x)|2dx−

∫
R

√
ν(x)(log(|v(x)|2)− 1)|v(x)|2dx.

The Nehari’s manifold reads

(38) N = {v 6= 0, N(v) =< E′ω(v), v >= 0},

where

< E′ω(v), v >=

∫
R

√
ν(x)

(
|v′(x)|2 + ω|v(x)|2 − log(|v(x)|2)|v(x)|2

)
dx.

Let us observe that since v is even the Nehari’s manifold reads also v 6= 0
and

(39)

∫
R

(
|v′(x)|2 + ω|v(x)|2 − log(|v(x)|2)|v(x)|2

)
dx = 0.

We then state

Proposition 3.6. The infimum of the modified energy equation is achieved
under the constraint that v belongs to N .
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Remark 3.7. If the infimum is achieved there exists a Lagrange multiplier
λ such that for any w in the energy space V

(40) < E′ω(v), w >= λ < E′ω(v), w > +λE′′ω(v)(v, w).

Setting w = v in (40) we have that λE′′ω(v)(v, v) = 0. Besides since
E′′ω(v)(v, v) = 2||v||2H0

6= 0 then λ = 0 and v is solution to the equation
in section 2.3.

Proof. For v in N , we have that Eω(v) = 2||v||2H0
. We begin with the

following statement

Lemma 3.8. We have µ = infv∈N ||v||2H0
> 0.

Proof. The key is the logarithmic Sobolev inequality (see [17]) that reads
for any function u in H1(R)

(41)∫
R
|u(x)|2 log |u(x)|2dx ≤ ||u′||2L2(R) + ||u||2L2(R)(log ||u||2L2(R) − 1− log

√
π).

Therefore if v belongs to the Nehari’s manifold we have that

(42) ((1 + log
√
π) + ω)||v||2L2(R) ≤ ||v||

2
L2(R) log ||v||2L2(R),

and then ||v||2H0
=
√
ν−+

√
ν+

2 ||v||2L2(R) ≥
√
ν−+

√
ν+

2 exp(1 + ω)
√
π. �

Consider now a minimizing sequence vk that belongs to the Nehari’s man-
ifold and such that ||vk||2H0

= µ+ o(1). We have that

(43)

||v′k||2H0
+ω||vk||2H0

+

∫
R
|vk|2 log− |vk|2

√
ν(x)dx ≤

∫
R
|vk|2 log+ |vk|2

√
ν(x)dx.

Due to Sobolev embedding the right sand side of (42) is bounded by above
by

||vk||2H0
log+ ||vk||2L∞(R) ≤ C||vk||

2
H0

log+ ||vk||2H1(R).

Then the sequence vk remains in a bounded set of H1(R). Then we may
extract a subsequence (still denoted vk) that converges weakly in H1(R)
towards v and almost everywhere. We follow once again [3]. We have
the following alternative that is related to the Concentration-Compactness
lemma of PL. Lions: if

(44) lim
k→+∞

sup
a∈R

∫ a+1

a
|vk(x)|2dx = 0,

then vk → 0 in L4(R). Let us prove

Lemma 3.9. There exists α > 0 such that infk ||vk||L4(R) ≥ α.
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Proof. Consider δ in (0, 1) to be chosen later. Then

(45) µ ≤ ||vk||2H0
≤ δ−2||vk||4L2(

√
ν) +

∫
|vk|≤δ

|vk|2
log(|vk|2)
log(δ2)

√
ν(x)dx.

Since vk belongs to the Nehari’s manifold we have that

(46)

∫
|vk|≤δ

|vk|2
log(|vk|2)
log(δ2)

√
ν(x)dx ≤ −

∫
|vk|≥δ

|vk|2
log(|vk|2)
log(δ2)

√
ν(x)dx.

Therefore since ξ2 log ξ2 ≤ ξ4 − ξ2 we have that

(47) µ ≤ (δ−2 − 1

log(δ2)
)||vk||4L2(

√
ν) +

µ+ o(1)

log(δ2)
.

This concludes the proof of the lemma choosing for instance log δ2 = −1. �
We now complete the proof of the proposition. Since (44) is false there

exists a sequence yk such that wk(x) = vk(x − yk) converges to a non zero
function v weakly in V and uniformly in any compact subset of R. Re-
peating the rearrangement argument as above we may assume that wk and
v belong to H ∩W . Let us prove now that v belongs to N . We argue by
contradiction. For λ > 0 a positive real number we have that

(48) N(λv) = λ2
(
N(v)− log λ2||v||2H0

)
.

If N(v) < 0 then there exists λ < 1 such that N(λv) = 0. Then by weak
convergence we have the following contradiction

(49) µ ≤ ||λv||2H0
< ||v||2H0

≤ lim inf
k→∞

||vk||2H0
= µ.

If N(v) > 0, by Brezis-Lieb lemma (see Lemma 2.3 in [3]) we have that for
k large enough N(wk − v) < 0. Therefore proceeding as in (49) we have the
following contradiction (for some λ in (0, 1))

(50) µ ≤ ||λ(wk − v)||2H0
< ||wk − v||2H0

= µ+ o(1)− ||v||2H0
.

Therefore v belongs to N and since by weak convergence we have that

µ ≤ ||v||2H0
≤ lim inf ||vk||2H0

= µ

the proof of the proposition is completed. �
We now complete the proof of the orbital stability. Let us argue by

contradiction. Assume that there exists a sequence vk in V , two sequences
of real numbers tk, θk such that for vk(t) the solution of (18) starting from
vk at t = 0
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||ϕ− vk||V = o(1),

||ϕ− vk(tk)eiθk ||V ≥ ε > 0.
(51)

Set wk = vk(tk). Appealing the first equation in (51) and due to the
conservation of the energy and of the mass by the flow of the equation we
have that

(52) N(vk) = N(wk) = o(1) and ||vk||2H0
= ||wk||2H0

= µ+ o(1).

We may exhibit a sequence of real numbers λk = 1 + o(1) such that λkwk
is a minimizing sequence belonging to the Nehari’s manifold. Then up to a
subsequence extraction λkwk converges towards a solution of the equation
in section 2.3 that contradicts the second equality in (51).
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