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Abstract: Advances in image-based remote sensing using unmanned aerial vehicles (UAV) and
structure-from-motion (SfM) photogrammetry continue to improve our ability to monitor complex
landforms over representative spatial and temporal scales. As with other water-worked environments,
coastal sediments respond to shaping processes through the formation of multi-scale topographic
roughness. Although this topographic complexity can be an important marker of hydrodynamic
forces and sediment transport, it is seldom characterized in typical beach surveys due to environmen-
tal and technical constraints. In this study, we explore the feasibility of using SfM photogrammetry
augmented with an RTK quadcopter for monitoring the coastal topographic complexity at the beach-
scale in a macrotidal environment. The method had to respond to resolution and time constraints
for a realistic representation of the topo-morphological features from submeter dimensions and
survey completion in two hours around low tide to fully cover the intertidal zone. Different tests
were performed at two coastal field sites with varied dimensions and morphologies to assess the
photogrammetric performance and eventual means for optimization. Our results show that, with
precise image positioning, the addition of a single ground control point (GCP) enabled a global
precision (RMSE) equivalent to that of traditional GCP-based photogrammetry using numerous and
well-distributed GCPs. The optimal model quality that minimized vertical bias and random errors
was achieved from 5 GCPs, with a two-fold reduction in RMSE. The image resolution for tie point
detection was found to be an important control on the measurement quality, with the best results
obtained using images at their original scale. Using these findings enabled designing an efficient and
effective workflow for monitoring coastal topographic complexity at a large scale.

Keywords: topographic remote sensing; coastal monitoring; high-energy beaches; gravel spit;
structure-from-motion photogrammetry; multirotor drone; RTK-GNSS; permanent GCPs; DEM
error; workflow optimization

1. Introduction

The coast is a very dynamic and varied environment, constantly changing in response
to complex interrelations between landforms and processes operating across a wide range
of spatial and temporal scales. Understanding shoreline dynamics, for integration into
process-based modelling, for example, and being able to predict future evolutions in
the context of relative sea-level rise, requires an accurate characterization of the geomor-
phic processes acting at the sediment–water interface [1–5]. Sediment reworking on the
beach and nearshore due to waves and currents traduces by the formation of topographic
complexity (herewith generally called roughness), such as sedimentary bedforms. These
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topo-morphological features are the imprint of the processes that shaped them, and, as such,
measuring bedforms can provide meaningful information on hydrodynamic forces [6–10].
Besides, bedforms are roughness elements that modify the flow and dissipate energy [11,12].
They are, thus, interesting markers of the sediment bed propensity towards resistance to
entrainment and dynamic equilibrium.

Different types of bedforms generally coexist in the coastal environment
(e.g., Refs. [13–15]), whose dimensions and shapes depend on sediment availability, sedi-
ment type (e.g., size distribution and shape) and driving mechanisms (e.g., waves, currents,
wind). Examples of small-scale bedforms are wave and current sand ripples, or gravel-bed
clusters, with dimensions or length scales generally not exceeding a few tens of centimeters.
Larger-scale bedforms include varied bar and trough morphologies (e.g., ridge and runnels)
in the surf and swash zones [16], other rhythmic patterns most often found on the upper
beach, such as beach cusps [17,18], as well as aeolian sand dunes. In between those, there
are a wide range of topographic variations that take part in the continuum of roughness
scales and contribute to the overall structural complexity of the seabed, backshore and
dune system.

1.1. High-Resolution Topographic Surveying and Photogrammetric Remote Sensing of
Coastal Morphology

In tidal environments, daily fluctuations in the water level mean that the water-
worked seabed can be measured using topographic surveying, with the maximum coverage
typically achieved during the lowest low tides. Previous work largely relied on RTK-GNSS,
with a rover eventually mounted on a mobile platform, such as a quad, for monitoring the
evolution of barred beaches and other coastal landforms [12,19]. The DEMs generated have
resolutions ranging from a few meters cross-shore to tens of meters alongshore, in link with
the topographic complexity and bedform orientation, while survey coverage can reach up
to several kilometers alongshore, allowing to account for the rhythmic nature of the coastal
morphology (e.g., rip-channel systems, cusps and megacusps). Common to point-based
surveying techniques, enhancing the spatial resolution is generally counter-balanced by
increased acquisition time or reduced spatial coverage [20–22], which means that using
RTK-GNSS for the fine-scale monitoring of coastal topography remains problematic.

In contrast, remote sensing techniques, such as UAV photogrammetry, have greatly
improved, rendering very-high-resolution (e.g., submeter) topographic surveying at a large
scale (e.g., beach scale) feasible. Using off-the-shelf drones and cameras, ground sampling
distances (GSD) as small as a few centimeters can be achieved during typical beach sur-
veys [23–25]. Photogrammetric processing relies on the SfM method, which is based on
the scale-invariant feature transform (SIFT) algorithm [26] for matching corresponding
points in images, and uses external information, mostly taking the form of GCPs measured
independently, for scaling and optimizing the photogrammetric model. Yet, previous work
showed that the resulting DEM quality (e.g., horizontal and vertical precisions) is largely
variable (e.g., Refs. [23,27,28]) and depends on a wide range of parameters, among which
survey design (e.g., flying height, image overlap, camera orientation, GCP number and
distribution) and processing strategies (e.g., direct georeferencing, camera calibration and
point-matching methods) play a critical role.

Photogrammetry has been used previously in different domains of research to mea-
sure sedimentary bedforms of various dimensions, including particle clusters [29,30], bed
undulations, such as sand [31–33] and gravel bars [34–36], and sand dunes [37–42], with
measurements of small-scale bedforms generally performed in the laboratory. Hence, it is
not yet known if fine-scale water-worked topographies can be efficiently and effectively
measured using UAV photogrammetry in the field, such that there is currently a paucity of
data for assessing coastal topographic roughness and shaping processes.
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1.2. Photogrammetric Workflow Optimisation

A common limitation to achieving efficient surveys mentioned in previous work, and
finding important echo in time-constrained (e.g., tidal) environments, is the need for a
dense and well-measured network of GCPs for the accurate scaling and georeferencing
of photogrammetric results (e.g., Ref. [43]). In the absence of other external controls, this
requirement is particularly important, shown by observations of decreasing DEM quality
with distance increases from the nearest GCP [44–46]. Relief can be procured through the
installation of fixed (i.e., permanent) targets, although it is generally only partial and, in
application to the coast, implies that fixed targets are limited to dry zones [37].

The uptake of high-precision RTK-GNSS technology for drone navigation can further
improve survey efficiency. With RTK drones, image geolocations serve as airborne controls,
which, despite a generally lower precision compared to GCPs and a repartition outside
the measurement volume, can compensate for these caveats due to the comparatively
very-large number of controls provided [47]. Previous research showed that results of a
similar quality or even better can be achieved using a reduced number of GCPs when
the camera positions are used as external controls [48]. Using the camera information
as the only external control during photogrammetric processing forms the basis behind
direct georeferencing (DG) approaches (e.g., Refs. [49–51]). The DG of photogrammetry is
particularly advantageous when access to the field site and the measurement of GCPs are
problematic. However, previous studies showed that DG generally comes at the cost of
reduced measurement quality (e.g., lower accuracy and precision).

The commercialization of RTK drones at competitive prices (e.g., the Phantom 4 RTK
quadcopter) has reinstated large interest in determining the capability of DG approaches
across different settings, including building facades, urban and rural landscapes as well
as river and coastal environments. Previous studies investigated the differences between
drone positioning corrections provided either in real time (RTK) from a nearby base station
managed by the field operators or through RTK networks, or post-processed (PPK) using
observations at known base stations [52,53]. They also assessed the effect of the image
viewing angle (nadir vs. oblique [54]), as well as changes in measurement quality with and
without the provision of GCPs (e.g., Refs. [52–56]).

These studies concluded that, in the absence of GCPs, systematic error mainly through
vertical bias can impact the measurement quality, which was related to the imprecise calibra-
tion of internal orientation parameters (IOP). Yet, contrasting results were obtained when
it comes to the number of GCPs to introduce to correct this effect. Some studies reported
that one GCP was enough, although the GCP position may be important, while other
studies recommended using at least three GCPs. With the exception of the effort to survey
109 points with a theodolite on a building’s facades by Taddia et al. [52], error evaluation is
generally limited to a few check points (ChkPts), whose number and repartition may not
be adequate for reliable error characterization. This, in turn, limits the generalization of
the findings such that the measurement capabilities of RTK-assisted UAV photogrammetry
over large and GCP-poor coastal tracts are not fully understood.

1.3. Paper Overview

In this study, we explored the feasibility of using an RTK quadcopter (Phantom 4
RTK) and SfM photogrammetry for fine-scale (e.g., submeter) monitoring of water-worked
coastal topography. We carried out a variety of tests of interest for the application because
of their influences on data collection time and measurement quality (e.g., resolution and
precision). More specifically, we were interested in enhancing the survey efficiency to
surpass tide-related constraints while ensuring the results’ effectiveness through rigorous
error characterization at two macrotidal coastal field sites with contrasting survey areas
and morphologies. The DEM error evaluation at localized check points (ChkPts) was sup-
plemented where possible by full DEM comparisons and the collection of over 2000 survey
points with RTK-GNSS, whilst the availability of repeat surveys and invariant features
enabled the assessment of the complete workflow replicability.
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Our results show that at least five GCPs, in addition to camera information, were
necessary to achieve the optimal model quality that minimized vertical bias and random
errors. Under this configuration, the standard deviation of error representing measurement
precision (~1 GSD) was approximately two times better than that when camera information
was unused. First, the geomorphic analyses are presented, highlighting the potential of the
method for submeter bedform characterization over entire beach systems.

2. Materials and Methods
2.1. Field Sites

The two coastal field sites presented in this study are located in Brittany in northwest
France (Figure 1a,b). The field site at La Palue and Lostmarc’h beaches, hereafter generally
referred to as “La Palue” for concision, is situated at the western end of Crozon Peninsula.
Facing due west, La Palue and Lostmarc’h are adjacent beaches totaling ~2.5 km along-
shore separated by a rocky promontory (Kerdra point) at high tide, backed by granitic
cliffs (20–50 m high) at each end point and a mostly consolidated and vegetated dune else-
where. It is a macrotidal environment with mean neap and spring tidal ranges of 2.25 and
5.60 m [57], respectively. Waves originate from Atlantic depressions generating SW through
NW swells, but also shorter period seas from locally generated wind [58]. Based on samples
collected on the intertidal beach and processed using traditional size-sieving, sediment
belongs to fine to medium sand with a D50 (the median sediment size for which 50% of
the sediment distribution is finer) of ~0.25 mm and a sorting coefficient (

√
D84/D16) of 1.35

(i.e., well-sorted). The upper beach abutting the dune is composed of cobbles, especially
on the northern parts (Figure 2b). The morphodynamics are akin to intermediate beaches
according to the Masselink and Short classification [59], covering a range of beach states
depending on ongoing hydrodynamic conditions. Generally, a flatter profile is observed
over winter, contrasting with marked bar and rip channel morphologies developing across
calmer months. During spring tides, the intertidal beach is approximately 300–400 m wide
(Figure 1c). Large patches of ripples and megaripples can often be observed. Bedrock may
locally appear near the low-tide line, depending on sand levels. Outside a few of channel-
ized access points and small blockhouses remnant of World War 2, human encroachments
are limited. Man-made features, at the condition they are relatively flat, were useful for
preparing fixed ground targets for photogrammetry. Depending on survey date, up to six
red-painted crosses approximately 40 cm in size were used (Table 1).

Table 1. Overview of the field surveys and data collection for UAV–SfM photogrammetry. The tidal
coefficient (20–120) represents the tide magnitude in relation to its mean.

Field Site Date Tidal Coefficient
(-)

Flight
Count/Image

Count
(-)

Flying Height
(m)

Overlap
Along/Cross

(%)

Survey Area
(m2)

GSD
(m/Pixel)

Target Count
(Fixed Targets)

(-)

Sillon de Talbert
17 November

2020
103 2/734 58 80/70 125,000 0.014 21 (0)

La Palue
17 September

2020
101 5/1407 106 80/70 1,320,000 0.026 30 (5)

La Palue
17 December

2020
90 6/1548 105 80/70 1,280,000 0.026 22 (3)

La Palue
2 March 2021 103 5/1411 108 80/70 872,000 0.025 19 (1)

La Palue
29 April 2021 106 5/1386 107 80/70 1,080,000 0.026 28 (6)
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Figure 1. Survey sites. (a) Map of France; (b) bathymetric DEM of western Brittany with green stars
representing field sites at La Palue (left) and Sillon de Talbert (top right); (c,d) orthophotographs
(source: Ortho Littorale V2, Ministère en charge de l’environnement, 2013) of La Palue and Sillon de
Talbert, respectively, showing the (yellow enclosed) survey area and depth contours (source: Litto3D
Finistère 2014—Shom). Black and pink lines represent MSL and MLWS/MHWS, respectively.

The second field site corresponds to the proximal section of the Sillon de Talbert gravel
spit. This 3.5-km-long swash-aligned barrier is located north of Brittany. The sediment
volume is estimated at 1.23 × 106 m3 [60]. According to the barrier morphology and sedi-
mentology, the gravel accumulation can be classed as a “composite gravel beach” [61,62].
The beach face shows a break slope point at the mean water level, which delimitates the
gravel barrier from an otherwise flat rocky platform (slope = 0.01%) covered by thin and
patchy periglacial deposits and/or recent sandy sheets. The upper part of the beach face
is characterized by steeper slopes of between 5% and 15%. Back-barrier areas include a
large sand-flat and salt-marshes. The site is located in a macrotidal to megatidal setting
(maximum tidal range of 10.95 m) [57]. Dominant swell comes from the WNW, which
means that waves break with a slight angle according to the shoreline orientation, generat-
ing a longshore drift oriented to the NE. Until the end of the 17th century, the barrier was
connected to the islets of the Olone archipelago located to the NE. The disconnection of
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the barrier occurred in the early 18th century [63]. In the 1970s and 1980s, several coastal
defenses were installed to prevent the retreat of the barrier, especially in the proximal
section where a groin was installed. Annual topographic surveys realized with RTK-GNSS
since 2002 revealed a strong erosion of the beach face downdrift of the groin [64]. The loss of
sediment was estimated to ca. 11,000 m3 between 2002 and 2017, which caused significant
barrier lowering and narrowing locally. These morphological changes led to the opening
of a breach at the beginning of March 2018, which has experienced a rapid enlargement
(35 vs. 15 m) and deepening (3.4 vs. 1.25 m) over the following months [65]. For monitoring
breach evolution, we have put in place trimestral UAV photogrammetry surveys.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 25 
 

 

 
Figure 2. Field surveys. Orthophotos showing camera locations (black dots), DRTK-2 drone mobile 
station (green square), ground photogrammetric targets (triangles; the five fixed targets present at 
La Palue during the September survey are shown in red), GNSS base station (yellow square) and 
geodetic marks (yellow star) at (a,b) La Palue, and (c) Sillon de Talbert field sites, respectively. RTK-
GNSS survey points used for the vertical evaluation of photogrammetry at La Palue are shown in 
red. At Sillon de Talbert, the GNSS base station and DRTK-2 drone mobile station were installed 
one after the other using the same geodetic mark. 

2.2. Field Operation and Data Collection 
Five surveys altogether covering a seven-month period are considered in this study: 

one at Sillon de Talbert and four at La Palue (Table 1). For the latter, only the first survey 
(17 September 2020) is described and analyzed in detail, the other three (repeat) surveys 
being used for assessing measurements’ replicability (cf. Section 2.6). 

Data collection starts with centimetric-accuracy RTK-GNSS (Topcon Hyper V) meas-
urements of geodetic marks (cast metal disks installed on stable ground) and photogram-
metric targets (red plastic plates 30 cm in diameter fixed to the ground using tent poles) 
for data georeferencing and validation (cf. Figure 2). Between 20 and 30 photogrammetric 
targets, including fixed targets, were deployed to be used either as GCPs or ChkPts (cf. 
Tables 1 and 2). Measurements are carried out in rapid-static mode (10 s average) using 
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eral periods of time, and postprocessed in comparison with nearby IGN (Institut 
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Figure 2. Field surveys. Orthophotos showing camera locations (black dots), DRTK-2 drone mobile
station (green square), ground photogrammetric targets (triangles; the five fixed targets present
at La Palue during the September survey are shown in red), GNSS base station (yellow square)
and geodetic marks (yellow star) at (a,b) La Palue, and (c) Sillon de Talbert field sites, respectively.
RTK-GNSS survey points used for the vertical evaluation of photogrammetry at La Palue are shown
in red. At Sillon de Talbert, the GNSS base station and DRTK-2 drone mobile station were installed
one after the other using the same geodetic mark.

2.2. Field Operation and Data Collection

Five surveys altogether covering a seven-month period are considered in this study:
one at Sillon de Talbert and four at La Palue (Table 1). For the latter, only the first survey
(17 September 2020) is described and analyzed in detail, the other three (repeat) surveys
being used for assessing measurements’ replicability (cf. Section 2.6).
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Data collection starts with centimetric-accuracy RTK-GNSS (Topcon Hyper V) measure-
ments of geodetic marks (cast metal disks installed on stable ground) and photogrammetric
targets (red plastic plates 30 cm in diameter fixed to the ground using tent poles) for
data georeferencing and validation (cf. Figure 2). Between 20 and 30 photogrammetric
targets, including fixed targets, were deployed to be used either as GCPs or ChkPts (cf.
Tables 1 and 2). Measurements are carried out in rapid-static mode (10 s average) using
GNSS rovers mounted on a 2-m pole equipped with a bubble level. To provide RTK
corrections, a GNSS base station was materialized at both sites using a geodetic mark.
Fixed coordinates were obtained using long-static averaging with a tripod (~240 min),
over several periods of time, and postprocessed in comparison with nearby IGN (Insti-
tut Géographique National) GNSS stations. Repeated measurements of other geodetic
marks provide insights on georeferencing quality. For example, using between three and
seven survey marks, the standard error (SE) was estimated to be 0.004 m horizontally and
0.002 m vertically on average at La Palue across four consecutive surveys. Geographic
coordinates are referenced to the French legal systems for this region, i.e., RGF93-Lambert
93 for planimetry and NGF-IGN69 for altimetry. Elevation zero (m NGF) corresponds to
approximately 0.5 m below mean sea level (MSL).

Table 2. Overview of the processing parameters and scenarios used for DEM reconstruction with
Agisoft Metashape.

Processing Step/Scenario Image Alignment Sparse Point Cloud
Filtering Model Optimization Dense Matching

and DEM

Standard (High1)

• Key points: 60,000
• Tie points: 10,000
• Adaptive camera

model fitting
• Accuracy: “high”
• Pair preselection:

“source”

• Minimum image
count: 3

• Maximum
reprojection error:
0.4 pixel

• Maximum
reconstruction
uncertainty: 5

• Adaptive camera
model fitting

• Rolling shutter
compensation

• Camera accuracy:
1 m

• Marker accuracy:
error on marker
coordinates (pixel)

• Tie point accuracy:
RMS reprojection
error (pixel) on
tie points

• Camera positions
and attitudes

• 5 GCPs/N −
5 ChkPts

• Reconstruction
quality: “high”

• Depth filtering:
“aggressive”

• DEM resolution: 0.1
and 1 m

Low Accuracy: “low” - - DEM resolution: 1 m

Medium Accuracy: “medium” - - DEM resolution: 1 m

High2
Pair preselection:
“reference” - - DEM resolution: 1 m

Highest Accuracy: “highest” - - DEM resolution: 1 m

S-GCP - -

• Camera positions
and attitudes
unused

• N GCPs/0 ChkPts
DEM resolution: 1 m

S-RTK - - 0 GCPs/N ChkPts DEM resolution: 1 m

S-RTK-GCP - - N GCPs/0 ChkPts DEM resolution: 1 m

S-RTK-1GCP - - 1 GCPs/N−1 ChkPts DEM resolution: 1 m

S-RTK-3GCP - - 3 GCPs/N−3 ChkPts DEM resolution: 1 m

S-RTK-5GCP - - 5 GCPs/N−5 ChkPts DEM resolution: 1 m

S-RTK-9GCP - - 9 GCPs/N−9 ChkPts DEM resolution: 1 m

N is the number of photogrammetric targets available, and - stands for standard parameters.
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Aerial image acquisition for photogrammetry was carried out using DJI’s Phantom
4 RTK quadcopter (P4 RTK) and D-RTK2 mobile station. The latter is used for drone
RTK positioning. According to the manufacturer, this system allows image georeferencing
precisions of 1 cm + 1 ppm (parts per million, i.e., 1 mm per 1000 m) and 1.5 cm + 1 ppm
along the horizontal and vertical directions, respectively, traducing to absolute accuracies of
around 0.05 m at a flying height of 100 m. During surveys, the D-RTK2 is positioned atop a
geodetic mark with known coordinates (explanations above). The P4 RTK is equipped with
a 20-megapixel (2.41 × 2.41-pixel size) complementary metal-oxide-semiconductor (CMOS)
camera (FC6310R) with a mechanical global shutter and an 8.8 mm focal length. Besides
precise positioning, the drone attitude (pitch, roll and yaw angles) is recorded automatically
for each image using an onboard inertial measurement unit (IMU). For collecting images,
we used a single photogrammetric block arrangement with a front and side overlap of
80% and 70%, respectively (Table 1, Figure 2) and a forward-looking camera angle of 6◦

off-nadir. The flying height, and, thus, the GSD, was adjusted depending on the field site in
order to complete surveys within two hours around low tide. The flying height (relative
to take-off elevation) was maintained at approximately 58 m and 106 m for the Sillon de
Talbert and La Palue field sites, traducing to a GSD of 0.014 m and 0.026 m, respectively. To
satisfy local drone regulations active at the sites, five flights, from five different take-off
and landing spots, were necessary at La Palue, whereas two flights were enough to cover
the breach at Sillon de Talbert. Flight pattern was designed to include an overlap between
each image block (cf. Figure 2) while ensuring that flight duration remained below the
20-min mark. Before performing the flights, camera settings were tentatively adjusted to
the environmental conditions.

Additional topographic measurements were carried out at La Palue using RTK-GNSS
(Figure 2a) to serve as vertical ground truths for the evaluation of photogrammetry. To
make for an efficient survey covering as much of the beach length as possible, a GNSS
rover was securely mounted onto a bike, using a pannier rack above the rear wheel. The
rover was mounted with the antenna pointing downwards (vertically) and aligned with
the rear wheel axis. The approximate height of the antenna center above the ground
was measured, using a tape ruler, to be ~0.60 m. Determination of the exact height was
completed using a geodetic mark, with the bike positioned atop and loaded to replicate
survey conditions. The height of the antenna center was used to reference the data into
the same coordinate system as other surveys presented above. Point sampling along the
beach using the “bike GNSS” was carried out in dynamic mode at 1 Hz. The survey was
limited to the intertidal zone close to the low-tide water line with packed sand and where
photogrammetric quality was expected to be lower due to the difficulty of deploying GCPs
and more generally because of the presence of water, the latter making for more challenging
tie point detection. Surveying was done by riding the bike alongshore (cf. Figure 2a) to
limit as much as possible introducing a pitch angle between the GNSS antenna and the
vertical. Roll minimization was made possible by a bubble level mounted onto the bike
handlebar. Strategies to account for pitch and roll-related errors on point coordinates were
implemented and will be presented in Section 2.5.

2.3. Photogrammetric Data Processing: Standard Workflow

Drone images were processed using the SfM method implemented in Agisoft Metashape
(version 1.70). For producing the final data, the same “standard” workflow was imple-
mented allowing results’ comparison (Table 2). In the following, we present the standard
workflow used before presenting variations to this workflow (Section 2.4), which was
meant to assess controls on measurement quality and to validate our approach.

After importing images from all flights into a single chunk, image coordinates are
converted from initially WGS84 ellipsoid to RGF93-Lambert 93 and NGF-IGN69. Auto-
matic identification of low-quality images is performed using the “estimate image quality”
tool, whereby each image is associated to a score between 0 and 1 representing sharpness
(0 means totally blurred). Following recommendations, images with quality below 0.5 were
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not processed in order not to negatively influence image alignment. Image alignment is
carried out using the “High” accuracy setting, a reference pair preselection set to “source”,
key point (tie point) limits set to 60,000 (10,000). After initial image alignment and the
reconstruction of a sparse point cloud, photogrammetric targets’ coordinates are imported.
Each target was manually tagged in at least eight images, progressively improving model
georeferencing. To retain only the most reliable tie points, sparse point clouds were system-
atically cleaned using the “gradual selection” tool with the following parameters: minimum
image count of 3, maximum reprojection error of 0.4 pixel and maximum reconstruction
uncertainty of 5.

During photogrammetric model optimization, model georeferencing and 3D geometry
are adjusted through self-calibrating bundle block adjustment (BBA) requiring external
information. Using the standard workflow, BBA is carried out using all camera information
available (i.e., position, attitude and associated precisions provided by the drone) and
all targets as ChkPts but five (i.e., five targets used as GCPs). For all scenarios tested
(explanations below), adaptive camera model fitting was used for camera self-calibration,
allowing the complete set of calibration parameters (f, cx, cy, k1-k4, p1-p2 and b1-b2) to be
automatically adjusted given user-decided weighting of the external information provided.
Following recommendations in Ref. [43], the marker and tie point accuracy were adjusted
to match the error in pixel on marker coordinates and the RMS reprojection error (pixel) on
tie point coordinates, respectively.

For producing the final dense models, point cloud densification is carried out using
a reconstruction quality set to “High” with “aggressive” depth filtering. Using “High”
reconstruction quality setting, dense matching is applied to images resampled at half their
resolution, speeding up the process and reducing data size. With this setting, the optimum
DEM resolution (i.e., minimum grid spacing) is capped at 2 GSD, equaling 0.028 and
0.052 m at Sillon de Talbert and La Palue, respectively. It was considered sufficient for our
application since DEMs analyzed have resolutions of 0.1 m and 1 m. Before producing the
DEMs, dense point clouds were cleaned using the “Filter by confidence” tool, whereby each
model point is graded (1–255) according to how many depth maps the point in question
appears in. For this application, points with confidence between 0 and 3 were systematically
filtered. Finally, DEMs and orthophotos with a minimum planimetric resolution of 0.1 m
are created (interpolation enabled) and exported using same orthogonal grids with integer
bounding values.

2.4. Alternative Photogrammetric Processing Scenarios

To validate our selection of the standard processing parameters, different tests were
performed, which are shown in Table 2. The first test focused on image alignment accuracy
setting, which was varied from “Low” to “Highest” and encompassing “Medium” and
“High” accuracy settings, while other parameters were left unchanged. Using “High”
accuracy, image alignment is performed using original images. Using “Highest”, the
software upscales images by a factor two in each direction, while lower accuracy settings
will see image resolution decreasing incrementally by a factor two. A compound test was
performed in the case of “High” image alignment accuracy to assess the effect of disabling
the reference pair preselection, which uses image coordinates to help finding matches.

Optimum strategies during photogrammetric model optimization were assessed
through the declination of different scenarios (cf. Table 2). The Sillon de Talbert field
site, with reduced superficies and a comparatively large number of well-distributed targets,
was used as a testing ground. The first scenario (S-GCP) used all ground targets (n = 21)
as GCPs with camera information disabled during processing. This scenario is equivalent
to the classical approach relying solely on GCPs for camera calibration and model georef-
erencing. The second scenario (S-RTK-GCP) used all targets as GCPs, as well as camera
information (location and attitude), for the optimization. Other scenarios using camera
information were implemented by varying the number of GCPs used, hereafter referred
to as S-RTK, S-RTK-1GCP, S-RTK-3GCP, S-RTK-5GCP and S-RTK-9GCP, corresponding to
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using 0 (i.e., no GCPs), 1, 3, 5 and 9 GCPs, respectively. Scenarios using 1 and 3 GCPs were
replicated (differentiation is done using subscripts 1 and 2) in that targets selected as GCPs
were changed to test the effect of GCP location on model quality.

To facilitate results’ comparison for the different scenarios tested and to expedite data
processing, evaluations were performed on 1 m resolution DEMs created from the sparse
point clouds. This decision was supported by the fact that dense matching has limited
effect on the overall model georeferencing and geometry (e.g., 3D deformations that may
be present in the sparse models following model optimization), improving mainly the
representation of fine-scale features through a higher model resolution.

2.5. RTK-GNSS Data Processing

Mounting a GNSS rover onto a bicycle made for efficient topographic measurements,
but, unlike a rover set atop a pole kept static and vertical during data acquisition, measured
points’ coordinates may well be affected by errors due to pitch and roll whereby the bike is
subject to both the local relief in the direction of travel and its own instability. In order to
minimize these effects, particularly pitch-related errors, which were easier to detect, survey
points were cleaned according to (i) the confidence level with which they were obtained,
and (ii) systematic errors due to the uneven terrain topography.

Where survey points were sufficiently close to each other, point confidence was
estimated as the standard deviation of elevations within a circular window with 0.2 m
radius, which was considered a proxy of the local bed complexity. For the points evaluated,
only those with a confidence score below 0.035 m (the theoretical vertical precision of
RTK-GNSS) were retained, hence filtering less reliable points due to a locally complex bed
morphology and/or unnaturally large deviations among surrounding points.

Pitch-related errors due to the uneven terrain were estimated, assuming the bicycle fol-
lowed a straight line between two consecutive survey points, that the antenna of the GNSS
unit was vertically aligned with the real wheel center point when the bike is horizontal and
that the system was well equilibrated at all times (i.e., no roll). Under these conditions, the
bed slope in the travel direction, the pitch angle of the bicycle and that of the GNSS antenna
are same. We calculated the horizontal (dx) and vertical (dz) point displacements due to a
sloping bed using a distance between the two wheels of 1.2 m and a GNSS antenna height
of 0.6 m. With the arrangement used, horizontal errors were predominant over vertical
errors. As an indication, a 6◦ slope (equivalent to a beach gradient of 1 in 10) resulted in
horizontal and vertical errors of approximately 0.062 m and 0.007 m, respectively. Similar
to filtering by point confidence, points with pitch-related errors exceeding 0.035 m were
systematically filtered to only retain data in permissible terrain (here, terrain with forward
slopes below approximately 3◦).

2.6. Measurement Quality Evaluation

Different strategies and error metrics (Table 3) were used to evaluate measurement
quality achieved with photogrammetry. As much as possible, they were used simultane-
ously to assess results in terms of accuracy, precision and reliability [66]. While accuracy
and precision were estimated in comparison with reference data (ground truth) supposed of
higher quality, reliability represented the consistency between data obtained using different
processing parameters determined through DEMs of differences (DoDs).

Results’ accuracy, representing systematic deviations (bias) from the ground truth, and
the precision with which they were obtained, were calculated, respectively, as the mean
error (ME, Equation (1)) and the standard deviation of error (SDE, Equation (2)) between
photogrammetric models and ground targets. RMSE (Equation (3)) is also provided,
representing the global precision within results, combining both ME and SDE into a single
statistical measure (Equation (4)). Error statistics were calculated along all three dimensions
(x, y and z) and were eventually added in quadrature to produce a measure of the 3D error
(Equation (5)). For ease of use and clarity of the text, error metrics without a direction
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specifically mentioned refer to vertical error, which is of immediate interest for measuring
morphological change with DEMs.

Table 3. Error metrics used for evaluation of measurement quality.

Error Metric Formula

Mean Error (ME) ME = 1
N

N
∑

i=1
(y i − xi)

(1)

Standard Deviation of Error (SDE) SDE =

√
1
N

N
∑

i=1
(y i − xi)

2 (2)

Root-Mean Square Error (RMSE) RMSE =

√
1
N

N
∑

i=1
(y i − xi)

2 (3)

RMSE =
√

ME2+SDE2 (4)
3D Error ( 3D) 3D =

√
X

2 + Y
2 + Z

2 (5)

Mean Unsigned Error (MUE) MUE = 1
N

N
∑

i=1
|yi − xi| (6)

y is the measurement or observation, x the reference value and N the number of available comparisons. Horizontal
and vertical bars represent the average (i.e., mean) and absolute (i.e., unsigned) values, respectively. X, Y and Z
represent easting, northing and vertical (i.e., elevation) directions, respectively.

At La Palue field site only, DEM vertical accuracy and precision were also derived
through comparisons with points surveyed with the bike GNSS. This allowed for in-
dependent error evaluation at a dense network of ground truth points. For assessing
photogrammetric results, each GNSS survey point was compared with the closest DEM
grid point, given a maximum distance for comparison of 0.2 m. The latter was decided
considering comparisons with points further away would account more for the change in
the local bed topography than measurement error itself.

Finally, the availability of four repeat DEMs obtained using the same workflow for
collecting (Table 1) and processing (Section 2.3) the data enabled assessing photogrammetric
replicability at La Palue. The temporal variability in bed elevations was estimated for each
DEM cell using both the standard deviation of elevations and the maximum elevation range
between repeat surveys. These metrics were used to assess whether a surface cell (and,
hence, the underlying terrain) was stable over the survey period. We used a maximum
range of 0.035 m to distinguish stable and unstable cells (cells with elevation range above
threshold were considered unstable). To ensure a robust statistical characterization, only
cells measured across all four repeat surveys were retained. A multitemporal ground truth
DEM was formed by averaging repeat elevations over stable cells. Comparing individual
surveys with the ground truth provided information on eventual deviations from the
“average topography” of the stable zones.

3. Results

In the following, we present the results obtained at the two field sites, starting with the
breach at Sillon de Talbert. With a reduced survey area compared to La Palue and dense
ground controls, the breach at Sillon de Talbert represented an ideal testing ground for
experimenting on the minimum number of GCPs for effective photogrammetric optimiza-
tion using an RTK quadcopter. We then apply these findings to La Palue field site, and we
validate the approach using larger-scale experiments and data validation methods. The
implications of our findings and recommendations that arise from our results are discussed
in Section 4.

3.1. The Breach at Sillon de Talbert

Figure 3 presents the results of photogrammetric quality evaluation for the different
scenarios tested during model optimization. The reference DEM used for assessing the
other DEMs was produced using scenario S-RTK-GCP. This decision was based on the
consideration that using all the external information available during photogrammetric
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optimization would produce the most reliable DEM. Besides, comparing the DEMs obtained
using the other scenarios with this reference DEM enabled assessing the effect of using
camera information or not, as well as the effect of GCP number and distribution.
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Figure 3. Assessment of model optimization at Sillon de Talbert showing (a) the reference DEM
obtained with scenario S-RTK-GCP overlapped with depth contours every 0.2 m, as well as DoDs
between the reference DEM and DEMs obtained using scenario (b) S-GCP, (c) S-RTK, (d) S-RTK-
1GCP1, (e) S-RTK-1GCP2, (f) S-RTK-3GCP1, (g) S-RTK-3GCP2, (h) S-RTK-5GCP and (i) S-RTK-9GCP.
Color coding for DoDs and error at photogrammetric targets is same for all. Photogrammetric targets
used as GCPs and ChkPts are shown as triangles and circles, respectively. DEM comparisons were
performed using 1 m resolution DEMs.

Figure 3 shows that the less reliable DEMs in terms of vertical precision (SDE) are
those obtained using scenarios S-GCP and S-RTK, with respective precisions of 0.027 m and
0.029 m (~2 GSD). Not using camera information during photogrammetric optimization
(Figure 3b), the DEM quality degraded noticeably where there was no GCP (e.g., peripheral
parts of the DEM). Using only camera information (i.e., no GCPs) resulted in slightly
poorer precision, but, most importantly, the S-RTK model was affected by a mean error
of 0.37 m. This vertical bias was confirmed using ChkPts, showing ME = 0.36 m (Table 4).
Progressively adding GCPs in addition to camera information during model optimization
improved the DEM accuracy and precision (Figure 3d–i). A plateau was attained from
five GCPs, whereby the bias was approximately zero and precision reached its minimum
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at approximately 0.01 m (i.e., <1 GSD, Figure 3h,i). When one or three GCPs were used
together with camera information, the GCP position had a noticeable effect on the DEM
quality (Figure 3d–g), especially on residual bias, with variable results.

Table 4. Vertical error evaluation for the different scenarios presented in Figure 3 using ground
targets (GCPs and ChkPts) measured with RTK-GNSS. The values between brackets correspond to
GCP-based error.

(a) Reference DEM: S-RTK-GCP (b) S-GCP (c) S-RTK

ME = N.A. (0.000 m) ME = N.A. (0.000 m) ME = 0.363 m (N.A.)
SDE = N.A. (0.002 m) SDE = N.A. (0.007 m) SDE = 0.014 (N.A.)

(d) S-RTK-1GCP1 (e) S-RTK-1GCP2 (f) S-RTK-3GCP1

ME = −0.019 m (0.003 m) ME = 0.002 m (0.002 m) ME = −0.022 m (0.001 m)
SDE = 0.011 (0.000 m) SDE = 0.012 (0.000 m) SDE = 0.010 (0.001 m)

(g) S-RTK-3GCP2 (h) S-RTK-5GCP (i) S-RTK-9GCP

ME = 0.016 m (0.001 m) ME = −0.001 m (0.000 m) ME = 0.003 m (0.000 m)
SDE = 0.014 (0.001 m) SDE = 0.013 (0.002 m) SDE = 0.012 (0.002 m)

As shown in Table 4, using GCPs for error evaluation prevented detecting the vertical
registration error in the DEMs and produced optimistic precision estimates. The SDE
values estimated using GCPs were consistently lower by an order of magnitude than those
estimated at ChkPts or those derived from model comparisons with the reference DEM
(Figure 3). On the contrary, the MEs estimated using ChkPts and DEM comparisons were
very consistent with each other. The SDE calculated using ChkPts remained slightly lower,
suggesting better vertical precision.

The photogrammetric horizontal error estimated using GCPs and ChkPts is presented
in Table 5 for the same DEMs. The results show larger horizontal error compared to
vertical error for all the scenarios tested, with a ratio between horizontal and vertical error
generally around 3:1. Similar to previous observations, adding GCPs in addition to camera
information progressively improved the model quality mainly by reducing the horizontal
bias to negligible levels (<0.01 m) from 5 GCPs, while the measurement precision remained
relatively unaffected. Overall, the photogrammetric errors amounted to global precisions
(RMSE3D) of approximately 0.05 m under optimum configurations.

Table 5. Planimetric error (X easting and Y northing) evaluation for the different scenarios presented
in Figure 3 using ground targets (GCPs and ChkPts) measured with RTK-GNSS. The values between
brackets correspond to GCP-based error.

(a) Reference DEM: S-RTK-GCP (b) S-GCP (c) S-RTK

MEX = N.A. (−0.001 m) MEX = N.A. (0.000 m) MEX = −0.022 m (N.A.)
SDEX = N.A. (0.027 m) SDEX = N.A. (0.026 m) SDEX = 0.037 m (N.A.)
MEY = N.A. (0.001 m) MEY = N.A. (0.000 m) MEY = 0.039 m (N.A.)
SDEY = N.A. (0.029 m) SDEY = N.A. (0.027 m) SDEY = 0.053 m (N.A.)

(d) S-RTK-1GCP1 (e) S-RTK-1GCP2 (f) S-RTK-3GCP1

MEX = -0.025 m (0.025 m) MEX = −0.019 m (−0.029 m) MEX = −0.021 m (−0.013 m)
SDEX = 0.035 m (0.000 m) SDEX = 0.038 m (0.000 m) SDEX = 0.037 m (0.036 m)
MEY = 0.036 m (0.019 m) MEY = 0.037 m (−0.014 m) MEY = 0.044 m (−0.007 m)
SDEY = 0.053 m (0.000 m) SDEY = 0.049 m (0.000 m) SDEY = 0.048 m (0.028 m)

(g) S-RTK-3GCP2 (h) S-RTK-5GCP (i) S-RTK-9GCP

MEX = −0.019 m (0.003 m) MEX = −0.009 m (0.003 m) MEX = 0.003 m (−0.003 m)
SDEX = 0.037 m (0.022 m) SDEX = 0.039 m (0.018 m) SDEX = 0.042 m (0.021 m)
MEY = 0.026 m (0.005 m) MEY = 0.004 m (0.009 m) MEY = −0.009 m (0.004 m)
SDEY = 0.047 m (0.010 m) SDEY = 0.047 m (0.016 m) SDEY = 0.050 m (0.014 m)
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3.2. La Palue Field Site

Figure 4 presents the results of the topographic measurements using RTK-GNSS
mounted on a bike. The raw data counted 2036 survey points separated on average by
approximately 2.5 m (sigma = 0.75 m), showing that the data acquisition was carried out at
an average speed of 9 km/h (2.5 m/s). Not shown in the figures, comparing the survey
points with immediate neighbors (maximum distance of 0.2 m) enabled the point confidence
to be evaluated at 39 locations, indicating a mean and maximum point confidence of 0.007 m
and 0.015 m, respectively. As one may expect, the pitch-related errors due to the uneven
terrain affecting the measurements were larger at the turning points (e.g., beach ends) since
the bicycle was then moving up or down the beach (i.e., cross-shore), and where the local
topography was suddenly changing (Figure 4b,c). The maximum forward slope recorded
was just below 4◦, traducing to maximum horizontal (dx) and vertical (dz) pitch-related
errors of 0.04 m and 0.01 m, respectively. Filtering the data based on pitch-related errors
(dx) resulted in the rejection of 158 points. The final number of survey points retained for
comparison with photogrammetry thus amounted to 1878 (Figure 4c).
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Figure 4. Verification of survey points obtained using a bike-mounted RTK-GNSS at La Palue, with
(a) the chronology of point acquisition; (b) pitch-related horizontal error (dx), where marker size is
proportional to error magnitude (×1000 magnification factor) and (c) the elevation of survey points
retained serving as ground truths for photogrammetric evaluation.
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Changing the accuracy setting during photogrammetric image alignment had major
repercussions on the data processing time, as well as on the measurement density and
quality (Table 6 and Figure 5). The image alignment time (1407 images) varied by two
orders of magnitude, from 27 min (“Low”), through 43 min (“Medium”) and 105 min
(“High1” and “Highest”), to an outright maximum of 2721 min (~45 h, “High2”) when
“source” pair preselection was unused. The number of tie points after the alignment was
the maximum using the “Highest” accuracy setting, followed by “High1” and “High2”,
with ~1:5 variations overall (from 550,000 to 2,500,000 points). However, after the automatic
filtering of less reliable tie points, the number of tie points decreased from a maximum of
~435,000 points with “High1”, through “Medium”, “High2”, “Highest” and, finally, “Low”
accuracy settings with ~80,000 points (again, 1:5 variations overall). The comparison of
the photogrammetric models obtained (DEMs at 1 m resolution) with the ground truths
provided by RTK-GNSS shows a similar tendency, with DEM quality (Table 6) in decreasing
order for “High1” (SDE = 0.042 m or 1.6 GSD), “High2”, “Medium”, “Highest” and, finally,
“Low” (SDE = 0.125 m or 5 GSD) alignment accuracy with 1:3 variations overall. The
photogrammetric deviations from the ground truth were essentially to be related to the
measurement precision since no significant bias (i.e., ME ~0) was detected in the results.
However, Figure 5 shows that the systematic errors, although of small magnitude, may
still be present in the DEMs, taking the form of undulations. The color grading shows an
error magnitude of ±0.04 m for the better-quality models (“High1”, “High2”, “Medium”),
eventually exceeding 0.1 m at some locations when the “Highest” and “Low” accuracy
settings were used. Using ground targets (GCPs and ChkPts) for error evaluation produced
error statistics with no appreciable differences between the scenarios tested (differences
were found to be non-significant at p = 0.05), and, for this reason, they are not presented.

Table 6. Effect of changing the image alignment accuracy setting during sparse DEM reconstruction
at La Palue field site in terms of processing time, number of tie points (before and after filtering) and
measurement error. Deviations between photogrammetric models (1 m resolution) and GNSS-RTK
survey points, from which vertical error statistics are extracted, are presented in Figure 5.

(a) Low (b) Medium (c) High1 (d) High2 (e) Highest

Alignment time 27 min 43 min 105 min 2721 min 105 min

Initial tie points 567,716 1,918,509 2,102,195 1,967,440 2,482,173

Final tie points 79,909 412,200 435,657 402,828 320,413

Error statistics

ME = 0.000 m ME = −0.001 m ME = 0.000 m ME = −0.002 m ME = −0.004 m
MUE = 0.096 m MUE = 0.038 m MUE = 0.031 m MUE = 0.033 m MUE = 0.045 m
SDE = 0.125 m SDE = 0.049 m SDE = 0.042 m SDE = 0.044 m SDE = 0.062 m

RMSE = 0.125 m RMSE = 0.049 m RMSE = 0.042 m RMSE = 0.044 m RMSE = 0.062 m
Max = 0.368 m Max = 0.145 m Max = 0.117 m Max = 0.144 m Max = 0.213 m

In comparison to previous tests, changing the depth filtering setting during dense
model reconstruction had lesser effects on the DEM quality. Using RTK-GNSS for ground
truthing produced nearly identical error statistics for all the settings, shown by SDE = 0.033 m
for no filtering and “Mild” and SDE = 0.032 m for the “Moderate” and “Aggressive” settings,
respectively. For this reason, Table 7 presents errors evaluated as DEM comparisons
using the case of no filtering as a reference. Deviations from this reference DEM were
essentially found at steep sections of the study site (e.g., cliff faces), resulting in potentially
large elevation deviations over small spatial extents (indicated by the neat difference
between MUE and SDE). Elevation deviations increased (in magnitude and occurrence)
with increasing depth filtering, until a plateau was reached (“Moderate” and “Aggressive”
have identical error statistics).
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Figure 5. Evaluation of image alignment accuracy setting during sparse DEM reconstruction showing
vertical errors at 177 RTK-GNSS survey points for (a) low, (b) medium, (c,d) high and (e) highest
alignment accuracy setting. For all scenarios tested, “source” reference pair preselection was used,
except for panel (d). Photogrammetric targets used as GCPs and ChkPts are shown as triangles and
circles, respectively. Error evaluation was performed using 1 m resolution DEMs.

Table 7. Evaluation of depth filtering during dense DEM reconstruction at La Palue field site. Except
for the reference DEM using no depth filtering, for which errors are estimated in comparison to 1381
RTK-GNSS survey points, vertical error statistics are the result of intercomparing DEMs with the
reference DEM. All DEMs evaluated were reconstructed using “High” image alignment accuracy
(Figure 5c) and “High” reconstruction quality for sparse and dense DEM reconstructions, respectively
(cf. explanations in the text). Evaluations were performed using 0.1 m resolution DEMs.

(a) Reference DEM (b) Mild (c) Moderate (d) Aggressive

ME = 0.001 m ME = 0.000 m ME = −0.001 m ME = −0.001 m
MUE = 0.027 m MUE = 0.003 m MUE = 0.005 m MUE = 0.005 m
SDE = 0.033 m SDE = 0.072 m SDE = 0.084 m SDE = 0.084 m

RMSE = 0.033 m RMSE = 0.072 m RMSE = 0.084 m RMSE = 0.084 m
Maximum = 0.186 m Maximum = 76.23 m Maximum = 77.33 m Maximum = 77.33 m

Figure 6 presents the DEM obtained at La Palue using the standard workflow designed
for this study (Table 2) and produced on a 0.1 m grid. The measured beach topography
shows marked 3D morphologies, particularly on the northern side of Kerdra point and
at the seaward DEM boundary, with numerous channels incised in the sand and humps
and hollows representing sand accumulations and depressions (Figure 6a). The smaller-
scale topography, which is apparent in the orthophoto and is suggested by uneven and
rugged elevation contours, is somehow subdued by the general topography when viewed
at this scale. The fine grid spacing was advantageous to allow comparisons at a large
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number of RTK-GNSS survey points (1381 points). The photogrammetric errors (Figure 6b)
show a similar spatial organization with the ones identified previously using 1 m DEMs
reconstructed from sparse point clouds (Figure 5). DEM precision using the standard
workflow was characterized by SDE = 0.032 m (i.e., 1.2 GSD, Figure 6c,d).
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Figure 6. Quality assessment of the 0.1 m resolution photogrammetric DEM obtained using the
standard workflow. (a) DEM overlapped with depth contours every 0.2 m; (b) vertical error at
photogrammetric targets (GCPs and ChkPts) and 1381 RTK-GNSS survey points; (c) probability distri-
bution function (PDF) of pitch-related error (dx) binned at 0.005 m and (d) PDF of photogrammetric
vertical error in comparison to RTK-GNSS survey points binned at 0.01 m.

Four repeat photogrammetric surveys carried out between September 2020 and April
2021 are compared in Figure 7. Using the range and standard deviation of repeat bed
elevations, representing the temporal variability in the elevation for each surface cell,
shows that large portions of the back beach (i.e., dune and cliff tops), as well as rock
deposits and outcrops, can be considered stable over the 7-month period during which
the DEMs were obtained (here defined as cells with an elevation range between the four
surveys below 0.035 m). Filtering the unstable surface cells left 587,105 invariant cells
at a horizontal resolution of 0.1 m, and characterized by an overall (i.e., averaged over
all the stable cells) range and standard deviation of repeat bed elevations of 0.025 m and
0.011 m, respectively. Averaging the repeat elevations over the stable cells of the DEM
produced a multi-temporal ground truth backing the entire beach over all the sides except
seaward, and with elevations spanning over 50 m (Figure 7d). The comparison of the
17 September 2020 survey with the ground truth (Figure 7e) suggests centimeter-scale
deformations, which may echo deformations previously identified using RTK-GNSS survey
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points (Figures 5 and 6). The quantitative comparison shows ME and SDE of ~10−3 m and
0.01 m, respectively.
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retain only supposedly stable cells (n = 587,105 cells); (d) resulting ground truth elevations over stable
cells and (e) comparison of 17 September 2020 survey with the ground truth.

Figure 8 presents the first applications of very-high-resolution coastal monitoring at the
La Palue field site, used here for beachface topographic complexity detection and mapping.
Three zones are analyzed in more detail, corresponding to regions of return flows, creating
narrow channels incising sand superimposed with complex small-scale topographies, such
as (mega)ripples and hummocky patterns of different forms and dimensions. For detecting
submeter bedforms, the 0.1 m resolution DEM was detrended from metric topography by
subtracting the 1 m resolution DEM. Doing so left only the small-scale topographies not
accounted for in the DEMs with resolutions of 1 m or above (Figure 8b).

The qualitative analysis of the orthophotos and DEMs suggests that the approach
was suitable for characterizing sub-metric beach topography, creating realistic maps of the
bedform arrangement at the beach scale (cf. Figure 8a,b). The submeter-scale topography
is most evident at steep sections of the beach, such as seaward of the berm and where there
is a sand-cobble transition, but is otherwise widely spread. It includes large patches of
ripples and megaripples, channels of varied dimensions, and zones of water resurgence.
Quantitatively, the net volume embodied in the sub-metric topography amounted to
~6000 m3, which is equivalent to a layer of sand of 0.011 m over the entire beach.
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Figure 8. Application of RTK quadcopter and SfM photogrammetry for very-high-resolution mea-
surement of topographic roughness and bedform mapping at the beach-scale at La Palue field site.
(a) Orthophoto and the different zones investigated in panels (c–h); (b) 0.1 m resolution DEM de-
trended from metric topography (cf. explanation in the text); (c–h) 0.1 m resolution orthophotos and
detrended DEMs cropped to the areas of interest. Detrended elevations below 0.02 m are not shown
to help with figure comprehension. The colorbar is same for all DEMs.

4. Discussion and Conclusions

This study has tested the possibility of using SfM photogrammetry augmented with
an RTK quadcopter for monitoring coastal topographic complexity at the beach-scale. The
survey method had to respond to both resolution and time constraints, with final DEM
resolutions of 0.1 m for a realistic representation of the topo-morphological features from
submeter dimensions and a survey completed in two hours around low tide to cover
the intertidal zone. The method implemented had to achieve effective measurements in
a challenging environment characterized, for instance, by large topographic variations,
differences in bed cover, such as rough surfaces alternating with textureless and reflective
surfaces, such as sand, and the presence of water as thin patches or deeper puddles and
channels, which can all represent important difficulties for photogrammetry.

To evaluate the effective measurement resolutions and precisions achieved by the
survey method, and, hence, to be able to identify suitable protocols for collecting and
processing the data that surpassed the above constraints, purpose-built SfM workflows
were applied to aerial images collected at two coastal field sites (La Palue and the breach at
Sillon de Talbert) and tested against different ground truths. Of interest for this application,
because of their impact on the data collection time and DEM quality, we specifically assessed
the effect of image resolution and using GCPs in addition to camera information during
BBA. As much as possible, the error evaluations were diversified to enhance the spatial
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coverage and the level of error detection afforded and, hence, to increase the chance of
obtaining reliable error statistics.

Ideally, complete DEM comparisons should be undertaken to fully characterize the
error magnitude and spatial distribution as it is now well-known that photogrammetric
measurements can be affected by complex 3D deformations (e.g., the dome effect), which
may remain undetected when using sparse ground controls [67,68]. In the absence of
suitable ground truth at this scale, we analyzed the DoDs for different processing scenarios.
This strategy proved effective for assessing the DEM reliability due to variations in the GCP
number and distribution, showing that, in addition to aerial controls, at least five GCPs were
necessary at Sillon de Talbert to achieve optimum quality that minimized measurement
bias and random errors. Under this configuration, the global vertical precision (RMSE)
improved two-fold in comparison to a processing workflow using all the targets as GCPs
(n = 21) but no aerial controls. The benefit resulting from using RTK image positioning
resided principally in an improved 3D geometry of the model, particularly at zones with
limited to no ground controls. Using aerial controls only (akin to direct georeferencing), our
results showed that the photogrammetric results were affected by vertical bias, explaining
most of the error. The presence of vertical bias in models obtained using DG has been
reported before and was explained by inaccurate IOP calibration (e.g., Refs. [49,52,56,69,70]).
Likewise, our results showed that the addition of a single GCP was enough to reduce the
vertical bias to the GSD level together with RMSE ~2 GSD, but the addition of other GCPs
during BBA further improved the photogrammetric quality until a plateau was attained
from 5 GCPs, with the RMSE mostly below 1 GSD.

Using ChkPts measured with RTK-GNSS enabled the assessment of both the horizontal
and vertical error in RTK-assisted photogrammetry, showing a similar tendency to the
DoD analysis, whereby 5 GCPs were necessary to achieve optimum accuracy and precision.
Under this configuration, the global 3D precision (RMSE) remained below 0.05 m (3.6 GSD).
We observed larger horizontal error over vertical error (ratios as large as 1:4), which is
contrary to most previous research, where, generally, horizontal error is the lower bound
(e.g., Refs. [46,56]). A reason may be the use of suboptimal photogrammetric targets for
the present study. The targets we used had no marks at the center point where RTK-
GNSS measurement is carried out, meaning that the target geolocation in the images can
be prone to large horizontal uncertainties. The targets have been upgraded recently to
include a chequerboard-like pattern, which has been recommended for pinpoint accuracy
in RTK-GNSS measures and image positioning [71]. Nevertheless, we showed that error
evaluation using ground targets can produce optimistic estimates, particularly when the
error is evaluated at GCPs (used for photogrammetric processing). A difference in the error
estimates between GCPs and ChkPts was also identified in Sanz-Ablanedo et al. [46], where
it was suggested using a magnification coefficient to artificially inflate the error measures
in the absence of independent ground controls (i.e., ChkPts). Although it may prove useful
for guessing the precision within results (SDE), we showed, however, that using GCPs
failed at detecting bias in the measurements, thus reinforcing that, ideally, numerous and
well-distributed independent ChkPts should be used to characterize the DEM error.

Larger-scale experiments were conducted at La Palue field site to validate the work-
flow. Three operators were necessary to carry out the field operations, which included
GNSS measurements of ~20 photogrammetric targets distributed over the whole beach
(~2500 × 400 m2), using the bike-mounted GNSS to acquire ground truth data near the
water line, performing all the flights, for finally removing the targets, all within a two-hour
window around low tide. Five “permanent targets” were prepared before the September
survey, consisting of red-painted crosses. They were created over flat and stable areas of the
study site, all man-made and localized above the highest high tides so as not to introduce
error in photogrammetry, which could otherwise arise due to imprecise identification in
images or terrain changes. This means, however, that the spatial distribution of these
permanent targets was limited to the landward side of the site.
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Between 177 and 1381 RTK-GNSS survey points were used to assess the photogram-
metric reconstruction for different processing scenarios (e.g., varying image resolution)
both before and after model densification. In comparison to Sillon de Talbert, the best-case
vertical precision achieved at La Palue was slightly worse, which may be related to an
increased flying height and the different error evaluation methods used. Larger DEM error
was measured at peripheral zones where the effective overlap index (i.e., apparition in
images) is reduced, which is consistent with previous observations (e.g., Refs. [44,46,72]).
Although of a small magnitude, the effect was increasing measurement noise and po-
tentially centimeter-scale deformations of the photogrammetric model. Enlarging the
survey area, especially on the seaward side (e.g., by adding an additional alongshore
flight track), could strengthen the photogrammetric block and reduce the error at these
distant locations. Regardless of the model densification, the DEM errors showed a similar
pattern (Figure 5), reinforcing the fact that the DEM shape is essentially the result of image
alignment and photogrammetric optimization taking place before dense point matching.
The image resolution used for initial tie point detection and 3D reconstruction played a
large role in mitigating or inflating the error, with a ratio of 1:3 depending on the setting.
The best results were obtained using “High” alignment accuracy, followed by “Medium”
and “Highest”, with the same order also observed in terms of the number of tie points
retained. This suggests that the alignment accuracy setting is not fully representative of
the tie point quality (e.g., density and precision). With our findings, we also suggest using
RTK image positions (pair pre-selection) for speeding up image alignment, with two orders
of magnitude improvement together with enhanced tie point quantity and quality. The
final evaluation using four repeat surveys demonstrated a very good reproducibility of
the complete workflow for DEM collection, shown by a large number of surface cells over
hypothetical stable zones (~5870 m2) characterized by a range between repeat elevations
below 3.5 cm and a standard deviation of 1.1 cm on average.

Using the measurement workflow enabled characterizing the submeter beach topo-
graphic roughness, creating realistic maps of bedform arrangement at the beach scale,
whose interpretation is eased further through the provision of very-high-resolution or-
thophotos (0.1 m). This small-scale topographic complexity (e.g., patches of ripples and
megaripples) was found to be widespread and represented a large volume of sediment not
represented in the DEMs with metric resolutions and, hence, not accounted for in typical
beach surveys. Through pursuing surveys, follow-up studies will be looking at bedform
classification and interpreting the spatial patterns observed and their temporal evolution in
relation to driving hydrodynamic processes. For dynamic environments such as beaches,
this study further exemplified that photogrammetry has the potential to help characterizing
morphological changes across a wide range of spatial and temporal scales.
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