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Time-domain simulation of the acoustic nonlinear response
of acoustic liners at high sound pressure level.

Ilyes Moufid, Rémi Roncen, Denis Matignon, Estelle Piot

Abstract

This paper focuses on the numerical modeling of the acoustic response of perforated-plate liners at high
sound pressure levels in the time domain. In order to do so, a porous-based description of the perforated plate
is used to represent the visco-thermal processes occurring inside the perforated plate. It is done through the use
of the equivalent fluid model (EFM) containing two irrational transfer functions described herein by a generic
model covering the Johnson Champoux Allard Pride Lafarge model (JCAPL), the JCAL and JCA models. The
nonlinear phenomena occurring at high sound pressure levels are taken into account by using the Forchheimer’s
correction in the time-domain EFM, introducing a quadratic nonlinearity in the equations. The formulation of
the nonlinear EFM equations in the time domain leads to an augmented system for which a proof of stability
is given. From the nonlinear EFM, an approximate model is built for numerical simulations with a multipole
approximation of the transfer functions. Sufficient stability conditions are provided for the nonlinear multipole-
based approximate EFM. A numerical scheme using a discontinuous Galerkin method is developed to validate
the model against experiments with perforated-plate liners.

1 Introduction

The mitigation of aircraft engine noise is currently done through the use of acoustic liners [Jones et al., 2022].
The most classical geometry is a single-degree-of-freedom liner (SDOF), which consists in a honeycomb core placed
between a perforated plate and a rigid backplate. The perforated plate is the main source of the acoustic-energy
dissipation which comes from visco-thermal friction occurring in the vicinity of the perforation of the plate, and
from vortex shedding appearing at high sound pressure level (SPL) [Ing̊ard and Labate, 1950, Melling, 1973]. The
depth of the cavities characterizes the range of frequencies where the sound attenuation is maximal. These liners
are known to be very efficient in a narrow range of frequencies, tailored to meet the noise signature of the treated
system [Girvin, 2009]. Moreover, the acoustic behavior of liners depends nonlinearily on the SPL, even at moderate
SPL values where the laws of linear acoustics can still be considered valid, far from the liner.

In order to find materials which produce sound attenuation on a larger range of frequencies, more involved
geometries of sound absorbing materials are studied experimentally and in numerical simulations. In this paper,
the focus is on time-domain numerical simulations, which are more suited to evaluate broadband signals, to account
for moving acoustic sources, or to consider nonlinear phenomena stemming from the liner’s response.

Basic examples of other studied absorbent materials are double degree of freedom liners [Gautam et al., 2022],
perforated plates backed by a porous medium [Tayong et al., 2013, Peng, 2018] or porous materials alone [Cao et al.,
2018]. The latter is usually a two-phase medium with a solid skeleton filled by a fluid (air herein) by means of pores
of relatively small size. Consequently a wide variety of media can be considered as a porous medium, including
perforated plates [Atalla and Sgard, 2007]. The approach used to model the sound absorption of material in the
time domain generally depends on the type of material: surface impedance Z as a boundary condition for liners,
volume modeling for porous media.

On the one hand, numerical investigations used to simulate the acoustic response of liners under broadband
noise are classically based on time-domain impedance boundary conditions (TDIBC) [Tam and Auriault, 1996,
Fung and Ju, 2001]. This approach relies on the assumption that the material is locally reacting, meaning that
the transmitted waves propagate only in the normal direction within the material. The numerical impedance
approximations currently used in the literature are known as multipole models (MM) [Reymen et al., 2006, Li
et al., 2012]. They are defined by a discrete sum of elementary first or second-order low-pass systems, also called
IIR filter in digital signal processing [Alexander and Williams, 2017], and have been shown to have two important
benefits: straightforward verification of admissibility conditions [Rienstra, 2006, Dragna and Blanc-Benon, 2014]
and versatility. An MM involves convolution products in the time domain, which can be readily computed by means
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of additional first-order ordinary differential equations (ODE) using the recursive convolution technique [Luebbers
et al., 1990]. This technique was already present in previous works [Cockburn, 1985, Carcione et al., 1988] and
was more recently called the auxiliary differential equation (ADE) method [Dragna et al., 2015]. It results in an
augmented system which can be solved by classical time-integration schemes, without requiring storage of previous
time-step solutions.

On the other hand, the equivalent fluid model (EFM) [Lafarge, 2009] is generally used to describe the macroscopic
acoustic behavior of rigid porous media for aeronautic applications1 [Attenborough et al., 2011]. In this framework,
porous media are equivalent, in terms of acoustic behavior, to that of a fluid with a frequency-dependent effective
density and a frequency-dependent effective compressibility. The latter two are irrational transfer functions defined
by means of the dynamic tortuosity α and the normalized dynamic compressibility β, respectively. Both functions
are known in the low (LF) and high (HF) frequency limits when additional assumptions are made on the pore shape
[Champoux and Allard, 1991, Darcy, 1856, Johnson et al., 1987, Lafarge, 1993]. However, no exact definition can be
retrieved at all frequencies except in the simplest cases. Several works following different approaches have resulted
in various semi-phenomenological models predicting α and β on the whole frequency range, such as the Höroshenkov
model [Horoshenkov et al., 2019, 2020], the Wilson model [Wilson, 1993, 1997], or the Johnson Champoux Allard
Pride Lafarge (JCAPL) model [Champoux and Allard, 1991, Johnson et al., 1987, Lafarge, 1993, Lafarge et al., 1997,
Pride et al., 1993]. As for the impedance of liners, they are usually approximated by MM in numerical simulations
[Zhao et al., 2018, Alomar et al., 2021], and a recent study [Moufid et al., 2022] showed that real-parameter multipole
approximations of α and β are well suited for the aforementioned models related to conventional porous material,
as opposed to metamaterial which can have negative material properties on some frequency ranges [Craster and
Guenneau, 2013, Bellis and Lombard, 2019].

In that respect, a liner is modeled in time-domain numerical simulations by TDIBC either by a direct approxima-
tion of its related surface impedance Z computed by means of experimental data or using a porous-based definition
of the perforated plate [Atalla and Sgard, 2007]. A volume-based modeling of perforated plate using the EFM in
the linear regime (i.e. at low SPL) induces a higher numerical cost compared to a TDIBC, due to the meshing of
the material. Hence, there was no motivation to explore this volume-based approach for classical locally-reacting
liners.

At high SPL, the impedance of absorbent materials was suggested to have an additional term depending on the
square of the normal velocity:

Znl(u · n) = ρ0C
l
nl |u · n|u · n,

with n the outward unit normal to the surface of the liner, u the particle velocity, ρ0 the density and a nonlinear
coefficient C l

nl. The latter has several definitions, depending on a vena contracta coefficient [Cummings, 1986] or
the discharge coefficient [Melling, 1973], and all definitions depending on the porosity ϕ of the plate.

In porous media, it is known that the Darcy law [Darcy, 1856] characterizing the static resistivity σ0 of the
medium has to be replaced by the total resistivity σ at high Reynolds number (defined according to the microge-
ometry of porous media) because the porous-medium resistivity varies with the amplitude of the velocity [McIntosh
and Lambert, 1990, Aurégan and Pachebat, 1999]. Two regimes can be distinguished: a low-Reynolds regime where
the increase of the resistivity is quadratic in the amplitude of the velocity, and a high-Reynolds regime with a linear
dependency following the Forchheimer’s law [Forchheimer, 1901]:

σ = σ0 (1 + Cp
nl U) ,

where U = ∥u∥ represents the amplitude of the velocity u and Cp
nl is related to the Forchheimer’s coefficient.

This nonlinear coefficient Cp
nl was first measured [Umnova et al., 2003], then deduced by a method similar to

matched asymptotic expansions [Wang et al., 2009], and more recently straightforwardly defined with an analytical
expression depending on the porosity and the discharge coefficient [Laly et al., 2018]. The porous-based description
of perforated plates coupled with the Forchheimer’s correction of the resistivity was used by Diab et al. [2022]
to define a time-domain admittance boundary condition (TDABC) modeling the acoustic behavior of liners by a
surface impedance. This approach showed a good prediction from numerical simulations of the acoustic behavior
of liners under high SPL.

Another approach not yet explored to model the nonlinear acoustic behavior of perforated-plate liners is to use
a porous-based acoustic description of perforated plate with an appropriate time-domain EFM, i.e. a volume-based
modeling of perforated plates. It would be beneficial to the study of extended-reacting liner and modeling more

1As opposed to the Biot model [Biot, 1956a,b] used for example in biomechanics and geophysics for poroelastic materials where the
solid phase is in motion.
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complex sound absorption materials with porous media coupled with perforated plates for example. Linear time-
domain EFM giving good prediction of the acoustic behavior of porous media [Alomar et al., 2021, Moufid et al.,
2022], the objective of the present paper is to extend this approach to predict the acoustic behavior of perforated
plate liners at high SPL in the Forchheimer regime. To that end, the starting point for this study is the time-domain
EFM presented in [Moufid et al., 2022] based on oscillatory-diffusive (OD) representation [Hélie and Matignon, 2006,
Monteghetti et al., 2016] used to describe the two irrational transfer functions α and β in the time domain.

In the present work, a brief description of the linear EFM based on OD representations of α and β [Moufid
et al., 2022] is first given in Section 2. It is followed by a description of the proposed nonlinear EFM with the
investigation of its well-posedness in Section 3. Then in Section 4, a multipole approximation of α and β is built
to approximate the nonlinear EFM using the ADE method, as done in [Blanc et al., 2014, Alomar et al., 2019,
Xie et al., 2019]. Next, the validity and the efficiency of the proposed approach is demonstrated numerically in
Section 6, 7 and 8, with a Discontinuous Galerkin (DG) finite element method combined with a Runge-Kutta (RK)
time scheme. Finally, a conclusion is drawn in Section 9.

2 Generic equivalent fluid model

The frequency-dependent equations controlling the acoustic behavior of a rigid porous material are expressed in the
Laplace domain: {

ρ0 α(s) sû = −∇∇∇p̂ ,

χ0 β(s) sp̂ = −∇∇∇ · û,
(1a)

(1b)

where ĥ is the one-sided Laplace transform of a locally integrable function h with finite exponential growth, i.e. h ∈
L1
loc([0,∞)) with |h(t)| < A eσht, defined as ĥ(s) :=

∫∞
0
h(t) e−stdt in the right half-plane ℜ(s) > σh, with σh

the convergence abcissa. The macroscopic fluid velocity u(t,x) and the macroscopic acoustic pressure p(t,x) are
obtained by averaging the microscopic velocity field and microscopic pressure field over a representative elementary
volume [Lafarge, 2009], ρ0 is the fluid density and χ0 is the adiabatic compressibility.

Different models describing α and β can be found in the literature. Herein, the generic model (2) introduced in
[Moufid et al., 2022] is used, covering the JCAPL, JCAL and JCA models.

αg(s) = α∞

1 + M

s
+N

√
1 +

s

L
− 1

s

 , (2a)

βg(s) = γ − γ − 1

1 +
M ′

s
+N ′

√
1 +

s

L′ − 1

s

, (2b)

with the two physical parameters: the high-frequency limit of the tortuosity α∞ and the heat capacity ratio γ.
The model parameters M , N , L, M ′, N ′ and L′ are defined in Table 1 and depend on the kinematic viscosity ν,
the porosity ϕ, the static viscous permeability k0 (σ0 = ρ0ν/k0 is the static resistivity), the characteristic viscous
length Λ, the static viscous tortuosity α0, the static thermal permeability k′0, the characteristic thermal length Λ′,
the static thermal tortuosity α′

0 and the Prandtl number Pr. Note that the second term in the brackets in (2a),
with M = ϕσ0/ρ0α∞, is related to Darcy’s law.

Table 1: Model parameters of the generic model from Moufid et al. [2022] describing the JCA, JCAL and JCAPL models.

Model L M N L′ M ′ N ′

JCA νϕ2Λ2/4k20α
2
∞ νϕ/k0α∞ νϕ/k0α∞ 16ν/Λ′2Pr 8ν/Λ′2Pr 8ν/Λ′2Pr

JCAL νϕ2Λ2/4k20α
2
∞ νϕ/k0α∞ νϕ/k0α∞ νϕ2Λ′2/4k′0

2
Pr νϕ/k′0Pr νϕ/k′0Pr

JCAPL ν/Λ2
(
α0

α∞
− 1
)2

νϕ/k0α∞ 2ν/Λ2
(
α0

α∞
− 1
)

ν/Λ′2 (α′
0 − 1)

2
Pr νϕ/k′0Pr 2ν/Λ′2 (α′

0 − 1)Pr
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It was shown in Moufid et al. [2022] that the dynamic tortuosity (2a) admits the OD representation

αg(s) = α∞

[
1 +

M

s
+N

∫ ∞

L

µg(ξ)

s+ ξ
dξ

]
, (3a)

µg(ξ) :=
1

π

√
ξ

L
− 1

ξ
, (3b)

where µg is called the diffusive weight of the diffusive part
∫∞
L
µg(ξ)/(s+ ξ) dξ of the transfer function αg, and the

normalized dynamic compressibility (2a) admits the OD representation

βg(s) = 1 + (γ − 1)

[
r0

s− s0
+N ′

∫ ∞

L′

νg(ξ)

s+ ξ
dξ

]
, (4a)

νg(ξ) :=
1

π

ξ

√
ξ

L′ − 1

(ξ −M ′ +N ′)2 +N ′2
(
ξ

L′ − 1

) , (4b)

where νg is the diffusive weight of the diffusive part
∫∞
L′ νg(ξ)/(s+ ξ) dξ of the transfer function βg and an isolated

term r0/(s− s0) exists if and only if M ′ −N ′ − L′ < 0. In this latter case,

s0 := L′ (λ20 − 1
)
< 0, (5)

is a negative pole of βg with an associated positive residue

r0 := 2L′λ0
M ′ +N ′(λ0 − 1)

2L′λ0 +N ′ > 0, (6)

where the parameter λ0 is defined as

λ0 :=
−N ′ +

√
N ′2 − 4L′(M ′ −N ′ − L′)

2L′ ∈ (0, 1). (7)

On the contrary; if M ′ −N ′ − L′ > 0, βg has no pole and r0 is taken null.

Before applying the inverse Laplace transform on the linear EFM (1) in order to have a time-domain EFM, two
diffusive variables are introduced [Haddar and Matignon, 2008, Lombard and Matignon, 2016]:

φ̂φφ(ξ) := û/(s+ ξ), (8a)

ψ̂(ξ) := p̂/(s+ ξ). (8b)

A rearrangement of the latter two definitions gives, respectively, sφ̂φφ(ξ) = −ξφ̂φφ(ξ)+û, and sψ̂(ξ) = ξψ̂(ξ)+ p̂. Hence,
the convolution products appearing in the time-domain EFM, when expressed with the generic model (2) can be
computed by means of additional ordinary differential equations (ODE):

∂tu(t,x) +M u(t,x) +N

∫ ∞

L

µg(ξ) ∂tφφφ(ξ) dξ = − 1

ρ0 α∞
∇∇∇p(t,x),

∂tp(t,x) + (γ − 1)

[
r0 ∂tψ(−s0) +N ′

∫ ∞

L′
νg(ξ) ∂tψ(ξ) dξ

]
= − 1

χ0
∇∇∇ · u(t,x),

∂tφφφ(ξ) = −ξ φφφ(ξ) + u(t,x),

∂tψ(ξ) = −ξ ψ(ξ) + p(t,x).

(9a)

(9b)

(9c)

(9d)

The initial conditions of the diffusive variables are set non-null [Lombard and Matignon, 2016]:ϕϕϕ(ξ; 0,x) = u(0,x)/ξ,

ψ(ξ; 0,x) = p(0,x)/ξ,

(10a)

(10b)

4



in order to keep a finite problem at t = 0. The proof of the well-posedness of the time-domain EFM (9) with the
initial conditions (10) was given in [Moufid et al., 2022]. In the latter, a positive-definite global energy functional

Elin(t) := Em(t) + Ediff(t), (11)

was defined by summing the classical mechanical energy Em with an energy Ediff defined for the diffusive vari-
ables. The global energy El was proven to decrease over time for classical porous media when there is no external
contribution. More details about El are gathered in Appendix A.

This Section 2 presented the linear time-domain EFM based on OD representations of α and β for the JCA, JCAL
and JCAPL models. The two irrational transfer functions expressed with the Wilson model and the Horoshenkov
model also admit an OD representation, given in [Moufid et al., 2022]. Therefore, the same methodology can be
used to verify the well-posedness of the EFM expressed with these models.

The next section focuses on the extension of the model (9) to take into account the nonlinear phenomena at
high SPL by using the Forchheimer’s correction.

3 Nonlinear generic equivalent fluid model

In the linear EFM, the resistivity σ0 considered in the dynamic tortuosity α is assumed to be constant. As explained
in the introduction, the total resistivity of a porous material is dependent on the velocity magnitude, with either
a linear [Irmay, 1958, Beavers and Sparrow, 1969, Joseph et al., 1982, Kuntz and Blackstock, 1987] or a quadratic
[Rasoloarijaona and Auriault, 1994, Wodie and Lévy, 1991, Firdaouss et al., 1997] relation depending on the velocity
regime. In this section, the Forchheimer’s correction of the resistivity is written in the high Reynolds regime:

σ = σ0 (1 + Cf ∥u∥) . (12)

With the total resistivity σ, the linear EFM leads to a nonlinear EFM given in Section 3.1. An analysis of the
energy of the proposed nonlinear model is then carried out in Section 3.2 to compare it to that of the linear EFM.

3.1 Analytical nonlinear model

The EFM is studied with the dynamic variables α and β expressed by the generic model (2), where the static
resistivity σ0 is included in the parameters M , N and L; except for the JCAPL model, where only M depends
on σ0 = η/k0 (see Table 1). Thus, a correction of σ0 into σ would bring different modifications depending on the
model used. Moreover, for the JCAL and JCA models, the introduction of σ in L includes a term containing the
velocity magnitude in the irrational part of the dynamic tortuosity. Such a correction [Umnova et al., 2003] leads
to a time-domain expression of the EFM not straightforwardly usable for theoretical and numerical analysis, due
to a velocity-dependent diffusive weight µg in (9a).

A focus on the asymptotic behavior of α [Johnson et al., 1987, Avellaneda and Torquato, 1991]

αLF(jω) =
ϕσ0
ρ0ν

ν

jω
+ α0 + O

ω→0
(jω), (13a)

αHF(jω) = α∞ +
2α∞

Λ

√
ν

jω
+ O

ω→∞

(
1

jω

)
, (13b)

shows an absence of dependence on σ0 at HF, frequencies at which the irrational term 1/
√
s prevails. Thus, if

the resistivity σ0 is present in the square root in αg (2a), it is there only artificially, introduced by the relaxation
function used to link the LF behavior to the HF behavior of α in the JCA and JCAL models. The independence
of the irrational part of α with respect to the resistivity in the JCAPL model is thus an advantage, not present in
the JCA and JCAL models, when one wishes to apply the Forchheimer’s correction (12) to take into account the
total resistivity.

[Turo and Umnova, 2013] used a dynamic tortuosity expression similar to the JCAL model while circumventing
the dependence of the irrational term on σ0 by using the expression

α(s) = α∞ +
ϕσ0
ρ0 s

+
2α∞

Λ

√
η

ρ0 s
, (14)
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built by summing the contributions of the LF (second term) to the contributions of the HF (first and third terms),
instead of linking them by a relaxation function. Thus, the application of the Forchheimer’s correction is done by
the single correction of the second term of (14) related to Darcy’s law. Note that this second term is none other than
the second term of the generic dynamic tortuosity (2a) where M = ϕσ0/ρ0α∞. Knowing that the Forchheimer’s
correction is applied to Darcy’s law, expressed through the term M/s in the generic model (the second term of (9a)
in the time domain), we choose to correct the static resistivity σ0 by the total resistivity σ only in M , keeping the
diffusive part unchanged. This correction leads to the following nonlinear EFM

∂tu+M u+MCfu ∥u∥+N

∫ ∞

L

µg(ξ) ∂tφφφ(ξ) dξ = − 1

ρ0 α∞
∇∇∇p,

∂tp+ (γ − 1)

[
r0 ∂tψ(−s0) +N ′

∫ ∞

L′
νg(ξ) ∂tψ(ξ) dξ

]
= − 1

χ0
∇∇∇ · u,

∂tφφφ(ξ) = −ξ φφφ(ξ) + u,

∂tψ(ξ) = −ξ ψ(ξ) + p,

(15a)

(15b)

(15c)

(15d)

When the JCAPL model is used, system (15) is the one obtained in a direct way by replacing each static resistivity σ0
with the total resistivity σ. For the JCA and JCAL models, system (15) does not take into account the Forchheimer
correction that would be present in the diffusive part of (15a).

3.2 Well-posedness of the time-domain nonlinear EFM

Before the verification of a correct representation of the nonlinear effects by the model (15), a first question can be
asked about the modification of the properties of the EFM when adding the term MCfu ∥u∥. In the linear case,
the EFM has been shown to be stable for different expressions of α and β [Moufid et al., 2022]. Here, we investigate
if this property is preserved, knowing that the coefficient Cf is necessarily positive when the porous material is a
passive medium.

By defining exactly the same energy functional Enl as the one for the linear EFM (9), but this time for the
nonlinear EFM (15), leads to

d

dt
Enl(t) =

d

dt
Elin(t) − ρ0 α∞MCf

∫
Ω

∥u∥3 dx. (16)

The result (16) makes possible to extend the stability of the linear EFM to the nonlinear case, based on the known
behavior of Elin. It is synthesized in the next theorem.

Theorem 3.1. Given a bounded domain Ω, with no contribution at the boundary ∂Ω (i.e., p = 0, or u · n = 0 on
∂Ω), the nonlinear EFM (15) with the dynamic variables described by the generic model (2) is stable for positive
model parameters.

Indeed, noting that for the same initial conditions, E(0) = Enl(0) with E ′
nl(t) ≤ E ′(t) ≤ 0, the decay of the energy of

the nonlinear EFM is straightforward, as soon as Cf is positive.

To conclude, the use of the Forchheimer correction in the time-domain EFM does not change its well-posedness
from the linear EFM as long as Cf is positive. Moreover, the theoretical result given in Theorem 3.1 could be
extended to a quadratic correction (low Reynolds regime), or to a more general correction under more general
conditions as explained in Appendix B. Now that the analytical nonlinear model is given and proven stable, the
next section focuses on developing an approximation more suitable for numerical solvers that keeps this stability
property.
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4 Multipole approximation of the nonlinear equivalent fluid model

In order to perform numerical simulations, an approximate model has to be built. To do so, the multipole-based
approximations

αmm(s) = c∞

(
1 +

c−1

s
+

K∑
k=1

rk
s− sk

)
, (17a)

βmm(s) = c′∞

1 +
c′−1

s
+

K′∑
k=1

r′k
s− s′k

 , (17b)

of α and β are used with real parameters rk, r
′
k, sk and s′k, following the same approach as [Alomar et al., 2021,

Moufid et al., 2022]. The coefficients c∞, c−1, c
′
∞ and c′−1 are related to the asymptotic behavior of α and β. Thus,

it immediately comes that c∞ = α∞, c−1 = νϕ/α∞k0 =M , c′∞ = 1 and c′−1 = 0. The parameters are not replaced
by their values in this section, in order to keep a symmetrical expression of the equations and make the reading
easier.

The approximations (17) can be obtained by using an optimization approach, as the vector-fitting (VF) algorithm
[Gustavsen and Semlyen, 1999, Gustavsen, 2006, Deschrijver et al., 2008] which gives the optimal parameters of the
multipole approximations αmm and βmm to best fit α and β for a given range of frequencies. A direct approach can
also be used with a discretization of the diffusive part of the OD representations (3a) and (4a) based on quadrature
formula [Monteghetti et al., 2020]: ∫ ∞

L

µg(ξ)

s+ ξ
dξ ≈

K∑
k=1

rk
s− sk

. (18)

Regardless of the approach used, the diffusive part in the time-domain equations (15a) and (15b) are approxi-
mated as follows: ∫ ∞

L

µg(ξ) ∂tφφφ(ξ) dξ =

∫ ∞

L

µg(ξ) [−ξ φφφ(ξ) + u] dξ (19a)

≈
K∑
k=1

[rkskφφφ(−sk) + rk u] , (19b)

with an additional ODE for each evaluation of the diffusive variables (φφφ(−sk) ≡ φφφk and ψ(−s′k) ≡ ψk). Moreover,
Forchheimer’s correction is applied to the coefficient c−1, being the term associated with Darcy’s law, in an analogous
way to the analytical nonlinear EFM. It leads to the approximate nonlinear EFM:

∂tu+
1

ρ0c∞
∇∇∇p+ c−1 (1 + Cf ∥u∥)u+

K∑
k=1

rku+
K∑
k=1

rkskφφφk = 0,

∂tp+
1

χ0c′∞
∇∇∇ · u+

c′−1 +

K′∑
k=1

rk

 p+

K′∑
k=1

r′ks
′
kψk = 0,

∂tφφφk = skφφφk + u (∀k ∈ [[1,K ′]]),

∂tψk = s′kψk + p (∀k ∈ [[1,K ′]]),

φφφk(0,x) = −u(0,x)/sk (∀k ∈ [[1,K ′]]),

ψk(0,x) = −p(0,x)/s′k (∀k ∈ [[1,K ′]]),

(20a)

(20b)

(20c)

(20d)

(20e)

(20f)

Following [Moufid et al., 2022], a global energy functional Ea
nl can be defined for the approximate EFM (20),

representing the discretization of Enl. The approximate energy Ea
nl, detailed in Appendix A, leads to sufficient

conditions that keeps the approximate nonlinear EFM well-posed when describing classical porous media. These
conditions are the same as the ones given for the linear approximate EFM in [Moufid et al., 2022], summarized in
the following property.
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Property 4.1. Given a bounded domain Ω, with no contribution at the boundary ∂Ω (i.e., p = 0, or u · n = 0 on
∂Ω), the augmented energy Ea

nl of the approximate nonlinear EFM (20), with the dynamic variables described by a
multipole model (17), is positive definite and decreasing, if the following two conditions are satisfied:

- the poles (sk, s
′
k)k are negative real numbers, (C1)

- the weights (rk, r
′
k)k are positive real numbers. (C2)

Note that the first condition (C1) is a necessary one, while the second condition (C2) on the weight sign is a
sufficient one. Now that conditions ensuring the stability of the approximate nonlinear EFM are known, numerical
simulations can be done after developing the numerical scheme, when proper multipole approximations of α and β
are used.

5 Numerical approximation of the quadratic term in velocity

The numerical scheme used in this work is based on a fourth-order Runge-Kutta scheme [Toulorge and Desmet,
2012] for the discretization in time and the space discretization is handled by a Discontinuous Galerkin (DG) scheme,
a method well suited for acoustic problems [Cohen and Pernet, 2017]. The RK-DG scheme is briefly detailed in
Appendix C. In this section, a special attention to the approximation of the quadratic term in velocity in the DG
solver is required because, it introduces a nonlinear term in the equations. Therefore, the methods used to discretize
this term are presented in this section.

To understand how the nonlinear velocity term is accounted for in the numerical scheme, the variational formu-
lation (50) used in the DG method is rewritten by omitting the time and space variables

0 =
d

dt

∫
Ti

qh λ
i
j dΩ +

∫
Ti

F(qh) · ∇λij dΩ−
∫
∂Ti

F∗(qeh,q
i
h) · ni λ

i
j dσ +

∫
Ti

b(qh)λ
i
j dΩ, (21)

where qh = (uh vh ph) is the solution vector with uh = (uh vh), the λ
i
j are the j Lagrange polynomials defined

on each triangle Ti, F is associated to the terms coupling the two equations in u and p, and F∗ is the numerical
flux.

The additional nonlinear term that must be calculated in the variational formulation is

∀j ∈ J1, dK,
∫
Ti

∥uh∥uh λij dΩ, (22)

with

uh(t,x) =

d∑
k=1

ui,kh (t)λik(x), (23)

on a cell Ti. The term (22) is taken into account in the last term of the right-hand side of the equality (21), and
more precisely in the definition of b. The term uh λ

i
j in (22) is treated classically by calculating the products λijλ

i
k,

but the presence of ∥uh∥ prevents an exact calculation of (22) for any polynomial uh.

First strategy (quadrature).

A first method to approximate this integral is to use a quadrature formula (ωk, xk)k, with ωk the quadrature
coefficients and xk the quadrature nodes, so as to have∫

Ti

∥uh∥uh λij dΩ ≈
∑
k

ωk ∥uh(xk)∥uh(xk)λij(xk). (24)

On a cell Ti where one of the components of uh changes sign, or if ∥uh∥ is not a polynomial, the quadrature rule
will give an approximation of the integral (22). In the case where the components of uh do not change sign and
∥uh∥ can be expressed by a polynomial of degree p (in particular when the velocity field is unidirectional, along
x or y), an exact approximation of the integral can be made with a quadrature rule by adapting the number of
quadrature points to the degree of the polynomial ∥uh∥ λij . In this latter case, the polynomial resulting from the

product ∥uh∥uh λij is of the order of three times that of uh, and requires a larger number of quadrature nodes than
the degrees of freedom for the DG. It is therefore necessary to interpolate uh on a larger set of quadrature nodes

8



in order to keep an exact computation of (24) when the term in the integral is a polynomial. This first approach
has the disadvantage of requiring a large number of quadrature points and an interpolation of the solution on these
points at each iteration.

Second strategy (local).

A second method, less expensive, but without theoretical results on its accuracy, is to use the approximation∫
Ti

∥uh∥uh λij dΩ =

∫
Ti

∥∥∥∥∥
d∑
k=1

ui,kh λik

∥∥∥∥∥
d∑
k=1

ui,kh λik λ
i
j dΩ, (25a)

≈
∫
Ti

d∑
k=1

∥∥∥ui,kh ∥∥∥ui,kh λik λ
i
j dΩ, (25b)

≈
d∑
k=1

∥∥∥ui,kh ∥∥∥ui,kh ∫
Ti

λik λ
i
j dΩ, (25c)

where the velocity amplitude at each degree of freedom is directly multiplied by the value of the velocity at the
associated degree of freedom. This gives a local approximation of the velocity amplitude contribution, in the sense
that the velocity amplitude is taken to be spatially independent, implying a local contribution at each point xij
only. Therefore, the approximation (25) is solved numerically like the other terms in∫

Ti

b(qh)λ
i
j dΩ,

except that for (25), each component of the velocity vector is multiplied by its amplitude at each iteration due to
the time dependency of the velocity amplitude.

The first method is called the quadrature approach (quad), while the second is called the local approach (loc).
For a verification of the correct implementation of these methods and an analysis of their error, a numerical case
where an analytical solution can be obtained is studied in the next section.

6 Study of a one-dimensional one-equation case

This section addresses the study of a one-dimensional numerical case in space where the theoretical solution is
known, in order to obtain first results on the approximation error of the nonlinear term. The one-dimensional
reduced case considered herein is {

∂tu+ ∂xu+ Cf |u|u = 0,

u(0, x) = u0(x),

(26a)

(26b)

the theoretical solution of which is given by

uth(t, x) =
u0(x− t)

1 + Cf t|u0(x− t)| . (27)

The function uth is obtained by using the method of characteristics on system (26). Note that the solution uth
has a constant derivative u′th along the characteristics passing through a point xk where u0 is equal to zero. This
property of the uth function is illustrated in Figure 1 where the tangents at the points of sign change are shown in
black dotted line for an initial solution u0(x) = xe−10x2

and a nonlinear coefficient Cf = 5. One can observed that
the slope remains unchanged at these xk points. Particular attention will be paid to the sign change zones in the
simulations to check the behavior of the numerical solution u when the latter has a different sign on the same mesh
cell.
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Figure 1: Solution of (26) at different times for u0(x) = xe−10x2

in blue line with Cf = 5. The slopes y = x + b0 in black
dotted line are drawn for b0 equal to 0, 1 and 2.

System (1) is a 1D sub-case of the EFM, where the visco-thermal effects are not taken into account. Hence, this
reduced system is solved by the numerical scheme implemented for the EFM, with u ≡ p, the addition of the term
|p|p in the second equation of the EFM and all the coefficients taken as a unit except for Cf , giving an artificial
system of two identical equations 

∂tu+ ∂xp+ Cf |u|u = 0,

∂tp+ ∂xu+ Cf |p|p = 0,

u(0, x) = p(0, x) = u0(x).

(28a)

(28b)

(28c)

Note that the nonlinear term |p|p of (28b) is added to keep the symmetry of the equations, allowing us to solve
problem (26) through system (28). This artificial addition implies a higher numerical computation cost, but it
allows us to verify the implementation and approximation of the nonlinear term directly on the RK-DG 2D code
presented in Appendix C.

Two different problems are solved, one where the initial solution

upos(x) = exp

(−(x− x0)
2

2W 2
0

)
(29)

is positive, and a second with a mexican-hat initial solution (also known as a Ricker wavelet)

umex(x) =

(
1− (x− x0)

2

W 2
0

)
exp

(−(x− x0)
2

2W 2
0

)
, (30)

which changes in sign on the domain of definition. The two cases are shown in Figure 2 with W0 = 0.08 and
x0 = 0.5.
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x
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u
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,x
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t = 1

t = 2

(a) u0 = upos
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t = 2

(b) u0 = umex

Figure 2: Solutions of the nonlinear system (28) at different times, for the two initial conditions (29) and (30), with
W0 = 8 · 10−2 and x0 = 0.5.
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According to what was discussed in Section 5, the quadrature method is expected to give a better approximation
of the nonlinear term in the first case than in the second case, where a larger error can be expected wherever the
sign changes.

The numerical simulation based on (28) is carried out on the mesh given in Figure 3, with a DG solver of order
varying from 2 to 5, a time step ∆t = 10−3 and a final time tf = 2.

x

y

Figure 3: Rectangular mesh [0,3]×[0,0.05] of 248 triangles.

A calculation of the error made on the numerical solution with respect to the theoretical solution is presented in
Figure 4 for different values of Cf . The error is first calculated without any nonlinear effects (Cf = 0), giving a
reference case, and then for two values of Cf . The solid lines correspond to the error obtained by the local approach
and the dashed lines to the quadrature approach.
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(a) u0 = upos
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(b) u0 = umex

Figure 4: Relative mean square error of the numerical solutions at t = 2 for the initial conditions (29) and (30), with
W0 = 8 · 10−2, x0 = 0.5 and different values of the nonlinear coefficient Cf .

In Figure 4a, the difference between the theoretical solution associated with the case u0 = upos and the numerical
solution calculated with this same initial condition is very similar whatever the approach used (local or quadrature),
with an error decreasing by one decade per degree of polynomial used in the DG. This is therefore in agreement with
what was expected and with the accuracy of the numerical scheme. In the second case where the initial condition is
umex, the order of convergence is lost as soon as the nonlinear coefficient is taken non-null, as shown in Figure 4b.
The error nevertheless remains decreasing, with a very small difference between the two approaches (of the order
of 1% of the error).

To better understand the loss of convergence observed in Figure 4, the error is calculated at each point of the
mesh and displayed in Figure 5a for t = 2. In Figure 5b, it is clear that the error is mainly located in the vicinity
of the sign changes of the solution.
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(a) Absolute error between theoretical and numerical solu-
tions.
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(b) Theoretical and numerical solutions with theoretical slopes
at sign change points.

Figure 5: Solutions at t = 2 for the initial condition (30), with W0 = 8 · 10−2, x0 = 0.5 and Cf = 20.

The slope of the solution at these points nevertheless remains close to the theoretical one, which we know to be
unchanged over time.

In conclusion, a clear loss of accuracy comes from the approximation of the nonlinear term in the numerical
scheme. However, with a fine mesh and a DG solver of sufficient order (typically higher than 3), the error from the
approximation of the nonlinear term is relatively small. Moreover, it should be noted that the error of the additional
term is very local, occurring only at the sign changes of the solution. For this study, sufficiently fine meshes will
be used to limit the error during numerical simulations, in which the local approach is used (the quadrature one
giving similar results but with a greater time cost).

7 Numerical simulations of impedance-tube experiments

This section focuses on reproducing numerically the experiments carried out by [Howerton et al., 2019] and [Billard,
2021] to compare the results of the approximate nonlinear EFM with the experimental results recently published
in the literature. It contains a description of the studied case in Section 7.1, and a presentation of the numerical
results together with their analysis in Section 7.2.

7.1 Description of the studied case

The two materials selected from the work of Howerton et al. [2019] and Billard [2021] are acoustic liners, composed
of a perforated plate and cavities. The goal is to model the acoustic behavior of these liners using the approximate
nonlinear EFM (20) through a porous modeling of the perforated plates. Numerically, this leads to adopt a
volume description of the liners, different from the TDIBC usually performed in the literature [Fung and Ju, 2001,
Monteghetti et al., 2016, Diab et al., 2022]. A first Section 7.1.1 describes the materials at the centre of this study,
followed by a second Section 7.1.2 giving a description of the configuration and the experiment to be modelled.
A last subsection 7.1.3 introduces the multipole approximations of the dynamic variables α and β used for the
resolution of the approximate nonlinear EFM.

7.1.1 Porous-based modeling of acoustic liners

The geometric properties of the studied liners are given through the thickness ep of their perforated plate, the
perforation radius rp, the porosity ϕp, and the length lc of their cavities, all represented in Figure 6a. The values
of these properties are given in Table 2, for the macro-perforated plate of Billard [2021, Table 3.1], referred to here
as BMP1, and the perforated plate studied in [Howerton et al., 2019, Tab. 1] referred to as GE01, keeping the same
name used in their study.
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(a) Geometry of a single-degree-of-freedom acoustic liner.

α∞
Λ,Λ′

k0, k
′
0
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(b) Perforated plate modeled by a porous medium.

Figure 6: Modeling of a perforated plate in a liner by a porous medium.

Table 2: Geometric properties of perforated plates studied in [Billard, 2021, Tab. 3.1] and [Howerton et al., 2019, Tab. 1].

Plaque ϕp rp (mm) ep (mm) lc (mm)
BMP1 0.1 0.8 1.5 16
GE01 0.087 0.5 0.635 37.465

Perforated plates can be modelled by a porous medium by relating the geometric properties of the plate to the
intrinsic properties of a porous material by [Atalla and Sgard, 2007, Allard and Atalla, 2009]

α∞ = 1, Λ = Λ′ = rp, k0 = k′0 =
ϕpr

2
p

8
. (31)

By doing so, two porous media are defined with physical parameter given in Table 3 to have acoustic behavior
equivalent to the two plates in Table 2.

In the Table 3, the static tortuosity α∞ is set equal to 1 by definition, but it must be corrected by the relation
(32) to take into account the acoustic radiation at the exit of perforations. The static tortuosity to be used is
therefore

α∞,e = 1 +
2εe
ep
, (32)

with the collar correction εe = 0.85 rp (1 − 1.14
√
ϕp) [Atalla and Sgard, 2007]. Given the intrinsic parameters of

the porous media, the dynamic tortuosity α and the dynamic compressibility β can be expressed by the JCA and
JCAL model through the generic model. If values of α0 and α′

0 had been known, the use of the JCAPL model
could also have been considered. Finally, as the objective is to work at high SPL (between 120dB and 150dB), it is

Table 3: Values of the intrinsic parameters of the porous media modeling the perforated plates given in Table 2 (rounded to
the hundredth).

Paramètres ϕp α∞ α∞,e Λ (m) Λ′ (m) k0 (m2) k′0 (m2) σ0 (N· s·m−4)
BMP1 0.1 1.0 1.58 8·10−4 8·10−4 8.0·10−9 8.0·10−9 2253.75
GE01 0.087 1.0 1.89 5·10−4 5·10−4 2.72·10−9 2.72·10−9 6631.72

necessary to define the nonlinear coefficient Cf to be used. It is done by identification from the expression of the
total resistivity used in Laly et al. [2018, Eq. (20)] and Diab et al. [2022, Eq. (4)]:

σ = σ0 + d
ρ0(1− ϕ2p)

πϕpepC2
D

∥u∥ , (33)

where it is recalled that CD is the discharge coefficient, taken equal to 0.76 in [Motsinger and Kraft, 1991], and
d is a constant value set equal to 1.6 in [Laly et al., 2018]. Consequently, the coefficient Cf to be used in the
approximate nonlinear EFM (20) is

Cf =
d

σ0

ρ0(1− ϕ2p)

πϕpepC2
D

, (34)
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equal to 3.17 for BMP1 and to 2.93 for GE01 (values rounded to the hundredth).

In the aeronautical field, an incident SPL varying between 120 dB and 150 dB (which is equivalent to an
acoustic velocity amplitude U between 0.06m.s−1 and 2.15m.s−1) can be characterized as a high sound level regime.
An initial calculation of the Reynolds number (Re = ρ0UΛ/ϕη) associated with the flow within the pores of the
perforated facesheets based on their geometric properties and the range of the studied SPL shows that Re is in the
Forchheimer’s regime. Indeed, a porous medium having a porosity in the order of 10% gives Re ≈ 4 and Re ≈ 146
at 120dB and 150dB, respectively, with ρ0 = 1.226 kg ·m3, η = 1.803 · 10−5 kg ·m−1 · s−1 and a characteristic length
of order Λ ≈ 10−4 m. Moreover, it has been observed that the resistivity of a porous medium subjected to a flow
tends towards a maximum threshold value at very high Reynolds [Barree and Conway, 2004], suggesting that the
Forchheimer law has a limited domain of validity at high Reynolds. Huang and Ayoub [2008] evaluated a domain
of validity of the Forchheimer regime for a pore-scale Reynolds number between Re ≈ 4 and Re ≈ 180. It is thus
relevant to consider the nonlinear effects for the two plates given in Table 2 for high sound levels (120 ≥ SPL ≥ 150).

7.1.2 Description of the experiment

The experiments to be simulated are based on the impedance tube configuration modelled herein in 2D by the
domains Ω1 = [0, 0.1675]× [0, 0.012] and Ω2 = [0, 0.1881]× [0, 0.012] whose meshes are presented in Figure 7. Note
that all distance are given in meters, unless otherwise noted.

x

y

BMP1

GE01

Figure 7: Meshes associated with the impedance tube for liners BMP1 and GE01 (see Table 2) with the blue domain (left)
representing the air domain, the green domain (right) the cavity also containing air and the brown domain (middle) associated
with the porous medium.

Three distinct zones are observable: the blue mesh on the left associated with the air domain (Ωa = [0, 0.15]×
[0, 0.012]) where the linearized Euler equations (LEE) are resolved, the green mesh on the right associated with
the cavities (Ωc1 = [0.1515, 0.1675] × [0, 0.012] for BMP1 and Ωc2 = [0.150635, 0.1881] × [0, 0.012] for GE01) also
containing air, and finally the porous domain (Ωp1 = [0.15, 0.1515]×[0, 0.012] for BMP1 and Ωp2 = [0.15, 0.150635]×
[0, 0.012] for GE01) associated with the brown mesh between the tube and the cavity. It is in this porous area that
the approximate nonlinear EFM (20) is solved. Furthermore, each liner contains a single closed cavity, and the
cavity walls are represented by a rigid wall (except for the cavity surface in contact with the porous plate). A
non-reflective wall condition is imposed on the left edge at x = 0. Finally, at the interface between the domains,
the continuity conditions (35) are imposed.

ϕair uair · nx = ϕpor upor · nx, (35a)

pair = ppor, (35b)

In the study of Billard [2021], the impedance is calculated for frequencies from 500Hz to 5000Hz, while Howerton
et al. [2019] gives impedance measurements between 400Hz and 3000Hz. In order not to make two meshes each
specific to a case, the meshes have been adapted to be sufficiently accurate at f = 5kHz. To do this, the mesh
size h is taken equal to 12mm and the degree of the polynomials used in the DG solver is fixed at 3, giving more
than 10 points per wavelength (λmin = cp/fmax ≈ 50 mm). Moreover, the height of the duct being ly = 12mm, the
cut-off frequency is

fc =
c0
2ly

≈ 14.22 kHz (36)

Therefore, only the plane mode propagates in the tube as long as the sound signals has a frequency content lower
than fc.

Billard [2021] conducted the impedance tube experiment with two types of sound source: a swept-sine signals and
a white-noise signal. Depending on whether the source is monochromatic or broadband, the experimental results
differ. In the study of Howerton et al. [2019], only monochromatic signals are used. To compare the numerical
results with their experimental results, the study is restricted to harmonic waves, thus having only one frequency in
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their spectrum. These waves are generated on the left edge of the domain (at x = 0) by the pressure and velocity
fields:

p(t, (x = 0, y)) = A+ sin(2πf t), (37a)

u(t, (x = 0, y)) = p(t, (x = 0, y))/(ρ0c0), (37b)

with A+ the amplitude of the incident wave adjusted to to obtain the target SPL at the liner surface and f the
frequency of the generated harmonic wave. The pressure field and velocity field are taken to be zero in the entire
domain at t=0.

In order to verify the correct modeling of the acoustic behavior of the liners with the approach based on a porous
medium model, simulations will also be carried out in the linear regime with a broadband sound signal similar to
the Mexican hat wavelet (30) :

p(0, (x = 0, y)) = A+pmex(t) (t < 10−3ms), (38a)

u(0, (x = 0, y)) =
A+

ρ0c0
pmex(t) (t < 10−3ms), (38b)

with

pmex(t) =

(
1− c20

W 2
0

(t− t0)
2

)
exp

(
−1

2

c20
W 2

0

(t− t0)
2

)
, (39)

and null incoming flux conditions p(t, (x = 0, y)) and u(t, (x = 0, y)) for t > 10−3ms. The parameter values
are defined so that the frequency content of the sound signal ranges from 500Hz to 5kHz: t0 = 0.5 · 10−3 s and
W0 = 3.35 · 10−2 m (c0 being the speed of sound in air).

7.1.3 Multipole approximations of dynamic variables

The JCAL model is used to express the transfer functions α and β over all frequencies of interest. The multi-
pole approximations of these functions are obtained with the VF algorithm, applied on the frequency intervals
I1 =[500Hz, 5000Hz] for the BMP1 material, and I2 =[400Hz, 3000Hz] for the GE01 material. Moreover the VF
is only applied on the diffusive part of α and β, i.e. α/α∞ −M/s for the dynamic tortuosity and β − 1 for the
dynamic compressibility. The number of parameters is chosen to have a relative error between the JCAL model
and the MM under 1%. Therefore, the multipole approximations for the BMP1 case and the GE01 case are defined
with 3 parameter pairs each. The values of the coefficients are gathered in Tables 4 and 5.

Table 4: Parameters of the multipole approximations of α and β described by the JCAL model for the BMP1 liner and
computed with the VF algorithm.

c∞ c−1 r1 r2 r3 s1 s2 s3

αmm 1.58 116.32 275.07 511.66 3 494.56 -1 493.83 -9 864.41 -91 761.40

βmm 1 0 137.43 232.39 1 603.64 -973.34 -9 102.34 -86 455.56

Table 5: Parameters of the multipole approximations of α and β described by the JCAL model for the GE01 liner and
computed with the VF algorithm.

c∞ c−1 r1 r2 r3 s1 s2 s3

αmm 1.89 249.09 330.04 667.19 4 762.25 -1 388.11 -7 562.82 -66 587.35

βmm 1 0 199.86 281.72 2 211.19 -762.40 -7 288.13 -65 096.33
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7.2 Numerical results compared with experimental data

The two materials BMP1 and GE01 are modelled numerically by a 2D domain detailed in Section 7.1.2, with a
description of the acoustic behavior of the perforated plates using the multipole approximations presented in Section
7.1.3. Before studying how they behave at high sound levels, a first study in Section 7.2.1 is carried out at low sound
levels on the BMP1 liner, i.e. in the linear regime with a coefficient Cf = 0. Following this, a Section 7.2.2 presents
the results obtained when nonlinear effects are taken into account for materials under monochromatic sound signal.

7.2.1 Linear regime

At low noise levels, the equations solved in the perforated plate are those of the approximate linear EFM, i.e.
system (9) with Cf = 0. In the normal-incidence case under the assumption than only plan waves propagate, the
impedance of the studied liners can be calculated with the theoretical impedance:

z(ω) :=
zeq(ω)

ϕp

−jϕpzcav(ω) cot(ep keq(ω)) + zeq(ω)

ϕpzcav(ω)− j cot(ep keq(ω))zeq(ω)
, (40)

with zcav(ω) = −j cot(lc ω/c0) the cavity impedance, zeq(ω) =
√
α(ω)/β(ω) the equivalent characteristic impedance

and keq(ω) = ω
√
α(ω)β(ω) the equivalent wavenumber. It is thus possible to compare the impedance obtained

numerically with the theoretical (linear) impedance model (40).

Numerical calculation of the impedance of the BMP1 liner is done thanks to simulations carried out with a
broadband signal (38) where the amplitude A+ is normalized, equal to 1. The choice of this amplitude does not
change the numerical impedance due to the fact that the simulations are done in the linear regime (with the
approximate linear EFM). Simulations are carried out over a relatively long time (t = 20ms), compared to the time
interval over which the sound signal is generated (1ms). The velocity u and the pressure p are extracted at each
iteration at the surface of the liner, in order to be able to compute the impedance

Z(x) :=
p(x)

u(x)
, (41a)

z(x) :=
1

ρ0c0
Z(x). (41b)

after the use of the fast Fourier transform (FFT) on u and p. The theoretical impedance (40) can then be compared
with the numerically calculated impedance, both presented in Figure 8.
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Figure 8: Theoretical and numerical surface impedance of the BMP1 material with a broadband sound source. Vertical black
dashed lines delimit the frequency range of interest.

In Figure 8, the impedance from the numerical simulation is visibly close to the theoretical impedance with a
relative error of the order of 1% at intermediate frequencies, rising to about 10% at the extremes of the interval
[500Hz, 5kHz]. The increasing discrepancy between the two curves at HF is mainly due to the accuracy of the
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multipole approximations. The addition of a pair of parameters (rk, sk) in the VF approximation significantly
reduces the relative error. It should be noted that one of the resonant frequencies fr of the BMP1 liner is around
2500Hz, visible on Figure 8b where fr is the value for which ℑ(Z) cancels.

The previous experiment is simulated again, but this time using monochromatic signals of the type (37) as the
source term generated on the left edge of the domain. Thus, about fifteen simulations are launched, each with a
different harmonic wave of frequency within [500Hz, 5000Hz] and amplitude A+ = 1 (i.e. ∼ 91dB). The final time
of each simulation is again taken equal to 20ms to have a sufficiently large steady state time window on which
to apply the FFT. The impedance obtained by simulation is presented in Figure 9 compared with the impedance
measured experimentally by Billard for the BMP1 material.
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Figure 9: Real part of the theoretical surface impedance of the BMP1 material, calculated numerically with monochromatic
signals and measured experimentally by [Billard, 2021]. Vertical black dashed lines delimit the frequency range of interest.

A first observation of Figure 9 shows that with harmonic sound signals, the theoretical linear impedance is again
well approximated. Nevertheless, we can see that the experimental results of [Billard, 2021] obtained with harmonic
signals at 130dB and 150dB are very different from those predicted by the theoretical linear impedance (40) and
from the numerical results calculated with the approximate linear EFM. Therefore, nonlinear effects are taken into
account (Cf ̸= 0) to see if the model proposed in Section 4 can predict the experimental results.

7.2.2 Nonlinear regime

In this section, the equations solved in the porous medium are those of the system (20) with the nonlinear coefficient
Cf defined by equation (34). The numerical simulations to be carried out are identical to those presented in the
previous section 7.2.1, but with harmonic waves of amplitudes A+ to be determined.

In the experiments of Howerton et al. [2019] and Billard [2021], the sound level is measured at the surface of
the liner, which implies that the experimental results given at a certain SPL are not necessarily obtained with an
incident pressure of the same SPL. It is therefore necessary to first obtain the amplitudes of the incident waves
that produce the desired sound levels at the surface of the perforated plate. To do so, a first approximation of the
amplitude can be obtained by using the reflection coefficient R := p−/p+, where p+ is the pressure of amplitude
A+ of the wave propagating to the right and p− is the pressure of amplitude A− of the wave propagating to the
left. It is known that the pressure at a point xp on the surface of the liner (the origin of the axis is taken at the
surface of the liner: xp = 0) is directly given by the sum of the incident and reflected amplitudes.

p(t,x = xp) = A+ +A−

= A+ +A+R

= A+ (1 +R)

Hence, using the order of magnitude of the expected impedance z = (1+R)/(1−R) (e.g. via experimental data) and
the target SPL gives an approximation of the amplitudes A+ of the incident waves to use. An iterative adjustment
by simulation is then made to refine the value of the incident sound wave amplitudes to converge towards the target
SPL.
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For the simulations associated with the BMP1 liner case, the incident wave SPL, denoted SPLi, and the SPL
extracted from the numerical simulations at the liner surface, denoted SPLw, are given in Figure 10. The values of
the incident wave amplitudes used to obtain the SPLs in Figure 10 are given in Table 6.
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Figure 10: Sound levels at the surface of the BMP1 liner as a function of the incident wave frequency, calculated from
numerical simulations with monochromatic signals.

Table 6: Amplitudes in Pa of the incident harmonic waves as a function of the frequency for a target sound level SPLw at
the surface of the BMP1 liner at 130dB and 150dB.

Frequency (Hz) 500 900 1300 1700 2000 2200 2400 2500
SPLw = 130dB 45 47 52 65 98 156 224 225
SPLw = 150dB 454 476 539 713 925 1034 1079 1078

Frequency (Hz) 2600 2800 3000 3400 3800 4200 4600 5000
SPLw = 130dB 200 136 99 70 60 55 52 50
SPLw = 150dB 1063 1002 919 753 641 577 539 515

Thus, in order to keep a constant SPLw at the surface of the studied liner, an important modification of the
sound level of the incident wave is necessary. Moreover, we recall that fr ≈ 2500Hz is one of the resonant frequencies
of BMP1 in the vicinity of which the attenuation of the sound level is the highest (over the studied frequency range).
This attenuation is to be correlated with the strong SPLi that one must have in the vicinity of fr to reach the
target SPLw. On the other hand, as soon as the frequency moves away from the resonant frequency, the SPLi to be
imposed decreases, becoming lower than the SPLw, up to a difference close to 6dB for frequencies where the liner
reflection is almost total. This 6db difference was expected because the acoustic behaviour of a liner far from its
resonance frequency is similar to that of a rigid wall where A+ = A−.

Once the source terms to impose are known for each frequency, simulations can be performed by solving the
LEE in the tube and cavity, and solving the approximate nonlinear EFM in the perforated plate. These simulations
led to the numerical impedance of the BMP1 liner shown in Figure 11 using the pressure field and velocity field
extracted on the surface of the material as performed in Section 7.2. The absorption coefficient computed from the
impedance is displayed in Figure 12.
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Figure 11: Real part of the impedance of the BMP1 material given by the theoretical linear impedance, and calculated from
experimental and numerical results at high SPL. Vertical black dashed lines delimit the frequency range of interest.
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Figure 12: Absorption coefficient of the BMP1 material given by the theoretical linear impedance, and calculated from
experimental and numerical results at high SPL. Vertical black dashed lines delimit the frequency range of interest.

One can see that the impedance pattern measured experimentally by Billard is well captured by the present
numerical approach. The amplitude of the resistance in the vicinity of the resonance is very similar between the
experimental and the numerical results, but a slight deviation of the frequency at which the maximum is reached
can be observed. In this study, the static tortuosity α∞, which is one of the physical properties impacting the value
of the resonant frequency, has a the constant value. Therefore, the discrepancy might come from the dependence
of the static tortuosity on the velocity amplitude [McIntosh and Lambert, 1990, Maa, 1998] omitted in this work.
Furthermore, a larger difference between the experimental and numerical results is visible when moving away from
the resonant frequency, in particular at LFs at 130dB. This may be due to a physical phenomenon not taken into
account in the nonlinear EFM, or to a bias in the experimental results. Despite this, the results of Figures 11 and 12
remain very satisfactory. It should be noted that the numerical simulations are not carried out at all frequencies
where experimental data are available.

An additional point to highlight is the comparison of the frequency content of the reflected sound wave with
that of the monochromatic incident wave p+. Figure 13 presents a harmonic analysis for two monochromatic waves,
one at f1 = 2000Hz and the other at f2 = 3000Hz, with and without nonlinear effects taken into account in the
EFM.
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Figure 13: Frequency content of the incident pressure p+ and the reflected pressure p− for two simulations at 150dB (with
and without consideration of nonlinear effects). A vertical black dashed line delimits the maximum frequency of the frequency
range of interest.

Figure 13 shows that the reflected wave contains additional harmonics in the nonlinear regime, modifying the
spectrum of the total pressure at the liner surface. The increase in the modulus of the pressure for frequencies above
5000Hz, and in particular the presence of a small peak around 11.25kHz in the linear regime (which is also found in
the nonlinear regime) is most probably related to the mesh which is no longer fine enough for this frequency range,
but which nevertheless makes it possible to discern the additional harmonics.

Thus, in the case where the sound source has a broadband frequency content, the waves generated at a certain
frequency will produce harmonics at higher frequencies and change the sound amplitude distribution. This can lead
to a greater or lesser contribution of nonlinear effects for a broadband incident wave compared to a monochromatic
incident signal, depending on the frequency and phase of the generated harmonics. In addition, the impedance will
be different depending on the frequency spectrum distribution of the incident sound signal, due to a superposition
of the harmonics generated by the LF waves on the HF waves.

All the steps taken to obtain the impedance of the BMP1 material are repeated for the GE01 material. The
simulations with harmonic signals lead to the impedance presented in Figure 14, calculated for several frequencies.
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Figure 14: Impedance of the GE01 material given by the theoretical linear model (in blue line), and calculated from experi-
mental (green diamond and purple square) and numerical results (red dots) at high SPL. Vertical black dashed lines delimit
the frequency range of interest.

The real and imaginary parts of the impedance obtained experimentally by Howerton et al. [2019] are given at
120dB and 140dB and compared to the impedance calculated numerically with the approximate nonlinear EFM.
The theoretical linear impedance (40) is displayed, showing very little change in reactance (imaginary part of the
impedance) at high SPL as expected. The resistance obtained from the simulations again shows a maximum near
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the resonant frequency (fr ∈ [1650Hz, 1700Hz]), however the experimental data appears to show a peak in the
resonance at a frequency slightly below fr. The maximum resistance amplitude is more or less in agreement with
the experimental measurements, with a more noticeable deviation at 140dB. Despite this, we again observe a similar
overall impedance pattern between the experimental measurements and the numerical calculations.

In conclusion, the approximate nonlinear EFM correctly represents the acoustic behavior of liners subjected
to a high SPL, when studied with a monochromatic sound source. The increase in resonance resistance is well
reproduced with the value of the nonlinear coefficient (34). A discrepancy on the frequency at which the resistance
peak occurs is however visible, and may be due to the modeling of the static tortuosity which has been taken here
independent of the sound level.

8 Simulations in grazing incidence tube

In practice, acoustic liners in aircraft engines used for noise reduction are subject to grazing flow. The objective of
this section is to model the acoustic behavior of acoustic liner studied by Jones et al. [2017] and Diab et al. [2022] in
a grazing incidence configuration, however without mean flow. To do so, a porous-based modeling of the perforated
plate is used with a similar approach to that of Section 7, leading to a volume modeling of the liners (where cavities
are meshed). A first Section 8.1 presents the materials and the numerical modeling of the experiment, followed by
a Section 8.2 presenting the numerical results.

8.1 Numerical modeling of the experiment

The experiments to be numerically reproduced are based on those presented in [Jones et al., 2017, Sec. II] and [Diab
et al., 2022, Sec. 5]. In these experiments, the studied materials are SDOF acoustic liners. Sound waves propagates
with a grazing incidence along the liners, as schematized in Figure 15. In this study, monochromatic signals are
generated upstream of the duct (x = 0m) and propagate mainly from the left to the right. Experimental pressure
measurements made on the opposite edge of the material (at yw) make possible to study their acoustic properties,
by looking for example at the attenuation of the sound level downstream of the duct (x = 0.812m) for different
incident wave frequencies.

y = yw y = yw

y = 0

x = 0 x = x1 x = x2 x = 0.812

Locations of the

pressure extraction

x

y

Figure 15: Configuration of the grazing flow impedance tube with an acoustic liner positioned on its bottom edge. Dimensions
are given in meters.

In order to perform the simulations reproducing the grazing-flow impedance-tube experiments, details about
the liners and the duct dimensions are given in Section 8.1.1. Then, a porous-based approximation of the acoustic
behavior of the two studied materials is performed in Section 8.1.2, followed in Section 8.1.3 by the numerical
modeling of the domain representing the configuration in Figure 15.

8.1.1 Description of the liners and the configuration

The geometric properties of the liners selected from the literature are given in table 7. The liner from [Diab et al.,
2022, Tab. 1] is named DPP1, referring to the PP#1 absorber in their article, and the second liner is the SVC1
from [Jones et al., 2017, Sec. II.B].
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Table 7: Geometric properties of the DPP1 and SVC1 liners studied in [Jones et al., 2017, Diab et al., 2022].

Liner ϕp (%) rp (mm) ep (mm) lc (mm) x1 (mm) x2 (mm) yw (mm)

SVC1 11 0.5207 0.8636 76.2 203.2 609.6 63.5

DPP1 1.5 0.25 1.0 10 203 609 50.8

In [Jones et al., 2017], the 50.8mm-wide and 406.4mm-long SVC1 liner consists of a 4× 30 array of separated
square chambers with 22 perforations, each of size 15.748mm × 15.748mm, and the cavities of lc = 76.2mm in
depth. Note that the porosity of its perforated plate directly calculated from the geometry of the liner is

ϕp = ( 4× 30× 22× πr2p) / (50.8× 406.4× 10−6),

≈ 10.892%,
(42)

which is slightly different from the porosity given in the article [Jones et al., 2017]: ϕp = 11%. In a first step, the
porosity in Table 7 is used.

8.1.2 Porous-based modeling of the liners

As in Section 7.1, a porous-based description of the SVC1 and DPP1 perforated plate is adopted using the relations
(31) for Λ, Λ′, k0, k

′
0 and (32) for the static tortuosity. Moreover, the nonlinear coefficient, defined by equation

(34), is equal to 2.32 for the SVC1 liner and 0.47 for the DPP1 liner.

The VF algorithm is used to compute the multipole approximation of α and β described by the JCAL model
for the SVC1 and DPP1 liners, respectively, on [400Hz, 3000Hz] and [200Hz, 3000Hz]. The VF is applied on the
diffusive part of α and β, leading to the 3-parameter multipole approximations detailed in Table 8 and 9.

Table 8: Parameters of the multipole approximations of α and β described by the JCAL model for the SVC1 liner and
computed with the VF algorithm.

c∞ c−1 r1 r2 r3 s1 s2 s3

αmm 1.32 328.98 279.60 642.78 4 761.05 -1 749.40 -8 299.13 -71 934.73

βmm 1 0 189.33 272.23 2 110.28 -744.24 -7 175.68 -64 260.67

Table 9: Parameters of the multipole approximations of α and β described by the JCAL model for the DPP1 liner and
computed with the VF algorithm.

c∞ c−1 r1 r2 r3 s1 s2 s3

αmm 1.18 1 591.22 352.94 1 371.20 12 50 -4 381.59 -12 373.69 -110 504.85

βmm 1 0 634.33 490.80 5 496.65 -2 059.66 -12 190.22 -101 169.15

8.1.3 Numerical configuration

Knowing the equivalent porous media describing the acoustics of the DPP1 and SVC1 liners and their thickness ep
given in Table 7, a mesh of the domain can be built. Contrary to the normal incidence configuration, the locally
reacting property of the acoustic liners must now be taken into account. To do this, two different meshes have been
made and are presented in Figure 16 for the SVC1 liner (similar meshes were done for the DPP1 liner).
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Figure 16: SVC meshes of the studied domain representing the grazing-flow impedance tube with the liner located on the low
edge of the duct.

These two meshes are of the same dimensions, both composed of a blue mesh duct with a thin porous medium
in brown/red positioned on the low edge and backed by cavities in green. The latter are meshed in two different
ways: the cavity zone is meshed in one block in the regular SVC1reg mesh, while in the SVC1cav mesh, 20 cavities
are meshed and separated by rigid walls with no thickness. Thus, in this second case, the mesh forces the wave
propagation in the cavities to be along y. For the first SVC1reg mesh, the propagation along y in the cavities
is imposed by cancelling the contribution in x in the LEE. To do so, only the y component of the waves at the
interfaces of the mesh cells in the green cavity is taken into account in the DG solver. Note that the mesh is slightly
refined on the upstream and downstream front of the liner to improve the modeling of the impedance discontinuity
zones.

In both studies Jones et al. [2017], Diab et al. [2022], the impedance is calculated for frequencies up to 3000Hz.
The meshes have been adapted to be sufficiently accurate at f = 3kHz. To do so, the mesh size h is taken to be
at most 3cm and the degree of the polynomials used in the DG solver is set to 2, giving more than 10 points per
wavelength. The time step is ∆t = 5 · 10−7, , selected as a function of the smallest cell sizes of the mesh and the
multipole approximations. The total time simulation is at least 0.03 s.

8.2 Numerical results

This section is split in two parts: Section 8.2.1 focuses on the SVC1 liner with a sensitivity analysis of physical
parameters, and Section 8.2.2 reproducing the numerical simulations done in [Diab et al., 2022] for the DPP1 liner.

8.2.1 SVC1 liner

Simulations are done on both meshes (with cavities or with a forcing of the locally-reacting property in the equa-
tions). More specifically, three simulations at different frequencies are performed with a SPL maintained at 140dB
upstream of the duct (x = 0). To do so, an incident acoustic wave is generated at x = 0 with the appropriate
amplitude: A+ = 278 (resp. 268) at 600Hz, A+ = 180 (resp. 180) at 1000Hz and A+ = 335 (resp. 332) at 1400Hz
for the regular mesh SVC1reg (resp. cavity mesh SVC1cav). The pressure extracted at the duct wall (yw) opposite
to the liner is compared to the measured SPL from [Jones et al., 2017] in Figure 17. The main acoustic behaviour
seen on the experimental study is numerically reproduced in spite of visible deviations, especially at frequencies far
from the resonant frequency (∼1000Hz). Moreover, thanks to a non-reflecting outlet condition at the end of the
duct, there is no oscillations of the SPL at its end in the simulations, compared to the experiments which could
cause the difference in results, especially at low frequencies (600Hz) where the liner’s attenuation is low, and where
the anechöıcity is more difficult to achieve experimentally. Furthermore, a full homogeneous approximation of the
liner may neglect some physical effects than can occur between two adjacent cavities that are separated, as for the
SVC1 liner. Finally in terms en meshes, both lead to very similar results for this liner.
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Figure 17: SPL along the opposite wall to the SVC1 liner for different sound source frequencies. Vertical black dashed lines
delimit the liner position.

Among the three simulations, the noise attenuation is maximal at 1000Hz, which is close to a resonant frequency
of the SVC1 liner. At this frequency, the numerical simulation gives a SPL at the end of the tube equal to 85dB
instead of 75dB according to the experimental data. This discrepancy may be due to the definition of the equivalent
porous medium not being precise enough (e.g. by neglecting some physical phenomena) or to the sensibility of the
modeling at the resonance. To illustrate that, modified equivalent porous medium are defined with a ±5% deviation
on the radius rp. It implies new multipole approximations of α and β, a new value of the porosity ϕp calculated by
using equation (42) and a new value of the nonlinear coefficient Cf (34). The SPL obtained with the new cases are
displayed Figure 18.
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Figure 18: SPL along the opposite wall to the SVC1 liner and modified SVC1 liners with an incident signal at 1000Hz.
Vertical black dashed lines delimit the liner position.

The numerical simulations done with a radius 5% lower or 5% higher than rp = 0.5207mm given in Table 7
shows a significant impact on the SPL at the end of the tube with a ±2 ∼3dB difference. Therefore, very small
manufacturing defects on the liners can considerably change the acoustic properties of the liner, especially around
the resonant frequency. Moreover, given the SPL upstream of the liner impedance discontinuity, we can surmise
that the impedance realised in practice by the SVC1 liner is higher than that used in the simulation. This can be
deduced from the amplitude of the SPL variation upstream of the liner, which is lower in the experimental case,
indicating a lower impedance discontinuity, and thus a more resistive liner. Having a finite size cavity network in
a SDOF sample imposes a cavity porosity lower than 1, which artificially increases the overall liner resistance. To
model this effect, one would have to represent the cavity network as a porous material of equivalent properties,
which can be done with the same formalism as the one used to represent a perforated plate Atalla and Sgard [2007].

8.2.2 DPP1 liner

Unlike the SVC1 liner, the DPP1 liner was studied using a numerical approach presented in [Diab et al., 2022].
Consequently, the comparison is made with numerical results. The latter are obtained at 1600Hz and for 3 different
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incident SPLinc (120dB, 130dB and 140dB). In Figure 19, the data from [Diab et al., 2022, Fig. 24] (labeled Diab)
are compared to the numerical results (labeled Num) obtained with the present approach.
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Figure 19: Normalized SPL along the opposite wall to the DPP1 liner obtained by the present numerical approach and
obtained by [Diab et al., 2022, Fig. 24] for an incident signal at 1600Hz and different incident SPL. Vertical black dashed
lines delimit the liner position.

Simulations based on the approximate nonlinear EFM show the same relative increase of the SPL at the end
of the duct as the incident SPL increase. Moreover, the SPL along the duct at SPLinc = 140 dB obtained by
the porous-based approach is very close to the numerical data of Diab et al. [2022]. However, at lower SPLinc,
differences between the simulations appears with a more significant decrease of the SPL along the duct wall in
the present simulations compared to Diab’s results for SPLinc = 120 dB. It might come from the fact that in the
approach presented herein, the static tortuosity α∞ is taken independent of the velocity. A modification of α∞
changes the resonant frequency, hence the SPL attenuation. As in Section 8.2.1, a slight difference around the
resonant frequency can lead to important discrepancies. The latter are very small at 140 dB, which could come
from the fact that at this SPL, the static tortuosity α∞ has a similar values in both simulations, or it can simply
be a particular case giving rise to very similar results.

9 Conclusion

A nonlinear EFM based on diffusive variables α and β described by a generic model and the Forchheimer’s correction
was developed. Following [Moufid et al., 2022], a proof of the stability of the proposed nonlinear model was given
as soon as the nonlinear coefficient Cf is positive. Then, an approximate nonlinear model was built using multipole
approximation, for which sufficient conditions on the multipole parameters are given to keep a stable approximate
model.

In the DG solver, two approaches were used to discretize the additional nonlinear term coming from the Forch-
heimer’s correction. Both approaches led to similar results, showing a loss of precision of the DG solver, which can
be compensated by a fine mesh and a sufficiently high DG order. However, it would be interesting to investigate
more precisely how to improve the approximation of this term in the numerical scheme.

The approximate nonlinear model was used to reproduce the experiments done by Billard [2021] and Howerton
et al. [2019] in normal incidence, showing numerical results very close to the experimental data, especially in terms of
resistance amplitude. It highlighted that the Forchheimer’s correction mainly accounts for the nonlinear phenomena
at high SPL. Small discrepancies were observed on the frequency for which the resistivity peak is reached. This
could come from a static tortuosity assumed to be independent to the velocity in the present work. It would be
interesting to see how to account for the velocity correction in the proposed nonlinear EFM.

A last section focused on grazing incidence tube with two liners studied in [Jones et al., 2017, Diab et al., 2022].
The approximate nonlinear EFM gave an attenuation of the SPL along the acoustic duct with similar variations
to the experimental and numerical data available in the literature. However, some visible differences could be seen
when comparing the results. The sensitivity of the SVC1 acoustic behavior we tried to reproduce numerically at the
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resonant frequency could explain the differences for the SVC1 liner, and a different definition of the static tortuosity
in [Diab et al., 2022] might be the main reason of the differences in SPL decrease, because it changes the resonant
frequency of the material, hence the impedance at the chosen frequency. This last point about the grazing incidence
tube experiments requires further study for a better understanding.

Appendix A Energy analysis

The energy balance of the EFM with the generic model defined in [Moufid et al., 2022] is briefly introduced in this
Appendix. First, the classical mechanical energy is defined and composed of the kinetic energy and the potential
energy:

Em(t) :=
ρ0α∞

2

∫
Ω

∥u∥2 dx +
χ0

2

∫
Ω

p2dx . (43)

Then, an energy is defined for the diffusive variables:

Ediff(t) := ρ0 α∞N Eφφφ(t) + χ0 (γ − 1)N ′Eψ(t) + χ0 (γ − 1)Eψ0
(t), (44)

where

Eφφφ(t) :=
1

2

∫
Ω

∫ ∞

0

µg(ξ) ξ ∥φφφ(ξ; t,x)∥2 dξ dx, (45a)

Eψ(t) :=
1

2

∫
Ω

∫ ∞

L′
νg(ξ) ξ |ψ(ξ; t,x)|2 dξ dx, (45b)

Eψ0
(t) :=

1

2

∫
Ω

r0 (−s0) |ψ(−s0; t,x)|2 dx. (45c)

Note that the energy Eψ0
is similar to Eψ but for a fixed pole ξ = −s0 with a positive residue r0, and all the model

parameters (M , N , L, M , N ′, L′) are positive. The energy balance:

Elin(t) := Em(t) + Ediff(t),

is computed based on the definitions (43) and (44), and its derivative is found to be

d

dt
E(t) = − ρ0 α∞M

∫
Ω

∥u∥2 dx

− ρ0 α∞N

∫
Ω

∫ ∞

L

µg(ξ) ∥∂tφφφ(ξ)∥2 dξ dx

− χ0 (γ − 1)N ′
∫
Ω

∫ ∞

L′
νg(ξ) (∂tψ(ξ))

2
dξ dx

− χ0 (γ − 1)

∫
Ω

r0 (∂tψ(−s0))2 dξ dx,

⩽ 0.

when there is no contribution at the boundary ∂Ω (i.e., p = 0, or u · n = 0 on ∂Ω) and the functions are defined in
the appropriate functional spaces [Haddar and Matignon, 2008]. For the nonlinear EFM, we make use of the same
energy functional Enl = Elin. The only difference appears in the computation of the derivatives, where an additional
negative term can be found for d

dtEnl (see equation (16)).

Appendix B General resistivity correction

In section 3, the dependence of the resistivity on the velocity amplitude is taken to be linear, in agreement with
the Forchheimer’s correction. However, the resistivity dependence is quadratic at low Reynolds, leading to

σ = σ0

(
1 + C⋆f ∥u∥2

)
. (46)
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A theoretical study at low velocity magnitude, where this type of correction is necessary, leads to the same theoretical
results given in Theorem 3.1. It can even be extended to a more general case, where the total resistivity is defined
as

σ = σ0

(
1 + Φ

(
∥u∥

))
. (47)

with Φ : R+ → R+ of C1 (e.g. quadratic at low velocity amplitude and linear at high velocity amplitude as in
Figure 20). Starting from the nonlinear EFM corrected with (47), the method used to obtain the energy balance
variations (16) leads in this case to

d

dt
Enl(t) =

d

dt
E(t) − ρ0 α∞M

∫
Ω

Φ
(
∥u∥

)
∥u∥2 dx, (48)

allowing to conclude on the stability of the more general nonlinear model, since Φ > 0.

x

Φ(x)

Φ(0)

Figure 20: Example of a function Φ : R+ → R+ of class C1, having a quadratic behavior for small x and linear for large x.

Appendix C Numerical scheme

The code used in this article is based on the one used in [Moufid et al., 2022] which solves the linearized Euler
equations and the linear EFM in 2D, using a Discontinuous Galerkin method detailed in Section C.1 and a Runge-
Kutta method detailed in Section C.2

C.1 Space discretization

Given a domain Ω ⊂ R2 for which there is a partition (Th) where h denotes the maximum diameter of the elements
in the partition. The approximation space is taken as Vh := {v, | ∀T ∈ Th, v|T ∈ Pk(T )} where Pk(T ) is the space

of polynomials of degree at most k. A basis {λij ∈ Pk(Ti), j = 1}, with d = (k + 1)(k + 2)/2, is defined for each
element Ti ∈ Th. Thus, a scalar function q is approximated on a cell Ti by

qh(t,x) :=

d∑
j=1

qi,jh (t)λij(x). (49)

The solution vector qh(t,x) = (uh vh ph) is then defined based on (49). Applying the DG method [Hesthaven
and Warburton, 2007], it is possible to write:

0 =
d

dt

∫
Ti

qh(t,x)λ
i
j dΩ +

∫
Ti

F(qh(t,x)) · ∇λij dΩ

−
∫
∂Ti

F∗(qeh(t,x),q
i
h(t,x)) · ni, λ

i
j dσ +

∫
Ti

b(qh(t,x))λ
i
j dΩ,

(50)

where F(qh) = (Axqh, Ayqh), b(qh) = Bqh, n
i = (nix, n

i
y) is the outgoing unit normal vector with respect to the

edge ∂tTi and F∗ is the numerical flux. The solution qh on the edge of a cell Ti is denoted qih or qeh depending
on whether it is, respectively, the internal or the external value of Ti that is taken into account. In the code, the
numerical flux used is the flux vector splitting

F∗(qih,q
e
h) = A+qih +A−qeh, (51)

where the incoming and outgoing flows are separated into two, respectively associated with A+ and A−. The latter
are matrices containing respectively the positive and negative eigenvalues of A = Axnx+Ayny. Note that this flow
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is an exact solution of the one-dimensional Riemann problem with constant coefficients. At the boundary of the
domain ∂Ω, the imposed flux is the centered flux

F∗
BC(q

i
h,q

e
h) :=

qih + qeh
2

, (52)

where qeh represents a ghost state defined with qih. Finally, the semi-discrete equation reads:

M
dqh
dt

(t) := K qh(t) + S̃(t), (53)

with qh the unknown and S̃ the source term.

C.2 Time discretization

The inversion of the mass matrix M in (53) is direct thanks to its diagonal structure per block. Indeed, each block
is of the order of a few tens of rows, thus small enough to calculate the inverse of each small block by a direct
method. Thus, the spatial discretization (53) can be rewritten

dqh
dt

(t) = Lh(t,qh(t)) = Eqh(t) +G(t), (54)

with Lh the semi-discrete operator, E = M−1K and G = M−1S̃. The Runge-Kutta method used for the spatial
discretization is the fourth-order RKF84 method given by Toulorge and Desmet [2012] and which was notably
used for the results given in [Monteghetti et al., 2018]. This method is shown to be very efficient when used in
combination with a DG method for wave propagation problems in the works of Toulorge and Desmet [2012].

Let {tn}Nn=0 be a partition of [0, T ] ⊂ R+, ∆t = tn+1 − tn be the time step and qnh be the approximate solution
at time tn. The steps of the RKF84 algorithm are

q(0) = qnh, (55a)

dq(i) = Aidq
(i−1) + Lh

(
tn + ci∆t,q

(i−1)
)

(55b)

q(i) = q(i−1) +Bidq
(i), for i = 1 . . . 8, (55c)

qn+1
h = q(8), (55d)

where the coefficients Ai, Bi and ci are given by Toulorge and Desmet [2012, Table A.9].
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