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Enabling Long-term Fairness in Dynamic Resource Allocation
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We study the fairness of dynamic resource allocation problem under the 𝛼-fairness criterion. We recognize two

different fairness objectives that naturally arise in this problem: the well-understood slot-fairness objective

that aims to ensure fairness at every timeslot, and the less explored horizon-fairness objective that aims to

ensure fairness across utilities accumulated over a time horizon. We argue that horizon-fairness comes at a

lower price in terms of social welfare. We study horizon-fairness with the regret as a performance metric

and show that vanishing regret cannot be achieved in presence of an unrestricted adversary. We propose

restrictions on the adversary’s capabilities corresponding to realistic scenarios and an online policy that indeed

guarantees vanishing regret under these restrictions. We demonstrate the applicability of the proposed fairness

framework to a representative resource management problem considering a virtualized caching system where

different caches cooperate to serve content requests.
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1 Introduction

Achieving fairness when allocating resources in communication and computing systems has

been a subject of extensive research, and has been successfully applied in numerous practical

problems. Fairness is leveraged to perform congestion control in the Internet [29, 53], to select

transmission power in multi-user wireless networks [61, 77], and to allocate multidimensional

resources in cloud computing platforms [19, 71, 74]. Depending on the problem at hand, the

criterion of fairness can be expressed in terms of how the service performance is distributed across

the end-users, or in terms of how the costs are balanced across the servicing nodes. The latter

case exemplifies the natural link between fairness and load balancing in resource-constrained

systems [43, 79]. A prevalent fairness metric is 𝛼-fairness, which encompasses the utilitarian

principle (Bentham-Edgeworth solution [24]), proportional fairness (Nash bargaining solution [55]),

max-min fairness (Kalai–Smorodinsky bargaining solution [41]), and, under some conditions,

Walrasian equilibrium [31]. All these fairness metrics have been used in different cases for the

design of resource management mechanisms [54, 58].

A common limitation of the above works is that they consider static environments. That is, the

resources to be allocated and, importantly, the users’ utility functions, are fixed and known to the
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decision maker. This assumption is very often unrealistic for today’s communication and computing

systems. For instance, in small-cell mobile networks the user churn is typically very high and

unpredictable, thus hindering the fair allocation of spectrum to cells [37]. Similarly, placing content

files at edge caches to balance the latency gains across the served areas is non-trivial due to the non-

stationary and fast-changing patterns of requests [30]. At the same time, the increasing virtualization

of these systems introduces cost and performance volatility, as extensive measurement studies have

revealed [26, 44, 73]. This uncertainty is exacerbated for services that process user-generated data

(e.g., streaming data applications) where the performance (e.g., inference accuracy) depends also

on a priori unknown input data and dynamically selected machine learning libraries [2, 40, 47].

1.1 Contributions

This paper makes the next step towards enabling long-term fairness in dynamic systems. We

consider a system that serves a set of agents I, where a controller selects at each timeslot 𝑡 ∈ N
a resource allocation profile 𝑥𝑥𝑥𝑡 from a set of eligible allocations X based on past agents’ utility

functions 𝑢𝑢𝑢𝑡 ′ : X → RI for 𝑡 ′ < 𝑡 and of 𝛼-fairness function 𝐹𝛼 : RI≥0
→ R. The utilities

might change due to unknown, unpredictable, and (possibly) non-stationary perturbations that are

revealed to the controller only after it decides 𝑥𝑥𝑥𝑡 . We employ the terms horizon-fairness (HF) and
slot-fairness (SF) to distinguish the different ways fairness can be enforced in a such time-slotted

dynamic system. Under horizon-fairness, the controller enforces fairness on the aggregate utilities

for a given time horizon 𝑇 , whereas under slot-fairness, it enforces fairness on the utilities at each

timeslot separately. Both metrics have been studied in previous work, e.g., see [32, 38, 46, 69] and

the discussion in Section 2. Our focus is on horizon-fairness, which raises novel technical challenges

and subsumes slot-fairness as a special case.

We design the online horizon-fair (OHF) policy by leveraging online convex optimization (OCO) [34],
to handle this reduced-information setting under a powerful adversarial perturbation model. Ad-

versarial analysis is a modeling technique to characterize a system’s performance under unknown

and hard to characterize exogenous parameters and has been recently successfully used to model

caching problems (e.g., in [18, 45, 52, 56, 57, 66, 67]). In our context, the performance of a resource

allocation policyAAA is evaluated by the fairness regret, which is defined as the difference between the
𝛼-fairness, over the time-averaged utilities, achieved by a static optimum-in-hindsight (benchmark)
and the one achieved by the policy:

ℜ𝑇 (𝐹𝛼 ,AAA) ≜ sup

{𝑢𝑢𝑢𝑡 }𝑇𝑡=1
∈U𝑇

{
max

𝑥𝑥𝑥 ∈X
𝐹𝛼

(
1

𝑇

∑︁
𝑡 ∈T

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥)
)
− 𝐹𝛼

(
1

𝑇

∑︁
𝑡 ∈T

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)}

. (1)

If the fairness regret vanishes over time (i.e., lim𝑇→∞ℜ𝑇 (𝐹𝛼 ,AAA) = 0), policy AAA will attain the

same fairness value as the static benchmark under any possible sequence of utility functions. A

policy that achieves sublinear regret under these adversarial conditions, can also succeed in more

benign conditions where the perturbations are not adversarial, or the utility functions are revealed

at the beginning of each slot.

The fairness regret metric (1) departs from the template of OCO. In particular, the scalarization

of the vector-valued utilities, through the 𝛼-fairness function, is not applied at every timeslot to

allow for the controller to easily adapt its allocations, instead is only applied at the end of the

time horizon 𝑇 . Our first result characterizes the challenges in tackling this learning problem.

Namely, Theorem 1 proves that, when utility perturbations are only subject to four mild technical

conditions, such as in standard OCO, it is impossible to achieve vanishing fairness-regret. Similar

negative results were obtained under different setups of primal-dual learning and online saddle
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point learning [5, 50, 62], but they have been devised for specific problem structures (e.g., online

matrix games) and thus do not apply to our setting.

In light of this negative result, we introduce additional necessary conditions on the adversary

to obtain a vanishing regret guarantee. Namely, the adversary can only induce perturbations to

the time-averaged utilities we call budgeted-severity or partitioned-severity constrained. These

conditions capture several practical utility patterns, such as non-stationary corruptions, ergodic

and periodic inputs [9, 23, 46, 80]. We proceed to propose the OHF policy which adapts dynamically

the allocation decisions and provably achieves ℜ𝑇 (𝐹𝛼 ,AAA) = 𝑜 (1) (see Theorem 2).

The OHF policy employs a novel learning approach that operates concurrently, and in a syn-

chronized fashion, in a primal and a dual (conjugate) space. Intuitively, OHF learns the weighted

time-varying utilities in a primal space, and learns the weights accounting for the global fairness

metric in some dual space. To achieve this, we develop novel techniques through a convex conjugate

approach (see Lemmas 1, 2, and 4 in the Appendix).

Finally, we apply our fairness framework to a representative resource management problem in

virtualized caching systems where different caches cooperate by serving jointly the received content

requests. We evaluate the performance of OHF with its slot-fairness counterpart policy through

numerical examples. We evaluate the price of fairness of OHF, which quantifies the efficiency

loss due to fairness, across different network topologies and participating agents. Lastly, we apply

OHF to a Nash bargaining scenario, a concept that has been widely used in resource allocation to

distribute to a set of agents the utility of their cooperation [17, 36, 39, 75].

1.2 Outline of Paper

The paper is organized as follows. The related literature is discussed in Section 2. The definitions

and background are provided in Section 3. The adversarial model and the proposed algorithm are

presented in Section 4. Extensions to the fairness framework are provided in Section 5. The resource

management problem in virtualized caching systems application is provided in Section 6. Finally,

we conclude the paper and provide directions for future work in Section 7.

2 Literature Review

2.1 Fairness in Resource Allocation

Fairness has found many applications in wired and wireless networking [3, 29, 53, 61, 77], and cloud

computing platforms [19, 71, 74]. Prevalent fairness criteria are the max-min fairness and propor-

tional fairness, which are rooted in axiomatic bargaining theory, namely the Kalai–Smorodinsky [41]

and Nash bargaining solution [55], respectively. On the other side of the spectrum, a controller

might opt to ignore fairness and maximize the aggregate utility of users, i.e., to follow the utilitarian
principle, also referred to as the Bentham-Edgeworth solution [24]. The Price of Fairness (PoF) [13]
is now an established metric for assessing how much the social welfare (i.e., the aggregate utility)

is affected when enforcing some fairness metric. Ideally, we would like this price to be as small

as possible, bridging in a way these two criteria. Atkinson [6] proposed the unifying 𝛼-fairness

criterion which yields different fairness criteria based on the value of 𝛼 ∈ R≥0, i.e., the utilitarian

principle (𝛼 = 0), proportional fairness (𝛼 = 1), and max-min fairness (𝛼 →∞). Due to the general-

ity of the 𝛼-fairness criterion, we use it to develop our theory, which in turn renders our results

transferrable to all above fairness and bargaining problems. In this work, the PoF, together with

the metric of fairness-regret, are the two criteria we use to characterize our fairness solution.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 46. Publication date: December 2022.
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2.2 Fairness in Dynamic Resource Allocation

Several works consider slot-fairness in dynamic systems [38, 69, 72]. Jalota and Ye [38] proposed

a weighted proportional fairness algorithm for a system where new users arrive in each slot,

having linear i.i.d. perturbed unknown utility functions at the time of selecting an allocation,

and are allocated resources from an i.i.d. varying budget. Sinclair et al. [69] consider a similar

setup, but assume the utilities are known at the time of selecting an allocation, and the utility

parameters (number of agents and their type) are drawn from some fixed known distribution. They

propose an adaptive threshold policy, which achieves a target efficiency (amount of consumed

resources’ budget) and fairness tradeoff, where the latter is defined w.r.t. to an offline weighted

proportional fairness benchmark. Finally, Talebi and Proutiere [72] study dynamically arriving

tasks that are assigned to a set of servers with unknown and stochastically-varying service rates.

Using a stochastic multi-armed bandit model, the authors achieve proportional fairness across

the service rates assigned to different tasks at each slot. All these important works, however, do

not consider the more practical horizon-fairness metric where fairness is enforced throughout the

entire operation of the system and not over each slot separately.

Horizon-fairness has been recently studied through the lens of competitive analysis [10, 11, 42],

where the goal is to design a policy that achieves online fairness within a constant factor from

the fairness of a suitable benchmark. Kawase and Sumita [42] consider the problem of allocating

arriving items irrevocably to one agent who has additive utilities over the items. The arrival of the

items is arbitrary and can even be selected by an adversary. The authors consider known utility at

the time of allocation, and design policies under the max-min fairness criterion. Banerjee et al. [10]

consider a similar problem under the proportional fairness criterion, and they allow the policies to

exploit available predictions. We observe that the competitive ratio guarantees, while theoretically

interesting, may not be informative about the fairness of the actual approximate solution achieved

by the algorithm for ratios different from one. For instance, when maximizing a Nash welfare

function under the proportional fairness criterion, the solution achieves some axiomatic fairness

properties [55] (e.g., Pareto efficiency, individual rationality, etc.), but this welfare function is

meaningless for “non-optimal” allocations [69], i.e., a policy with a high competitive ratio is not

necessary less fair than a policy with a lower competitive ratio. For this reason, our work considers

regret as a performance metric: when regret vanishes asymptotically, the allocations of the policy

indeed achieve the exact same objective as the adopted benchmark.

Altman et al. [4] consider the 𝛼-fairness problem in a dynamic resource allocation, and investigate

fairness enforced at different time scales (instantaneous and long-term). They consider known

utilities at the time of selecting an allocation in a stationary setting. Lodi et al. [49] also treat

fairness across different time scales (single-period and𝑇 -period) as an offline problem. In this work,

we make a similar distinction on the fairness criterion in the online setting, where we define the

slot-fairness and horizon-fairness.

A different line of work [8, 12, 20, 32, 46, 70, 78] considers horizon-fairness through regret

analysis. Gupta and Kamble [32] study individual fairness criteria that advocate similar individuals

should be treated similarly. They extend the notion of individual fairness to online contextual

decision-making, and introduce: (1) fairness-across-time and (2) fairness-in-hindsight. Fairness-

across-time criterion requires the treatment of individuals to be individually fair relative to the

past as well as future, while fairness-in-hindsight only requires individual fairness at the time

of the decision. The utilities are known at the time of selecting an allocation and are i.i.d. and

drawn from an unknown fixed distribution. Liao et al. [46] consider a similar setup to ours, with a

limited adversarial model and time-varying but known utilities, and focus on proportional fairness.

They consider adversarial perturbation added on a fixed item distribution where the demand of
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Table 1. Summary of related work under online fairness in resource allocation.

Paper Criterion HF/SF Unknown
utilities

Adversarial
utilities

Metric

[38] Weighted proportional fairness SF ✓ ✕ Regret

[69] Weighted proportional fairness SF ✕ ✕ Envy, Efficiency

[72] Proportional fairness SF ✕ ✕ Regret

[32] Individual fairness HF/SF ✕ ✕ Regret

[46] Proportional fairness HF ✕ ✓ Regret

[20] 𝛼-fairness HF ✓ ✕ Regret

[12] Envy-freeness HF ✕ ✓ Envy

[78] Weighted proportional fairness HF ✕ ✓ Envy, Pareto Efficiency

[8] Proportional fairness HF ✕ ✕ Regret

[42] Max-Min fairness HF ✕ ✓ Competitive ratio

[10] Proportional fairness HF ✕ ✓ Competitive ratio

[11] Proportional fairness HF ✕ ✕ Competitive ratio

This work Weighted 𝛼-fairness HF/SF ✓ ✓ Fairness Regret

items generally behaves predictably, but for some time steps, the demand behaves erratically. Our

approach departs significantly from these interesting works in that we consider unknown utility

functions, a broader adversarial model (in fact, as broad as possible while still achieving vanishing

fairness regret), and by using the general 𝛼-fairness criterion that encompasses all the above criteria

as special cases. This makes, we believe, our OHF algorithm applicable to a wider range of practical

problems. Table 1 summarizes the differences between our contribution and the related works.

2.3 Online Learning

Achieving horizon-fairness in our setup requires technical extensions to the theory of OCO [34].

The basic template of OCO-learning (in terms of resource allocation) considers that a decision maker

selects repeatedly a vector 𝑥𝑥𝑥𝑡 from a convex set X, before having access to the 𝑡-th slot scalar utility

function 𝑢𝑡 (𝑥𝑥𝑥), with the goal to maximize the aggregate utility

∑𝑇
𝑡=1
𝑢𝑡 (𝑥𝑥𝑥𝑡 ). The decision maker

aims to have vanishing time-averaged regret, i.e., the time-averaged distance of the aggregate utility∑𝑇
𝑡=1
𝑢𝑡 (𝑥𝑥𝑥𝑡 ) from the aggregate utility of the optimal-in-hindsight allocation max𝑥𝑥𝑥 ∈X

∑𝑇
𝑡=1
𝑢𝑡 (𝑥𝑥𝑥)

for some time horizon 𝑇 . OCO models are robust, expressive, and can be tackled with several

well-studied learning algorithms [34, 51, 63]. However, none of those is suitable for the fairness

problem at hand, as we need to optimize a global function 𝐹𝛼 ( · ) of the time-averaged vector-valued

utilities. This subtle change creates additional technical complications. Indeed, optimizing functions

of time-averaged utility/cost functions in learning is an open and challenging problem. In particular,

Even-Dar et al. [28] introduce the concept of global functions in online learning, and devise a

policy with vanishing regret using the theory of approachability [15]. However, their approach can

handle only norms as global functions, and this limitation is not easy to overcome: the authors

themselves stress that characterizing when a global function enables a vanishing regret is an open

problem (see [28, Section 7]). Rakhlin et al. [60] extend this work to non-additive global functions.

However, the 𝛼-fairness function considered in our work is not supported by their framework.

To generalize the results to 𝛼-fairness global functions, we employ a convex conjugate approach

conceptually similar to the approach taken in the work of Agrawal and Evanur [1] to obtain a

regret guarantee with a concave global function under a stationary setting and linear utilities. In

this work, we consider an adversarial setting (i.e., utilities are picked by an adversary after we

select an allocation) that encompasses general concave utilities, and this requires learning over the

primal space as well as the dual (conjugate) space.
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3 Online Fairness: Definitions and Background

3.1 Static Fairness

Consider a system S that serves a set of agents I by selecting allocations from the set of eligible

allocations X.1 In the general case, this set is defined as the Cartesian product of agent-specific

eligible allocations’ set X𝑖 , i.e., X ≜
>

𝑖∈I X𝑖 . We assume that each set X𝑖 is convex. The utility of

each agent 𝑖 ∈ I is a concave function 𝑢𝑖 : X → R≥0, and depends, possibly, not only on 𝑥𝑥𝑥𝑖 ∈ X𝑖 ,
but on the entire vector 𝑥𝑥𝑥 ∈ X.2 The vector𝑢𝑢𝑢 (𝑥𝑥𝑥) ≜ (𝑢𝑖 (𝑥𝑥𝑥))𝑖∈I ∈ U is the vectorized form of the

agents’ utilities, whereU is the set of possible utility functions. The joint allocation 𝑥𝑥𝑥★ ∈ X is an

𝛼-fair allocation for some 𝛼 ∈ R≥0 if it solves the following convex problem:

max

𝑥𝑥𝑥 ∈X
𝐹𝛼 (𝑢𝑢𝑢 (𝑥𝑥𝑥)) , (2)

where 𝐹𝛼 is the 𝛼-fairness criterion the system employs (e.g., when 𝛼 = 1, problem (2) corresponds

to an Eisenberg-Gale convex problem [25]). The 𝛼-fairness function is defined as follows [6]:

Definition 1. An 𝛼-fairness function 𝐹𝛼 : U → R is parameterized by the inequality aversion
parameter 𝛼 ∈ R≥0, and it is given by

𝐹𝛼 (𝑢𝑢𝑢) ≜
∑︁
𝑖∈I

𝑓𝛼 (𝑢𝑖 ), where 𝑓𝛼 (𝑢) ≜
{
𝑢1−𝛼−1

1−𝛼 , for 𝛼 ∈ R≥0 \ {1},
log(𝑢), for 𝛼 = 1,

(3)

for every𝑢𝑢𝑢 ∈ U. Note thatU ⊂ RI≥0
for 𝛼 < 1, andU ⊂ RI

>0
for 𝛼 ≥ 1.

Note that we use the most general version of utility-based fairness where the fairness rule is

defined w.r.t. to accrued utilities (as opposed to allocated resource, only), i.e., in our system S, the
utility vector𝑢𝑢𝑢 ∈ U can be a function of the selected allocations in X. The 𝛼-fairness function is

concave and component-wise increasing, and thus exhibits diminishing returns [14]. An increase in

utility to a player with a low utility results in a higher 𝛼-fairness objective. Thus, such an increase

is desirable to the system controller. Moreover, the rate at which the marginal increase diminishes

is controlled by 𝛼 , which is then called the inequality aversion parameter. An allocation which

maximizes the 𝛼-fairness objective is always Pareto efficient [14].

3.2 Online Fairness

We consider the performance of the system S is tracked over a time horizon spanning 𝑇 ∈ N
timeslots. At the beginning of each timeslot 𝑡 ∈ T ≜ {1, 2, . . . ,𝑇 }, a policy selects an allocation

𝑥𝑥𝑥𝑡 ∈ X before 𝑢𝑢𝑢𝑡 : X → RI is revealed to the policy. The goal is to approach the performance of a

properly-selected fair allocation benchmark. We consider the following two cases:

Slot-Fairness. An offline benchmark in hindsight, with access to the utilities revealed at every

timeslot 𝑡 ∈ T , can ensure fairness at every timeslot satisfying a slot-fairness (SF) objective [38, 69,
72]. Formally, the benchmark selects the joint allocation 𝑥𝑥𝑥★ ∈ X satisfying

SF : 𝑥𝑥𝑥★ ∈ arg max

𝑥𝑥𝑥 ∈X

1

𝑇

∑︁
𝑡 ∈T

𝐹𝛼 (𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥)) . (4)

1
Appendix G discusses the setting in which the set of agents I is unknown and agents can depart and arrive to the system.

2
For example, in TCP congestion control, the performance of each end-node depends not only on the rate that is directly

allocated to that node, but also, through the induced congestion in shared links, by the rate allocated to other nodes [29].

Similar couplings arise in wireless transmissions over shared channels [61].
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Horizon-Fairness. Enforcing fairness at every timeslot can be quite restrictive, and this is especially

evident for large time horizons. An alternative formulation is to consider that the agents can accept

a momentary violation of fairness at a given timeslot 𝑡 ∈ T as long as in the long run fairness over

the total incurred utilities is achieved. Therefore, it is more natural (see Example 1) to ensure a

horizon-fairness criterion over the entire period T . Formally, the benchmark selects the allocation

𝑥𝑥𝑥★ ∈ X satisfying

HF : 𝑥𝑥𝑥★ ∈ arg max

𝑥𝑥𝑥 ∈X
𝐹𝛼

(
1

𝑇

∑︁
𝑡 ∈T

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥)
)
. (5)

Price of fairness. Bertsimas et al. [14] defined the price of fairness (PoF) metric to quantify the

efficiency loss due to fairness as the difference between the maximum system efficiency and the

efficiency under the fair scheme. In the case of 𝛼-fairness, it is defined for some utility setU as

PoF(U;𝛼) ≜
max𝑢𝑢𝑢∈U 𝐹0 (𝑢𝑢𝑢) − 𝐹0

(
𝑢𝑢𝑢max,𝛼

)
max𝑢𝑢𝑢∈U 𝐹0 (𝑢𝑢𝑢)

, (6)

where 𝑢𝑢𝑢max,𝛼 ∈ arg max𝑢𝑢𝑢∈U 𝐹𝛼 (𝑢𝑢𝑢) and 𝐹0 (𝑢𝑢𝑢) =
∑
𝑖∈I 𝑢𝑖 measures the achieved social welfare.

Note that by definition the utilitarian objective achieves maximum efficiency, i.e., PoF(U; 0) = 0.

Naturally, in our online setting, the metric is extended as follows

PoF(X;T ;𝛼) ≜ max𝑥𝑥𝑥 ∈X
∑
𝑡 ∈T 𝐹0 (𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥)) −

∑
𝑡 ∈T 𝐹0 (𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★))

max𝑥𝑥𝑥 ∈X
∑
𝑡 ∈T 𝐹0 (𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥))

, (7)

where 𝑥𝑥𝑥★ is obtained through either SF (4) or HF (5). We provide the following example to further

motivate our choice of horizon-fairness as a performance objective. A similar argument is provided

in [49, Example 7].

Example 1. Consider a system with two agents I = {1, 2}, an allocation set X = [0, 𝑥max] with
𝑥max > 1, 𝛼-fairness criterion with 𝛼 = 1, even 𝑇 ∈ N, and the following sequence of utilities

{𝑢𝑢𝑢𝑡 (𝑥)}𝑇𝑡=1
= {(1 + 𝑥, 1 − 𝑥) , (1 + 𝑥, 1 + 𝑥) , . . . }. It can easily be verified that PoF = 0 for HF

objective (5) because the HF optimal allocation is 𝑥max which matches the optimal allocation under

the utilitarian objective. However, under the SF objective (4) we have PoF =
𝑥max−0.5

𝑥max+2 ≈ 1 when 𝑥max

is large. Remark that the two objectives have different domains of definitions; in particular, the

allocations in the set [1, 𝑥max] ⊂ X are unachievable by the SF objective because they would lead

to 𝑢𝑡,2 (𝑥) ≤ 0. The HF objective achieves lower PoF (hence, larger aggregate utility), and it allows a

much larger set of eligible allocations (in particular all the allocations in the set X), as shown in

Fig. 1. Indeed, when the controller has the freedom to achieve fairness over a time horizon, there is

an opportunity for more efficient allocations during the system operation. This example provides

intuition on the robustness and practical importance of the horizon-fairness objective.

In the following section, we provide the description of an online learning model and our perfor-

mance metric of interest under the HF objective.

3.3 Online Policies and Performance Metric

The agents’ allocations are determined by an online policyAAA = {A1,A2, . . . ,A𝑇 }, i.e., a sequence
of mappings. For every timeslot 𝑡 ∈ T , A𝑡 : X𝑡 × U𝑡 → X maps the sequence of past alloca-

tions {𝑥𝑥𝑥𝑠 }𝑡𝑠=1
∈ X𝑡 and utility functions {𝑢𝑢𝑢𝑠 }𝑡𝑠=1

∈ U𝑡
to the next allocation 𝑥𝑥𝑥𝑡+1 ∈ X. We assume

the initial decision 𝑥𝑥𝑥1 is feasible (i.e., 𝑥𝑥𝑥1 ∈ X). We measure the performance of policyAAA in terms of

the fairness regret (8), i.e., the difference between the fairness objective experienced byAAA at the

time horizon𝑇 and that of the best static decision 𝑥𝑥𝑥★ ∈ X in hindsight. We restate the regret metric
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Fig. 1. Price of Fairness under HF and SF objectives for Example 1 for 𝑥max = 3. The green shaded area

provides the set of allocation unachievable by the SF objective but achievable by the HF objective.

here to streamline the presentation:

ℜ𝑇 (𝐹𝛼 ,AAA) ≜ sup

{𝑢𝑢𝑢𝑡 }𝑇𝑡=1
∈U𝑇

{
𝐹𝛼

(
1

𝑇

∑︁
𝑡 ∈T

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)
)
− 𝐹𝛼

(
1

𝑇

∑︁
𝑡 ∈T

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)}

. (8)

where 𝑥𝑥𝑥★ is the HF (5) allocation. If the fairness regret becomes negligible for large 𝑇 , then AAA
attains the same fairness objective as the optimal static decision with hindsight. Note that under

the utilitarian objective (𝛼 = 0), this fairness regret coincides with the classic time-averaged regret

in OCO [34]. However, for general values of 𝛼 ≠ 0, the metric is completely different, as we aim to

compare 𝛼-fair functions evaluated at time-averaged vector-valued utilities.

4 Online Horizon-Fair (OHF) Policy

We first present in Section 4.1, the adversarial model considered in this work and provide a

result on the impossibility of guaranteeing vanishing fairness regret (8) under general adversarial

perturbations. We also provide a powerful family of adversarial perturbations for which a vanishing

fairness regret guarantee is attainable. Secondly, we present the OHF policy in Section 4.2 and

provide its performance guarantee. Finally, we provide in Section 4.3 a set of adversarial examples

captured by our fairness framework.

4.1 Adversarial Model and Impossibility Result

We begin by introducing formally the adversarial model that characterizes the utility perturbations.

In particular, we consider 𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥) ≜
(

1

𝑇

∑
𝑠∈T 𝑢𝑢𝑢𝑠 (𝑥𝑥𝑥)

)
−𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥) to quantify how much the adversary

perturbs the average utility by selecting a utility function𝑢𝑢𝑢𝑡 at timeslot 𝑡 ∈ T . Recall that 𝑥𝑥𝑥★ ∈ X
denotes the optimal allocation under HF objective (5). We denote by Ξ(T ) the set of all possible
decompositions of T into sets of contiguous timeslots, i.e., for every {T1,T2, . . . ,T𝐾 } ∈ Ξ(T ) it
holds T = ¤⋃𝑘∈{1,2,...,𝐾 }T𝑘 and maxT𝑘 < minT𝑘+1 for 𝑘 ∈ {1, 2, . . . , 𝐾 − 1}. We define two types of

adversarial perturbations:

Budgeted-severity: VT ≜ sup

{𝑢𝑢𝑢𝑡 }𝑇𝑡=1
∈U𝑇

{∑︁
𝑡 ∈T

∑︁
𝑖∈I

��𝛿𝑡,𝑖 (𝑥𝑥𝑥★)��} , (9)

Partitioned-severity: WT ≜ sup

{𝑢𝑢𝑢𝑡 }𝑇𝑡=1
∈U𝑇

 inf

{T1,T2,...,T𝐾 }
∈Ξ(T)

{
𝐾∑︁
𝑘=1

∑︁
𝑖∈I

�����∑︁
𝑡 ∈T𝑘

𝛿𝑡,𝑖 (𝑥𝑥𝑥★)
�����+ 𝐾∑︁
𝑘=1

|T𝑘 |2∑
𝑘′<𝑘 |T𝑘 | + 1

} . (10)

Our result in Theorem 2 implies that when either VT orWT grows sublinearly in the time horizon

(i.e., the perturbations satisfy at least one of these two conditions), the regret of OHF policy in

Algorithm 1 vanishes over time. We provide a detailed description of conditions (9) and (10) below.
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The budgeted-severity VT in Eq. (9) bounds the total amount of perturbations of the time-averaged

utility. WhenVT = 0 the adversary is only able to select a fixed function, otherwise the adversary is

able to select time-varying utilities, while keeping the total deviation no more than VT . Moreover,

the adversary is allowed to pick opportunely the timeslots to maximize performance degradation

for the controller. This model is similar to the adversarial corruption setting considered in [9, 46],

and it captures realistic scenarios where the utilities incurred at different timeslots are predictable,

but can be perturbed for some fraction of the timeslots. For instance, Internet traffic may experience

spikes due to breaking news or other unpredictable events [27].

The partitioned-severity WT in Eq. (10) may at first be less easy to understand than budgeted-

severity condition (9), but is equally important from a practical point of view. For simplicity, consider

a uniform decomposition of the timeslots, i.e., T𝑘 = 𝑀 for every 𝑘 ∈ {1, 2, . . . ,𝑇 /𝑀} assuming w.l.g.

𝑀 divides 𝑇 . Then the r.h.s. term in Eq. (10) can be bounded as follows:

𝑇 /𝑀∑︁
𝑘=1

|T𝑘 |2∑
𝑘′<𝑘 |T𝑘 | + 1

=

𝑇 /𝑀∑︁
𝑘=1

𝑀2

𝑀 (𝑘 − 1) + 1

= O
(
𝑀2 +𝑀 log(𝑇 /𝑀)

)
. (11)

Hence, when 𝑀 = 𝑜 (
√
𝑇 ) it holds ∑𝑇 /𝑀

𝑘=1

|T𝑘 |2∑
𝑘′<𝑘 |T𝑘 |+1 = 𝑜 (𝑇 ). Since this term grows sublinearly in

time, it remains to characterize the growth of the l.h.s. term

∑𝐾
𝑘=1

∑
𝑖∈I

��∑
𝑡 ∈T𝑘 𝛿𝑡,𝑖 (𝑥𝑥𝑥★)

��
in Eq. (10).

This term is related to the perturbations selected by the adversary, however the absolute value is

only evaluated at the end of each contiguous subperiod T𝑘 , i.e., the positive and negative deviations
from the average utilities can cancel out. For example, a periodic selection of utilities from some

set with cardinality𝑀 would have zero deviation for this term. This type of adversary is similar

to the periodic adversary considered in [9, 23], but also includes adversarial selection of utilities

from some finite set (see Example 3 in Section 4.3). The partitioned-severity adversary can model

real-life applications that exhibit seasonal properties, e.g., the traffic may be completely different

throughout the day, but daily traffic is self-similar [80]. This condition also unlocks the possibility

to obtain high probability guarantees under stochastic utilities (see Corollary 4).

We formally make the following assumptions:

(A1) The allocation set X is convex with diameter diam (X) < ∞.
(A2) The utilities are bounded, i.e.,𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥) ∈ [𝑢min, 𝑢max]I ⊂ RI for every 𝑡 ∈ T .
(A3) The supergradients of the utilities are bounded over X, i.e., it holds ∥𝑔𝑔𝑔∥

2
≤ 𝐿X < ∞ for any

𝑔𝑔𝑔 ∈ 𝜕𝑥𝑥𝑥𝑢𝑡,𝑖 (𝑥𝑥𝑥) and 𝑥𝑥𝑥 ∈ X.
(A4) The average utility of the optimal allocation (5) is bounded such that

1

𝑇

∑
𝑡 ∈T 𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★) ∈[

𝑢★,min, 𝑢★,max

]I ⊂ RI
>0
.

(A5) The adversary is restricted to select utilities such that

min {VT ,WT} = 𝑜 (𝑇 ). (12)

We first show that an adversary solely satisfying the mild assumptions (A1)–(A4) can arbitrarily

degrade the performance of any policyAAA. Formally, we have the following negative result:

Theorem 1. When Assumptions (A1)–(A4) are satisfied, there is no online policy AAA attaining
ℜ𝑇 (𝐹𝛼 ,AAA) = o (1) for |I | > 1 and 𝛼 > 0. Moreover, there exists an adversary where Assumption (A5)
is necessary for ℜ𝑇 (𝐹𝛼 ,AAA) = 𝑜 (1).

The proof can be found in Appendix B. We design an adversary with a choice over two sequences

of utilities against two agents. We show that no policy can have vanishing fairness regret w.r.t. the

time horizon under both sequences.
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Algorithm 1 OHF policy

Require: X, 𝛼 ∈ R≥0,

[
𝑢★,min,𝑢★,max

]
1: Θ←

[
−1/𝑢𝛼

★,min
,−1/𝑢𝛼★,max

]I
⊲ Initialize the dual (conjugate) subspace

2: 𝑥𝑥𝑥1 ∈ X; 𝜃𝜃𝜃 1 ∈ Θ; ⊲ Initialize allocation 𝑥𝑥𝑥1 and dual decision 𝜃𝜃𝜃 1

3: for 𝑡 ∈ T do
4: Reveal Ψ𝑡,𝛼 (𝜃𝜃𝜃𝑡 ,𝑥𝑥𝑥𝑡 ) = (−𝐹𝛼 )★ (𝜃𝜃𝜃𝑡 ) −𝜃𝜃𝜃𝑡 ·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 ) ⊲ Incur reward Ψ𝑡,𝛼 (𝜃𝜃𝜃𝑡 ,𝑥𝑥𝑥𝑡 ) and loss Ψ𝑡,𝛼 (𝜃𝜃𝜃𝑡 ,𝑥𝑥𝑥𝑡 )
5: 𝑔𝑔𝑔X,𝑡 ∈ 𝜕𝑥𝑥𝑥Ψ𝑡,𝛼 (𝜃𝜃𝜃𝑡 ,𝑥𝑥𝑥𝑡 ) =

∑
𝑖∈I 𝜃𝑡,𝑖𝜕𝑥𝑥𝑥𝑢𝑡,𝑖 ⊲ Compute supergradient 𝑔𝑔𝑔X,𝑡 at 𝑥𝑥𝑥𝑡 of reward Ψ𝑡,𝛼 (𝜃𝜃𝜃𝑡 , · )

6: 𝑔𝑔𝑔Θ,𝑡 = ∇𝜃𝜃𝜃Ψ𝑡,𝛼 (𝜃𝜃𝜃𝑡 ,𝑥𝑥𝑥𝑡 ) =
( (
−𝜃𝑡,𝑖

)−1/𝛼 −𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)
𝑖∈I

⊲ Compute gradient 𝑔𝑔𝑔Θ,𝑡 at 𝜃𝜃𝜃𝑡 of loss Ψ𝑡,𝛼 ( · ,𝑥𝑥𝑥𝑡 )

7: 𝜂X,𝑡 = diam (X)/
√︃∑𝑡

𝑠=1

𝑔𝑔𝑔X,𝑠2

2
; 𝜂Θ,𝑡 = 𝛼𝑢

−1−1/𝛼
min

/𝑡 ⊲ Compute adaptive learning rates

8: 𝑥𝑥𝑥𝑡+1 = ΠX
(
𝑥𝑥𝑥𝑡 + 𝜂X,𝑡𝑔𝑔𝑔X,𝑡

)
; 𝜃𝜃𝜃𝑡+1 = ΠΘ

(
𝜃𝜃𝜃𝑡 − 𝜂Θ,𝑡𝑔𝑔𝑔Θ,𝑡

)
⊲ Compute a new allocation and dual decision

4.2 OHF Policy

Our policy employs a convex-concave function, composed of a convex conjugate term that tracks

the global fairness metric in a dual (conjugate) space, and a weighted sum of utilities term that

tracks the appropriate allocations in the primal space. This function is used by the policy to

compute a gradient and a supergradient to adapt its internal state. In detail, we define the function

Ψ𝛼 : Θ × X → R given by

Ψ𝑡,𝛼 (𝜃𝜃𝜃,𝑥𝑥𝑥) ≜ (−𝐹𝛼 )★ (𝜃𝜃𝜃 ) − 𝜃𝜃𝜃 ·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥), (13)

where Θ =

[
−1/𝑢𝛼

★,min
,−1/𝑢𝛼★,max

]I
⊂ RI

<0
is a subspace of the dual (conjugate) space, and (−𝐹𝛼 )★

is the convex conjugate (see Definition 3 in Appendix) of −𝐹𝛼 given by for any 𝜃𝜃𝜃 ∈ Θ

(−𝐹𝛼 )★ (𝜃𝜃𝜃 ) =
{∑

𝑖∈I
𝛼 (−𝜃𝑖 )1−1/𝛼−1

1−𝛼 for 𝛼 ∈ R≥0 \ {1},∑
𝑖∈I − log(−𝜃𝑖 ) − 1 for 𝛼 = 1.

(14)

The policy is summarized in Algorithm 1. The algorithm only requires as input: the set of eligible

allocations X, the 𝛼-fairness parameter in RI≥0
, and the range

[
𝑢★,min, 𝑢★,max

]
of values of the

average utility obtained by the optimal allocation (5), i.e.,
1

𝑇

∑
𝑡 ∈T 𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★) ∈

[
𝑢★,min, 𝑢★,max

]I ⊂ RI
>0
.

We stress that the target time horizon 𝑇 is not an input to the policy. The utility bounds 𝑢𝛼
★,min

and 𝑢𝛼★,max
depend on the specific application. For example, for the virtualized caching system

considered in Section 6, one could simply pick a small enough 𝜖 > 0 as 𝑢𝛼
★,min

, and the maximum

batch size weighted by the largest retrieval cost in the network as 𝑢𝛼★,max
(see Eq. (27)). However, if

prior information is available to tighten this range, the performance of the algorithm is ameliorated,

as reflected in the regret bound in Eq. (15).

The policy uses its input to initialize the dual (conjugate) subspace Θ =

[
−1/𝑢𝛼

★,min
,−1/𝑢𝛼★,max

]I
,

an allocation 𝑥𝑥𝑥1 ∈ X, and a dual decision 𝜃𝜃𝜃 1 ∈ Θ (lines 1–2 in Algorithm 1). At a given timeslot

𝑡 ∈ T , the allocation 𝑥𝑥𝑥𝑡 is selected; then a vector-valued utility 𝑢𝑢𝑢𝑡 ( · ) is revealed and in turn

Ψ𝑡,𝛼 ( · , · ) is revealed to the policy (line 4 in Algorithm 1). The supergradient 𝑔𝑔𝑔X,𝑡 of Ψ𝑡,𝛼 (𝜃𝜃𝜃 𝑡 , · )
at point 𝑥𝑥𝑥𝑡 ∈ X, and the gradient 𝑔𝑔𝑔Θ,𝑡 of Ψ𝑡,𝛼 ( · ,𝑥𝑥𝑥𝑡 ) at point 𝜃𝜃𝜃 𝑡 ∈ Θ are computed (lines 5–6 in

Algorithm 1). The policy then finally performs an adaptation of its state variables (𝑥𝑥𝑥𝑡 ,𝜃𝜃𝜃 𝑡 ) through
a descent step in the dual space and an ascent step in the primal space through online gradient

descent (OGD) and online gradient ascent (OGA) policies,
3
respectively (line 8 in Algorithm 1). The

3
Note that a different OCO policy can be used as long as it has a no-regret guarantee, e.g., online mirror descent (OMD),

follow the regularized leader (FTRL), or follow the perturbed leader (FTPL) [34, 51]; moreover, one could even incorporate

optimistic versions of such policies [59], to improve the regret rates when the controller has access to accurate predictions.
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learning rates (step size) used are “self-confident” [7] as they depend on the experienced gradients.

Such a learning rate schedule is compelling because it can adapt to the adversary and provides

tighter regret guarantees for “easy” utility sequences; moreover, it allows attaining an anytime
regret guarantee, i.e., a guarantee holding for any time horizon 𝑇 . In particular, OHF policy in

Algorithm 1 enjoys the following fairness regret guarantee.

Theorem 2. Under assumptions (A1)–(A5), OHF policy in Algorithm 1 attains the following fairness
regret guarantee:

ℜ𝑇 (𝐹𝛼 ,AAA) ≤ sup

{𝑢𝑢𝑢𝑡 }𝑇𝑡=1
∈U𝑇


1.5 diam (X)

𝑇

√︄∑︁
𝑡 ∈T

𝑔𝑔𝑔X,𝑡2

2
+
𝑇∑︁
𝑡=1

𝛼
𝑔𝑔𝑔Θ,𝑡2

2

2𝑢
1+ 1

𝛼

★,min
𝑇𝑡

 + O
(

min {VT ,WT}
𝑇

)
(15)

≤ 1.5 diam (X) 𝐿X
𝑢𝛼
★,min

√
𝑇

+
𝛼𝐿2

Θ (log(𝑇 ) + 1)

𝑢
1+ 1

𝛼

★,min
𝑇

+ O
(

min {VT ,WT}
𝑇

)
(16)

= O
(

1

√
𝑇
+ min {VT ,WT}

𝑇

)
= 𝑜 (1). (17)

The proof is provided in Appendix C. We prove that the fairness regret can be upper bounded

with the time-averaged regrets of the primal policy operating over the set X and the dual policy

operating over the set Θ, combined with an extra term that is upper bounded with min {VT ,WT}.
Note that the fairness regret upper bound in Eq. (15) can be much tighter than the one in Eq. (16),

because the gradients’ norms can be smaller than their upper bound at a given timeslot 𝑡 ∈ T .
Thanks to its “self-confident” learning schedule [7], which dynamically adapts to the observed

utilities, our Algorithm 1 enjoys an any-time regret guarantee, i.e., it does not require the knowledge
of the target time horizon 𝑇 .

The result in Theorem 2 is tight, in the sense that no policy can have a fairness regret (8) with

better dependency on the time horizon 𝑇 . Formally,

Theorem 3. Any policyAAA incurs ℜ𝑇 (𝐹𝛼 ,AAA) = Ω
(

1√
𝑇

)
fairness regret (8) for 𝛼 ≥ 0.

The proof can be found in Appendix D. We show that the lower bound on regret in online convex

optimization [34] can be transferred to the fairness regret.

We discuss in Appendix H, the time-complexity of Algorithm 1 in the context of virtualized

caching system application, presented in Section 6.

4.3 Adversarial Examples

In this section, we provide examples of adversaries satisfying Assumptions (A1)–(A5), with either

VT = 𝑜 (𝑇 ) orWT = 𝑜 (𝑇 ), and of stochastic adversaries.

Example 2. (Adversaries satisfying VT = 𝑜 (𝑇 )) Consider an adversary selecting utilities such that

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥) = 𝑢𝑢𝑢 (𝑥𝑥𝑥) +𝛾𝛾𝛾𝑡 ⊙ 𝑝𝑝𝑝𝑡 (𝑥𝑥𝑥), (18)

where𝑢𝑢𝑢 : X → RI is a fixed utility, the time-dependent function 𝑝𝑝𝑝𝑡 : X → RI is an adversarially

selected perturbation with

𝑝𝑝𝑝𝑡∞ < ∞, 𝛾𝛾𝛾𝑡 ∈ RI quantifies the severity of the perturbations, and

𝛾𝛾𝛾𝑡 ⊙ 𝑝𝑝𝑝𝑡 (𝑥𝑥𝑥) =
(
𝛾𝑡,𝑖𝑝𝑡,𝑖 (𝑥𝑥𝑥)

)
𝑖∈I is the Hadamard product. The severity of the perturbations grows

sublinearly in time 𝑇 , i.e.,
∑𝑇
𝑡=1
𝛾𝑡,𝑖 = 𝑜 (𝑇 ) for every 𝑖 ∈ I. It is easy to check that, in this setting, it

holds VT = 𝑜 (𝑇 ).
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(a) 𝑠 = 1

100
(b) 𝑠 = 1

10
(c) 𝑠 = 1

2
(d) Time-averaged utility

Fig. 2. Subfigures (a)–(c) provide the utilities of agent 2 for different values of perturbations’ severity parameter

𝑠 ∈
{

1

100
, 1

10
, 1

2

}
under the benchmark’s allocation 𝑥★. Subfigure (d) provides the time-averaged utility of two

agents. The dark dashed lines represent the utilities obtained by HF objective (5).

We provide a simple-yet-illustrative example of such an adversary. We take X = [0, 1] ⊂ R,
two agents I = {1, 2}, fixed utilities 𝑢𝑢𝑢 (𝑥) =

(
1 − 𝑥2, 1 + 𝑥

)
, adversarial perturbations 𝑝𝑝𝑝𝑡 (𝑥) =(

𝑎𝑖,𝑡 · 𝑥
)
𝑖∈I where 𝑎𝑎𝑎𝑡 is selected uniformly at random from [−1, 1]I for every 𝑡 ∈ T . The perturba-

tions’ severity is selected as 𝛾𝜉𝑡,𝑖 ,𝑖 = 𝑡
−𝑠

where 𝜉𝜉𝜉𝑖 : T → T is a random permutation of the elements

of T for 𝑖 ∈ I. The performance of Algorithm 1 is provided in Fig. 2. We observe that for larger

values of 𝑠 , corresponding to lower perturbation’s severity, the policy provides faster the same

utilities as the HF benchmark (5).

Example 3. (Adversaries satisfying WT = 𝑜 (𝑇 )) Consider a multiset M𝑡 of utilities and an

adversary that selects a utility𝑢𝑢𝑢𝑡 : X → RI from it. Themultiset is updated as follows: ifM𝑡 \{𝑢𝑢𝑢𝑡 } ≠
∅,M𝑡+1 =M𝑡 \ {𝑢𝑢𝑢𝑡 }, otherwise,M𝑡 =M1. In words, the adversary selects irrevocably elements

(utilities) from the setM1, and, when all the elements are selected, the replenishedM1 is offered

again to the adversary. Consider, without loss of generality, a time horizon 𝑇 divisible by |M1 | and
the following decomposition for the period T : {1, 2, . . . , |M1 |} ∪ {|M1 | + 1, |M1 | + 2, . . . , 2 |M1 |} ∪
· · · = T1 ∪ T2 ∪ · · · ∪ T𝑇 / |M1 | . By construction, it holds for every 𝑥𝑥𝑥 ∈ X∑︁

𝑖∈I

�����∑︁
𝑡 ∈T𝑘

𝛿𝑡,𝑖 (𝑥𝑥𝑥)
����� = 0, ∀𝑘 ∈ {1, 2, . . . ,𝑇 /|M1 |} , (19)

because when the multiset is fully consumed by the adversary, the average experienced utility is

a fixed function. When |M1 | = Θ (𝑇 𝜖 ) for 𝜖 ∈ [0, 1/2) it holds ∑𝑇 / |M1 |
𝑘=1

|T𝑘 |2∑
𝑘′<𝑘 |T𝑘 |+1 = O

(
𝑇 2𝜖

)
(see

Eq. (11)); thus, combined with Eq. (19) it holdsWT = 𝑜 (𝑇 ). We provide a simple example of such

an adversary. Consider X = [−1, 1], two agents I = {1, 2}, and the initial multiset

M1 = {(1−𝑥, 1−(1−𝑥)2)︸                ︷︷                ︸
repeated 10 times

, (1−(1−𝑥)2, 1−4𝑥)︸                  ︷︷                  ︸
repeated 20 times

, (1,−2𝑥)︸   ︷︷   ︸
repeated 10 times

}. (20)

We have |M1 | = 40 and henceWT = 𝑜 (𝑇 ). The performance of Algorithm 1 is provided in Fig. 3

under different choice patterns overM1. We observe that the cyclic choice of utilities is more

harmful than the u.a.r. one as it leads to slower convergence. Nonetheless, under both settings, the

policy asymptotically yields the same utilities as the HF benchmark (5).

Example 4. (Stochastic Adversary) Consider a scenario where 𝑢𝑡,𝑖 : X → R are drawn i.i.d. from

an unknown distribution D𝑖 . Formally, the following corollary is obtained from Theorem 2.

Corollary 4. When the utilities 𝑢𝑡,𝑖 : X → R are drawn i.i.d. from an unknown distribution D𝑖
satisfying Assumptions (A1)–(A4), the policy OHF in Algorithm 1 attains the following expected
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(a) Allocations (cyclic) (b) Allocations (u.a.r.) (c) Time-averaged utili-

ties (cyclic)

(d) Time-averaged utili-

ties (u.a.r.)

Fig. 3. Subfigures (a)–(b) provide the allocations of different agents of cyclic and u.a.r. choice of utilities over

the setM1, respectively. Subfigures (c)–(d) provide the time-averaged utility of cyclic and u.a.r. choice of

utilities over the setM1, respectively.

fairness regret guarantee:

¯ℜ𝑇 (𝐹𝛼 ,AAA) ≜ sup

D𝑖 , 𝑖∈I

 E
𝑢𝑡,𝑖∼D𝑖
𝑖∈I, 𝑡 ∈T

[
max

𝑥𝑥𝑥 ∈X
𝐹𝛼

(
1

𝑇

∑︁
𝑡 ∈T

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)
− 𝐹𝛼

(
1

𝑇

∑︁
𝑡 ∈T

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)] = O

(
1

√
𝑇

)
. (21)

Moreover, it holds with probability one: ℜ𝑇 (𝐹𝛼 ,AAA) ≤ 0 for 𝑇 →∞.

The proof is in Appendix E. The expected fairness regret guarantee follows from Theorem 2

and observing that E [𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥)] = 000 for any 𝑡 ∈ T and 𝑥𝑥𝑥 ∈ X. The high probability fairness regret

guarantee for large 𝑇 is obtained through Hoeffding’s inequality paired with Eq. (10).

Note that we provide additional examples of adversaries, in the context of the application of our

policy to a virtualized caching system, in Section 6.

5 Extensions

In this section, we first show that our algorithmic framework extends to cooperative bargaining

settings, in particular Nash bargaining [55]. Secondly, we show that our framework also extends to

the weighted 𝛼-fairness criterion.

5.1 Nash Bargaining

Nash bargaining solution (NBS), proposed in the seminal paper [55], is a fairness criterion for

dispersing to a set of agents the utility of their cooperation. The solution guarantees that, whenever

the agents cooperate, each agent achieves an individual performance that exceeds its performance

when operating independently. This latter is also known as the disagreement point. NBS comes

from the area of cooperative game theory, and it is self enforcing, i.e., the agents will agree to

apply this solution without the need for an external authority to enforce compliance. NBS has been

extensively applied in communication networks, e.g., to transmission power control [17], mobile

Internet sharing among wireless users [36], content delivery in ISP-CDN partnerships [39], and

cooperative caching in information-centric networks [75].

Nash bargaining can be incorporated through our fairness framework when 𝛼 = 1, and utilities

as redefined for every 𝑡 ∈ T as follows𝑢𝑢𝑢 ′𝑡 (𝑥𝑥𝑥) = 𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥) −𝑢𝑢𝑢𝑑𝑡 where 𝑢𝑑𝑖 is the disagreement point of

agent 𝑖 ∈ I. In particular, OHF provides the same guarantees. We also note that the dynamic model

generalizes the NBS solution by allowing both the utilities and the disagreement points to change

over time, while the benchmark is defined using (5) and 𝛼 = 1. Hence, the proposed OHF allows

the agents to collaborate without knowing in advance the benefits of their cooperation nor their
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disagreement points, in a way that guarantees they will achieve the commonly agreed NBS at the

end of the horizon T (asymptotically).

5.2 The (𝑤𝑤𝑤, 𝛼)-Fairness
The weighted 𝛼-fairness or simply (𝑤𝑤𝑤, 𝛼)-fairness with 𝛼 ≥ 0 and𝑤𝑤𝑤 ∈ ΔI ⊂ R≥0, where ΔI is the

probability simplex with support I, is defined as [53]:

Definition 2. A (𝑤𝑤𝑤, 𝛼)-fairness function 𝐹𝑤𝑤𝑤,𝛼 : U → R is parameterized by the inequality aversion
parameter 𝛼 ∈ R≥0, weights𝑤𝑤𝑤 ∈ ΔI and it is given by 𝐹𝑤𝑤𝑤,𝛼 (𝑢𝑢𝑢) ≜

∑
𝑖∈I 𝑤𝑖 𝑓𝛼 (𝑢𝑖 ) for every 𝑢𝑢𝑢 ∈ U.

Note thatU ⊂ RI≥0
for 𝛼 < 1, andU ⊂ RI

>0
for 𝛼 ≥ 1.

It is easy to check that our 𝛼-fairness framework captures the (𝑤𝑤𝑤, 𝛼)-fairness by simply redefining

the utilities incurred at time 𝑡 ∈ I for agent 𝑖 ∈ I as follows:𝑢 ′𝑡,𝑖 (𝑥𝑥𝑥) = 𝑤
1

1−𝛼
𝑖

𝑢𝑡,𝑖 (𝑥𝑥𝑥) for 𝛼 ∈ R≥0 \{1},
otherwise 𝑢 ′𝑡,𝑖 (𝑥𝑥𝑥) =

(
𝑢𝑡,𝑖 (𝑥𝑥𝑥)

)𝑤𝑖
. Note that for 𝛼 = 1 and uniform weights, we recover the Nash

bargaining setting discussed previously; otherwise, we recover asymmetric Nash bargaining in

which the different weights correspond to the bargaining powers of players [33].

6 Application

In order to demonstrate the applicability of the proposed fairness framework, we target a representa-

tive resource management problem in virtualized caching systems where different caches cooperate

by serving jointly the received content requests. This problem has been studied extensively in its

static version, where the request rates for each content file are a priori known and the goal is to

decide which files to store at each cache to maximize a fairness metric of cache hits across different

caches, see for instance [48, 75]. We study the more realistic version of the problem where the

request patterns are unknown. This online caching model has been recently studied as a learning

problem in a series of papers [18, 45, 52, 56, 57, 67], yet none of them handles fairness metrics.

6.1 Multi-Agent Cache Networks

Cache network. We assume that time is slotted and the set of timeslots is denoted by T ≜
{1, 2, . . . ,𝑇 }. We consider a catalog of equally-sized files F ≜ {1, 2, . . . , 𝐹 }.4 We model a cache

network at timeslot 𝑡 ∈ T as an undirected weighted graph 𝐺𝑡 (C, E), where C ≜ {1, 2, . . . ,𝐶} is
the set of caches, and (𝑐, 𝑐 ′) ∈ E denotes the link connecting cache 𝑐 to 𝑐 ′ with associated weight

𝑤𝑡,(𝑐,𝑐′) ∈ R>0. Let P𝑡,(𝑐,𝑐′) =
{
𝑐1, 𝑐2, . . . , 𝑐 |P𝑡,(𝑐,𝑐′) |

}
∈ C|P𝑡,(𝑐,𝑐′) | be the shortest path at timeslot

𝑡 ∈ T from cache 𝑐 to cache 𝑐 ′ with associated weight𝑤
sp

𝑡,(𝑐,𝑐′) ≜
∑|P𝑡,(𝑐,𝑐′) |−1

𝑘=1
𝑤𝑡,(𝑐𝑘 ,𝑐𝑘+1) .

We assume for each file 𝑓 ∈ F is permanently stored at a set Λ𝑓 (C) ⊂ C of designated repository

servers. Moreover, each cache can store fractions of the file and fractions of the same file at different

caches can be additively combined.
5
We denote by 𝑥𝑡,𝑐,𝑓 ∈ [0, 1] the fraction of file 𝑓 ∈ F stored at

cache 𝑐 ∈ C at timeslot 𝑡 ∈ T . The state of cache 𝑐 ∈ C is given by 𝑥𝑥𝑥𝑡,𝑐 drawn from the set

X𝑐 ≜
𝑥𝑥𝑥 ∈ [0, 1]F :

∑︁
𝑓 ∈F

𝑥 𝑓 ≤ 𝑘𝑐 , 𝑥 𝑓 ≥ 1
(
𝑐 ∈ Λ𝑓 (C)

)
,∀𝑓 ∈ F

 , (22)

4
Note that we assume equally-sized files to streamline the presentation. Our model supports unequally-sized files by

replacing the cardinality constraint in Eq. (22) with a knapsack constraint and the set X𝑐 (defined in (22)) remains convex.

5
This is a common assumption [57, 65], which models situations where each file can be split in a large number of small

chunks and each cache can store random linear combinations of such chunks. Guarantees for this fractional setting can be

readily transferred to an integral setting through randomized rounding techniques [16, 35, 56, 68].
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Fig. 4. System model: a network comprised of a set of caching nodes C. A request arrives at a cache node

𝑐 ∈ C, it can be partially served locally, and if needed, forwarded along the shortest retrieval path to another

node to retrieve the remaining part of the file; a utility is incurred by the cache owner 𝑖 ∈ I. A set of

permanently allocated files are spread across the network guaranteeing requests can always be served.

where 𝑘𝑐 ∈ N is the capacity of cache 𝑐 ∈ C, and 1(𝜒) ∈ {0, 1} is the indicator function set to 1

when condition 𝜒 is true. Thus, the state of the cache network belongs toX ≜ >
𝑐∈C X𝑐 . The system

model is summarized in Fig. 4, and it is aligned with many recent papers focusing on learning for

caching [35, 56, 57, 68].

Requests. We denote by 𝑟𝑡,𝑐,𝑓 ∈ N ∪ {0} the number of requests for file 𝑓 ∈ F submitted by

users associated to cache 𝑐 ∈ C, during slot 𝑡 ∈ T . The request batch arriving at timeslot 𝑡 ∈ T is

denoted by 𝑟𝑟𝑟 𝑡 =
(
𝑟𝑡,𝑐,𝑓

)
(𝑐,𝑓 ) ∈C×F and belongs to the set

R𝑡 ≜
𝑟𝑟𝑟 ∈ (N ∪ {0})C×F :

∑︁
𝑐∈C

∑︁
𝑓 ∈F

𝑟𝑐,𝑓 ≤ 𝑅𝑡
 ,

where 𝑅𝑡 ∈ N is the total number of requests (potentially) arriving at the system at timeslot 𝑡 ∈ T .

Caching gain. We consider an agent 𝑖 ∈ I holds a set of caches Γ𝑖 (C) ⊂ C, and ¤
⋃
𝑖∈IΓ𝑖 (C) = C.

Hence, the allocation set of agent 𝑖 is given by X𝑖 =
>

𝑐∈Γ𝑖 (C) X𝑐 . Requests arriving at cache 𝑐 ∈ C
can be partially served locally, and if needed, forwarded along the shortest path to a nearby cache

𝑐 ′ ∈ C storing the file, incurring a retrieval cost 𝑤
sp

𝑡,(𝑐,𝑐′) . Let 𝜙𝑡,𝑖,𝑐 ≜ arg min𝑐′∈Λ𝑖 (C)
{
𝑤

sp

𝑡,(𝑐,𝑐′)

}
and Φ𝑡,𝑖,𝑐 :

{
1, 2, . . . , 𝜙𝑡,𝑖,𝑐

}
⊂ C → C be a map providing a retrieval cost ordering for every

𝑐 ∈
{
1, 2, . . . , 𝜙𝑡,𝑖,𝑐

}
, 𝑡 ∈ T , and 𝑖 ∈ I, i.e.,

𝑤
sp

𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (𝜙𝑡,𝑖,𝑐 )) = min

{
𝑤

sp

𝑡,(𝑐,𝑐′) : 𝑐 ′ ∈ Λ𝑓 (C)
}
≥ · · · ≥ 𝑤 sp

𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (2))) ≥ 𝑤
sp

𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (1))) = 0. (23)

When a request batch 𝑟𝑟𝑟 𝑡 ∈ R𝑡 arrives at timeslot 𝑡 ∈ T , agent 𝑖 ∈ I incurs the following cost:

cost𝑡,𝑖 (𝑥𝑥𝑥) ≜
∑︁

𝑐∈Γ𝑖 (C)

∑︁
𝑓 ∈F

𝑟𝑡,𝑐,𝑓

𝜙𝑡,𝑖,𝑐−1∑︁
𝑘=1

(
𝑤

sp

𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (𝑘+1)) −𝑤
sp

𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (𝑘))

) (
1 −min

{
1,

𝑘∑︁
𝑘′=1

𝑥Φ𝑡,𝑖,𝑐 (𝑘′),𝑓

})
.

This can be interpreted as a QoS cost paid by a user for the additional delay to retrieve part of

the file from another cache, or it can represent the load on the network to provide the missing

file. Note that by construction, the maximum cost is achieved for a network state, where all the

caches are empty except for the repository allocations; formally, such state is given by 𝑥𝑥𝑥0 ≜
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1

(
𝑐 ∈ Λ𝑓 (C)

) )
(𝑐,𝑓 ) ∈C×F ∈ X, and the cost of the agent at this state is given by

cost𝑡,𝑖 (𝑥𝑥𝑥0) =
∑︁

𝑐∈Γ𝑖 (C)

∑︁
𝑓 ∈F

𝑟𝑡,𝑐,𝑓 min

{
𝑤

sp

𝑡,(𝑐,𝑐′) : 𝑐 ′ ∈ Λ𝑓 (C)
}

(24)

=
∑︁

𝑐∈Γ𝑖 (C)

∑︁
𝑓 ∈F

𝑟𝑡,𝑐,𝑓

𝜙𝑡,𝑖,𝑐−1∑︁
𝑘=1

(
𝑤

sp

𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (𝑘+1)) −𝑤
sp

𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (𝑘))

)
, (25)

We can define the caching utility at timeslot 𝑡 ∈ T as the cost reduction due to caching as:

𝑢𝑡,𝑖 (𝑥𝑥𝑥) ≜ cost𝑡,𝑖 (𝑥𝑥𝑥0) − cost𝑡,𝑖 (𝑥𝑥𝑥) (26)

=
∑︁

𝑐∈Γ𝑖 (C)

∑︁
𝑓 ∈F

𝑟𝑡,𝑐,𝑓

𝜙𝑡,𝑖,𝑐−1∑︁
𝑘=1

(
𝑤

sp

𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (𝑘+1)) −𝑤
sp

𝑡,(𝑐,Φ𝑡,𝑖,𝑐 (𝑘))

)
min

{
1,

𝑘∑︁
𝑘′=1

𝑥Φ𝑡,𝑖,𝑐 (𝑘′),𝑓

}
. (27)

The caching utility is a weighted sum of concave functions with positive weights, and thus concave

in 𝑥𝑥𝑥 ∈ X. It is straightforward to check that this problem always satisfies Assumptions (A1)–(A4).

The request batches and the time-varying retrieval costs determine whether Assumption (A5)

holds. For example, this is the case when request batches are drawn i.i.d. from a fixed unknown

distribution (see Example 4).

6.2 Results

Below we describe the experimental setup
6
of the multi-agent cache networks problem, the request

traces, and competing policies. Our results are summarized as follows:

(1) Under stationary requests and small batch sizes (leading to large utility deviations from one

timeslot to another), OHF achieves the same time-averaged utilities as the offline benchmark,

whereas OSF, a counterpart policy to OHF targeting slot-fairness (4), diverges and is unable

to reach the Pareto front.

(2) In the Nash bargaining scenario, OHF achieves the NBS in all cases, while OSF fails when the

disagreement points are exigent, i.e., an agent can guarantee itself a high utility.

(3) Widely used LFU and LRU might perform arbitrarily bad w.r.t. fairness, and not even achieve

any point in the Pareto front (hence, they are not only unfair, but also inefficient).

(4) Fairness comes at a higher price when 𝛼 is increased or the number of agents is increased. This

observation on the price of fairness provides experimental evidence for previous work [14].

(5) OHF is robust to different network topologies and is able to obtain time-averaged utilities

that match the offline benchmark.

(6) Under non-stationary requests, OHF policy achieves the same time-averaged utilities as the

offline benchmark, whereas OSF can perform arbitrarily bad providing allocations that are

both unfair and inefficient

General Setup. We consider three synthetic network topologies (Cycle, Tree, and Grid), and

two real network topologies (Abilene and GEANT). A visualization of the network topologies is

provided in Figure 5. The specifications of the network topologies used across the experiments

are provided in Table 2 in the Appendix. A repository node permanently stores the entire catalog

of files. The retrieval costs along the edges are sampled u.a.r. from {1, 2, . . . , 5}, except for edges
directly connected to a repository node which are sampled u.a.r. from {6, 7, . . . , 10}. All the retrieval
costs remain fixed for every 𝑡 ∈ T . The capacity of each cache is sampled u.a.r. from {1, 2, . . . , 5},
but for the Cycle topology in which each cache has capacity 5. An agent 𝑖 ∈ I has a set of query

6
Our code is publicly available at https://github.com/tareq-si-salem/Online-Multi-Agent-Cache-Networks

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 46. Publication date: December 2022.



Enabling Long-term Fairness in Dynamic Resource Allocation 46:17

(a) Cycle (b) Tree-1 (c) Tree-2 (d) Tree-3 (e) Grid (f) Abilene (g) GEANT

Fig. 5. Network topologies used in experiments.

nodes denoted by Q𝑖 ⊂ Γ𝑖 (C), and a query node can generate a batch of requests from a catalog

with |F | = 20 files. Unless otherwise said, we consider 𝑢★,min = 0.1 and 𝑢★,max = 1.0. The fairness

benchmark refers to the maximizer of the HF objective (5), and the utilitarian benchmark refers to

the maximizer of HF objective (5) for 𝛼 = 0.

Traces. Each query node generates requests according to the following:

• Stationary trace (parameters: 𝜎, 𝑅,𝑇 , 𝐹 ). Requests are sampled i.i.d. from a Zipf distribution

with exponent 𝜎 ∈ R≥0 from a catalog of files of size 𝐹 . The requests are grouped into batches

of size |R𝑡 | = 𝑅,∀𝑡 ∈ T .
• Non-Stationary trace (parameters: 𝜎, 𝑅,𝑇 , 𝐹, 𝐷). Similarly, requests are sampled i.i.d. from a

catalog of 𝐹 files according to a Zipf distribution with exponent 𝜎 ∈ R≥0. Every 𝐷 requests,

the popularity distribution is modified in the following fashion: file 𝑓 ∈ F = {1, 2, . . . , 𝐹 }
assumes the popularity of file 𝑓 ′ = (𝑓 + 𝐹/2) mod 𝐹 (𝐹 is even). The requests are grouped

into batches of size |R𝑡 | = 𝑅,∀𝑡 ∈ T .
The stationary trace corresponds to the stochastic adversary in Example 4, and the non-stationary

trace corresponds to a stochastic adversary with perturbations satisfying the partitioned-severity

condition in Eq. (10). Two sampled traces are depicted in Figure 13 in the Appendix. Unless

otherwise said, query nodes generate Stationary traces and 𝜎 = 1.2, 𝑇 = 10
4
, 𝑅 = 50, and 𝐷 = 50.

Policies. We implement the following policies and use them as comparison benchmarks for OHF.

• The classic LRU and LFU policies. A request is routed to the cache with minimal retrieval cost

among those that store the requested file and this cache provides the content and updates

its state corresponding to a hit. Moreover, all caches with a lower retrieval cost update

their state as if a miss occurred locally. This corresponds to the popular path replication

algorithm [21, 35], equipped with LRU or LFU, adapted to our setting.

• Online slot-fairness (OSF) policy. This policy is the slot-fairness (4) counterpart of OHF.

It is obtained by configuring Algorithm 1 with dual (conjugate) subspace Θ = {(−1)𝑖∈I}
(i.e., taking 𝛼 → 0), which makes ineffective the dual policy in Algorithm 1. The revealed

utilities at timeslot 𝑡 ∈ T are the 𝛼-fairness transformed utilities𝑢𝑢𝑢 ′𝑡 ( · ) = (𝑓𝛼
(
𝑢𝑡,𝑖 ( · )

)
)𝑖∈I .

The primal allocations are still determined by the same self-confident learning rates’ schedule

as OHF for a fair comparison. The resulting policy is a no-regret policy (see Lemma 3 in

Appendix) w.r.t. the slot-fairness benchmark (4) for some 𝛼 ∈ R≥0.

Static analysis of symmetry-breaking parameters. We start with a numerical investigation of the

potential caching gains, and how these are affected by the fairness parameter 𝛼 . In Figure 6, we

consider the Cycle topology and different values of 𝛼 ∈ [0, 2]. We show the impact on the fairness

benchmark of varying the request patterns (𝜎 ∈ {0.6, 0.8, 1.0, 1.2}) for agent 2 under the Stationary
trace in Fig. 6 (a), and of varying the retrieval costs between agent 1’s cache and the repository
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(a) (b)

Fig. 6. Pareto front and fairness benchmark’s utilities for different values of 𝛼 ∈ [0, 2] under different request
patterns (a) (𝜎 ∈ {0.6, 0.8, 1.0, 1.2}) for agent 2, and different retrieval costs (b) between agent 1’s cache and

the repository (𝑤 (1,3) ∈ [2.5, 4.0]).

(𝑤 (1,3) ∈ [2.5, 4]). In Figure 6 (a), we observe decreasing the skewness of the popularity distribution

decreases the utility of agent 2 as reflected by the downward shift of the Pareto front. We note that,

as far as the file popularity distribution at agent 2 is close to the one at agent 1 (𝜎 = 1.2), different

values of alpha still provide similar utilities. However, in highly asymmetric scenarios, different

values of 𝛼 lead to clearly distinct utilities for each agent. We also note that higher values of 𝛼

guarantees higher fairness by that increasing the utility of agent 2. Similarly, in Figure 6 (b), we

observe increasing the retrieval cost for agent 1 decreases the utility achieved by the same agent, as

reflected by the leftward shift of the Pareto front; moreover, increasing the retrieval costs (higher

asymmetry) highlights the difference between different values of 𝛼 .

Online analysis of symmetry-breaking parameters. In Figure 7, we consider the Cycle topology,

and different values of 𝛼 ∈ {0, 1, 2}. In Figure 7 (a)–(b) we consider the retrieval cost𝑤 (1,3) = 3.5

between agent 1’s cache node and the repository node. In Figure 7 (c)–(d) query node of agent 1

generates Stationary trace (𝜎 = 1.2) and query node of agent 2 generates Stationary trace (𝜎 = 0.6).

We consider two fixed request batch sizes 𝑅 ∈ {1, 50}.
In Figures 7 (a) and (c) (for batch size 𝑅 = 1)OHF approaches the fairness benchmark’s utilities for

different values of 𝛼 , but OSF diverges for values of 𝛼 ≠ 0. For increased request batch size 𝑅 = 50,

OHF and OSF exhibit similar behavior. This is expected under stationary utilities; increasing the

batch size reduces the variability in the incurred utilities at every timeslot, and the horizon-fairness

and slot-fairness objectives become closer yielding similar allocations. Note that this observation

implies that OSF is only capable to converge for utilities with low variability, which is far from

realistic scenarios. LFU policy outperforms LRU and both policies do not approach the Pareto front;

thus, the allocations selected by such policies are inefficient and unfair.

Nash bargaining. In Figure 8, we consider the Cycle topology and 𝛼 = 1. We select different

disagreement utilities for agent 2 in {0.0, 0.5, 0.7, 0.75}, i.e., different utility values agent 2 expects

to guarantee itself even in the absence of cooperation. Note how higher values of disagreement

utilities lead to higher utilities for agent 2 at the fairness benchmark. We select 𝑢★,min = 0.01.

For a small batch size (𝑅 = 1), OHF approaches the same utilities achieved by the fairness

benchmark for different disagreement points, whereas OSF fails to approach the Pareto front.

Similarly, for a larger batch size 𝑅 = 50, OHF approaches the fairness benchmark for different

disagreement points, but the Pareto front is reached faster than with a batch size 𝑅 = 1. OSF
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(a) 𝑅 = 1 (b) 𝑅 = 50

(c) 𝑅 = 1 (d) 𝑅 = 50

Fig. 7. Time-averaged utilities of policiesOHF,OSF, LRU, and LFU underCycle topology. Subfigures (a)–(b) are

obtained under retrieval cost𝑤 (1,3) = 3.5 for agent 1’s query node. Subfigures (c)–(d) are obtained when agent

2’s query node generates Stationary trace (𝜎 = 0.6). Markers correspond to iterations in

{
100, 200, . . . , 10

4
}
.

diverges for non-zero disagreement points when 𝑅 = 50, because the allocation selected for some

agent 𝑖 ∈ I can be smaller than its disagreement utility (i.e., 𝑢𝑡,𝑖 (𝑥𝑥𝑥𝑡 ) −𝑢𝑡,𝑖 < 0), while the 𝛼-fairness

function is only defined for positive arguments.

Impact of agents on the price of fairness. In Figures 9 and 10, we consider the Tree 1–3 topology,

𝛼 ∈ {1, 2, 3}, and |I | ∈ {2, 3, 4}. Agents’ query nodes generate Stationary trace (𝜎 ∈ {1.2, 0.8, 0.6}).
In Figures 9 (a)–(c), we observe for increasing the number of agents, the division of utilities

differs between the fairness benchmark and utilitarian benchmark; moreover, this difference is more

evident for larger values of 𝛼 . Figure 9 (d) provides the price of fairness, and we observe the price

of fairness increases with the number of agents and 𝛼 . Nonetheless, under the different settings

the price of fairness remains below 4%, i.e., we experience at most a 4% drop in the social welfare

to provide fair utility distribution across the different agents. Figure 10 gives the time-averaged

utilities obtained by running OHF for 𝛼 = 2. We observe the utilities obtained by OHF quickly

converge to the same utilities obtained by the fairness benchmark. In this figure, we also highlight

the difference between the utilities achieved by the fairness benchmark and utilitarian benchmark,

is reflected by the increasing utility gap for a higher number of participating agents.

Different network topologies. In Figure 11 (a), we consider the network topologies Tree, Grid,

Abilene, GEANT under Stationary trace (𝜎 ∈ {0.6, 1.0, 1.2}) and 𝛼 = 3. OHF achieves the same
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(a) 𝑅 = 1 (b) 𝑅 = 50

Fig. 8. Time-averaged utilities obtained for policies OHF, OSF, LRU, and LFU for batch sizes (a) 𝑅 = 1 and

(b) 𝑅 = 100, under Cycle network topology. Markers correspond to iterations in

{
100, 200, . . . , 10

4
}
.

(a) 𝛼 = 1 (b) 𝛼 = 2 (c) 𝛼 = 3

(d) PoF

Fig. 9. Subfigures (a)–(c) provide the average utility for different agents obtained by OHF, fairness bench-

mark (OPT for 𝛼 ≠ 0), and utilitarian benchmark (OPT for 𝛼 = 0); and Subfigure (d) provides the PoF for

𝛼 ∈ {0, 1, 2, 3} under an increasing number of agents in {2, 3, 4} and Tree 1–3 network topology.

utilities as the fairness benchmark across the different topologies. Note that for larger network

topologies agents achieve a higher utility because there are more resources available.

Impact of non-stationarity. In Figure 11 (b), we consider the Cycle topology and 𝛼 = 3. The

query node of agent 1 generates Non-Stationary trace, while the query node of agent 2 generates a

shuffled Non-Stationary trace, i.e., we remove the non-stationarity from the trace for agent 2 while

preserving the overall popularity of the requests. Therefore, on average the agents are symmetric
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(a) (b) (c)

Fig. 10. Subfigures (a)–(c) provide the time-averaged utility across different agents obtained by OHF policy

and OPT for 𝛼 = 2 under an increasing number of agents in {2, 3, 4} and Tree 1–3 network topology.

(a) (b)

Fig. 11. Subfigure (a) provides the average utility of OHF and fairness benchmark under network topologies

Tree, Grid, Abilene, GEANT, Stationary trace (𝜎 ∈ {0.6, 0.8, 1.2}), and 𝛼 = 3. Subfigure (b) provides the

time-averaged utilities obtained for OHF, OSF and batch size 𝑅 = 50, 𝑡 ∈ T , under network topology Tree (a)

and Non-stationary trace. The markers represent the iterations in the set

{
100, 200, . . . , 10

4
}
.

and experience the same utilities. We observe in Figure 11 (b) that indeed this is the case for OHF

policy; however, because OSF aims to insure fairness across the different timeslots the agents are

not considered symmetric and the average utilities deviate from the Pareto front (not efficient).

OSF favors agent 1 by increasing its utility by 20% compared to the utility of agent 1.

7 Conclusion and Future Work

In this work, we proposed a novel OHF policy that achieves horizon-fairness in dynamic resource

allocation problems. We demonstrated the applicability of this policy in virtualized caching systems

where different agents can cooperate to increase their caching gain. Our work paves the road for

several interesting next steps. A future research direction is to consider decentralized versions

of the policy under which each agent selects an allocation with limited information exchange

across agents. For the application to virtualized caching systems, the message exchange techniques

in [35, 45] to estimate subgradients can be exploited. Another important future research direction is

to bridge the horizon-fairness and slot-fairness criteria to target applications where the agents are

interested in ensuring fairness within a target time window. We observed that OHF can encapsulate
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the two criteria, however, it remains an open question whether a policy can smoothly transition

between them. A final interesting research direction is to consider a limited feedback scenario

where only part of the utility is revealed to the agents (e.g., bandit feedback). Our policy could be

extended to this setting through gradient estimation techniques [34].
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A Technical Lemmas and Definitions

A.1 Convex Conjugate

Definition 3. Let 𝐹 : U ⊂ RI → R ∪ {−∞, +∞} be a function. Define 𝐹★ : RI → R ∪ {−∞, +∞}
by

𝐹★(𝜃𝜃𝜃 ) = sup

𝑢𝑢𝑢∈U
{𝑢𝑢𝑢 · 𝜃𝜃𝜃 − 𝐹 (𝑢𝑢𝑢)} , (28)

for 𝜃𝜃𝜃 ∈ RI . This is the convex conjugate of 𝐹 .

A.2 Convex Conjugate of 𝛼-Fairness Function

Lemma 1. LetU =
[
𝑢★,min, 𝑢★,max

]I ⊂ RI
>0
,Θ =

[
−1/𝑢𝛼

★,min
,−1/𝑢𝛼★,max

]I
⊂ RI

<0
, and 𝐹𝛼 : U → R

be an 𝛼-fairness function (3). The convex conjugate of −𝐹𝛼 is given by

(−𝐹𝛼 )★ (𝜃𝜃𝜃 ) =


∑︁
𝑖∈I

𝛼 (−𝜃𝑖 )1−1/𝛼 − 1

1 − 𝛼 for 𝛼 ∈ R≥0 \ {1},∑︁
𝑖∈I
− log(−𝜃𝑖 ) − 1 for 𝛼 = 1,

(29)

where 𝜃𝜃𝜃 ∈ Θ.

Proof. The convex conjugate of −𝑓𝛼 (𝑢) ≜ −𝑢
1−𝛼−1

1−𝛼 for 𝑢 ∈
[
𝑢★,min, 𝑢★,max

]
and 𝛼 ∈ R≥0 \ {1} is

given by

(−𝑓𝛼 )★ (𝜃 ) = max

𝑢∈[𝑢★,min,𝑢★,max]

{
𝑢𝜃 + 𝑢

1−𝛼 − 1

1 − 𝛼

}
. (30)

We evaluate the derivative to characterize the maxima of r.h.s. term in the above equation

𝜕

𝜕𝑢

(
𝑢𝜃 + 𝑢

1−𝛼 − 1

1 − 𝛼

)
= 𝜃 + 1

𝑢𝛼
. (31)

The function 𝜃 + 1

𝑢𝛼
is a decreasing function in 𝑢; thus 𝜃 + 1

𝑢𝛼
≥ 0 when 𝑢 ≤

(
− 1

𝜃

) 1

𝛼
, and 𝜃 + 1

𝑢𝛼
< 0

otherwise. The maximum is achieved at 𝑢 =
(
− 1

𝜃

) 1

𝛼
. It holds through Eq. (30)

(−𝑓𝛼 )★ (𝜃 ) =
𝛼 (−𝜃 )1−1/𝛼 − 1

1 − 𝛼 for 𝜃 ∈
[
−1/𝑢𝛼★,min

,−1/𝑢𝛼★,max

]
. (32)

Moreover, it is easy to check that the same argument holds for 𝑓1 (𝑢) = log(𝑢) and we have

(−𝑓1)★ (𝜃 ) = −1 − log(−𝜃 ) for 𝜃 ∈
[
−1/𝑢★,min,−1/𝑢★,max

]
. (33)

The convex conjugate of −𝐹𝛼 (𝑢𝑢𝑢) =
∑
𝑖∈I 𝑓𝛼 (𝑢𝑖 ) for𝑢𝑢𝑢 ∈ U, using Eq. (32) and Eq. (33), is given by

(−𝐹𝛼 )★ (𝜃𝜃𝜃 ) =
∑︁
𝑖∈I
(−𝑓𝛼 )★ (𝜃𝑖 ) =


∑︁
𝑖∈I

𝛼 (−𝜃𝑖 )1−1/𝛼 − 1

1 − 𝛼 for 𝛼 ∈ R≥0 \ {1},∑︁
𝑖∈I
− log(−𝜃𝑖 ) − 1 for 𝛼 = 1,

(34)

for 𝜃𝜃𝜃 ∈ Θ, because 𝐹𝛼 (𝑢𝑢𝑢) is separable in𝑢𝑢𝑢 ∈ U.

■
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A.3 Convex Biconjugate of 𝛼-Fairness Functions

The following Lemma provides a stronger condition on 𝜃𝜃𝜃 compared to [1, Lemma 2.2], i.e., we

restrict 𝜃𝜃𝜃 ∈ Θ instead of ∥𝜃𝜃𝜃 ∥★ ≤ 𝐿 where 𝐿 ≥ ∥∇𝑢𝑢𝑢𝐹𝛼 (𝑢𝑢𝑢)∥★ for all𝑢𝑢𝑢 ∈ U and ∥ · ∥★ is the dual norm

of ∥ · ∥.

Lemma 2. LetU =
[
𝑢★,min, 𝑢★,max

]I ⊂ RI
>0
,Θ =

[
−1/𝑢𝛼

★,min
,−1/𝑢𝛼★,max

]I
⊂ RI

<0
, and 𝐹𝛼 : U → R

be an 𝛼-fairness function (3). The function 𝐹𝛼 can be always be recovered from the convex conjugate
(−𝐹𝛼 )★, i.e.,

𝐹𝛼 (𝑢𝑢𝑢) = min

𝜃𝜃𝜃 ∈Θ

{
(−𝐹𝛼 )★ (𝜃𝜃𝜃 ) − 𝜃𝜃𝜃 ·𝑢𝑢𝑢

}
, (35)

for𝑢𝑢𝑢 ∈ U.

Proof. This proof follows the same lines of the proof of [1, Lemma 2.2]. Since𝑢𝑢𝑢 ∈ U, therefore

the gradient of 𝐹𝛼 at point 𝑢𝑢𝑢 is given as ∇𝑢𝑢𝑢𝐹𝛼 (𝑢𝑢𝑢) =
[
1/𝑢𝛼

𝑖

]
𝑖∈I ∈ −Θ =

[
1/𝑢𝛼

★,min
, 1/𝑢𝛼★,max

]I
.

Moreover, it holds

min

𝜃𝜃𝜃 ∈Θ

{
(−𝐹𝛼 )★ (𝜃𝜃𝜃 ) − 𝜃𝜃𝜃 ·𝑢𝑢𝑢

}
= min

𝜃𝜃𝜃 ∈Θ

{
max

𝑢𝑢𝑢′∈U
{𝜃𝜃𝜃 ·𝑢𝑢𝑢 ′ + 𝐹𝛼 (𝑢𝑢𝑢)} − 𝜃𝜃𝜃 ·𝑢𝑢𝑢

}
(36)

= max

𝑢𝑢𝑢′∈U
min

𝜃𝜃𝜃 ∈Θ
{𝜃𝜃𝜃 ·𝑢𝑢𝑢 ′ + 𝐹𝛼 (𝑢𝑢𝑢 ′) − 𝜃𝜃𝜃 ·𝑢𝑢𝑢} . Minmax theorem (37)

We take

min

𝜃𝜃𝜃 ∈Θ
{𝜃𝜃𝜃 ·𝑢𝑢𝑢 ′ + 𝐹𝛼 (𝑢𝑢𝑢 ′) − 𝜃𝜃𝜃 ·𝑢𝑢𝑢} = min

𝜃𝜃𝜃 ∈Θ
{𝐹𝛼 (𝑢𝑢𝑢 ′) + 𝜃𝜃𝜃 · (𝑢𝑢𝑢 ′ −𝑢𝑢𝑢)}

≤ 𝐹𝛼 (𝑢𝑢𝑢 ′) − ∇𝐹𝛼 (𝑢𝑢𝑢) · (𝑢𝑢𝑢 ′ −𝑢𝑢𝑢) Because −∇𝐹𝛼 (𝑢𝑢𝑢) ∈ Θ
≤ 𝐹𝛼 (𝑢𝑢𝑢). Use concavity of 𝐹𝛼

The equality is achieved when𝑢𝑢𝑢 = 𝑢𝑢𝑢 ′ and the maximum value in (37) is attained for this value. We

conclude the proof. ■

A.4 Online Gradient Descent (OGD) with Self-Confident Learning Rates

Lemma 3 provides the regret guarantee of OGD oblivious to the time horizon 𝑇 and bound on

subgradients’ norm for any 𝑡 ∈ T . This adopts the idea of [7] which denominate such learning

schemes as self-confident.

Lemma 3. Consider a convex setX, a sequence of 𝜎-strongly convex functions 𝑓𝑡 : X → Rwith subgra-
dient𝑔𝑔𝑔𝑡 ∈ 𝜕𝑓𝑡 (𝑥𝑥𝑥𝑡 ) at𝑥𝑥𝑥𝑡 , and OGDupdate rule𝑥𝑥𝑥𝑡+1 = ΠX

(
𝑥𝑥𝑥𝑡 − 𝜂𝑡𝑔𝑔𝑔𝑡

)
= arg min𝑥𝑥𝑥 ∈X

𝑥𝑥𝑥 − (
𝑥𝑥𝑥𝑡 − 𝜂𝑡𝑔𝑔𝑔𝑡

)
2

initialized at 𝑥𝑥𝑥1 ∈ X. Let diam (X) ≜ max {∥𝑥𝑥𝑥 − 𝑥𝑥𝑥 ′∥
2

: 𝑥𝑥𝑥,𝑥𝑥𝑥 ′ ∈ X}. Selecting the learning rates as
𝜂𝜂𝜂 : T → R such that 𝜂𝑡 ≤ 𝜂𝑡−1 for all 𝑡 > 1 gives the following regret guarantee against a fixed
decision 𝑥𝑥𝑥 ∈ X: ∑︁

𝑡 ∈T
𝑓𝑡 (𝑥𝑥𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑥𝑥) ≤ diam

2 (X)
𝑇∑︁
𝑡=1

(
1

𝜂𝑡
− 1

𝜂𝑡−1

− 𝜎
)
+

𝑇∑︁
𝑡=1

𝜂𝑡
𝑔𝑔𝑔𝑡2

2
. (38)

• When 𝜎 > 0, selecting the learning rate schedule 𝜂𝑡 = 1

𝜎𝑡
for 𝑡 ∈ T gives∑︁

𝑡 ∈T
𝑓𝑡 (𝑥𝑥𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑥𝑥) ≤

𝑇∑︁
𝑡=1

𝑔𝑔𝑔𝑡2

2

𝑡𝜎
= O (log(𝑇 )) . (39)
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• When 𝜎 = 0, selecting the learning rate schedule 𝜂𝑡 =
diam(X)√︃∑𝑡
𝑠=1
∥𝑔𝑔𝑔𝑠 ∥2

2

for 𝑡 ∈ T gives

∑︁
𝑡 ∈T

𝑓𝑡 (𝑥𝑥𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑥𝑥) ≤ 1.5 diam (X)
√︄∑︁
𝑡 ∈T

𝑔𝑔𝑔𝑠2

2
= O

(√
𝑇

)
. (40)

Proof. This proof follows the same lines of the proof of [34]. We do not assume a bound on the

gradients is known beforehand and the time horizon𝑇 . Take a fixed 𝑥𝑥𝑥 ∈ X. Applying the definition
of 𝜎-strong convexity to the pair of points 𝑥𝑥𝑥𝑡 and 𝑥𝑥𝑥 , we have

2 (𝑓𝑡 (𝑥𝑥𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑥𝑥)) ≤ 2𝑔𝑔𝑔𝑡 · (𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥) − 𝜎 ∥𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥 ∥22 . (41)

Pythagorean theorem implies

∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥 ∥22 =
ΠX (

𝑥𝑥𝑥𝑡 − 𝜂𝑡𝑔𝑔𝑔𝑡
)
− 𝑥𝑥𝑥

2

2
≤ ∥𝑥𝑥𝑥𝑡 − 𝜂𝑡 − 𝑥𝑥𝑥 ∥22 , (42)

Expanding the r.h.s. term gives

∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥 ∥22 ≤ ∥𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥 ∥22 + 𝜂2

𝑡

𝑔𝑔𝑔𝑡2

2
− 2𝜂𝑡𝑔𝑔𝑔𝑡 · (𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥) , (43)

2𝑔𝑔𝑔𝑡 · (𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥) ≤
∥𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥 ∥22 − ∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥 ∥22

𝜂𝑡
+ 𝜂𝑡

𝑔𝑔𝑔𝑡2

2
. (44)

Combine Eq. (41) and Eq. (44) and for 𝑡 = 1 to 𝑡 = 𝑇 :

2

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑥𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑥𝑥) ≤
𝑇∑︁
𝑡=1

∥𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥 ∥22 (1 − 𝜎𝜂𝑡 ) − ∥𝑥𝑥𝑥𝑡+1 − 𝑥𝑥𝑥 ∥22
𝜂𝑡

+
𝑇∑︁
𝑡=1

𝜂𝑡
𝑔𝑔𝑔𝑡2

2

≤
𝑇∑︁
𝑡=1

∥𝑥𝑥𝑥𝑡 − 𝑥𝑥𝑥 ∥22
(

1

𝜂𝑡
− 1

𝜂𝑡−1

− 𝜎
)
+

𝑇∑︁
𝑡=1

𝜂𝑡
𝑔𝑔𝑔𝑡2

2

1

𝜂0

≜ 0

≤ diam
2 (X)

(
1

𝜂𝑇
− 𝜎𝑇

)
+

𝑇∑︁
𝑡=1

𝜂𝑡
𝑔𝑔𝑔𝑡2

2
. Telescoping series

When 𝜎 > 0 and 𝜂𝑡 =
1

𝜎𝑡
, from Eq. (45) we have

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑥𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑥𝑥) ≤ 0 +
𝑇∑︁
𝑡=1

𝑔𝑔𝑔𝑡2

2

2𝜎𝑡
≤ max

𝑡 ∈T

{𝑔𝑔𝑔𝑡2

2

} 𝑇∑︁
𝑡=1

1

2𝜎
≤

max𝑡 ∈T
{𝑔𝑔𝑔𝑡2

2

}
2𝜎

H𝑇 = O (log(𝑇 )) ,

(45)

where H𝑇 is the 𝑇 -th harmonic number.

When 𝜎 = 0 and 𝜂𝑡 =
diam(X)√︃∑𝑡
𝑠=1
∥𝑔𝑔𝑔𝑠 ∥2

2

, from Eq. (45) we have

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑥𝑥𝑡 ) − 𝑓𝑡 (𝑥𝑥𝑥) ≤
diam (X)

2

√√√
𝑇∑︁
𝑡=1

𝑔𝑔𝑔𝑠2

2
+ diam (X)

2

𝑇∑︁
𝑡=1

𝑔𝑔𝑔𝑡2

2√︃∑𝑡
𝑠=1

𝑔𝑔𝑔𝑠2

2

(46)

≤ 1.5 diam (X)

√√√
𝑇∑︁
𝑡=1

𝑔𝑔𝑔𝑠2

2
= O

(√
𝑇

)
. (47)

Last inequality is obtained using [7, Lemma 3.5], i.e.,

∑𝑇
𝑡=1

|𝑎𝑡 |∑𝑡
𝑠=1
|𝑎𝑠 |
≤ 2

√︃∑𝑇
𝑡=1
|𝑎𝑡 |. This concludes

the proof. ■
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A.5 Saddle-Point Problem Formulation of 𝛼-Fairness

Lemma 4. Let X be a convex set,U =
[
𝑢★,min, 𝑢★,max

]I ⊂ RI
>0
, 𝑢𝑖 : X → U be a concave function

for every 𝑖 ∈ I, Θ =

[
−1/𝑢𝛼

★,min
,−1/𝑢𝛼★,max

]I
⊂ RI

<0
, and Ψ𝛼 : Θ × X → R be a function given by

Ψ𝛼 (𝜃𝜃𝜃,𝑥𝑥𝑥) ≜ (−𝐹𝛼 )★ (𝜃𝜃𝜃 ) − 𝜃𝜃𝜃 ·𝑢𝑢𝑢 (𝑥𝑥𝑥). (48)

The following holds:

• The solution of the saddle-point problem formed by Ψ𝛼 is a maximizer of the 𝛼-fairness function

max

𝑥𝑥𝑥 ∈X
min

𝜃𝜃𝜃 ∈Θ
Ψ𝛼 (𝜃𝜃𝜃,𝑥𝑥𝑥) = max

𝑥𝑥𝑥 ∈X
𝐹𝛼 (𝑢𝑢𝑢 (𝑥𝑥𝑥)) . (49)

• The function Ψ𝛼 : Θ × X → R is concave over X.

• The function Ψ𝛼 : Θ × X → R is
𝑢

1+1/𝛼
★,min

𝛼
-strongly convex over Θ w.r.t. ∥ · ∥

2
for 𝛼 > 0.

Proof. Equation (49) is a direct result of Lemma 2. The function Ψ𝛼 is concave over X because

−𝜃𝜃𝜃 ·𝑢𝑢𝑢 (𝑥𝑥𝑥) is a weighted sum of concave functions with non-negative weights. To prove the strong

convexity of Ψ𝛼 w.r.t. ∥ · ∥
2
, a sufficient condition [64, Lemma 14] is given by 𝜃𝜃𝜃

′𝑇
(
∇2

𝜃𝜃𝜃
Ψ𝛼 (𝜃𝜃𝜃,𝑥𝑥𝑥)

)
𝜃𝜃𝜃
′ ≥

𝜎
𝜃𝜃𝜃 ′2

2
for all 𝜃𝜃𝜃,𝜃𝜃𝜃

′ ∈ Θ, and it holds

𝜃𝜃𝜃
′𝑇 (
∇2

𝜃𝜃𝜃
Ψ𝛼 (𝜃𝜃𝜃,𝑥𝑥𝑥)

)
𝜃𝜃𝜃
′
=

∑︁
𝑖∈I

𝜃 ′𝑖
2
𝜕2

𝜕𝜃𝑖
(−𝐹𝛼 )★ (𝜃𝜃𝜃 ) =

∑︁
𝑖∈I

𝜃 ′𝑖
2

𝛼 (−𝜃𝑖 )1+1/𝛼
≥
𝑢

1+1/𝛼
★,min

𝛼

𝜃𝜃𝜃 ′2

2
. (50)

This concludes the proof. ■

B Proof of Theorem 1

Proof. Consider two players I = {1, 2}, allocation set X = [−1, 1] for all 𝑡 ∈ T . We define

𝛾𝑇 ∈ [0.4, 1],𝜓𝑇 ≜ 1

𝑇

∑𝛾𝑇𝑇

𝑡=1
𝑥𝑡 . We assume w.l.g. 𝛾𝑇𝑇 is a natural number. We consider two strategies

selected by the adversary:

Strategy 1. The adversary reveals the following utilities:

𝑢𝑢𝑢𝑡 (𝑥) =
{
(1 + 𝑥, 2 − 𝑥) if 𝑡 ≤ 𝛾𝑇𝑇,
(1, 1) otherwise.

(51)

Under the selected utilities, the static optimum attains the following objective

OPT
S1 = max

𝑥 ∈X
𝑓𝛼 ((1 + 𝑥)𝛾𝑇 + (1 − 𝛾𝑇 )) + 𝑓𝛼 ((2 − 𝑥)𝛾𝑇 + (1 − 𝛾𝑇 )) (52)

= max

𝑥 ∈X
𝑓𝛼 (1 + 𝛾𝑇𝑥) + 𝑓𝛼 (1 + 𝛾𝑇 − 𝛾𝑇𝑥). (53)

The above objective is concave in 𝑥 . We can perform a derivative test to characterize its maximum

𝜕𝑓𝛼 (1 + 𝛾𝑇𝑥) + 𝐹𝛼 (1 + 𝛾𝑇 − 𝛾𝑇𝑥)
𝜕𝑥

=
𝛾𝑇

(1 + 𝛾𝑇𝑥)𝛼
− 𝛾𝑇

(1 + 𝛾𝑇 − 𝛾𝑇𝑥)𝛼
= 0, for 𝑥 =

1

2

. (54)

Thus, it holds

OPT
S1 = 2𝑓𝛼 (1 + 0.5𝛾𝑇 ). (55)
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The fairness regret denoted by ℜS1

𝑇
(𝐹𝛼 ,𝐴𝐴𝐴) under this strategy of a policy A is given by

ℜS1

𝑇 (𝐹𝛼 ,𝐴𝐴𝐴) = OPT
S1 − 𝑓𝛼

(
1

𝑇

(
𝛾𝑇𝑇∑︁
𝑡=1

1 + 𝑥𝑡

)
+ 1 − 𝛾𝑇

)
− 𝑓𝛼

(
1

𝑇

(
𝛾𝑇𝑇∑︁
𝑡=1

2 − 𝑥𝑡

)
+ 1 − 𝛾𝑇

)
(56)

= 2𝑓𝛼 (1 + 0.5𝛾𝑇 ) − 𝑓𝛼 (1 +𝜓𝑇 ) − 𝑓𝛼 (1 + 𝛾𝑇 −𝜓𝑇 ). (57)

Strategy 2. The adversary reveals the following utilities:

𝑢𝑢𝑢𝑡 (𝑥) =
{
(1 + 𝑥, 2 − 𝑥) if 𝑡 ≤ 𝛾𝑇𝑇,
(2, 0) otherwise.

(58)

Under the selected utilities, the static optimum attains the following objective

OPT
S2 = max

𝑥 ∈X
𝑓𝛼 ((1 + 𝑥)𝛾𝑇 + (1 − 𝛾𝑇 )2) + 𝑓𝛼 ((2 − 𝑥)𝛾𝑇 ) (59)

= max

𝑥 ∈X
𝑓𝛼 (2 − 𝛾𝑇 + 𝛾𝑇𝑥) + 𝑓𝛼 (2𝛾𝑇 − 𝛾𝑇𝑥). (60)

Similar to the previous strategy, we can perform a derivative test to characterize the maximum of

the the above objective

𝜕𝑓𝛼 (2 − 𝛾𝑇 + 𝛾𝑇𝑥) + 𝑓𝛼 (2𝛾𝑇 − 𝛾𝑇𝑥)
𝜕𝑥

=
𝛾𝑇

(2 − 𝛾𝑇 + 𝛾𝑇𝑥)𝛼
− 𝛾𝑇

(2𝛾𝑇 − 𝛾𝑇𝑥)𝛼
= 0, for 𝑥 = 1.5 − 1

𝛾𝑇
.

Therefore, it holds

OPT
S2 = 2𝑓𝛼 (1 + 0.5𝛾𝑇 ). (61)

and the fairness regret ℜS2

𝑇
(𝐹𝛼 ,𝐴𝐴𝐴) under this strategy is

ℜS2

𝑇 (𝐹𝛼 ,𝐴𝐴𝐴) = OPT
S2 − 𝑓𝛼

(
1

𝑇

(
𝛾𝑇𝑇∑︁
𝑡=1

1 + 𝑥𝑡

)
+ 2 − 2𝛾𝑇

)
− 𝑓𝛼

(
1

𝑇

(
𝛾𝑇𝑇∑︁
𝑡=1

2 − 𝑥𝑡

))
(62)

= 2𝑓𝛼 (1 + 0.5𝛾𝑇 ) − 𝑓𝛼 (2 − 𝛾𝑇 +𝜓𝑇 ) − 𝑓𝛼 (2𝛾𝑇 −𝜓𝑇 ). (63)

We take the average fairness regret
1

2

(
ℜS1

𝑇
(𝐹𝛼 ,𝐴𝐴𝐴) +ℜS2

𝑇
(𝐹𝛼 ,𝐴𝐴𝐴)

)
across the two strategies

1

2

(
ℜS1

𝑇 (𝐹𝛼 ,𝐴𝐴𝐴) +ℜ
S2

𝑇 (𝐹𝛼 ,𝐴𝐴𝐴)
)

(64)

= 2𝑓𝛼 (1 + 0.5𝛾𝑇 ) −
1

2

(𝑓𝛼 (2 − 𝛾𝑇 +𝜓𝑇 ) + 𝑓𝛼 (2𝛾𝑇 −𝜓𝑇 ) + 𝑓𝛼 (1 +𝜓𝑇 ) + 𝑓𝛼 (1 + 𝛾𝑇 −𝜓𝑇 )) . (65)

The r.h.s. of the above equation is convex in𝜓𝑇 , so its minimizer can be characterized through the

derivative as follows

𝜕𝑓𝛼 (2 − 𝛾𝑇 +𝜓 ) + 𝑓𝛼 (2𝛾𝑇 −𝜓 ) + 𝑓𝛼 (1 +𝜓 ) + 𝑓𝛼 (1 + 𝛾𝑇 −𝜓 )
𝜕𝜓

(66)

=
1

(2 − 𝛾𝑇 +𝜓 )𝛼
− 1

(2𝛾𝑇 −𝜓 )𝛼
+ 1

(1 +𝜓 )𝛼 −
1

(1 + 𝛾𝑇 −𝜓 )𝛼
= 0, for𝜓 = 𝛾𝑇 − 0.5. (67)

We replace𝜓𝑇 = 𝛾𝑇 − 0.5 in Eq. (65) to get

1

2

(
ℜS1

𝑇 (𝐹𝛼 ,𝐴𝐴𝐴) +ℜ
S2

𝑇 (𝐹𝛼 ,𝐴𝐴𝐴)
)
≥ 2𝑓𝛼 (1 + 0.5𝛾𝑇 ) − (𝑓𝛼 (1.5) + 𝑓𝛼 (0.5 + 𝛾𝑇 )) . (68)

We take the derivative of the lower bound

𝜕2𝑓𝛼 (1 + 0.5𝛾𝑇 ) − (𝑓𝛼 (1.5) + 𝑓𝛼 (0.5 + 𝛾𝑇 ))
𝜕𝛾𝑇

=
(0.5 + 𝛾)𝛼 − (1 + 0.5𝛾)𝛼

(0.5 + 𝛾)𝛼 (1 + 0.5𝛾)𝛼 . (69)
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Fig. 12. Assumption (A5) and fairness regret (8) under scenarios 1 and 2.

Note that the sign of the derivative is determined by the numerator (0.5 + 𝛾)𝛼 − (1 + 0.5𝛾)𝛼 . It
holds (0.5 + 𝛾)𝛼 − (1 + 0.5𝛾)𝛼 < 0 for 𝛾𝑇 < 1, otherwise (0.5 + 𝛾)𝛼 − (1 + 0.5𝛾)𝛼 = 0. Hence, the

lower bound in Eq. (68) is strictly decreasing for 𝛾𝑇 < 1, and it holds for 𝛾𝑇 ≤ 1 − 𝜖 for 𝜖 > 0

1

2

(
ℜS1

𝑇 (𝐹𝛼 ,𝐴𝐴𝐴) +ℜ
S2

𝑇 (𝐹𝛼 ,𝐴𝐴𝐴)
)
≥ 2𝑓𝛼 (1.5 − 0.5𝜖) − (𝑓𝛼 (1.5) + 𝑓𝛼 (1.5 + 0.5𝜖)) > 0. (70)

In other words, the fairness regret guarantee is not attainable
7
for values of 𝛾𝑇 ≤ 1 − 𝜖 for any 𝑇

and 𝜖 > 0. We can also verify that (A5) is violated when 𝛾𝑇 ≤ 1 − 𝜖 for any 𝑇 and 𝜖 > 0. Note that

𝛾𝑇 is defined to be in the set [0.4, 1].
Under strategy 1 we have 𝑥★ = 1

2
and it holds

1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑢𝑢𝑡 (𝑥★) = (1 + 0.5𝛾𝑇 , 1 + 0.5𝛾𝑇 ), and𝑢𝑢𝑢𝑡 (𝑥★) =
{
(1.5, 1.5) if 𝑡 ≤ 𝛾𝑇𝑇,
(1, 1) otherwise.

(71)

Then, it holds

VT ≥ 2(1 − 𝛾𝑡 )𝛾𝑇𝑇 ≥ 2𝜖𝛾𝑇𝑇 ≥ 0.8𝜖𝑇 = Ω(𝑇 ). (72)

Moreover, it can easily be checked thatWT = Ω(𝑇 ) because there is no decomposition {1, 2, . . . ,𝑇 } =
T1∪T2∪· · ·∪T𝐾 wheremax {T𝑘 : 𝑘 ∈ [𝐾]} = 𝑜

(
𝑇

1

2

)
under which

∑𝐾
𝑘=1

∑
𝑖∈I

��∑
𝑡 ∈T𝑘 𝛿𝑡,𝑖 (𝑥𝑥𝑥★)

�� = 𝑜 (𝑇 ).
To conclude, when 𝛾𝑇 = 1 − 𝑜 (1), we have min{VT ,WT} ≤ VT = 𝑜 (𝑇 ); thus, Assumption (A5)

only holds when 𝛾𝑇 = 1 − 𝑜 (1) for which the vanishing fairness regret guarantee is attainable.

Figure 12 provides a summary of the connection between the fairness regret under scenarios 1

and 2 and Assumption (A5).

■

C Proof of Theorem 2

Proof. Note that Ψ𝛼,𝑡 : Θ × X → R is the function given by

Ψ𝛼,𝑡 (𝜃𝜃𝜃,𝑥𝑥𝑥) = (−𝐹𝛼 )★ (𝜃𝜃𝜃 ) − 𝜃𝜃𝜃 ·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥), (73)

where 𝐹𝛼 : U → R is an 𝛼-fairness function (3). From Lemma 3, OGD operating over the set Θ

under the

𝑢
1+1/𝛼
★,min

𝛼
-strongly convex (Lemma 4) cost functions Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 ) has the following regret

guarantee against any fixed 𝜃𝜃𝜃 ∈ Θ

1

𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 ) −
1

𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃,𝑥𝑥𝑥𝑡 ) ≤
1

𝑇
· 1

2

𝑇∑︁
𝑡=1

𝛼

𝑢
1+1/𝛼
★,min

𝑡

𝑔𝑔𝑔Θ,𝑡2

2︸                     ︷︷                     ︸
ℜ𝑇 ,Θ

, (74)

7
Note that the fairness regret must vanish for any adversarial choice of sequence of utilities.
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From Lemma 2, it holds

min

𝜃𝜃𝜃 ∈Θ

1

𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃,𝑥𝑥𝑥𝑡 ) = 𝐹𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)
. (75)

Combine Eq. (74) and Eq. (75) to obtain the lower bound

𝐹𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)
+ ℜ𝑇,Θ

𝑇
≥ 1

𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 ). (76)

From Lemma 3, OGD operating over the set X under the reward functions Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥) has the
following regret guarantee for any fixed 𝑥𝑥𝑥★ ∈ X:

1

𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥★) −
1

𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 ) ≤
1

𝑇
· 1.5 diam (X)

√︄∑︁
𝑡 ∈T

𝑔𝑔𝑔X,𝑡2

2︸                            ︷︷                            ︸
ℜ𝑇 ,X

, (77)

Hence, we have the following

1

𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥𝑡 ) +
ℜ𝑇,X
𝑇
≥ 1

𝑇

𝑇∑︁
𝑡=1

Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥★)

=
1

𝑇

𝑇∑︁
𝑡=1

𝐹★(𝜃𝜃𝜃 𝑡 ) −
1

𝑇

𝑇∑︁
𝑡=1

𝜃𝜃𝜃 𝑡 ·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★) Replace Ψ𝛼,𝑡 (𝜃𝜃𝜃 𝑡 ,𝑥𝑥𝑥★) using Eq. (73)

≥ 𝐹★
(

1

𝑇

𝑇∑︁
𝑡=1

𝜃𝜃𝜃 𝑡

)
− 1

𝑇

𝑇∑︁
𝑡=1

𝜃𝜃𝜃 𝑡 ·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★) Jensen’s inequality & convexity of 𝐹★

≥ 𝐹★
(
¯𝜃𝜃𝜃

)
− ¯𝜃𝜃𝜃 ·

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)
)
− 1

𝑇

𝑇∑︁
𝑡=1

(𝜃𝜃𝜃 𝑡 − ¯𝜃𝜃𝜃 ) ·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

≥ min

𝜃𝜃𝜃 ∈Θ

{
𝐹★ (𝜃𝜃𝜃 ) − 𝜃𝜃𝜃 ·

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)
)}
− 1

𝑇

𝑇∑︁
𝑡=1

(𝜃𝜃𝜃 𝑡 − ¯𝜃𝜃𝜃 ) ·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

= 𝐹𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)
)
− 1

𝑇

𝑇∑︁
𝑡=1

(
𝜃𝜃𝜃 𝑡 − ¯𝜃𝜃𝜃

)
·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★). (78)

We combine the above equation and Eq. (76) to obtain

𝐹𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)
)
− 𝐹𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)
≤ ℜ𝑇,X

𝑇
+ ℜ𝑇,Θ

𝑇
+ 1

𝑇

𝑇∑︁
𝑡=1

(
𝜃𝜃𝜃 𝑡 − ¯𝜃𝜃𝜃

)
·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

=
ℜ𝑇,X
𝑇
+ ℜ𝑇,Θ

𝑇
+ 1

𝑇

𝑇∑︁
𝑡=1

(
¯𝜃𝜃𝜃 − 𝜃𝜃𝜃 𝑡

)
· 𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★)︸                        ︷︷                        ︸

Σ

(79)

We provide two approaches to bound the r.h.s. term Σ in Eq. (81), and this gives the two conditions

in Assumption (A5):
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Bound 1. We can bound the r.h.s. term Σ in the above equation as follows

Σ = ¯𝜃𝜃𝜃 ·
𝑇∑︁
𝑡=1

𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★) −
𝑇∑︁
𝑡=1

𝜃𝜃𝜃 𝑡 · 𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★) = −
𝑇∑︁
𝑡=1

𝜃𝜃𝜃 𝑡 · 𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★) (80)

≤ 1

𝑢★,min

∑︁
𝑖∈I

𝑇∑︁
𝑡=1

𝛿𝑡,𝑖 (𝑥𝑥𝑥★)1{𝛿𝑡,𝑖 (𝑥𝑥𝑥★) ≥0} = O (VT) . (81)

Bound 2. We alternatively bound Σ as follows

Σ =

𝐾∑︁
𝑘=1

∑︁
𝑡 ∈T𝑘

(
¯𝜃𝜃𝜃 − 𝜃𝜃𝜃 𝑡

)
· 𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★) =

𝐾∑︁
𝑘=1

∑︁
𝑡 ∈T𝑘

(
¯𝜃𝜃𝜃 − 𝜃𝜃𝜃min(T𝑘 )

)
· 𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★) +

𝐾∑︁
𝑘=1

∑︁
𝑡 ∈T𝑘

(
𝜃𝜃𝜃min(T𝑘 ) − 𝜃𝜃𝜃 𝑡

)
· 𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★)

≤ Δ𝛼

𝐾∑︁
𝑘=1

∑︁
𝑡 ∈T𝑘

𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★)


1

+ 𝑢max

𝐾∑︁
𝑘=1

∑︁
𝑡 ∈T𝑘

𝜃𝜃𝜃min(T𝑘 ) − 𝜃𝜃𝜃 𝑡


1
, (82)

where Δ𝛼 = max

{𝜃𝜃𝜃 − 𝜃𝜃𝜃 ′∞ : 𝜃𝜃𝜃,𝜃𝜃𝜃
′ ∈ Θ

}
. We bound the term

∑𝐾
𝑘=1

∑
𝑡 ∈T𝑘

𝜃𝜃𝜃min(T𝑘 ) − 𝜃𝜃𝜃 𝑡


1
in the

above equation as

𝐾∑︁
𝑘=1

∑︁
𝑡 ∈T𝑘

𝜃𝜃𝜃min(T𝑘 ) − 𝜃𝜃𝜃 𝑡


1
≤ 𝐿Θ

𝐾∑︁
𝑘=1

𝜂Θ,min(T𝑘 )
∑︁
𝑡 ∈T𝑘
(𝑡 −min (T𝑘 )) ≤ 𝐿Θ

𝐾∑︁
𝑘=1

𝜂Θ,min(T𝑘 ) |T𝑘 |
2

(83)

= 𝐿Θ
𝑢

1+ 1

𝛼

★,min

𝛼

𝐾∑︁
𝑘=1

|T𝑘 |2

min (T𝑘 )
, (84)

and replacing this upper-bound in Eq. (82) gives

Σ ≤ Δ𝛼

𝐾∑︁
𝑘=1

∑︁
𝑡 ∈T𝑘

𝛿𝛿𝛿𝑡 (𝑥𝑥𝑥★)


1

+ 𝑢max𝐿Θ
𝛼

𝑢
1+ 1

𝛼

★,min

𝐾∑︁
𝑘=1

|T𝑘 |2

min (T𝑘 )︸    ︷︷    ︸∑
𝑘′<𝑘 |T𝑘 |+1

= O (WT) . (85)

We combine Eq. (81), Eq. (85), and Eq. (79) to obtain

ℜ𝑇 (𝐹𝛼 ,AAA) ≤ sup

{𝑢𝑢𝑢𝑡 }𝑇𝑡=1
∈U𝑇

{
1

𝑇

(
ℜ𝑇,X +ℜ𝑇,Θ

)}
+ O

(
min {VT ,WT}

𝑇

)
(86)

≤ sup

{𝑢𝑢𝑢𝑡 }𝑇𝑡=1
∈U𝑇


1

𝑇

©«1.5 diam (X)
√︄∑︁
𝑡 ∈T

𝑔𝑔𝑔X,𝑡2

2
+ 𝛼

𝑢
1+ 1

𝛼

★,min

𝑇∑︁
𝑡=1

𝑔𝑔𝑔Θ,𝑡2

2

𝑡

ª®¬
 + O

(
min {VT ,WT}

𝑇

)
.

(87)

The following upper bounds hold𝑔𝑔𝑔Θ,𝑡2
=


(

1(
−𝜃𝑡,𝑖

)
1/𝛼 − (𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 ))

)
𝑖∈I


2

≤
√
𝐼 max

{
1

𝑢
1/𝛼
★,min

− 𝑢min, 𝑢max −
1

𝑢
1/𝛼
★,max

}
= 𝐿Θ,𝑔𝑔𝑔X,𝑡2

= ∥𝜃𝜃𝜃 𝑡 · 𝜕𝑥𝑥𝑥𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )∥2 ≤
1

𝑢𝛼
★,min

∥𝜕𝑥𝑥𝑥𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )∥2 ≤
𝐿X
𝑢𝛼
★,min

.
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Thus, the regret bound in Eq. (87) can be upper bounded as

ℜ𝑇 (𝐹𝛼 ,AAA) =
1

𝑇
sup

{𝑢𝑢𝑢𝑡 }𝑇𝑡=1
∈U𝑇

1.5 diam (X) 𝐿X
√
𝑇

𝑢𝛼
★,min

+ 𝛼

𝑢
1+ 1

𝛼

★,min

𝑇∑︁
𝑡=1

𝐿2

Θ

𝑡

 +
min {VT ,WT}

𝑇

≤ 1

𝑇
sup

{𝑢𝑢𝑢𝑡 }𝑇𝑡=1
∈U𝑇

1.5 diam (X) 𝐿X
√
𝑇

𝑢𝛼
★,min

+ 𝛼

𝑢
1+ 1

𝛼

★,min

𝐿2

Θ (log(𝑇 ) + 1)
 +

min {VT ,WT}
𝑇

= O
(

1

√
𝑇
+ min {VT ,WT}

𝑇

)
.

This concludes the proof. ■

D Proof of Theorem 3 (Lower Bound)

Proof. Consider a scenario with a single player I = {1}, X = {𝑥 ∈ R, |𝑥 | ≤ 1}, and the utility

selected by an adversary at time slot 𝑡 ∈ T is given by

𝑢𝑡 (𝑥) = 𝑤𝑡𝑥 + 1, where𝑤𝑡 ∈ {−1, +1} . (88)

The weight 𝑤𝑡 is selected in {−1, +1} uniformly at random for 𝑡 ∈ T . A policy A selects the

sequence of decisions {𝑥𝑡 }𝑇𝑡=1
and has the following fairness regret

E

[
max

𝑥 ∈X
𝑓𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑥)
)
− 𝑓𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑥𝑡 )
)]
≥ E

[
max

𝑥 ∈X
𝑓𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑥)
)]
− 𝑓𝛼

(
E

[
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑥𝑡 )
])

︸                      ︷︷                      ︸
= 0

= E

[
𝑓𝛼

(
max

𝑥 ∈X

1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑥)
)]

= E

[
𝑓𝛼

(
1

𝑇

����� 𝑇∑︁
𝑡=1

𝑤𝑡,1

����� + 1

)]
(a)
≥ E

[
1

𝑇

����� 𝑇∑︁
𝑡=1

𝑤𝑡,1

�����
] (

2
1−𝛼 − 1

1 − 𝛼

)
(b)
≥

(
2

1−𝛼−1

1−𝛼

)
√

2𝑇

= Ω

(
1

√
𝑇

)
.

Inequality (a) is obtained considering 𝑓𝛼 (𝑥 +1) is concave in 𝑥 , 𝑓𝛼 (0+1) = 0, and 𝑓𝛼 (𝑥 +1) ≥ 𝑓𝛼 (2)𝑥
for 𝑥 ∈ [0, 1]. Inequality (b) is obtained through Khintchine inequality. A lower bound on the

fairness regret (8) can be established:

ℜ𝑇 (𝐹𝛼 ,AAA) ≥ E
[
max

𝑥 ∈X
𝑓𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑥)
)
− 𝑓𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑡 (𝑥𝑡 )
)]

= Ω

(
1

√
𝑇

)
. (89)

This concludes the proof. ■

E Proof of Corollary 4

Proof. Expected regret.When the utilities are i.i.d., we have the following

E [𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥)] = 𝑢𝑢𝑢,∀𝑡 ∈ T , (90)

for some fixed utility𝑢𝑢𝑢 ∈ U. In the proof Theorem C, in particular, in Eq. (79) it holds

𝐹𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)
)
− 𝐹𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)
≤ ℜ𝑇,X

𝑇
+ ℜ𝑇,Θ

𝑇
+ 1

𝑇

𝑇∑︁
𝑡=1

(
𝜃𝜃𝜃 𝑡 − ¯𝜃𝜃𝜃

)
·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★). (91)
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Taking the expectation of both sides gives

E

[
𝐹𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)
)
− 𝐹𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)]
≤ E

[
ℜ𝑇,X
𝑇
+ ℜ𝑇,Θ

𝑇

]
+ E

[
1

𝑇

𝑇∑︁
𝑡=1

(
𝜃𝜃𝜃 𝑡 − ¯𝜃𝜃𝜃

)
·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

]
.

(92)

The variables 𝜃𝜃𝜃 𝑡 and𝑢𝑢𝑢𝑡 are independent for 𝑡 ∈ T , thus we have

E

[
1

𝑇

𝑇∑︁
𝑡=1

(
𝜃𝜃𝜃 𝑡 − ¯𝜃𝜃𝜃

)
·𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)

]
= E

[(
¯𝜃𝜃𝜃 − ¯𝜃𝜃𝜃

)
·𝑢𝑢𝑢 (𝑥𝑥𝑥★)

]
= 0. (93)

Through Eq. (88), it holds

E

[
𝐹𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥★)
)
− 𝐹𝛼

(
1

𝑇

𝑇∑︁
𝑡=1

𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )
)]

= O
(

1

√
𝑇

)
. (94)

This concludes the first part of the proof.

Almost-sure zero-regret. Let Δ = (𝑢max − 𝑢min), T = T1 ∪ T2 ∪ · · · ∪ T𝐾 where 𝐾 = 𝑇 2/3
and

|T𝑘 | = 𝜅 = 𝑇 1/3
for 𝑘 ∈ {1, 2, . . . , 𝐾}, and let 𝛽 ∈ (0, 1/6). Employing Hoeffding’s inequality we can

bound the l.h.s. term in Eq. (9) for 𝑖 ∈ I as

P

(�����∑︁
𝑡 ∈T𝑘

𝛿𝑡,𝑖 (𝑥𝑥𝑥)
����� ≤ Δ𝑇 1/6+𝛽

)
≥ 1 − 2 exp

(
−2𝑇 1/3+2𝛽

((𝑇 − 𝜅)𝜅2/𝑇 2 + 𝜅 (𝜅/𝑇 − 1)2)

)
= 1 − 2 exp

(
−2𝑇 1/3+2𝛽

(𝜅 − 𝜅2/𝑇 )

)
(95)

= 1 − 2 exp

(
−2𝑇 1/3+2𝛽(
𝑇 1/3 −𝑇 −1/3) ) . (96)

Hence, it follows

P

(
𝐾∑︁
𝑘=1

∑︁
𝑖∈I

�����∑︁
𝑡 ∈T𝑘

𝛿𝑡,𝑖 (𝑥𝑥𝑥)
����� ≤ Δ𝑇 5/6+𝛽

)
≥

(
1 − 2 exp

(
−2𝑇 1/3+2𝛽(

𝑇 1/3 − 2𝑇 −1/3) )) 𝐼𝑇 2/3

≥ 1 − 2𝐼𝑇 2/3
exp

(
−2𝑇 1/3+2𝛽(
𝑇 1/3 −𝑇 −1/3) ) Bernoulli’s inequality

≥ 1 − 2𝐼𝑇 2/3
exp

(
−2𝑇 1/3+2𝛽

𝑇 1/3

)
≥ 1 − 2𝐼𝑇 2/3

exp(−2𝑇 2𝛽 ).
It follows from the above equation paired with Eq. (9)

WT = O
(
𝑇 5/6+𝛽 +𝑇 2/3

)
= O

(
𝑇 5/6+𝛽

)
, w.p. 𝑝 ≥ 1 − 2𝐼𝑇 2/3

exp(−2𝑇 2𝛽 ). (97)

Thus, for any 𝛽 ∈ (0, 1/6) and 𝑇 →∞, it holds
WT
𝑇
≤ 0, w.p. 𝑝 ≥ 1. (98)

Note that given thatWT ≥ 0 in Eq. (10), it holds lim𝑇→∞WT = 0 w.p. 𝑝 = 1. Therefore, it follows

from Theorem C for 𝑇 →∞

ℜ𝑇 (𝐹𝛼 ,AAA) = O
(

1

√
𝑇
+ min {VT ,WT}

𝑇

)
= O

(
1

√
𝑇
+ WT

𝑇

)
≤ 0, w.p. 1. (99)

This concludes the proof. ■
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F Additional Experimental Details

Table 2. Specification of the network topologies used in experiments.

Topologies |C | |E | 𝑘𝑐 |Q𝑖 |
��∪𝑓 ∈FΛ𝑓 (C) �� 𝑤 Figure

Cycle 3 3 5–5 1 1 1–2 Fig. 5 (a)

Tree-1–Tree-3 13 12 1–5 2–5 1 1–9 Fig. 5 (b)–(d)

Grid 9 12 1–5 2 1 1–7 Fig. 5 (e)

Abilene 12 13 1–5 2 2 1–8 Fig. 5 (f)

GEANT 22 33 1–5 3 2 1–9 Fig. 5 (g)

(a) Stationary (b) Non-Stationary

Fig. 13. Request traces stationary (a) and non-stationary (b) configured with 𝜎 = 1.2, 𝑇 = 5000, 𝐹 = 20,

𝐷 = 100. Each dot indicates a requested file.

G Departing and Arriving Agents

The system model in Section 3.3 supports departing and arriving agents. Consider a population of

agents I, the system may only observe a subset of the agents as the participating agents, I𝑡 ⊂ I at

time 𝑡 , and the utility of absent agents is simply 𝑢𝑡,𝑖 ( · ) = 0. For example, in the extreme scenario

where a single agent 𝑡 ∈ T is participating at a given time slot, the long-term fairness objective (5)

falls back to the slot-fairness objective (4), i.e., 𝐹𝛼 (
∑
𝑡 ∈T𝑢𝑢𝑢𝑡 (𝑥𝑥𝑥𝑡 )) =

∑
𝑡 ∈T 𝑓𝛼

(
𝑢𝑡,𝑡 (𝑥𝑥𝑥𝑡 )

)
where the

fairness is ensured across the different agents arriving at different timeslots 𝑡 ∈ T . It is easy to

verify that even in the case when the set of agents I is unknown to the controller in advance, one

could augment the dual space with an extra dimension each time a new user appears, and the same

guarantees hold.

H Time-Complexity of Algorithm 1

Algorithm 1 applied to the virtualized caching system application has a time complexity O
(
𝐶𝐹 2

)
,

where𝐶 is number of caches and 𝐹 is the number of files in the catalog; the most expensive operation

in Algorithm 1 is the projection step in line 8 that corresponds to the Euclidean projection onto a

capped simplex, and this can be performed in O
(
𝐹 2

)
steps [76] for each cache state. Despite the

high time complexity (𝐹 is typically large), in practice solvers (e.g., CVXPY [22]) support warm-start
that speeds up the projection when the warm-start parameters are close to the ones of obtained

by the solution, and since Algorithm 1 is iterative and the cache states do not severely change,

typically a lower computational cost is achieved. Moreover, the proposed caching model in Section 6

supports request batching, where a batch includes the requests arriving between two consecutive

cache updates. Batching amortizes the computational cost of the different policies, reducing the

cost per request by the batch size (𝑅𝑡 at time slot 𝑡 ).
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