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Introduction

Grammatical gender

Means of identifying and tracking referents in discourse
(Contini-Morava & Kilarski, 2013)

All nouns are assigned a gender, which is formally reflected in
agreement markers in the clause (Hockett, 1958; Corbett, 1991)
Assignment on basis of semantic and/or formal (phonological and
morphological) properties, with semantic features usually taking
precedence (Corbett & Fraser 2000; Bellamy & Wichers Schreur
2021; Allassonnière-Tang et al. 2021)
Some systems where assignment is completely transparent, others
where it is more opaque
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Introduction

Our approach

Question = What are the specific principles that underpin complex
assignment systems?

Three computational methods to test which factors most adequately
predict gender in Chechen and Tsova-Tush
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Introduction

Studies concerning gender prediction
Network Morphology approach (Corbett and Fraser (1993)) with a
lexical knowledge representation language (DATR) (Fraser & Corbett,
1995; Evans & Gazdar, 1989a, 1989b, 1996)
Polinsky and van Everbroeck (2003): study of the reanalysis of the
Latin gender system as it transitioned to Old French, with
frequency-based neural network
Bateman and Polinsky (2010): decision trees to reconsider the gender
system of Romanian as a two-value rather than the traditional
three-value analysis
Plaster, Polinsky and Harizanov (2012): decision tree model that
predicts gender of 70% of nouns in Tsez (East-Caucasian. Result:
semantic features are the most predictive
Allassonnière-Tang, Brown and Fedden (2021): simple decision trees
+ random forest trees + neural networks to test claim that Mian
(Ok) assigns gender predominantly on basis of semantics.
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Background

Nakh languages
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Background

Chechen and Tsova-Tush

Chechen Tsova-Tush
• aka Bats, aka Batsbi

• Chechnya (RF) • Georgia>Zemo Alvani
• 95% of Chechnya • 500 people
• Official • Not official
• Bilingualism with Russian • Bilingualism with Georgian
• Not endangered • Severely endangered

JWS, MAT, KB, NR (SLE 2022) Predicting gender in Nakh 6 / 25 24/08/2022



Background

Gender in Chechen and Tsova-Tush

5 genders

Agreement is marked by the same 4 consonantal prefixes
Agreement targets=

1/3 of all underived verbs
small number of adverbs

Agreement with nom

ten underived adjectives
the numeral ‘four’

Agreement with head noun
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Background

Gender in Chechen and Tsova-Tush

(1) Chechen (Nichols, 1994: 37)

cħa
one

jiett
cow(b)

āra
out

b-ēl-ir.
b-go-aor

‘One cow went out.’

(2) Tsova-Tush (Kadagidze, 2009: 170)

se�
1sg.gen

herc’ǒ
pot(d)

d-ux
d-back

d-erc’-d-Ø-eb
d-return-d-tr-imp

so�!
1sg.dat

‘Give me back my pot!’
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Background

Gender in Chechen and Tsova-Tush

Gender Semantics Markers (sg/pl)
Tsova-Tush Chechen

M male rationals v- / b- v- / b-
F female rationals j- / d- j- / b-
B animals, inanimates b- / d- b- / d-
J animals, inanimates j- / j- j- / j-
D animals, inanimates d- / d- d- / d-
Bb animals, inanimates b- / b- (6 items) b- / b- (22 items)
Bj body parts, ‘step’, ‘kick’ b- / j- (17 items) -
Dj body parts d- / j- (6 items) -

Last 3 = exceptions aka ‘inquorate’ genders, (Corbett, 1991: 170–175),
excluded from this study
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Background

Gender assignment in Chechen and Tsova-Tush

M & F = male vs. female rationals
vs. 3 non-fully predictable non-rational genders
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Background

Gender assignment in Chechen and Tsova-Tush

Table: Tendencies which predict gender of small portion of non-rationals

Chechen (Nichols 2007) Tsova-Tush (Wichers Schreur
2021)
Some semantically-based clus-
terings of genders → 15% of
non-rationals predicted
All verbal nouns → D class

Some derived abstract nouns →
D/J depending on degree of ab-
stractness

Most de-adjectival abstract
nouns → J class

60-65% of b-, d- and j- nouns
→ B, D and J genders (auto-
gender + alliterative concord)
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Background

Gender assignment in Chechen and Tsova-Tush

Table: Special cases

Chechen Tsova-Tush
Loanwords New loanwords often

given gender of near
synonym or immediate
generic (Nichols 2007),
but all recent Russian
loans have gender J

Same set of semantic and
phonological tendencies
as native nouns (Wichers
Schreur 2021)
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Data and methods

Data

Two lexical databases
Chechen: Erwin Komen - combined dictionaries of Matsiev (1961)
and Jamalkhanov and Aliroev (1991)
Tsova-Tush: Kadagidze and Kadagidze (1984)

Semantic information: broad semantics categories (Male, Female,
Human, Animal, Inanimate) + Concepticon (List et al., 2016)
Form information: the first three and the last three phonemes of each
noun (Dryer, 2013; Basirat et al., 2021)

Language B D J M F
Chechen 320 868 1370 88 27
Tsova-Tush 462 968 836 104 30
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Data and methods

Data
Noun haer mar
Gloss air husband
Gender J M
Concepticon_category Person/thing Person/thing
Concepticon_field Physical world Kinship
Semantic_broad Inanimate Male
Semantic_domain Natural Kinship
Borrowed_Arab 0 0
Borrowed_GE 1 0
Borrowed_Turk 0 0
Borrowed_Russian 0 0
Word length 4 3
Last first phoneme r r
Last second phoneme e a
Last third phoneme a m
First phoneme h m
Second phoneme a a
Third phoneme e r
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Data and methods

Methods

Models
Three computational classifiers (machine learning/ deep learning)

Decisions trees: one tree vs random forests (300)
Deep learning: neural network (feed-forward)

Parameters
70% of the data used for training, 30% of the data used for testing
10, 100, 1000 replications to avoid sampling bias
The performance is compared with the random baseline (38.4%,
30.5%) and the majority baseline (51.3%, 39.2%)
The use of precision and recall to assess the performance on each
gender category (like Target-Like Usage (TLU) and Suppliance in
Obligatory Context (SOC) in language acquisition)
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Data and methods

Output

Example tree for gender assignment in Tsova-Tush

JWS, MAT, KB, NR (SLE 2022) Predicting gender in Nakh 16 / 25 24/08/2022



Data and methods

Output

Overall prediction accuracy across the languages of the study. The dashed
lines indicate the random (black) and the majority (red) baselines.
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Discussion

Language-internal aspects

Tsova-Tush:
Sustains earlier findings:

“Male” = 100% accuracy
b- nouns → gender B, inanimate d- nouns → gender D
Loan word status not used as a variable

New findings:

“word length” → gender D (high percentage of abstract nouns formed
by suffixes)
“wild plant” → gender D
“Inanimate” → gender J (51% accuracy)
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Discussion

Language-internal aspects

Chechen:
Sustains earlier findings:

d- nouns → gender D
New findings:

“word length” → gender J (numerous suffixes deriving J gender nouns
/ high number of instances of J gender suffixes)
Russian loanwords → J gender (55/69 neuter words) (not mirrored in
decision tree experiments).
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Discussion

Summary

Corroborates earlier findings in East Caucasian
Broad semantic categories such as animacy, humanness and
abstractness show high correlation with certain gender classes
(Carling et al., 2021).

1st segment /b/ or /d/ found to correlate highly with corresponding
genders B and D

Broader linguistic implications

Descriptive analyses of gender systems can be assisted by
computational methods to identify the relative weights of semantics
and form in gender assignment
However, more data is always needed... (lexicon and semantic
features)
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However, more data is always needed... (lexicon and semantic
features)
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