Predicting grammatical gender in Nakh languages Three methods compared

Jesse Wichers Schreur¹, Marc Allassonnière-Tang², Kate Bellamy³, Neige Rochant⁴

École Pratique des Hautes Études / Goethe University Frankfurt¹ National Museum of Natural History / CNRS / University Paris City² KU Leuven³ Sorbonne Nouvelle University / CNRS: LACITO \sim LLACAN⁴

24/08/2022

55th Annual Meeting of the Societas Linguistica Europaea University of Bucharest "lorgu lordan – Al. Rosetti" Institute of Linguistics

 Means of identifying and tracking referents in discourse (Contini-Morava & Kilarski, 2013)

- Means of identifying and tracking referents in discourse (Contini-Morava & Kilarski, 2013)
- All nouns are assigned a gender, which is formally reflected in agreement markers in the clause (Hockett, 1958; Corbett, 1991)

- Means of identifying and tracking referents in discourse (Contini-Morava & Kilarski, 2013)
- All nouns are assigned a gender, which is formally reflected in agreement markers in the clause (Hockett, 1958; Corbett, 1991)
- Assignment on basis of semantic and/or formal (phonological and morphological) properties, with semantic features usually taking precedence (Corbett & Fraser 2000; Bellamy & Wichers Schreur 2021; Allassonnière-Tang et al. 2021)

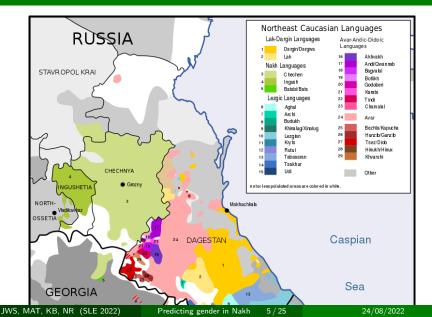
- Means of identifying and tracking referents in discourse (Contini-Morava & Kilarski, 2013)
- All nouns are assigned a gender, which is formally reflected in agreement markers in the clause (Hockett, 1958; Corbett, 1991)
- Assignment on basis of semantic and/or formal (phonological and morphological) properties, with semantic features usually taking precedence (Corbett & Fraser 2000; Bellamy & Wichers Schreur 2021; Allassonnière-Tang et al. 2021)
- Some systems where assignment is completely transparent, others where it is more opaque

Our approach

Question = What are the specific principles that underpin complex assignment systems?

Our approach

- Question = What are the specific principles that underpin complex assignment systems?
- Three computational methods to test which factors most adequately predict gender in Chechen and Tsova-Tush


Studies concerning gender prediction

- Network Morphology approach (Corbett and Fraser (1993)) with a lexical knowledge representation language (DATR) (Fraser & Corbett, 1995; Evans & Gazdar, 1989a, 1989b, 1996)
- Polinsky and van Everbroeck (2003): study of the reanalysis of the Latin gender system as it transitioned to Old French, with frequency-based neural network
- Bateman and Polinsky (2010): decision trees to reconsider the gender system of Romanian as a two-value rather than the traditional three-value analysis
- Plaster, Polinsky and Harizanov (2012): decision tree model that predicts gender of 70% of nouns in Tsez (East-Caucasian. Result: semantic features are the most predictive
- Allassonnière-Tang, Brown and Fedden (2021): simple decision trees + random forest trees + neural networks to test claim that Mian (Ok) assigns gender predominantly on basis of semantics.

JWS, MAT, KB, NR (SLE 2022)

Background

Nakh languages

Chechen and Tsova-Tush

Chechen	Tsova-Tush
	• aka Bats, aka Batsbi
 Chechnya (RF) 	 Georgia>Zemo Alvani
 95% of Chechnya 	• 500 people
 Official 	 Not official
 Bilingualism with Russian 	• Bilingualism with Georgian
 Not endangered 	 Severely endangered
	<u>I</u>

Background

- 5 genders
- Agreement is marked by the same 4 consonantal prefixes

- 5 genders
- Agreement is marked by the same 4 consonantal prefixes
- Agreement targets=

- 5 genders
- Agreement is marked by the same 4 consonantal prefixes
- Agreement targets=
 - 1/3 of all underived verbs

- 5 genders
- Agreement is marked by the same 4 consonantal prefixes
- Agreement targets=
 - 1/3 of all underived verbs
 - small number of adverbs

- 5 genders
- Agreement is marked by the same 4 consonantal prefixes
- Agreement targets=
 - 1/3 of all underived verbs
 Agreement with NOM

- 5 genders
- Agreement is marked by the same 4 consonantal prefixes
- Agreement targets=
 - 1/3 of all underived verbs
 Agreement with NOM
 small number of adverbs

 - ten underived adjectives

- 5 genders
- Agreement is marked by the same 4 consonantal prefixes
- Agreement targets=
 - 1/3 of all underived verbs
 Agreement with NOM
 small number of adverbs

 - ten underived adjectives
 - the numeral 'four'

- 5 genders
- Agreement is marked by the same 4 consonantal prefixes
- Agreement targets=
 - 1/3 of all underived verbs
 Agreement with NOM
 small number of adverbs

 - ten underived adjectives
 Agreement with head noun
 the numeral 'four'

(1) Chechen (Nichols, 1994: 37)

 $c\hbar a \ jiett \ \bar{a}ra \ b-\bar{e}l-ir.$ one cow(B) out B-go-AOR

'One cow went out.'

(2) Tsova-Tush (Kadagidze, 2009: 170)

se herc'ŏ d-ux d-erc'-d-Ø-eb so ! 1SG.GEN pot(D) D-back D-return-D-TR-IMP 1SG.DAT 'Give me back my pot!'

Gender	Semantics	Markers (SG/PL)		
		Tsova-Tush	Chechen	
М	male rationals	v- / b-	v- / b-	
F	female rationals	j- / d-	j- / b-	
В	animals, inanimates	b- / d-	b- / d-	
J	animals, inanimates	j- / j-	j- / j-	
D	animals, inanimates	d- / d-	d- / d-	
Bb	animals, inanimates	b- / b- (6 items)	b- / b- (22 items)	
Bj	body parts, 'step', 'kick'	b- / j- (17 items)	-	
Dj	body parts	d- / j- (6 items)	-	

Last 3 = exceptions aka 'inquorate' genders, (Corbett, 1991: 170–175), excluded from this study

Background

Gender assignment in Chechen and Tsova-Tush

- M & F = male vs. female rationals
- vs. 3 non-fully predictable non-rational genders

Gender assignment in Chechen and Tsova-Tush

Table: Tendencies which predict gender of small portion of non-rationals

Chechen (Nichols 2007)	Tsova-Tush (Wichers Schreur 2021)
	Some semantically-based clusterings of genders \rightarrow 15% of non-rationals predicted
Some derived abstract nouns \rightarrow D/J depending on degree of abstractness	All verbal nouns \rightarrow D class Most de-adjectival abstract nouns \rightarrow J class
	60-65% of b-, d- and j- nouns \rightarrow B, D and J genders (auto- gender + alliterative concord)

Background

Gender assignment in Chechen and Tsova-Tush

Table: Special cases

	Chechen	Tsova-Tush
Loanwords	New loanwords often	Same set of semantic and
	given gender of near	phonological tendencies
	synonym or immediate	as native nouns (Wichers
	generic (Nichols 2007),	Schreur 2021)
	but all recent Russian	
	loans have gender J	

Two lexical databases

- Chechen: Erwin Komen combined dictionaries of Matsiev (1961) and Jamalkhanov and Aliroev (1991)
- Tsova-Tush: Kadagidze and Kadagidze (1984)

Language	В	D	J	М	F
Chechen	320	868	1370	88	27
Tsova-Tush	462	968	836	104	30

Two lexical databases

- Chechen: Erwin Komen combined dictionaries of Matsiev (1961) and Jamalkhanov and Aliroev (1991)
- Tsova-Tush: Kadagidze and Kadagidze (1984)
- Semantic information: broad semantics categories (Male, Female, Human, Animal, Inanimate) + Concepticon (List et al., 2016)

Language	В	D	J	Μ	F
			1370		27
Tsova-Tush	462	968	836	104	30

Two lexical databases

- Chechen: Erwin Komen combined dictionaries of Matsiev (1961) and Jamalkhanov and Aliroev (1991)
- Tsova-Tush: Kadagidze and Kadagidze (1984)
- Semantic information: broad semantics categories (Male, Female, Human, Animal, Inanimate) + Concepticon (List et al., 2016)
- Form information: the first three and the last three phonemes of each noun (Dryer, 2013; Basirat et al., 2021)

Language	В	D	J	Μ	F
			1370		27
Tsova-Tush	462	968	836	104	30

Noun	haer	mar
Gloss	air	husband
Gender	J	Μ
Concepticon_category	Person/thing	Person/thing
Concepticon_field	Physical world	Kinship
Semantic_broad	Inanimate	Male
Semantic_domain	Natural	Kinship
Borrowed_Arab	0	0
Borrowed_GE	1	0
Borrowed_Turk	0	0
Borrowed_Russian	0	0
Word length	4	3
Last first phoneme	r	r
Last second phoneme	е	а
Last third phoneme	а	m
First phoneme	h	m
Second phoneme	а	а
Third phoneme	e	r
		24/00/2

JWS, MAT, KB, NR (SLE 2022)

Models

• Three computational classifiers (machine learning/ deep learning)

Models

- Three computational classifiers (machine learning/ deep learning)
- Decisions trees: one tree vs random forests (300)

Models

- Three computational classifiers (machine learning/ deep learning)
- Decisions trees: one tree vs random forests (300)
- Deep learning: neural network (feed-forward)

Models

- Three computational classifiers (machine learning/ deep learning)
- Decisions trees: one tree vs random forests (300)
- Deep learning: neural network (feed-forward)

Models

- Three computational classifiers (machine learning/ deep learning)
- Decisions trees: one tree vs random forests (300)
- Deep learning: neural network (feed-forward)

Parameters

■ 70% of the data used for training, 30% of the data used for testing

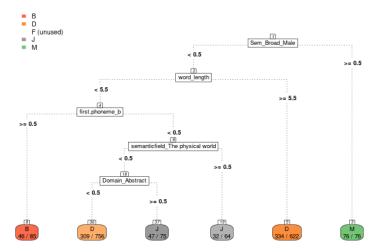
Models

- Three computational classifiers (machine learning/ deep learning)
- Decisions trees: one tree vs random forests (300)
- Deep learning: neural network (feed-forward)

- 70% of the data used for training, 30% of the data used for testing
- 10, 100, 1000 replications to avoid sampling bias

Models

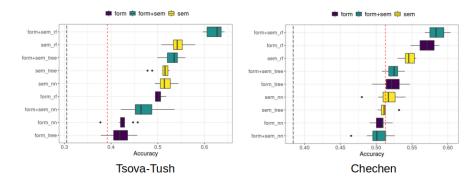
- Three computational classifiers (machine learning/ deep learning)
- Decisions trees: one tree vs random forests (300)
- Deep learning: neural network (feed-forward)


- \blacksquare 70% of the data used for training, 30% of the data used for testing
- 10, 100, 1000 replications to avoid sampling bias
- The performance is compared with the random baseline (38.4%, 30.5%) and the majority baseline (51.3%, 39.2%)

Models

- Three computational classifiers (machine learning/ deep learning)
- Decisions trees: one tree vs random forests (300)
- Deep learning: neural network (feed-forward)

- \blacksquare 70% of the data used for training, 30% of the data used for testing
- 10, 100, 1000 replications to avoid sampling bias
- The performance is compared with the random baseline (38.4%, 30.5%) and the majority baseline (51.3%, 39.2%)
- The use of precision and recall to assess the performance on each gender category (like Target-Like Usage (TLU) and Suppliance in Obligatory Context (SOC) in language acquisition)


Output

Example tree for gender assignment in Tsova-Tush

Data and methods

Output

Overall prediction accuracy across the languages of the study. The dashed lines indicate the random (black) and the majority (red) baselines.

Tsova-Tush:

Sustains earlier findings:

- Sustains earlier findings:
 - "Male" = 100% accuracy

- Sustains earlier findings:
 - "Male" = 100% accuracy
 - \blacksquare b- nouns \rightarrow gender B, inanimate d- nouns \rightarrow gender D

- Sustains earlier findings:
 - "Male" = 100% accuracy
 - \blacksquare b- nouns \rightarrow gender B, inanimate d- nouns \rightarrow gender D
 - Loan word status not used as a variable

- Sustains earlier findings:
 - "Male" = 100% accuracy
 - \blacksquare b- nouns \rightarrow gender B, inanimate d- nouns \rightarrow gender D
 - Loan word status not used as a variable
- New findings:

- Sustains earlier findings:
 - "Male" = 100% accuracy
 - \blacksquare b- nouns \rightarrow gender B, inanimate d- nouns \rightarrow gender D
 - Loan word status not used as a variable
- New findings:
 - \blacksquare "word length" \rightarrow gender D (high percentage of abstract nouns formed by suffixes)

- Sustains earlier findings:
 - "Male" = 100% accuracy
 - \blacksquare b- nouns \rightarrow gender B, inanimate d- nouns \rightarrow gender D
 - Loan word status not used as a variable
- New findings:
 - \blacksquare "word length" \rightarrow gender D (high percentage of abstract nouns formed by suffixes)
 - $\bullet \ ``wild \ plant'' \rightarrow gender \ D$

- Sustains earlier findings:
 - "Male" = 100% accuracy
 - \blacksquare b- nouns \rightarrow gender B, inanimate d- nouns \rightarrow gender D
 - Loan word status not used as a variable
- New findings:
 - \blacksquare "word length" \rightarrow gender D (high percentage of abstract nouns formed by suffixes)
 - $\bullet \ ``wild \ plant'' \rightarrow gender \ D$
 - "Inanimate" \rightarrow gender J (51% accuracy)

Chechen:

Sustains earlier findings:

- Sustains earlier findings:
 - $\blacksquare \text{ d- nouns} \rightarrow \text{gender } \mathsf{D}$

- Sustains earlier findings:
 - $\blacksquare \ d\text{- nouns} \to \text{gender } D$
- New findings:

- Sustains earlier findings:
 - $\blacksquare \ d\text{- nouns} \to \text{gender } D$
- New findings:
 - \blacksquare "word length" \rightarrow gender J (numerous suffixes deriving J gender nouns
 - / high number of instances of J gender suffixes)

- Sustains earlier findings:
 - $\blacksquare \ d\text{- nouns} \to \text{gender } D$
- New findings:
 - "word length" → gender J (numerous suffixes deriving J gender nouns / high number of instances of J gender suffixes)
 - Russian loanwords \rightarrow J gender (55/69 neuter words) (not mirrored in decision tree experiments).

Corroborates earlier findings in East Caucasian

 Broad semantic categories such as animacy, humanness and abstractness show high correlation with certain gender classes (Carling et al., 2021).

Corroborates earlier findings in East Caucasian

- Broad semantic categories such as animacy, humanness and abstractness show high correlation with certain gender classes (Carling et al., 2021).
- 1st segment /b/ or /d/ found to correlate highly with corresponding genders B and D

Corroborates earlier findings in East Caucasian

- Broad semantic categories such as animacy, humanness and abstractness show high correlation with certain gender classes (Carling et al., 2021).
- 1st segment /b/ or /d/ found to correlate highly with corresponding genders B and D

Corroborates earlier findings in East Caucasian

- Broad semantic categories such as animacy, humanness and abstractness show high correlation with certain gender classes (Carling et al., 2021).
- 1st segment /b/ or /d/ found to correlate highly with corresponding genders B and D

Broader linguistic implications

 Descriptive analyses of gender systems can be assisted by computational methods to identify the relative weights of semantics and form in gender assignment

Corroborates earlier findings in East Caucasian

- Broad semantic categories such as animacy, humanness and abstractness show high correlation with certain gender classes (Carling et al., 2021).
- 1st segment /b/ or /d/ found to correlate highly with corresponding genders B and D

Broader linguistic implications

- Descriptive analyses of gender systems can be assisted by computational methods to identify the relative weights of semantics and form in gender assignment
- However, more data is always needed... (lexicon and semantic features)

Thank you! 24/08/2022 JWS, MAT, KB, NR (SLE 2022) Predicting gender in Nakh

Allassonnière-Tang, Marc & Brown, Dunstan & Fedden, Sebastian. 2021. Testing semantic dominance in Mian gender: Three machine learning models. Oceanic Linguistics 60(2). 302-334. doi.org/10.1353/ol.2021.0018.

Balam, Osmer. 2016. Semantic Categories and Gender Assignment in Contact Spanish: Type of Code-Switching and its Relevance to Linguistic Outcomes. Journal of Language Contact 9. 405-435. doi.org/10.1163/19552629-00903001.

Basirat, Ali & Allassonnière-Tang, Marc & Berdicevskis, Aleksandrs. 2021. An empirical study on the contribution of formal and semantic features to the grammatical gender of nouns. Linguistics Vanguard 7(1). 20200048.

doi.org/10.1515/lingvan-2020-0048.

Bellamy, Kate & Jesse Wichers Schreur. 2021. When semantics and phonology collide: Gender assignment in mixed Tsova-Tush-Georgian nominal constructions. The International Journal of Bilingualism 0(0). 1-29.

doi.org/10.1177/13670069211039559.

Breiman, Leo & Jerome H. Friedman & Richard A. Olshen & Charles J. Stone. 1984. Classification and Regression Trees. Boca Raton: Routledge. Brown, Dunstan. 1998. Defining 'sub-gender': Virile and devililized nouns in Polish. Lingua 104. 187-233. Carling, Gerd, Kate Bellamy & Jesse Wichers Schreur. 2021. Gender stability in Nakh-Daghestanian, paper presented at Languages, Dialects and Isoglosses of Anatolia, the Caucasus and Iran, March 2021, Paris.

Contini-Morava, Ellen & Marcin Kilarski. 2013. Functions of nominal classification. Language Sciences 40. 263-299. doi.org/10.1016/j.langsci.2013.03.002.

Corbett, Greville. 1982. Gender in Russian: an Account of Gender Specification and its Relationship to Declension. Russian Linguistics 6. 197-232.

Corbett, Greville. 1991. Gender. Cambridge: Cambridge University Press. Corbett, Greville. 2013. Systems of Gender Assignment. In Matthew S. Dryer & Martin Haspelmath (eds.), The World Atlas of Language Structures Online. Leipzig: Max Planck Institute for Evolutionary Anthropology. (Available online at http://wals.info/chapter/32, Accessed on 2022-02-02.) Corbett, Greville G. & Norman M. Fraser. 1993. Network Morphology: A DATR account of Russian nominal inflection. Journal of Linguistics 29(1). 113-142. doi:10.1017/S002226700000074.

Corbett, Greville & Norman M. Fraser. 2000. Default genders. In Barbara Unterbeck & Matti Rissanen (eds.), Gender in Grammar and Cognition I: Approaches to Gender. 55-98. Berlin: Mouton de Gruyter.

Cruz, Abel. 2021. A syntactic approach to gender assignment in Spanish–English bilingual speech. Glossa: a journal of general linguistics 6(1). 1-40. doi.org/10.16995/glossa.5878.

Desheriev, Y. D. 1953. Bacbijskij jazyk: fonetika, morfologija, sintaksis, leksika [The Tsova-Tush language: phonetics, morphology, syntax, lexicon]. Moscow: Izdatel'stvo AN SSSR. Demsar, Janez & Zupan, Blaz & Leban, Gregor & Curk, Tomaž. 2004. Orange: From Experimental Machine Learning to Interactive Data Mining, White Paper. European Conference of Machine Learning: 2004; Pisa, Italy 3202. 537-539.

Dryer, Matthew S. 2013. Prefixing vs. suffixing in inflectional morphology. In: Dryer, Matthew S. & Haspelmath, Martin (eds.), The World Atlas of Language Structures Online. Leipzig: Max Planck Institute for Evolutionary Anthropology. (Available online at http://wals.info/chapter/33, Accessed on 2022-02-02.).

Evans, Nicholas & Brown, Dunstan & Corbett, Greville. 2002. The semantics of gender in Mayali: partially parallel systems and formal implementation. Language 78. 109-153. Evans, Roger & Gazdar, Gerald. 1989a. Inference in DATR. Proceedings of the Association for Computational Linguistics, Manchester, England. 66-71. Evans, Roger & Gazdar, Gerald. 1989b. The semantics of DATR. In A. G. Cohn (ed.), Proceedings of the seventh conference of the Study of Artificial Intelligence and Simulation of Behaviour, 79-87. London: Pitman/Morgan Kaufmann. Evans, Roger & Gazdar, Gerald. 1996. DATR: A language for lexical knowledge representation. Computational Linguistics 22. 167-216.

Fedden, Sebastian. 2011. A Grammar of Mian. Berlin / Boston: De Gruyter Mouton.

Fraser, Norman M. & Corbett, Greville G. 1995. Gender, animacy, and declensional class assignment: A unified account for Russian. In Geert Booij & Jaap van Maarle (eds.), Yearbook of Morphology 1994, 123-150. Amsterdam: Kluwer Academic Publishers.

Fraser, Norman M. & Corbett, Greville G. 1997. Defaults in Arapesh. Lingua 103. 25-57.

Gagliardi, Annie & Jeffrey Lidz. 2014. Statistical insensitivity in the acquisition of Tsez noun classes. Language 90(1). 58-89. doi:10.1353/lan.2014.0013.

Haykin, S. 1998. Neural Networks: A Comprehensive Foundation. Prentice-Hall: Englewood Cliffs.

Hockett, Charles F. 1958. A course in modern linguistics. New York: MacMillan.

Jamalkhanov, Z. D. & Aliroev, I. Y. []. 1991. Slovar' pravopisanija literaturnogo čečenskogo jazyka [Orthographical dictionary of literary Chechen]. Grozny: Kniga.

Kadagidze, E. 2009. c'ova-tušuri t'ekst'ebi [Tsova-Tush texts]. Tbilisi: TSU gamomcemloba.

Kadagidze, D. & Kadagidze, N. []. 1984. c'ova-tušur-kartul-rusul leksik'oni [Tsova-Tush-Georgian-Russian dictionary]. Tbilisi: Mecniereba.

Karmiloff-Smith, Annette. 1979. A Functional Approach to Child Language. New York / London: Cambridge University Press. Khalilov, M. S. 1999. Cezsko-russkij slovar' [Tsez-Russian dictionary]. Moscow: Academia Kilarski, Marcin. & Allassonnière-Tang, Marc. 2021. Classifiers in Morphology. In M. Aronoff (ed.), Oxford Research Encyclopedia of Linguistics, 1-28. Oxford: Oxford University Press. doi:10.1093/acrefore/9780199384655.013.546. Lemus-Serrano, Magdalena & Allassonnière-Tang, Marc & Dediu, Dan. 2021. What conditions tone paradigms in Yukuna: Phonological and machine learning approaches. Glossa: a journal of general linguistics 6(1), 60, doi.org/10.5334/gigl.1276. List, Johann-Mattis, Michael Cysouw & Robert Forkel. 2016. Concepticon: A Resource for the Linking of Concept Lists. Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16), 2393-2400. Matsiev, A. G. 1961. Slovar' čečenskogo jazyka [Chechen dictionary]. Moscow: Gosudarstvennoe izdatel'stvo inostrannyx i nacional'nyx sloverej. Nichols, Johanna. 1989. The Nakh evidence for the history of gender in Nakh-Daghestanian. In Howard I. Aronson (ed.) The non-Slavic languages of the USSR: linguistic studies. University of Chicago. pp. 158-175. Nichols, Johanna. 1994. Chechen. In Riks Smeets (ed.) The North East Caucasian languages, part 2, 1-78. Delmar: Caravan. Nichols, Johanna, 2003, The Nakh-Daghestanian consonant correspondences. In Dee Ann Holisky & Kevin Tuite (eds.) Current trends in Caucasian, East European and Inner Asian linguistics: papers in honor of Howard I. Aronson. Amsterdam: John Benjamins, pp. 207-264. Nichols, Johanna. 2007. Chechen morphology with notes on Ingush. In Alan S. Kaye (ed.) Morphologies of Africa and Asia. Penn University Press. pp. 1188-1207. doi.org/10.1515/9781575065663-044. Nichols, Johanna, 2011, Ingush grammar, Berkeley, Los Angeles: University of California Press,

Her, One-Soon & Tang, Marc. 2020. A statistical explanation of the distribution of sortal classifiers in languages of the world

via computational classifiers. Journal of Quantitative Linguistics 27(2). 93-113. doi.org/10.1080/09296174.2018.1523777. Parks, Randolph, Daniel S. Levine & Debra L. Long (eds.). 1998. Fundamentals of Neural Network Modeling: Neuropsychology and Cognitive Neuroscience. Boston: MIT Press.

Plaster, Keith & Polinsky, Maria & Harizanov, Boris. 2013. Noun classes grow on trees: noun classification in the North-East Caucasus. In Balthazar Bickel, Lore A. Grenoble, David A. Peterson & Alan Timberlake (eds.), Language typology and historical contingency: In honor of Johanna Nichols, 153-170. Amsterdam: John Benjamins.

Polinsky, Maria & Ezra Van Everbroeck. 2003. Development of gender classifications: Modeling the historical change from Latin to French. Language 79. 356-390.

Quinlan, J. Ross. 1993. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers.

Quinlan, J. Ross. 1996. Improved use of continuous attributes in c4.5. Journal of Artificial Intelligence Research 4. 77-90.

Rajabov, Ramazan. Undated. Tsez Dictionary. Ms. Los Angeles: University of Southern California.

Senft, Gunter (ed.). 2000. Systems of nominal classification. Cambridge: Cambridge University Press.

Sokolik, M. E. & Michael E. Smith. 1992. Assignment of gender to French nouns in primary and secondary language: a connectionist model. Second Language Research 8(1). 39-58.

Tagliamonte, Sali A. & R. Harald Baayen. 2012. Models, forests and trees of York English: Was/were variation as a case study for statistical practice. Language Variation and Change 24(2). 135-178. doi:10.1017/S0954394512000129.

Ting, Kai Ming. 2010. Precision and Recall. In Claude Sammut & Geoffrey I. Webb (eds.), Encyclopedia of Machine Learning, 781–781. Boston: Springer. doi:10.1007/978-0-387-30164-8652.

Ulrich, Natalja & Allassonnière-Tang, Marc & Pellegrino, François & Dediu, Dan. 2021. Identifying the Russian voiceless non-palatalized fricatives /f/, /s/ and // from acoustic cues using Machine Learning. Journal of the Acoustical Society of America 150(3). 1806-1820. doi.org/10.1121/10.0005950.

Wichers Schreur, Jesse. 2021. Nominal borrowings in Tsova-Tush (Nakh-Daghestanian, Georgia) and their gender assignment. In Diana Forker & Lore A. Grenoble (eds.), Language contact in the territory of the former Soviet Union, 15–33. Amsterdam: John Benjamins.

Wurm, S. A., Heyward, I., & Unesco. 2001. Atlas of the world's languages in danger of disappearing. Paris: Unesco Pub. Website http://www.unesco.org/languages-atlas/ consulted on 7-12-2021.