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ABSTRACT: We report a rh(I)-catalyzed C–H bond alkylation of PhenCarPhos [= N-(2-(diphenylphosphaneyl)phenyl)car-

bazole] and some congener phosphine ligands with alkenes.  The C–H bond functionalization occurred exclusively at the 

C1 position of the carbazolyl unit because the trivalent phosphine acts as a directed group.  This protocol provides straight-

forward access to a large library of C1-alkyl substituted PhenCarPhos, which outperformed common commercial or unfunc-

tionalized phosphines and their precursors in the Pd-catalyzed carbon dioxide-fixation reactions with propargylic amines. 

Designing more active ligands is one of the most important fields of catalysis and organometallic chemistry.  Despite nu-

merous advances in transition metal-catalyzed reactions, developing efficient catalytic systems is still highly desirable for 

industrial application, significantly decreasing their environmental impact.  Among the different classes of ligands, phos-

phines remain the most popular with several well-established industrial processes.1  It is admitted that the associated phos-

phines can modulate the activity of metal centers of catalysts through fine-tuning of their steric and electronic properties or 

by weak interactions in the second coordination sphere.  However, the synthesis of such multifunctional phosphines with 

different substituents often requires multistep synthesis and the use of organometallic reagents may limit the diversity of the 

functional group that can be introduced in the phosphine scaffold.  

Since the pioneer observation by Hartwig and co-workers on Pd-catalyzed direct polyarylation of 1-(di-tert-bu-

tylphosphino)ferrocene,2 P(III)-chelation-assisted C–H bond functionalization has become a straightforward strategy to 
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quickly generate vast libraries of functionalized phosphines allowing to discover upgraded ligand exhibiting higher catalytic 

activity in among others Pd catalysis.3  To date, C–H bond functionalizations of phosphines is limited to arylphosphines 

(borylation,4 silylation5 and arylation6), biarylphosphines (borylation,7 silylation, arylation,8 alkylation,9 alkenylation10 and 

carbonylation11) and 1-naphtyphosphines (arylation12 and alkylation13) (Figure 1).  Interestingly, in some cases, the C-H 

bond functionalizations of phosphines give birth to a better ligand in transition-metal catalyzed reactions.14  For instance, 

we have demonstrated that C–H bond alkylation of CyJohnPhos (= (2-biphenyl)dicyclohexylphosphine) morphs this inactive 

ligand into a very active phosphine in Pd-catalyzed carboxylation of aryl bromides with carbon dioxide due to incorporation 

of amide and ester groups as a basic pendant unit.9a  Continuing our efforts to modify phosphines through their C–H bond 

functionalizations, we turned our attention to PhenCarPhos [= N-(2-(diphenylphosphaneyl)phenyl)carbazole].  Associated 

with palladium, this ligand, developed by Kwong,15 exhibits high catalytic activities taking advantage of the introduced 

carbazolyl unit that i) facilitates the reductive elimination process due to an extended flat-wall-like rigidity and ii) stabilizes 

active Pd catalytic species during the catalytic cycle through weak interactions with the sp3- hybridized nitrogen atom.   

Surprisingly, carbazolyl-derived phosphines have never been subjected to the C–H bond functionalization yet.  One reason 

lie with forming an unconventional 7-membered ring cyclometalated phosphine-metal intermediate.  Herein, we report an 

Rh(I)-catalyzed P(III)-directed C1-alkylation of carbazolyl-derived phosphines with olefins (Figure 1, blue box).  This 

method allows the rapid synthesis of functionalized PhenCarPhos. These modified ligands show promising activity in the 

Pd-catalyzed CO2-fixation reaction. 

 

 

Figure 1. TM-Catalyzed P(III)-Directed C–H Functionalizations 

 

To explore the C–H bond alkylation of carbazolyl-derived phosphine, we choose PhenCarPhos (1a) and n-butyl-acrylate 

(2a) as the model substrates (Table 1). Based on our previous work on C–H bond alkylation of biarylphosphines,9a we tested 

firstly the same conditions, namely, [Rh(OAc)(COD)]2, PivOH in toluene at 140 ºC, but no reaction occurred (entry 1).  The 

desired alkylated phosphine 3a was obtained with a conversion of 50% using KOAc instead of PivOH (entry 2).  Increasing 

the amount of KOAc (2 equi.) gave a better conversion (entry 3).  Then, we ran the reaction in different solvents (1,4-

dioxane, DMF, 1,2-dichloroethane), but none of them outperformed toluene (entries 4-6).  NaHCO3 as a base gives a slightly 

better result (92% yield, entry 7).  Interestingly, commercially available [RhCl(COD)]2 catalyst displays a similar catalytic 

activity affording 3a in 87% isolated yield (entry 8).  Other Rh(I)-catalysts such as [RhCl(NBE)]2, [RhCl(COE)]2, and 

RhCl(PPh3)3 were less efficient, while no reaction occurred with Cp*Rh(III) catalyst (entries 9-12).  Besides, C–H bond 

alkylation of PhenCarPhos (1) was also achieved using 5 mol% [RuCl2(p-cymene)]2 catalyst in conjunction with 15 mol% 
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of AgSbF6 and 2 equivalents of KOAc (entry 13).  However, our attempt to obtain the dialkylation product through increas-

ing the amount of both base and butyl-acrylate or even starting the reaction from 3a remained unsuccessful (entry 14).  

Moreover, the phenyl substituents on the phosphorus group are very important, as with two cyclohexyl groups on the phos-

phorus, no reaction occurred either with rhodium or ruthenium conditions (entries 15 and 16). 

Table 1. Optimization of C–H Alkylation of PhenCarPhos 

 

Entry Cat Additive (y) 
Conv. 

(%)a 
3a (%)a 

1 [Rh(OAc)(COD)]2 PivOH (1) 0 0 

2 [Rh(OAc)(COD)]2 KOAc (0.25) 50 45 

3 [Rh(OAc)(COD)]2 KOAc (2) 89 82 

4b [Rh(OAc)(COD)]2 KOAc (2) 75 73 

5c [Rh(OAc)(COD)]2 KOAc (2) 18 15 

6d [Rh(OAc)(COD)]2 KOAc (2) 0 0 

7 [Rh(OAc)(COD)]2 NaHCO3 (2) 100 92 

8 [RhCl(COD)]2 NaHCO3 (2) 100 92 (87) 

9 [RhCl(NBE)]2 NaHCO3 (2) 85 81 

10 [RhCl(COE)]2 NaHCO3 (2) 84 79 

11 RhCl(PPh3) NaHCO3 (2) 10 8 

12 [Cp*RhCl2]2 NaHCO3 (2) 0 0 

13 
[RuCl2(p-cy-

mene)]2 (5) 

AgSbF6  

(15 mol%) + 

KOAc (2) 

100 86 (72) 

14e [RhCl(COD)]2 NaHCO3 (2) 0 0 

15f [RhCl(COD)]2 NaHCO3 (2) 0 0 

16f 
[Ru(p-cy-

mene)Cl2]2 (5) 

AgSbF6  

(15 mol%) + 

KOAc (2) 

0 0 

a determined by 31P NMR using PPh3 as internal standard, isolated 

yield is shown in parentheses; b in 1,4-dioxane; c in DMF; d in 1,2-di-

chloroethane; e reaction from 3a; f reaction from (N-(2-(dicyclohex-

ylphosphaneyl)phenyl)carbazole 

 

Next, we turned our attention to the scope of the reaction (Scheme 1).  PhenCarPhos (1a) was alkylated with ethyl (2b), 

benzyl (2c) and eicosyl (2d) acrylates providing the carbazolyl-derived phosphine-ester ligands 3b-3d in 85-94% yields.  

Ru(II) conditions afford the same products, albeit in slightly lower yields.  We also incorporated enantiopure L-menthyl 

acrylate unit on this phosphine scaffold to afford the chiral phosphine-ester 3e in 89% of yield.  We also coupled 1a with 

acrylamides using either Rh or Ru to give phosphine-amide hybrid ligands 3f and 3g in 56% and 70% yield, respectively.  
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The conditions tolerate a chloro-substituent at the para-position of the PPh2 group, providing phosphine-amide ligand 3h 

and phosphine-ester ligand 3i in 65% (on 2 mmol scale) and 86% yield, respectively. From 9-(2-(diphenylphosphaneyl)-5-

chloro-4-methylphenyl)carbazole (1c) and 9-(2-(diphenylphosphaneyl)-4-(trifluoromethyl)phenyl)carbazole (1d), phos-

phine-ester ligands 3j and 3k was isolated in moderate yields.  There is no major influence to introduce substituents, like 

tertbutyl, on the carbazolyl unit at C3 and C6 positions, as alkylated carbazolylphosphine 3l was isolated in 73% yield.  This 

alkylation method was also transferable to the modification of indolyl-derived phosphine (1f), resulting in 3m.  However, 

no reaction occurred when the carbazolyl part was replaced by phenoxazinyl unit.  The size of the N-heterocycles might 

explain this lack of reactivity: C–H bond alkylation is limited to using 5-membered ring N-heterocycles due to the possible 

formation of conformationally constrained conformational strengths 7-membered rodacycle intermediates. 

 

 

Scheme 1. Scope of Rh(I)-Catalyzed C–H Bond Alkylation of Carbazolyl-Derived Phosphine Ligands 

Over the last decades, the development of eco-friendly catalytic CO2-fixation reactions has garnered a new vision for the 

economy of CO2 from a waste product toward an abundant, nontoxic C1 feedstock for constructing synthetic intermediates.16  

In line with our previous discovery on upgrading catalytic activities of biarylphosphines for Pd-catalyzed carboxylation of 
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synthesis of oxazolidinones, which are essential building blocks, using CO2 and propargylic amines.  Several reports on 

carboxylation of propargylamines or aminoalcohols with CO2 to access oxazolidinones have appeared during the last dec-

ade.17  In most of the cases, p-acid catalysis (silver18 or gold19) was employed with a stoichiometric amount of organic bases.  

In 2017, Bourissou and co-workers carried out this transformation under base-free conditions using a well-defined SCS 

indenediide Pd complex.20  Moreover, in all cases, DMSO is employed as the solvent.  We resonated that PhenCarPhos may 

be a better ligand, as the carbazolyl unit will play the role of a basic residue.  Therefore, we elevated our library of phosphines 

for the coupling of N-benzyl-3-phenylprop-2-yn-1-amine (4) in the presence of CO2 (1 atm) in a water media using 0.5 

mol% Pd(OAc)2(Scheme 2, green).  No reaction occurred in the absence of phosphine, while a low yield of 36% was ob-

tained with PPh3.  Interestingly, a better yield of 48% was obtained with PhenCarPhos.  Chasing the best ligand for this 

carboxylation-cyclization reaction, we next evaluated the effect of modifications on the PhenCarPhos scaffold.  The phos-

phine-ester hybrid ligands 3a, 3c-e exhibited higher catalytic activities for the formation of 5a than the parent phosphine.  

The best modification was with n-butyl acrylate or benzyl acrylate.  Reactions performed with phosphine-amide hybrid 

ligands 3f and 3g were less performant.  Then, we demonstrate that there the incorporation of Cl substituent on N-aryl group 

at the para-position of PPh2 group slightly increased the yield of 5a (52% with 3i or 3j), while the introduction of CF3 group 

has a deleterious effect (42% with 3k). Next, we studied the effect of the heterocycle; the substitution of carbazolyl by its 

3,6-di-tert-butyl congener did not a significantly impact.  However, the installation of the 2-phenylindolyl group improves 

the catalytic performance, as with phosphine 1f, oxazolidinone 5a was isolated in 66% yield.  Finally, a spectacular catalytic 

property’s upgrading was observed through the C–H bond alkylation of 1f with n-butyl acrylate, as phosphine-ester hybrid 

ligand 3m gives 5a in 91% yield. 

As the upgrading of carbazolyl-phosphines through Rh(I)-catalyzed C–H bond alkylation morphs moderate active ligand 

into very active bifunctional phosphine in Pd-catalyzed carboxylation-cyclization reaction, we also investigate this strategy 

in Pd-catalyzed 3-component carboxylation-cyclization-cross-coupling reaction, which was initially developed by Nevado 

and co-workers using well-defined [PdCl2(dppf)] catalyst.21  This reaction prepares functionalized oxazolidinones from CO2, 

propargylamines, and aryl iodides.  Propargylamine 4a, iodoanisole(6a) in the presence of t-BuONa (1.5 equiv) and 

Pd(OAc)2 (0.5 mol%) in DMSO at 60 ºC were chosen as standard conditions to evaluate (alkylated) carbazolyl-phosphines 

(Scheme 2, blue).  Again, PhenCarPhos outperformed PPh3.  Delving into the screening of the effect post-modification of 

PhenCarPhos and then scaffold  revealed that the best ligand for this 3-component reaction should hold an N-(2-(diisoprop-

ylamino)ethyl), a carbazolyl and a chloro groups.  Indeed, the phosphine 3h, specifically designed for this reaction, allowed 

to isolate 7a in 77% yield.  
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Scheme 2. Catalytic Activities of Modified Phosphines in (1) Pd-Catalyzed Carboxylation-Cyclization of Propargylamine 

(4a) with CO2 & (2) Pd-Catalyzed 3-Component Carboxylation-Cyclization-Cross-Coupling Reaction 

With the optimized ligand in hand, we explored the scope of aryl iodides under these conditions (Scheme 2).  Reactions with 

aryl iodide bearing electron-donating or withdrawing groups give the corresponding oxazolidinones 7b-e in good to excel-

lent yields.  However, the reaction with bromobenzene or chlorobenzene was unsuccessful, leading only to the formation of 

5a. 

 

Scheme 3. Scope of Pd-catalyzed 3-Component Carboxylation-Cyclization-Cross-Coupling Reaction using 3m 

In summary, we reported the first example of the C–H bond functionalization of carbazolyl-derived phosphines (PhenCar-

Phos).  This C–H bond alkylation using activated alkenes occurs at the C1-position of the carbazolyl ring through PIII-

assisted C–H bond cleavage using [RhCl (COD)]2.  This direct approach paves the way to quickly preparing a library of new 

phosphine hybrid ligands. Some of them have outperformed their parent ones in Pd-catalyzed CO2-fixations reactions to 

prepare oxazolidinones from alkynes and (aryl iodides).  Together these results suggest that a better solubility might explain 
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the upgrading of catalytic performances after incorporating an ester group.  Besides, the introduction of an amino group 

might participate in the stabilization of active Pd catalytic species or interact with CO2.  Another explanation could be that 

introducing an alkyl group on the carbazole could prevent the cyclometallation with palladium like the i-Pr group in the 

XPhos ligand.  This late-stage functionalization of phosphines will help to design new phosphines to discover novel reac-

tivity, especially for CO2-fixation reactions. 
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