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Abstract

Tests of multivariate independence may rely on asymptotically independent
Cramér-von Mises statistics derived from a Möbius decomposition of the empir-
ical copula process. We generalize this approach to some other copula-based
assumptions, with the help of a functional decomposition based on commuting
idempotent maps. As soon as the null hypothesis reflects the stability of the
copula under the action of the composition of such operators, the methodol-
ogy applies. The empirical testing process, which depends on the decomposition,
allows the derivation of a new family of test statistics. The asymptotic distri-
butions are obtained. Since the latter depend on the unknown copula being
tested, we adapt parametric bootstrap or subsampling procedure to our setting
to approximate p-values. The benefits in deriving test statistics from a functional
decomposition are illustrated and discussed through simulations.

Keywords: Copula models, Functional decomposition, Idempotent maps, Rank-based
inference

MSC Classification: 62H15 , 62E10 , 41A63

1 Introduction

The nature and strength of cross-sectional dependence is of crucial importance to
understand economic or environmental systems. One possible measure relies on cop-
ulas, which have become popular over the last decades. In this paper, we review and
provide a new light on the literature for some testing problems.
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Consider X1, . . . ,Xn a sample of d-variate observations where Xj stands for
(Xj1, . . . , Xjd)

T . At first, one may think that this n-sample consists of independent
copies of a d-dimensional random vector X = (X1, . . . , Xd)

T . However, most of
the results hold true for some strictly stationary time series. We assume that the
cumulative distribution function (c.d.f.) F of the representative vector X has contin-
uous univariate margins denoted by F1, . . . , Fd. There exists then a unique copula
C : [0, 1]d → [0, 1], that is a d-dimensional c.d.f. with standard uniform margins
such that F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for all x = (x1, . . . , xd) ∈ Rd. This
representation, due to [1], illustrates that the copula C characterizes the dependence
between the components of X.

The present work is concerned with testing structural hypotheses for the copula.
There exists indeed a large number of copula families and testing procedures help
guide the choice of the most appropriate one. Tests based on empirical copula pro-
cesses have been successfully proposed in the literature. Let us cite for instance [2],
[3], [4], [5] or [6] that handled the independence, serial independence, independence
by blocks, or broader classes such as extreme value copulas. Whereas these references
focus on one hypothesis at once, the aim of this paper is to demonstrate that several
structural hypotheses for dependence share a common pattern. Our contribution is
to unify part of the theory as well as to provide new combined statistics.

Our procedure could be roughly illustrated by the pioneering idea of [2] which reveals
the independence through the Möbius decomposition of the empirical process. The
null hypothesis is thus equivalent to the intersection of a finite set of hypotheses
since all secondary terms of the decomposition vanish. We generalize this method by
applying another functional decomposition, chosen in accordance with the structural
assumption being tested. Again, a collection of sub-hypotheses holds true under the
null hypothesis. In consequence, new test statistics are defined by extracting and
combining all the associated information.

The remainder of this paper is organized as follows. Section 2 recalls the functional
decomposition based on operators and makes it explicit in the context of dependence
structures. After a first asymptotic statement, Section 3 explains how to construct
independent copies of some limiting processes. Section 4 is devoted to the practical
implementation of the theoretical results: definition of the test statistics, associated
asymptotics, practical computation and approximation of the p-value are discussed.
Two numerical experiments based on simulation end this section. Concluding remarks
are given in Section 5 and proofs are postponed to Section 6.

2 Dependence structures and associated operators

Our aim in this section is to explain how a general functional decomposition allows
to handle various null hypotheses of dependence with a common mechanism. Such a
null hypothesis is defined as the stability of the copula under a composition of some
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operators. A collection of sub-hypotheses arises naturally. The last part of this section
provides a large list of examples.

2.1 A general functional decomposition

Let F be the linear space of real-valued functions acting on [0, 1]d. Let I : F → F
denote the identity map. For i ∈ {1, . . . , d}, let Pi : F → F be an operator. We assume
that the collection of functionals P1, . . . ,Pd commutes. The composition of the maps
Pi for i ∈ A will be denoted as

∏
i∈A Pi and equals I in the case where A = ∅.

Every f ∈ F can be decomposed as

f =

d∏
i=1

(I−Pi +Pi)(f) =
∑

A∈Pd

MA(f), (1)

where Pd stands for the superset of {1, . . . , d} and where MA is defined as

MA =
∏
i∈A

(I−Pi)
∏
i/∈A

Pi . (2)

Another way of writing the equation (1) is

f −M∅(f) =
∑

A∈P⋆
d

MA(f) , (3)

where P⋆
d = Pd \ ∅. From (2) M∅ =

∏d
i=1 Pi, the composition of all functionals.

2.2 The null hypothesis and a list of examples

Consider now copula functions C associated with continuous random vectors X.
The main objective of this section is to identify, for some copula-based structural
dependence, their associated set of operators {P1, . . . ,Pd} that allows to write the

dependence null hypothesis as (H)C = M∅(C) =
∏d

i=1 Pi(C).

• (H)C(x) = x1 × · · · × xd the complete independence among all components of X
is obtained with Pi(C)(x) = xi × C(x1, . . . , xi−1, 1, xi+1, . . . , xd).

• Let us structure X as (X{1}, . . . ,X{p}) the concatenation of p subvectors of dimen-
sion d1, . . . , dp. Therefore d = d1 + · · · + dp. The assertion (H)X{1}, . . . ,X{p} are
independent, or equivalently

(H)C(x) = C(x{1},1−{1}) · · ·C(x{i},1−{i}) · · ·C(x{p},1−{p})

is associated with Pi(C)(x) = C(x{i},1−{i})× C(1{i},x−{i}).
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• According to [7], a function f : [0, 1]d → [0, 1] is said associative whenever for
(x1, . . . , xd, . . . , x2d−1) ∈ [0, 1]2d−1 it holds

f(f(x1, . . . , xd), xd+1, . . . , x2d−1) = . . . = f(x1, . . . , xd−1, f(xd, . . . , x2d−1)) .

We thus consider Pi(C)(x) = C(x1, . . . , xi, C(1, . . . , 1, xi+1, . . . , xd), 1, . . . , 1) to
describe a weak form of associativity.

• Fix φ the generator of interest that is a non-negative, continuous, strictly decreasing
and convex function defined on [0, 1] satisfying φ(1) = 0. Its pseudo-inverse, denoted
φ[−1], is defined as the usual inverse on [0, φ(0)] and equals 0 elsewhere. Writing the
specific Archimedean copula generated by φ

(H)C(x) = φ[−1] [φ(x1) + · · ·+ φ(xd)]

corresponds to the choice

Pi(C)(x) = φ[−1] [φ (C(xi,1−i)) + φ (C(1i,x−i))] .

• The symmetric logistic extreme value copula is a particular case of the latter exam-
ple. Let ℓ : [0,∞]d → [0,∞] be a stable tail dependence function. Recall that an
extreme value copula can be written as C(x) = exp [−ℓ {− ln(x1), . . . ,− ln(xd)}].
See for instance Chapter 7 of [8] for more details on the ℓ function. It is called the
symmetric logistic extreme value copula model when there exists a real θ ∈ [1,∞[
such that ℓ(x1, . . . , xd) = (xθ

1 + · · ·+ xθ
d)

1/θ. Testing the symmetric logistic extreme
value model

(H)C(x) = exp
[
−
{
(− ln(x1))

θ + · · ·+ (− ln(xd))
θ
}1/θ]

corresponds to the last expression of Pi with φ(t) = (− ln(t))θ.

• A possible extension consists in mixing previous examples. Recall that the random
vector X might be seen as the concatenation of p subvectors X{1}, . . . ,X{p}. The
independence by blocks could be replaced by an Archimedean structure by blocks
associated with φ. Then the null hypothesis

(H)C(x) = φ−1
[
φ(C(x{1},1−{1})) + · · ·+ φ(C(1−{p},x{p}))

]
could be obtained using the following functionals

Pi(C)(x) = φ−1
[
φ(C(x{i},1−{i})) + φ(C(x−{i},1{i}))

]
.

Copulas which satisfy the corresponding null hypothesis have an easy interpre-
tation. Only p-uplets of variables, each belonging to one of the p blocks, are
completely specified: Their dependence structure follows the Archimedean copula
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generated by φ. The dependence within any groups of variables belonging partially
to the same block is not fixed. This differs from the notion of nested or hierarchical
copulas.

• As before, consider φ a generator associated with an Archimedean structure. And
consider ℓ : [0,∞]d → [0,∞] a stable tail dependence function. Recall from [9, 10]
that

C(x) = φ−1 [ℓ (φ(x1), . . . , φ(xd))]

is called an Archimax copula. We restrict here the form of ℓ as following

ℓ(x1, . . . , xd) = g−1
[
g{ℓ(x{1},0−{1})}+ · · ·+ g{ℓ(0−{p},x{p})}

]
, (4)

where g is a continuous bijection from R+ to R+ satisfying g(1) = 1. From Theorem 6
in [11], one knows that g(x) = xθ for some θ ≥ 1. For the sake of simplicity, set
φx{i} =

∑
j∈{i} φ(xj)ej . For i ∈ {1, . . . , p}, let define Pi by

Pi(C)(x) = φ−1

[{(
ℓ
(
φx{i},0−{i}

))θ
+
(
φ ◦ C

(
1{i},x−{i}

))θ}1/θ
]

completed by Pp+1 = . . . = Pd = I, to describe the null hypothesis

(H)C(x) = φ−1

[{(
ℓ(φx{1},0−{1})

)θ
+ · · ·+

(
ℓ(0−{p}, φx{p})

)θ}1/θ
]

.

• For a given positive integer r, let us consider the null hypothesis

(Hr)C(x) = Cr(x1/r) ∀x ∈ [0, 1]d .

The max-stability assumption, which is the intersection of any such null hypothesis
(H) = ∩r∈N⋆(Hr), corresponds to the choice of functional Pi(C)(x) = Cri(x1/ri).

• Let Sd be the set of all permutations of {1, . . . , d} and set xσ = (xσ(1), . . . , xσ(d))
for any σ ∈ Sd. Testing symmetry of the copula

(H)C(x) = C(xσ) ∀x ∈ [0, 1]d and ∀σ ∈ Sd

can be handled in a very similar way to the previous one. Let T1,d denote the set
consisting of the d − 1 transpositions τi = (1i) for i = 2, . . . , d. Noting that T1,d

generates Sd, it is also possible to write here that (H) =
⋂d

i=2(Hτi). It is thus
sufficient to consider Pi(C)(x) = C(xτi).

2.3 An associated collection of sub-hypotheses

Recall that the null hypothesis (H)C = M∅(C) can also be written as following

(H)C −M∅(C) = 0 .
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From (3),

C −M∅(C) =
∑

A∈P⋆
d

MA(C)

so that the summation
∑

A∈P⋆
d
MA(C) vanishes when (H) holds true.

It is thus interesting to consider for any A ∈ P⋆
d the sub-hypothesis

(HA)MA(C) = 0 . (5)

An immediate property is ∩A(HA) ⊆ (H). So that a relevant question is to analyze
whether any (HA) holds true under the null hypothesis (H). What is its link exactly
with the intersection? In the next proposition, we answer part of the question.

Proposition 1. Let P1, . . . ,Pd be a commuting collection of idemptotent operators
on F . Then, the null hypothesis satisfies the equality

(H) =
⋂

A∈P⋆
d

(HA) .

Naturally, one may wonder whether the list of examples satisfies these conditions
or not. More precisely, the question is as follows: under (H), are the associated opera-
tors P1, . . . ,Pd commutative and idempotent? The answer is affirmative in each case
presented in Section 2.2. Their commutativity property is evident. As for idempotence,
we regularly need to use the following: C(1) = 1 and φ(1) = 0.

3 Behavior and approximation of the testing process

The purpose of this section is to introduce the empirical testing processes. Consider
a structural dependence hypothesis for copulas expressed as (H)C = M∅(C). Recall
that {MA}A∈Pd

is the set depending, through Formula (2), on a collection of opera-
tors {P1, . . . ,Pd} defined on F . It is assumed that {P1, . . . ,Pd} are commuting and
idempotent maps, at least when (H) holds true. Starting from a copula estimator Cn,
it is natural to construct the testing process as (

√
n(Cn − M∅(Cn))(x),x ∈ [0, 1]d)

when considering (H). This is precisely what is done in the literature. Nevertheless,
since (H) implies any sub-hypothesis (HA)MA(C) = 0, another choice is possible.

3.1 Weak convergence of the empirical processes

Consider X1, . . . ,Xn a sample of d-variate observations of X where Xj stands for
(Xj1, . . . , Xjd)

T . Set Uj = (F1(Xj1), . . . , Fd(Xjd)) for j ∈ {1, . . . , n}. The empirical
cumulative distribution function based on U1, . . . ,Un is denoted by Gn and we set
Gn =

√
n(Gn − C). Under regular conditions, the empirical process Gn converges

weakly in ℓ∞([0, 1]d) to a tight centered Gaussian process GC concentrated on

C0 =
{
h : [0, 1]d → R continuous such thath(1) = 0 and
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h(x) = 0 if some components of x are equal to 0} . (6)

Throughout the paper, we assume the existence and the paths continuity of

WC(x) = GC(x)−
d∑

i=1

∂Ci(x)GC(xi,1−i), x ∈ [0, 1]d . (7)

We introduce and study in this section the concatenated empirical testing process(√
n(Cn −M∅(Cn)),

{√
nMA(Cn)

}
A∈P⋆

d

)
.

Theorem 2. Assume, at least when (H)C = M∅(C) =
∏d

i=1 Pi(C) holds true, that

- The operators {P1, . . . ,Pd} are commuting and idempotent maps.
- The maps {MA}A∈Pd

derived from (2) are Hadamard-differentiable at C tangen-
tially to C0.

Consider an empirical copula Cn such that, as n tends to infinity, the empirical copula
process

√
n(Cn − C) converges weakly in ℓ∞([0, 1]d) to WC given in (7).

Then, under (H) and as n tends to infinity, the joint empirical processes converge

weakly in {ℓ∞([0, 1]d)}2d as following(√
n(Cn −M∅(Cn)),

{√
nMA(Cn)

}
A∈P⋆

d

)
w
⇝

n→∞(
WC −M′

∅(C;WC), {M′
A(C;WC)}A∈P⋆

d

)
. (8)

Several copula estimates Cn satisfy the required convergence. The last lines of Section 2
in [12] list carefully the conditions under which

√
n(Cn − C)

w
⇝

n→∞
WC in ℓ∞([0, 1]d)

for the following list of well-known empirical copulas

- the non-parametric estimators C̃n(x) = 1
n

∑n
j=1

∏d
i=1 1{Fnj(Xji)≤xi} and Ĉn(x) =

1
n

∑n
j=1

∏d
i=1 1{Rji,n/(n+1)≤xi} where Rji,n = rank of Xji among X1i, . . . , Xni,

- the checkerboard version C#
n (x) = 1

n

∑n
j=1

∏d
i=1 min{max{nxi −Rji,n, 0}, 1},

- and the empirical beta copula, Cβ
n(x) =

1
n

∑n
j=1

∏d
i=1 Fn,Rji,n

(xi) where Fn,r stands
for the probability distribution function of the Beta distribution B(r, n+ 1− r).

3.2 Subsampling empirical testing processes

The weak convergence of the empirical processes has just been proved but the
covariance structures of the limiting processes D∅ := WC − M′

∅(C;WC) and
DA := M′

A(C;WC) depend on the unknown copula C. For this reason it is not
always directly applicable for statistical testing. To reproduce independently the
asymptotic behavior of such processes, resampling techniques have to be applied.
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Parametric bootstrap can be used under some specific null hypotheses. Subsampling
can be performed otherwise, as discussed in the following lines. To simplify notation,
set D∅,n :=

√
n(Cn − M∅(Cn)) and DA,n :=

√
nMA(Cn) for A ∈ P⋆

d , as well as
Cn :=

√
n(Cn − C). Theorem 2 has stated the weak convergence of {DA,n}A∈Pd

to
{DA}A∈Pd

under some conditions, in particular the weak convergence of Cn. The
subsampling method is a substitute to approximate the limiting distribution. See [13]
and its adaptation in [12] that inspired this development.

Let b < n denote the size of the samples extracted from X1, . . . ,Xn and let Bb,n be
the corresponding number of possible subsamples. Under the i.i.d. setting, Bb,n =

(
n
b

)
since the subsamples may be obtained without remplacement. Since Bb,n might be
too large, the complete enumeration could not be possible. The practical solution is
to obtain its stochastic approximation through a N -sample of integers I1,n, . . . , IN,n

independently extracted with replacement from {1, . . . , Bb,n}. The quantities of inter-
est would be then computed for these N values of the index m. In the serial context,
the sampling should preserve the dependence so that the subsamples must have con-

secutive index, and Bb,n = n − b + 1. Denote by C
[m]
b the replicates of the estimator

Cn evaluated on such b-subsamples. Set now C[m]
b =

√
b(C

[m]
b − Cn) the associated

replicates of the empirical copula processes. Set finally D
[m]
∅,b =

√
b
(
C

[m]
b −M∅(C

[m]
b )

)
and D

[m]
A,b =

√
bMA(C

[m]
b ).

Theorem 3. Assume, at least when (H)C = M∅(C) =
∏d

i=1 Pi(C) holds true, that

- The operators {P1, . . . ,Pd} are commuting and idempotent maps.
- The maps {MA}A∈Pd

derived from (2) are Hadamard-differentiable at C tangen-
tially to C0.

- The derivatives {M′
A(C; ·)}A∈Pd

are continuous on ℓ∞([0, 1]d).

Let vn → 1 and bn → ∞ such that bn = o(n). Consider an empirical copula Cn

such that
(
Cn, vnC

[I1,n]
bn

, vnC
[I2,n]
bn

)
converges weakly in {ℓ∞([0, 1]d)}3, as n tends to

infinity, to
(
WC ,W[1]

C ,W[2]
C

)
where W[1]

C and W[2]
C are independent copies of WC .

Then, under (H) and as n tends to infinity,(
{DA,n}A∈Pd

,
{
vnD

[I1,n]
A,bn

}
A∈Pd

,
{
vnD

[I2,n]
A,bn

}
A∈Pd

)

converges weakly in {ℓ∞([0, 1]d)}3×2d to
(
{DA}A ,

{
D[1]

A

}
A
,
{
D[2]

A

}
A

)
, where{

D[2]
A

}
A∈Pd

and
{
D[2]

A

}
A∈Pd

are independent copies of {DA}A∈Pd
.

The previous result assumes the subsampling of the empirical copula process Cn.
Theorem 3.3 in [12] states such a convergence
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- under i.i.d. observations, b/n → α ∈ [0, 1), vn = (1− b/n)−1/2 when Cn stands for
Ĉn, C

#
n or Cβ

n ,
- under strictly stationary alpha-mixing sequence with α(k) = O(k−a) for some a > 1,
b/n → 0, vn = 1 when Cn stands for C̃n,

- under strictly stationary alpha-mixing sequence with α(k) = O(ak) for some a ∈
(0, 1), b/n → 0, vn = 1, when Cn stands for Ĉn, C

#
n or Cβ

n ,

assuming additionally classical regularity properties on the true copula C.

3.3 Weighted version of the subsampling methodology

A weight is used to emphasize the region where the copula differs from the tested
copula. See [14] or more recently [15]. Following [16] and [15] for instance we provide,
under stronger assumptions, the weak convergence with respect to stronger metrics.
It also includes the validity of the subsampling methodology for the empirical testing
process, as it has been done in [12].

Theorem 4. Assume, at least when (H)C = M∅(C) =
∏d

i=1 Pi(C) holds true, that

- The operators {P1, . . . ,Pd} are commuting and idempotent maps.
- The maps {MA}A∈Pd

derived from (2) are Hadamard-differentiable at C tangen-
tially to C0.

- The derivatives {M′
A(C; ·)}A∈Pd

are continuous on ℓ∞([0, 1]d).

Let vn → 1 and bn → ∞ such that bn = o(n). Let Cn be an empirical copula and q a

weight function such that, as n tends to infinity,

(
Cn

q , vn
C

[I1,n]

bn

q , vn
C

[I2,n]

bn

q

)
converges

weakly in {ℓ∞([0, 1]d)}3 to

(
WC

q ,
W[1]

C

q ,
W[2]

C

q

)
, where W[1]

C and W[2]
C are independent

copies of WC . Then, under (H) and as n tends to infinity,(
{DA,n/q}A∈Pd

,
{
vnD

[I1,n]
A,bn

/q
}
A∈Pd

,
{
vnD

[I2,n]
A,bn

/q
}
A∈Pd

)
converges weakly in {ℓ∞([0, 1]d)}3×2d to(

{DA/q}A∈Pd
,
{
D[1]

A /q
}
A∈Pd

,
{
D[2]

A /q
}
A∈Pd

)
,

where
{
D[2]

A

}
A∈Pd

and
{
D[2]

A

}
A∈Pd

are independent copies of {DA}A∈Pd
.

The subsampling of the process Cn/q assumed in Theorem 4 has been proved in
[12]. Let ∨ and ∧ stand respectively for the maximum and the minimum. On [0, 1]d

let g be the weight function g(x) = ∧d
i=1

{
xi ∧ ∨d

k=1,k ̸=i(1− xk)
}
. With w ∈ [0, 1/2)

and q = gw, see [12, Theorem 4.3] for the statement concerning both Ĉn and C̃n and
[12, Theorem 4.5] for that involving C#

n and Cβ
n .
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4 The testing procedure

Natural measures of departure from the null hypothesis are Kolmogorov–Smirnov or
Cramér–von Mises statistics. We give their expressions, and a new combination derived
from the concatenated testing processes is introduced and studied. As these statistics
are not distribution-free, the subsampling methodology or the parametric bootstrap
will be needed to approximate p-values.

4.1 Well-known families of test statistics

Consider (H)C = M∅(C), depending through (2) on the operators P1, . . . ,Pd. It
is assumed, at least when (H) holds true, that {P1, . . . ,Pd} are commuting and
idempotent maps. Recall that the definition of DA,n is specific when A = ∅ since

D∅,n = Cn − M∅(Cn) = Cn − (
∏d

i=1 Pi)(Cn) whereas, if A ≠ ∅, the definition is
DA,n = MA(Cn) = (

∏
i∈A(I−Pi)

∏
i/∈A Pi)(Cn).

We introduce the 2d Cramér–von Mises (CvM) statistics, derived from the
functional decomposition, and associated limits as

IA,n,q =

∫
[0,1]d

{
DA,n(x)

q(x)

}2

dx and IA,q =

∫
[0,1]d

{
DA(x)

q(x)

}2

dx

for any A ∈ Pd. Therein, the weight function q is the function already introduced in
Subsection 3.3. Replacing, in the CvM statistics IA,n,q, the Lebesgue product measure
dx on [0, 1]d by the empirical dCn(x) is of greater interest. We thus introduce, for any
A ∈ Pd, the alternative CvM statistics as

SA,n,q =

∫
[0,1]d

{
DA,n(x)

q(x)

}2

dCn(x) and SA,q =

∫
[0,1]d

{
DA(x)

q(x)

}2

dC(x) .

Similarly, the Kolmogorov-Smirnov statistics and associated limits are defined, for any
A ∈ Pd, by

UA,n,q = sup
x∈[0,1]d

∣∣∣∣DA,n(x)

q(x)

∣∣∣∣ and UA,q = sup
x∈[0,1]d

∣∣∣∣DA(x)

q(x)

∣∣∣∣ .
When Cn is specifically defined as Ĉn the notation DA,n becomes D̂A,n, and the

previous statistics are denoted by ÎA,n,q, ŜA,n,q and ÛA,n,q. In view of subsampling

considerations, I
[Im]
A,n,q, S

[Im]
A,n,q and U

[Im]
A,n,q (resp. I[Im]

A,q , S
[Im]
A,q and U[Im]

A,q for their limits)

are obtained while DA,n (resp. DA) is replaced by D
[Im]
A,n (resp. D[Im]

A ).

Corollary 5. (i) Under the assumptions of Theorem 2, the random vectors {IA,n,1}A,
{SA,n,1}A and {UA,n,1}A converge in distribution to {IA,1}A, {SA,1}A and {UA,1}A
respectively.
(ii) The assumptions of Theorem 3 imply the convergence in distribution of
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({IA,n,1}A, {v2nI
[I1,n]
A,bn,1

}A, {v2nI
[I2,n]
A,bn,1

}A) to ({IA,1}A, {I[1]A,1}A, {I
[2]
A,1}A), where the lat-

ter is the concatenation of independent copies. Similar results hold true for the S and
U families of test statistics (for U use vn instead of v2n).
(iii) The assumptions of Theorem 4 imply the convergence in distribution of

({SA,n,q}A, {v2nS
[I1,n]
A,bn,q

}A, {v2nS
[I2,n]
A,bn,q

}A) to ({SA,q}A, {S[1]A,q}A, {S
[2]
A,q}A), where the

latter is the concatenation of independent copies. Similar results hold true for I and
U families of test statistics (for U use vn instead of v2n).

4.2 New test statistics derived from the functional
decomposition

Note that under independence or independence by block, the p-values associated
with the above family of test statistics are also asymptotically mutually independent
(with respect to A). As a consequence, individual critical values can be chosen to
achieve an asymptotic global significance level. Furthermore, it is possible to combine
individual p-values and get a global p-value thanks to the method à la Fisher (the
resulting statistics are denoted by Wn) as well as à la Tippett (the resulting statistics
is denoted Tn). For more details, we refer to the discussion in [17] or the paragraph
“Combining p-values” in Section 3 of [3].

In general, under other types of null hypotheses, the asymptotic mutual indepen-
dence is no more true. However, the use of the functional decomposition

M∅(C)− C =
∑

A∈P⋆
p

MA(C)

allows to improve the well-known statistics (that only considers the left hand member
of the above equality) by combining both the left hand member and all the right hand
member terms.

Let w = {wA}A∈Pd
be a vector of positive weights. The latter reflects the impor-

tance we put in the test (H)C = M∅(C) through w∅, or in the test (HA) MA(C) = 0
through wA. We introduce the statistic and associated limit by

Sw,n,q =
∑

A∈Pd

wASA,n,q and Sw,q =
∑

A∈Pd

wASA,q . (9)

Similarly, the test statistics Iw,n,q and Uw,n,q (and respective limits Iw,q and Uw,q) are
the weighted linear combination constructed from the collections IA,n,q and UA,n,q

(and from IA,q and UA,q for the limits).

Corollary 6. The results stated in Corollary 5 are inherited by the weighted com-
binations Iw,n,q, Sw,n,q and Uw,n,q. To give an example, under the assumptions of
Theorem 2, the test statistic Sw,n,1 converges in distribution to Sw,1.

11



4.3 Practical implementation of the tests

In some particular cases, and when Cn is taken as Ĉn it is possible to provide the
expression of the statistics in terms of the pseudo-observations only. Let Rji,n denote

the rank of Xji among X1i, . . . , Xni and set Ûj·,n = (Rj1,n/n, . . . , Rjd,n/n). Then,

SA,n,q =
1

n

n∑
j=1

{
DA,n(Ûj·,n)

q(Ûj·,n)

}2

.

In general, we proceed by numerical approximation based on a grid. Let K be
a large integer and let u1, . . . ,uK be K uniformly spaced points on (0, 1)d. Then

IA,n,q ≃ 1
k

∑K
k=1

{
DA,n(uk)/q(uk)

}2
and UA,n,q ≃ maxk=1,...,K

∣∣DA,n(uk)/q(uk)
∣∣.

Algorithm 1: Approximating the p-value (Illustrated with the S family)

Compute S
(0)
w,n,q the value of Sw,n,q on the original series

Generate from subsampling D
[k]
A,n,q for k = 1, . . . , N

Compute S
(1)
w,n,q, . . . , S

(N)
w,n,q the value of Sw,n,q on one of these processes

Define an approximate p-value for the test statistic as following
1

N+1

(
1
2 +

∑N
k=1 1{S

(k)
w,n,q > S

(0)
w,n,q}

)

Taking into account Section 3, the p-values are approximately uniform on [0, 1]
under the null hypothesis (H). In the case of goodness-of-fit tests (H) C = Cθ, samples
of reference should not be obtained from subsampling but by parametric bootstrapping
instead. The alternative version of the algorithm is given below.

Algorithm 2: Approximating the p-value (Goodness-of-fit tests)

Compute the pseudo-observations U1, . . . ,Un on the original series, θn =
θ̂(U1, . . . ,Un) and Sw,n,q,[θn]

for k = 1 to N do
Generate U

{k}
1 , . . . ,U

{k}
n from Cθn

Compute θ
{k}
n = θ̂(U

{k}
1 , . . . ,U

{k}
n ) and S

w,n,q,[θ
{k}
n ]

on the parametric sample

end for
Define an approximate p-value for the test statistic as following

1

N + 1

(
1

2
+

N∑
k=1

1{S
w,n,q,[θ

{k}
n ]

> Sw,n,q,[θn]}

)

12



4.4 Numerical experiments

In this final section, we shall consider the use of the functional decomposition in two
experiments and analyze the results. First, we explore the testing problem of block
independence and specifically one of the practical settings imagined in [3]. We inves-
tigate then the goodness-of-fit test where two Archimedean copulas, namely Clayton
and Gumbel, are opposed.

4.4.1 Independence between three continuous r−dimensional
random vectors

We adapt here Section 4 from [3] that implements testing procedures for block
independence. Let X = (X1, . . . , X12) and consider the 3 groups {X1, . . . , X4},
{X5, . . . , X8} and {X9, . . . , X12} so that r = 4, p = 3 and d = 12. The dependence is
described by the normal copula. The d × d correlation matrices Σ are structured as
follows

X1 . . . X4 X5 . . . X8 X9 . . . X12

X1 1 ρintra

.

.

. ρinter ρinter

X4 ρintra 1
X5 1 ρintra

.

.

. ρinter ρinter

X8 ρintra 1
X9 1 ρintra

.

.

. ρinter ρinter

X12 ρintra 1

The quantity ρinter (resp. ρintra) controls the amount of dependence among
(resp. within) the three random vectors. Under the normal copula, the values
ρinter ∈ {0.000, 0.025, 0.050, . . . , 0.275, 0.300} for ρintra = 0.5 are considered. We gen-
erate 1000 samples composed of n = 200 independent realizations of X. Note that, in
all the simulations, the number of randomized samples is set to 1000.

Table 1 shows the rejection rates of the null hypothesis, the proportion of times
that the different tests reject the null hypothesis, with respect to the value of ρinter.
The significance level is arbitrarily set to 5% and measured on the first column of
the table. The global Cramér-von-mises statistic In = I∅,n,1, as well as Wn the test
statistic à la Fisher, and Tn the test statistic à la Tippett are those studied in Figure 3
of [3], with the difference that n = 200 here. Four additional measures of the form
Sw,n,1 are included. Recall that taking into account the form of the null hypothesis
with p = 3 blocks, the weights w have the following structure

w = (w∅, w{1}, w{2}, w{3}, w{12}, w{13}, w{23}, w{123}) .

More precisely, we consider

- w1 = (1, 0, 0, 0, 0, 0, 0, 0) that only measures the left hand term of the decomposition,
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- w2 = (1, 0, 0, 0, 1, 1, 1, 1) that combines the left hand term of the decomposition with
the right hand terms of order 2 and 3 (recall that the right hand terms associated
with singletons all vanish),

- w3 = (0, 0, 0, 0, 1, 1, 1, 1) that only combines the non-null right hand terms of the
decomposition.

ρinter
0 0.025 0.05 0.075 0.10 0.125 0.15

T
es
t
st
a
ti
st
ic
s Wn 0.060 0.146 0.332 0.540 0.770 0.901 0.982

Tn 0.047 0.110 0.234 0.404 0.584 0.766 0.932
In 0.054 0.128 0.287 0.503 0.711 0.854 0.971

Sw1,n,1 0.049 0.176 0.376 0.673 0.875 0.964 0.994
Sw2,n,1 0.046 0.181 0.388 0.691 0.883 0.971 0.995
Sw3,n,1 0.041 0.124 0.311 0.572 0.819 0.953 0.992

Table 1 Percentage of rejection of the null hypothesis that stipulates the
block independence of {X1, . . . , X4}, {X5, . . . , X8} and {X9, . . . , X12} that
comes from Normal copula with correlation matrices Σ whereas the null
hypothesis is only true under the value ρinter = 0. The statistics Wn, Tn and
In are those presented in [3]. The statistics Sw,n,1, defined by (9), are
evaluated for several weights w as indicated in the text.

As can be seen in Table 1, the S-type statistics perform best among all the
approaches. There is no uniformly better S, even if Sw2,n,1 is roughly speaking the
best choice globally.

4.4.2 Goodness-of-fit tests

Turning to the Archimedean Goodness-of-Fit tests, we consider the Clayton or the
Gumbel family in a 3-dimensional setting. These classes will both be used as the
generator of datasets or as the family being tested. To generate the original samples,
three values of Kendall’s τ are chosen: τ = .1, τ = .2 and τ = .3. Test statistics Sw,n,1

given by (9) and where

w = (w∅, w{1}, w{2}, w{3}, w{12}, w{13}, w{23}, w{123})

are computed for the weights: w1 = (1, 0, 0, 0, 0, 0, 0, 0), w2 = (1, 0, 0, 0, 1, 1, 1, 1) and
w3 = (0, 0, 0, 0, 1, 1, 1, 1). The results are provided in Table 2 for n = 100. The first
lines are dedicated to test whether the dependence structure is given by the Clayton
copula. Similarly, Gumbel copula is tested in the last lines of the table. The parameter
associated with the generator φ is estimated at each step as the mean of empirical
Kendall’s τ . The parametric bootstrap described in Algorithm 2 with nboot = 200 is
used to compute the p-value. The rejection rates are estimated through nrep = 500
repetitions of each experiment. Two characteristics are of interest: the empirical level
might be close to the nominal level, arbitrarily fixed at 0.05, and the empirical power.

The analysis of Table 2 is not straightforward but the results are interesting. First,
on the right upper corner of the table, one can remark that Sw1,n,1 always dominates
in discriminating true Gumbel from supposed Clayton. This becomes true for Sw2,n,1

14



Simulated copulas
Clayton Gumbel

τ = .1 τ = .2 τ = .3 τ = .1 τ = .2 τ = .3

Clayton w1 0.056 0.044 0.048 0.364 0.690 0.934
T
es
te
d
co
p
u
la
s w2 0.052 0.044 0.038 0.294 0.674 0.924

w3 0.044 0.060 0.046 0.160 0.494 0.852

Gumbel w1 0.282 0.720 0.922 0.070 0.048 0.056
w2 0.306 0.766 0.948 0.036 0.042 0.052
w3 0.254 0.710 0.960 0.024 0.042 0.048

Table 2 Rejection rates of the null hypothesis. In the first lines, Clayton copula is being tested,
whereas Gumbel copula is tested in the last lines of the table. The datasets are simulated for three
different strengths of dependence, calibrated through the Kendall’s τ : .1, .2 and .3. The test
statistics Sw,n are studied for three different weights: w1, w2 and w3 (definition in the text).
Additional parameters of the numerical study: sample size n = 100, parametric bootstrap size
nboot = 200 and number of repetitions of the experiment nrep = 500.

in the left bottom corner, except when the dependence becomes stronger with τ = 0.3,
the more powerful is then Sw3,n,1.

4.4.3 Concluding remarks

The numerical section provides two simple studies, one analyzing the independence
among p = 3 blocks in a (d =)12-dimensional setting and one examining particular
Archimedean copula families in dimension d = 3. Both reveal situations where one
can take advantage in applying the functional decomposition associated with the null
hypothesis in order to derive powerful weighted test statistics.

5 Summary and perspectives

Identifying and modeling dependencies with copulas remain an important topic, which
has become very popular over the last decades since it has been applied in almost
every discipline. The aim in this paper is to unify various papers, as [2], [17], [18], [3],
[4] among others, that derive copula-based tests of the structure of dependence. The
solution here is to dip them in a functional decomposition context in order to reveal
a common pattern.

The dimensions d or p are small in our experiments. Nevertheless, the current
paper provides an interesting perspective on high dimensional problems. The practical
implementation of the tests relies indeed on a trade-off between exhaustivity (all sub-
sets of Pd) and dimensionality (exponential growth in d). When d becomes larger, it
could be interesting to use only part of the decomposition. With the help of the weight
w introduced in the definition of the test statistics, one can focus only in a given size
of subsets or in all sizes that do not exceed a given size. This way, we can control
the underlying complexity of the method. The question will be then: how much this
selection affects the corresponding power of the testing procedure?
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6 Proofs

Proof of Proposition 1. Suppose MA(C) ≡ 0 for any non-empty subset A of
{1, . . . , d}. By application of (1), one obtains C − M∅(C) ≡ 0 which is (H). Recip-

rocally, if (H) holds true, then C = M∅(C) = (
∏d

j=1 Pj)(C). Combined with (2), it
yields by commutativity,

MA(C) =

(∏
i∈A

(I−Pi)
∏
i/∈A

Pi

)
(C) =

(∏
i∈A

(I−Pi)
∏
i/∈A

Pi

)
(

d∏
j=1

Pj(C))

=

(∏
i∈A

(Pi −P2
i )
∏
i/∈A

Pi

)
(
∏
j ̸∈A

Pj(C))

which vanishes for A ≠ ∅, since Pi = P2
i by the idempotence assumption.

Proof of Theorem 2. By assumption,
√
n(Cn − C)

w
⇝

n→∞
WC in ℓ∞([0, 1]d) and any

MA is Hadamard-differentiable at C. The functional version of the Delta method (see
Section 3.9 of [19]) applied to f 7→ (f,M∅(f), {MA(f)}A∈P⋆

d
) yields(√

n(Cn − C),
√
n(M∅(Cn)−M∅(C)), {

√
n(MA(Cn)−MA(C))}A∈P⋆

d

) w
⇝

n→∞(
WC ,M

′
∅(C;WC), {M′

A(C;WC)}A∈P⋆
d

)
in
{
ℓ∞([0, 1]d)

}2d+1
. From the continuous mapping theorem applied to the functional

T (f, g, {hA}A) = (f − g, {hA}A), we obtain the weak convergence of(√
n(Cn −M∅(Cn))−

√
n(C −M∅(C)), {

√
n(MA(Cn)−MA(C))}A∈P⋆

d

)
in
(
ℓ∞([0, 1]d)

)2d
to
(
WC −M′

∅(C;WC), {M′
A(C;WC)}A∈P⋆

d

)
. Now, when (H) holds

true, the collection of maps {Pi}i=1,...,d is assumed to form an idempotent and com-
muting family. Consequentlty, Proposition 1 applies, ∩A∈P⋆

d
(HA) holds true so that

C −M∅(C) = 0 as well as MA(C) = 0 for any A ∈ P⋆
d . Then, the left hand side of

the last convergence reduces to the process under study.

Proof of Theorem 3. Since by assumption both M∅(C) = C and MA(C) = 0 for any
subset A ∈ P⋆

d , one can observe that,

D∅,n = Cn −
√
n

(
M∅

(
C +

Cn√
n

)
−M∅(C)

)
(10)

DA,n =
√
n

(
MA

(
C +

Cn√
n

)
−MA(C)

)
(11)

D
[m]
∅,b = C[m]

b +

√
b

n
Cn −

√
b

(
M∅

(
C +

C[m]
b√
b

+
Cn√
n

)
−M∅(C)

)
(12)
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D
[m]
A,b =

√
b

(
MA

(
C +

C[m]
b√
b

+
Cn√
n

)
−MA(C)

)
(13)

for m = I1,n or I2,n in the last two displays. By assumption, the weak convergence of(
Cn, vnC

[I1,n]
b , vnC

[I2,n]
b

)
in
{
ℓ∞([0, 1]d)

}3
to
(
WC ,W[1]

C ,W[2]
C

)
holds true. Using the

fact that b = o(n), the following(
Cn, vnC

[I1,n]
b + vn

√
b

n
Cn, vnC

[I2,n]
b + vn

√
b

n
Cn

)

shares the same asymptotic behavior. Continuous mapping theorem with

(f1, f2, f3) 7→
(
−M′

∅(C; f1),−M′
∅(C; f2),−M′

∅(C; f3),

{M′
A(C; f1)}A, {M′

A(C; f2)}A, {M′
A(C; f3)}A)

then delivers the weak convergence of(
−M

′
∅ (C;Cn) ,−M

′
∅

(
C; vnC

[I1,n]

b + vn

√
b

n
Cn

)
,−M

′
∅

(
C; vnC

[I2,n]

b + vn

√
b

n
Cn

)
,

{
M

′
A (C;Cn)

}
A ,

{
M

′
A

(
C; vnC

[I1,n]

b + vn

√
b

n
Cn

)}
A

,

{
M

′
A

(
C; vnC

[I2,n]

b + vn

√
b

n
Cn

)}
A

)

in
{
ℓ∞([0, 1]d)

}3×2d

to(
−M

′
∅ (C;WC) ,−M

′
∅

(
C;W[1]

C

)
,−M

′
∅

(
C;W[2]

C

)
,{

M
′
A (C;WC)

}
A ,
{
M

′
A

(
C;W[1]

C

)}
A

,
{
M

′
A

(
C;W[2]

C

)}
A

)
.

It remains to show that, for m = I1,n or I2,n,

sup
[0,1]d

∣∣D∅,n − Cn +M′
∅ (C;Cn)

∣∣ P−→ 0 ; sup
[0,1]d

∣∣∣∣DA,n

q
−M′

A (C;Cn)

∣∣∣∣ P−→ 0 ,

sup
[0,1]d

∣∣∣∣∣vnD[m]
∅,b − vnC[m]

b − vn

√
b

n
Cn +M′

∅

(
C; vnC[m]

b + vn

√
b

n
Cn

)∣∣∣∣∣ P−→ 0 ,

sup
[0,1]d

∣∣∣∣∣vnD[m]
A,b −M′

A

(
C; vnC[m]

b + vn

√
b

n
Cn

)∣∣∣∣∣ P−→ 0 ,

which are, once the equations (10), (11), (12) and (13) taken into account, only the
consequences of what precedes combined with the functional Delta Method applied to
the maps M∅ or MA.
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Proof of Theorem 4. By assumption,

(
Cn

q , vn
C

[I1,n]

b

q , vn
C

[I2,n]

b

q

)
converges weakly in{

ℓ∞([0, 1]d)
}3

to

(
WC

q ,
W[1]

C

q ,
W[2]

C

q

)
. Consequently, using the fact that b = o(n), the fol-

lowing

(
Cn

q , vn
C

[I1,n]

b

q + vn

√
b
n

Cn

q , vn
C

[I2,n]

b

q + vn

√
b
n

Cn

q

)
shares the same asymptotic

behaviour. Using the continuous mapping theorem with

(f1, f2, f3) 7→
(
−M′

∅(C; f1),−M′
∅(C; f2),−M′

∅(C; f3),

{M′
A(C; f1)}A, {M′

A(C; f2)}A, {M′
A(C; f3)}A)

we thus obtain that−M
′
∅

(
C;

Cn

q

)
,−M

′
∅

C; vn
C

[I1,n]

b

q
+ vn

√
b

n

Cn

q

 ,−M
′
∅

C; vn
C

[I2,n]

b

q
+ vn

√
b

n

Cn

q

 ,

{
M

′
A

(
C;

Cn

q

)}
A

,

M
′
A

C; vn
C

[I1,n]

b

q
+ vn

√
b

n

Cn

q


A

,

M
′
A

C; vn
C

[I2,n]

b

q
+ vn

√
b

n

Cn

q


A


converges weakly in

{
ℓ∞([0, 1]d)

}3×2d

to(
−M

′
∅

(
C;

WC

q

)
,−M

′
∅

(
C;

W[1]
C

q

)
,−M

′
∅

(
C;

W[2]
C

q

)
,

{
M

′
A

(
C;

WC

q

)}
A

,

{
M

′
A

(
C;

W[1]
C

q

)}
A

,

{
M

′
A

(
C;

W[2]
C

q

)}
A

)

which is equal to−
M′

∅ (C;WC)

q
,−

M′
∅

(
C;W[1]

C

)
q

,−
M′

∅

(
C;W[2]

C

)
q

,

{
M′

A (C;WC)

q

}
A

,

M′
A

(
C;W[1]

C

)
q


A

,

M′
A

(
C;W[2]

C

)
q


A


by linearity of the Hadamard derivatives in their second argument. The result follows,
when m = I1,n or I2,n, from

sup
[0,1]d

∣∣∣∣D∅,n

q
− Cn

q
−M′

∅

(
C;

Cn

q

)∣∣∣∣ P−→ 0 ; sup
[0,1]d

∣∣∣∣DA,n

q
−M′

A

(
C;

Cn

q

)∣∣∣∣ P−→ 0 ,

sup
[0,1]d

∣∣∣∣∣vnD
[m]
∅,b

q
− vn

C[m]
b

q
− vn

√
b

n

Cn

q
−M′

∅

(
C; vn

C[m]
b

q
+ vn

√
b

n

Cn

q

)∣∣∣∣∣ P−→ 0 ,

sup[0,1]d

∣∣∣∣vnD
[m]
A,b

q −M′
A

(
C; vn

C[m]
b

q + vn

√
b
n

Cn

q

)∣∣∣∣ P−→ 0.
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Before going through the rest of the proofs, one should remark that any statement
of the current paper assumes that Cn converges weakly to WC given in (7). It is
assumed that the latter presents continuous paths. As a consequence,

∥Cn/
√
n∥∞ = ∥Cn − C∥∞

P−−−−→
n→∞

0. (14)

Proof of Corollary 5. (i) Let us focus on the S family of test statistics. To integrate
with respect to Cn, we adapt the proof of [4, Proposition 3]. Applying the continuous
mapping theorem, a convergence is obtained while concatenating C with the vector
under study in Theorem 2. Since ∥Cn − C∥∞ tends to zero in probability from (14),
one can replace C by Cn on the left hand side of the concatenated convergence. Again,
the continuous mapping theorem allows to conclude. (ii) - (iii) - (iv) as the proof
of Corollary 6 are based on similar arguments as those used throughout the proof
section.
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