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Abstract: Tests of multivariate independence may rely on asymptotically
independent Cramér-von Mises statistics derived from a Möbius decompo-
sition of the empirical copula process. We generalize this approach to some
other copula-based assumptions, with the help of a functional decomposi-
tion based on commuting idempotent maps. As soon as the null hypothesis
reflects the stability of the copula under the action of the composition of
such operators, the methodology applies. The empirical testing process,
which depends on the decomposition, allows the derivation of a new family
of test statistics. The asymptotic distributions are obtained. Since the lat-
ter depend on the unknown copula being tested, we adapt the subsampling
procedure and the multiplier bootstrap to our setting and recall that the
parametric bootstrap also applies to approximate p-values. The benefits in
deriving test statistics from a functional decomposition are illustrated and
discussed through simulations.
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1. Introduction

The nature and strength of cross-sectional dependence is of crucial importance
to understand economic or environmental systems. One possible measure relies
on copulas, which have become popular over the last decades. In this paper, we
review and provide a new light on the literature for some testing problems.

Consider X1, . . . ,Xn a sample of d-variate observations where Xj stands for
(Xj1, . . . , Xjd)

T . At first, one may think that this n-sample consists of inde-
pendent copies of a d-dimensional random vector X = (X1, . . . , Xd)

T . However,
most of the results hold true for some strictly stationary time series. We assume
that the cumulative distribution function (c.d.f.) F of the representative vec-
tor X has continuous univariate margins denoted by F1, . . . , Fd. There exists
then a unique copula C : [0, 1]d → [0, 1], that is a d-dimensional c.d.f. with
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standard uniform margins such that F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) for
all x = (x1, . . . , xd) ∈ Rd. This representation, due to [51], illustrates that the
copula C characterizes the dependence between the components of X.

The present work is concerned with testing structural hypotheses for the copula.
There exists indeed a large number of copula families and testing procedures
help guide the choice of the most appropriate one. Tests based on empirical
copula processes have been successfully proposed in the literature. Let us cite
for instance [18], [35], [36], [24] or [9] that handled the independence, serial in-
dependence, independence by blocks, or broader classes such as extreme value
copulas. Whereas earlier papers focus on one hypothesis at once, the aim of this
paper is to demonstrate that several structural hypotheses for dependence share
a common pattern. Our contribution is thus to unify part of the theory.

In the literature, some papers already propose a common procedure to a list of
copula-based dependence hypotheses. Based on an arbitrary finite set of points
in [0, 1]d, [39] reduce the weak convergence of the renormalized empirical copula
to a multivariate normal convergence. This is strongly different to our tools.
The method in [43] consists in rewriting the null hypotheses with quadratic
functionals. But it still differs from our methodology. So, as far as we are aware,
our generalization is new.

Our procedure could be roughly illustrated by the pioneering idea of [18] which
reveals the independence through the Möbius decomposition of the empirical
process. The null hypothesis is thus equivalent to the intersection of a finite
set of assumptions since all secondary terms of the decomposition vanish. We
generalize this method by applying another functional decomposition, chosen
in accordance with the structural assumption being tested. Indeed, for a given
structural form of dependence, the null hypothesis is often characterized by the
stability of the copula under the action of a transformation M∅. It leads to the
test of (H)C = M∅(C) against its negation. Under various interesting examples,
the transformation M∅ can be obtained as the composition of several operators.
This common functional pattern offers the possibility of generalizing the writing
as unifying the method. The study based on a functional decomposition reveals
that a collection of sub-hypotheses (HA) hold true under (H). In consequence,
new test statistics are defined by combining the information extracted from (H)
with that extracted from any (HA).

The remainder of this paper is organized as follows. Section 2 recalls the func-
tional decomposition based on operators and makes it explicit in the context of
dependence structures. After a first asymptotic statement, Section 3 explains
how to construct independent copies of some limiting processes: both subsam-
pling and multiplier bootstrap procedures are presented. Section 4 is devoted
to the practical implementation of the theoretical results: definition of the test
statistics, associated asymptotics, practical computation and approximation of
the p-value are discussed. Two numerical experiments based on simulation end
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this section. Concluding remarks are given in Section 5 and proofs are postponed
to Section 6.

2. Dependence structures and associated operators

Our aim in this section is to outline a functional decomposition based on com-
muting idempotent maps which will be the basis of our further developments.
The link with the null hypothesis is the stability of the copula under a composi-
tion of some of these operators. A collection of sub-hypotheses arises naturally.
Two lists of examples are gathered in the thrid and fourth part: one listing the
cases where the operators are always commuting and idempotent and one where
all the operators reduce to the identity under the null hypothesis.

2.1. The functional decomposition of Kuo, Sloan, Wasilkowski, and
Woźniakowski

The functional decomposition mentioned here has a long story that is nicely de-
scribed in [54]. To provide a short presentation, let us start by quoting [30]. His
pioneering work uses L2 projections to decompose and study U -statistics. But
it is in [31] that the author proposes a recursive construction, based on condi-
tional expectations, of what can be called the Hoeffding decomposition. Its first
terms, depending on combinations of measurable functions of only one variable,
corresponds to the Hoeffding projection. [19] seems to be the first reference with
a clear statement and proof of the Hoeffding decomposition. It appears also in
[52], with its own proof. This work had a major impact in the field of Global
Sensitivity Analysis. This explains why his name is now attached to the first
one. The generalization of the Hoeffding-Sobol decomposition, allowing the com-
bination of commuting, idempotent and linear operators instead of conditional
expectations, is due to [38] and extended in [41]. In the latter, the authors have
relaxed the linear condition of the maps that are no longer projections.

Let F be the linear space of real-valued functions acting on [0, 1]d. For each
i ∈ {1, . . . , d}, let Pi : F → F be an idempotent operator. We assume that
the collection of functionals P1, . . . ,Pd commutes. Let I : F → F denote the
identity map. Set Pd as the collection of all subsets of {1, . . . , d} and P?d = Pd\∅.
Fix A ∈ Pd. Note that −A stands for {1, . . . , d} \ A. The composition of the
maps Pi for i ∈ A will be denoted as

∏
i∈APi or PA, and equals I in the

case where A = ∅. From Proposition 1 of [41], starting with such a collection
(Pi)i∈{1,...,d}, every f ∈ F can be decomposed as

f =
∑
A∈Pd

MA(f), (1)

for the operator

MA =
∏
i∈A

(I−Pi)
∏
i/∈A

Pi . (2)
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The operator MA is such that Pi ×MA = MA × Pi = MA whenever i 6∈ A
and vanishes otherwise. Another way of writing the equation (1) is

f −M∅(f) =
∑
A∈P?

d

MA(f) , (3)

where from (2) one knows that M∅ =
∏d
i=1 Pi, the composition of all func-

tionals. The main objective of this section is to identify, for some structural
dependence null hypotheses (H), their associated set of operators {P1, . . . ,Pd}
that allows to write

(H)C = M∅(C) against (K)C 6= M∅(C) .

2.2. Associated family of null sub-hypotheses

Recall that {P1, . . . ,Pd} is a collection of commuting idempotent functionals
and (H)C = M∅(C) where MA denotes the combination of (2) with this set of
operators. From (3),

C −M∅(C) =
∑
A∈P?

d

MA(C) .

As a consequence, the summation
∑
A∈P?

d
MA(C) vanishes when (H) holds true.

It is thus interesting to consider for any A ∈ P?d the null sub-hypothesis

(HA) MA(C) = 0 . (4)

A relevant question is to analyze whether any (HA) holds true under the null
hypothesis (H). What is its link exactly with the intersection? In the next
proposition, we answer part of the question.

Proposition 2.1. Let P1, . . . ,Pd be a commuting collection of idemptotent
operators on F . Then, the null hypothesis satisfies the equality

(H) =
⋂
A∈P?

d

(HA) .

Remark 1. When (H) reflects the independence among subvectors, as it is
discussed in Subsection 2.3.1, note that Proposition 7 in [35] (restricted to H
being a copula) can be viewed as a consequence of Proposition 2.1.

2.3. Examples of null hypotheses and associated maps

We discuss a list of null hypotheses, describing a type of dependence or partially
characterizing the copula. The independence by blocks (including the complete
independence), a weak form of associativity as well as particular Archimedean or
Archimax copula are treated. Each associated alternative, denoted by (K) above,
represents the negation of the null hypothesis. In these examples, the associated
maps are always both commuting and idempotent, regardless of whether the
null hypothesis is true or not.
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2.3.1. Independence among subvectors

The copula approach, for testing mutual independence of the components of X,
starts with the very well known contribution of [18]. Subsequent analyses are
recalled below in Remark 2.

Set F1 = {f ∈ F , f(1) 6= 0}. Note that F1 contains the set of copulas.
Let us structure the random vector X as the concatenation of p subvectors
X = (X{1}, . . . ,X{p}) of dimension d1, . . . , dp. Therefore, d = d1 + · · · + dp.

For x,y in Rd, (y{i},x−{i}) stands for (x{1}, . . . ,x{i−1},y{i},x{i+1}, . . . ,x{p}).
Define, for i ∈ {1, . . . , p}, the map Pi : F1 → F1 as following

Pi(f)(x) =
f(x{i},1−{i}) · f(1{i},x−{i})

f(1{1}, . . . ,1{p})
, (5)

One could check that {P1, . . . ,Pp} defines a collection of commuting and
idempotent operators. The assertion (H1) X{1}, . . . ,X{p} are independent, or
equivalently

(H1)C(x) = C(x{1},1−{1}) · · ·C(x{i},1−{i}) · · ·C(x{p},1−{p})

can be rewritten as (H1)C = M∅(C) where MA stands now for the combination
of (2) and (5).

Remark 2. Assume p = d so that (H1) describes the complete independence
among all components of X. The projection (5), applied to a copula C, satisfies

Pi(C)(x) = xi · C(x1, . . . , xi−1, 1, xi+1, . . . , xd)

for i = 1, . . . , d. As already mentioned in [41], the functional decomposition (1)
associated with the map (2) and above projection is known as the Möbius de-
composition. As explained and extended in [26] or in the introduction of [25],
the pioneering work of [18] makes already use, without naming it, of the Möbius
decomposition. Some results for the case where the number of variables is of
the same size, or even larger, than the sample size, have recently been obtained
by [9]. However, none of these works do a presentation in terms of commuting
idempotent maps.

Remark 3. In the more general case where p is possibly strictly lower than d,
the reader should be aware that [35] have successfully handled the question of
testing (H1) with the help of the extended Möbius decomposition. The latter is
the one which combines (1), (2) and (5). As already mentioned in [41], Lemma 6
in [35] is then a particular case of (1).

2.3.2. Associativity

According to [53], a function f : [0, 1]d → [0, 1] is said associative whenever for
(x1, . . . , xd, . . . , x2d−1) ∈ [0, 1]2d−1 it holds

f(f(x1, . . . , xd), xd+1, . . . , x2d−1) = . . . = f(x1, . . . , xd−1, f(xd, . . . , x2d−1)) .
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Any Archimedean copula C is associative. In particular, under archimedeanity

C(x1, . . . , xi, C(1, . . . , 1, xi+1, . . . , xd), 1, . . . , 1) = C(x1, . . . , xd),

for all x = (x1, . . . , xd) ∈ [0, 1]d, and any i ∈ {1, . . . , d− 1} . We thus consider

Pi(f)(x) = f(x1, . . . , xi, f(1, . . . , 1, xi+1, . . . , xd), 1, . . . , 1) , (6)

completed by Pd = I. Note that Pd−1 = I. The definition (6) is an arbi-
trary choice of maps in comparison with the natural previous example. To be
more explicit, Pi(f)(x) = f(1, . . . , 1, f(x1, . . . , xi, 1, . . . , 1), xi+1, . . . , xd) would
be convenient, and it is not the only one. Restricted to functions f satisfying
f(1−i, xi) = xi for any i in {1, . . . , d} which of course includes copulas, each
operator above is idempotent and the family commutes. We do not characterize
archimedeanity this way, only a weak version. However, it remains interesting
to investigate (H2)C = M∅(C) when MA is given by the combination of (2)
and (6). It is not so obvious what C = M∅(C) means here. It can be written
C(x) = C(x1, z2, 1, . . . , 1) with zi = C(1, . . . , 1, xi, zi+1) for i = 2, . . . , d− 1 and
zd = xd.

Remark 4. Consider the 3-dimensional copula C(x1, x2, x3) = x1 ·min(x2, x3).
It satisfies (H2) but it is non-Archimedean. More generally, testing archimedean-
ity consists in testing associativity as well as an appropriate condition on the
behavior of C on the diagonal. For complete details we refer to [8].

2.3.3. Describing a given Archimedean copula

The next null hypotheses need some preliminary remarks. Goodness-of-fit tests
arise when C is unknown but assumed to belong to a particular class (H̃)C ∈
{Cθ, θ ∈ Θ} where Θ is an open subset of RD for some integer D ≥ 1. Natural
tests consist in measuring a “distance” between the empirical copula and an
estimate of C obtained under (H̃). We skip here the details for the inference on
the parameter and we focus below only on the testing part of the procedure.
The null hypothesis becomes (H)C = Cθ0 where the reader should think of

Cθ0 as Cθ̂n , where θ̂n estimates θ in Θ. Of course, convergence of the practical

procedure with respect to (H̃) needs appropriate regularity conditions on both

the parametric family and the sequence of estimators θ̂n. We refer to [28] for a
review and discussion on combining both testing steps.

We focus here on testing a given Archimedean copula which differs from
testing archimedeanity. Fix ϕ the generator of interest that is a non-negative,
continuous, strictly decreasing and convex function defined on [0, 1] satisfying
ϕ(1) = 0. Its pseudo-inverse, denoted ϕ[−1], is defined as the usual inverse on
[0, ϕ(0)] and equals 0 elsewhere. See McNeil and Neslehova (2009) for a complete
characterization of the generator ϕ. For i ∈ {1, . . . , d}, consider the functional

Pi(f)(x) = ϕ[−1] [ϕ (f(xi,1−i)) + ϕ (f(1i,x−i))− ϕ (f(1))] . (7)
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It forms a set of commuting idempotent maps. Testing the specific Archimedean
copula generated by ϕ

(H3)C(x) = ϕ[−1] [ϕ(x1) + · · ·+ ϕ(xd)] (8)

can be rewritten as (H3)C = M∅(C) where MA combines (2) with maps given
in (7).

Remark 5. The symmetric logistic extreme value copula is a particular case.
Let ` : [0,∞]d → [0,∞] be a stable tail dependence function. Recall that an
extreme value copula can be written as C(x) = exp [−` {− ln(x1), . . . ,− ln(xd)}].
See for instance Chapter 7 of [14] for more details on the ` function. It is
called the symmetric logistic extreme value copula model when there exists a real
θ ∈ [1,∞[ such that `(x1, . . . , xd) = (xθ1 + · · · + xθd)

1/θ. Testing the symmetric
logistic extreme value model

(H4)C(x) = exp
[
−
{

(− ln(x1))θ + · · ·+ (− ln(xd))
θ
}1/θ]

corresponds to (H4)C = M∅(C) as soon as MA stands for (2) with maps (8)
and substituting ϕ(t) = (− ln(t))θ.

2.3.4. Extension to Archimedean by blocks

A possible extension consists in mixing previous sections. Recall that the random
vector X might be seen as the concatenation of p subvectors X{1}, . . . ,X{p} of
dimension d1, . . . , dp where d = d1 + · · · + dp. The independence by blocks of
Section 2.3.1 could be replaced by an Archimedean structure by blocks. Let ϕ
be a generator as described in Section 2.3.3. Then the null hypothesis

(H5)C(x) = ϕ−1
[
ϕ(C(x{1},1−{1})) + · · ·+ ϕ(C(1−{p},x{p}))

]
could be written as (H5)C = M∅(C) when MA calls (2) while using the follow-
ing functionals

Pi(f)(x) = ϕ−1
[
ϕ(f(x{i},1−{i}))− ϕ(f(1)) + ϕ(f(x−{i},1{i}))

]
. (9)

Copulas which satisfy (H5) have an easy interpretation. Only p-uplets of
variables, each belonging to one of the p blocks, are completely specified: Their
dependence structure follows the Archimedean copula generated by ϕ. The de-
pendence within any groups of variables belonging partially to the same block
is not fixed. This differs from the notion of nested or hierarchical copulas.

2.3.5. Extension to some specific Archimax copulas

As before, consider ϕ a generator associated with an Archimedean structure.
And consider ` : [0,∞]d → [0,∞] a stable tail dependence function. Recall from
[12] or more recently from [13] that

C(x) = ϕ−1 [` (ϕ(x1), . . . , ϕ(xd))]
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is called an Archimax copula. We restrict here the form of ` as following

`(x1, . . . , xd) = g−1
[
g{`(x{1},0−{1})}+ · · ·+ g{`(0−{p},x{p})}

]
, (10)

where g is a continuous bijection from R+ to R+ satisfying g(1) = 1. From
Theorem 6 in [45], one knows that g(x) = xθ for some θ ≥ 1. For the sake of
simplicity, set ϕx{i} =

∑
j∈{i} ϕ(xj)ej . For i ∈ {1, . . . , p}, let define Pi by

Pi(f)(x) = ϕ−1
[{(

`
(
ϕx{i},0−{i}

))θ
+
(
ϕ ◦ f

(
1{i},x−{i}

))θ}1/θ
]

(11)

completed by Pp+1 = . . . = Pd = I. They form a commuting set of idempotent
maps. Then, testing

(H6)C(x) = ϕ−1

[{(
`(ϕx{1},0−{1})

)θ
+ · · ·+

(
`(0−{p}, ϕx{p})

)θ}1/θ
]

can be rewritten (H6)C = M∅(C) for MA combining (2) and (11). As already
explained in the first lines of Subsection 2.3.3, the combination of both infering
(here on θ, ` and ϕ, see [13]) and testing steps is theoretically more interesting.
This goes however beyond the scope of this paper.

2.4. When maps involved reduce to the identity under the null
hypothesis

Another list of null hypotheses is drawn up below. The main difference with
what precedes concerns the operators which are no more idempotent nor com-
muting in general. But they will simplify to the identity operator (which of
course is idempotent) under the null hypothesis. Consequently, M∅(C) = C
and MA(C) ≡ 0 for any A ∈ P?d . Since any (HA) holds true, (H) ⊆

⋂
A(HA).

2.4.1. The max-stability assumption

For a given postive integer r, let us consider the null hypothesis

(H7,r)C(x) = Cr(x1/r) ∀x ∈ [0, 1]d .

The max-stability assumption is the intersection of any such null hypothesis,
that is (H7) = ∩r∈N?(H7,r).

Remark 6. The presentation above is similar to the description done in Sec-
tion 3 of [36]. Of course, the analysis in terms of specific maps injected in (2),
and therefore in (1), is new.

Let ri be a positive integer. Consider the functional

Pi(f)(x) = fri(x1/ri) , (12)
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which, in general, does not satisfy the idempotence assumption unless f satisfies
(H7), or more precisely (H7,ri). In this case, the operator Pi becomes the iden-
tity operator I. As a consequence, under (H7) the copula C satisfies C = M∅(C)
where MA stands now for the combination of (2) with (12).

Remark 7. In the bivariate setting, P1 and P2 should be chosen in accordance
with Proposition 4.2 of [34]. Therein, the equivalence is proven between (H7)
and the finite intersection (H7,r1)∩ (H7,r2) for two positive reals r1 and r2 such
that log r1/ log r2 is irrational.

2.4.2. Exchangeability

Let Sd be the set of all permutations of {1, . . . , d} and set xσ = (xσ(1), . . . , xσ(d))
for any σ ∈ Sd. Testing symmetry of the copula can be handled in a very similar
way to the previous one. The null hypothesis of exchangeability of the random
variables X1, . . . , Xd can indeed be expressed as

(H8) C(x) = C(xσ) ∀x ∈ [0, 1]d and ∀σ ∈ Sd .

It is the (finite here) intersection over Sd of null hypotheses of the form

(H8,σ) C(x) = C(xσ) ∀x ∈ [0, 1]d .

Let T1,d denote the set consisting of the d − 1 transpositions τi = (1i) for
i = 2, . . . , d. Noting that T1,d generates Sd, it is also possible to write here that

(H8) =
⋂d
i=2(H8,τi). Consider the functional

Pi(f)(x) = f(xτi) , (13)

for i = 2, . . . , d and complete the collection with P1 = I the identity map. The
map in (13) is no more idempotent. Additionally, Pk and Pm do not commute
in general. However, under the restriction that f is assumed to be symmetric,
{P1, . . . ,Pd} forms a set of commuting projections since all reduce to the iden-
tity I. Under (H8) the copula C satisfies C = M∅(C) where MA combines (2)
with (13).

Remark 8. In the bivariate case, such a test has been first investigated by [22].
Testing exchangeability for copulas in arbitrary dimensions is studied in [29].

2.4.3. Summary

The interest of the preceding two lists (Subsections 2.3 and 2.4) is to show the
extent to which the functional decomposition given through a set of operators
applies successfully. It brings together, in a common scheme and writing, some
very varied structural copula-based dependence hypotheses. However, in cases
as those described in Subsection 2.4, the decomposition brings no additional
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information. Note indeed that the composition
∏d
i=1 Pi in the exchangeability

context (13) is nothing other than the single P(f)(x) = f(xτ1◦···◦τd). Analo-

gously, under the max-stability hypothesis, the composition
∏d
i=1 Pi when Pi

is defined by (12) reduces to the single P(f)(x) = fp(x1/p) with p = r1×· · ·×rd.
Consequently, the analysis of the terms MA(C) will not add any information in
comparison with the classical measure based on M∅(C)−C or any combination
of the latter (in the max-stability example, combining different values of r).

3. Behavior and approximation of the testing process

The purpose of this section is to introduce the empirical testing processes. Con-
sider a structural dependence hypothesis for copulas expressed as (H)C =
M∅(C). Recall that {MA}A∈Pd

is the set depending, through Formula (2),
on a collection of operators {P1, . . . ,Pd} defined on F . It is assumed that
{P1, . . . ,Pd} are commuting and idempotent maps, at least when (H) holds
true. This is the case of any previous example. Starting from a copula estimator
Cn, it is natural to construct the testing process as (

√
n(Cn −M∅(Cn))(x),x ∈

[0, 1]d) when considering (H). This is precisely what is done in the literature.
Nevertheless, since (H) implies any sub-hypothesis (HA) MA(C) = 0, another
choice is possible.

3.1. Weak convergence of the empirical processes

Consider X1, . . . ,Xn a sample of d-variate observations of X where Xj stands
for (Xj1, . . . , Xjd)

T . Set Uj = (F1(Xj1), . . . , Fd(Xjd)) for j ∈ {1, . . . , n}. The
empirical cumulative distribution function based on U1, . . . ,Un is denoted by
Gn and we set Gn =

√
n(Gn−C). Under regular conditions, the empirical pro-

cess Gn converges weakly in `∞([0, 1]d) to a tight centered Gaussian process GC
concentrated on

C0 =
{
h ∈ C([0, 1]d) such thath(1) = 0 and

h(x) = 0 if some components of x are equal to 0} . (14)

Throughout the paper, we assume the existence and the paths continuity of

WC(x) = GC(x)−
d∑
i=1

∂Ci(x)GC(xi,1−i), x ∈ [0, 1]d . (15)

We introduce and study in this paper the concatenated empirical testing
process (√

n(Cn −M∅(Cn)),
{√

nMA(Cn)
}
A∈P?

d

)
.

Theorem 3.1. Consider (H)C = M∅(C), depending through (2) on a set of
operators P1, . . . ,Pd. It is assumed, at least when (H) holds true, that

• {P1, . . . ,Pd} are commuting and idempotent maps.
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• The associated maps {MA}A∈Pd
are Hadamard-differentiable at C tan-

gentially to C0.

Consider an empirical copula Cn such that, as n tends to infinity, the empirical
copula process

√
n(Cn−C) converges weakly in `∞([0, 1]d) to WC given in (15).

Then, under (H) and as n tends to infinity, the joint empirical processes con-

verge weakly in {`∞([0, 1]d)}2d as following(√
n(Cn −M∅(Cn)),

{√
nMA(Cn)

}
A∈P?

d

)
w
 

n→∞(
WC −M′

∅(C;WC), {M′
A(C;WC)}A∈P?

d

)
. (16)

Remark 9. The last lines of Section 2 in [37] list carefully the conditions under

which
√
n(Cn − C)

w
 

n→∞
WC in `∞([0, 1]d) for the following list of well-known

empirical copulas
- the non-parametric estimators

C̃n(x) =
1

n

n∑
j=1

d∏
i=1

1{Fnj(Xji)≤xi} ,

and

Ĉn(x) =
1

n

n∑
j=1

d∏
i=1

1{Ûji,n≤xi} ,

where Ûji,n = Rji,n/(n+ 1) and Rji,n = rank of Xji among X1i, . . . , Xni,
- the empirical checkerboard copula

C#
n (x) =

1

n

n∑
j=1

d∏
i=1

min{max{nxi −Rji,n, 0}, 1} ,

- and the empirical beta copula,

Cβn(x) =
1

n

n∑
j=1

d∏
i=1

Fn,Rji,n
(xi) .

where Fn,r stands for the pdf of the Beta distribution B(r, n+ 1− r).

Remark 10. Consider the null hypothesis (H1) where the independence among
subvectors is investigated. Note that part of Theorem 8 in [35] is recovered by
Theorem 3.1. Let us provide another example. When testing (H7,r), a sub-max-
stability assumption, set P1(f)(x) = fr(x1/r) and complete the collection with
the identity map. Then M∅ = P1 and the convergence of the left component
in (16) is exactly the one studied in the limit theorem given by [36] in their
Proposition 1.
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The weak convergence of the empirical processes has just been proved but
the covariance structures of the limiting processes D∅ := WC −M′

∅(C;WC) and
DA := M′

A(C;WC) depend on the unknown copula C. For this reason it is
not always directly applicable for statistical testing. Multiplier bootstrap and
subsampling have been introduced in the literature to reproduce independently
the asymptotic behavior of such processes. Both are discussed in the rest of this
section.

3.2. Subsampling empirical testing processes

To simplify notation, set D∅,n :=
√
n(Cn −M∅(Cn)) and DA,n :=

√
nMA(Cn)

for A ∈ P?d , as well as Cn :=
√
n(Cn − C). Theorem 3.1 has stated the weak

convergence of {DA,n}A∈Pd
to {DA}A∈Pd

under some conditions, in particular
the weak convergence of Cn. The subsampling method is a first substitute to
approximate the limiting distribution. See [42] and its adaptation in [37] that
inspired this development.

Let b < n denote the size of the samples extracted from X1, . . . ,Xn and let
Bb,n be the corresponding number of possible subsamples. Under the i.i.d. set-
ting, Bb,n =

(
n
b

)
since the subsamples may be obtained without remplacement.

Since Bb,n might be too large, the complete enumeration could not be possi-
ble. The practical solution is to obtain its stochastic approximation through
a N -sample of integers I1,n, . . . , IN,n independently extracted with replace-
ment from {1, . . . , Bb,n}. The quantities of interest would be then computed
for these N values of the index m. In the serial context, the sampling should
preserve the dependence so that the subsamples must have consecutive index,

and Bb,n = n−b+1. Denote by C
[m]
b the replicates of the estimator Cn evaluated

on such b-subsamples. Set now C[m]
b =

√
b(C

[m]
b − Cn) the associated replicates

of the empirical copula processes. Set finally D
[m]
∅,b =

√
b
(
C

[m]
b −M∅(C

[m]
b )

)
and D

[m]
A,b =

√
bMA(C

[m]
b ).

Theorem 3.2. Consider (H)C = M∅(C), depending through (2) on a set of
operators P1, . . . ,Pd. It is assumed, at least when (H) holds true, that

• {P1, . . . ,Pd} are commuting and idempotent maps.
• The associated maps {MA}A∈Pd

are Hadamard-differentiable at C tan-
gentially to C0.

• The derivatives {M′
A(C; ·)}A∈Pd

are continuous on `∞([0, 1]d).

Let vn → 1 and bn →∞ such that bn = o(n). Consider an empirical copula Cn

such that
(
Cn, vnC

[I1,n]
bn

, vnC
[I2,n]
bn

)
converges weakly in {`∞([0, 1]d)}3, as n tends

to infinity, to
(
WC ,W[1]

C ,W
[2]
C

)
where W[1]

C and W[2]
C are independent copies of

WC . Then, under (H) and as n tends to infinity,(
{DA,n}A∈Pd

,
{
vnD

[I1,n]
A,bn

}
A∈Pd

,
{
vnD

[I2,n]
A,bn

}
A∈Pd

)
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converges weakly in {`∞([0, 1]d)}3×2d to
(
{DA}A ,

{
D[1]
A

}
A
,
{
D[2]
A

}
A

)
, where{

D[2]
A

}
A∈Pd

and
{
D[2]
A

}
A∈Pd

are independent copies of {DA}A∈Pd
.

Remark 11. Previous result assumes the subsampling of the empirical copula
process Cn. Theorem 3.3 in [37] states such a convergence

- under i.i.d. observations, b/n → α ∈ [0, 1), vn = (1 − b/n)−1/2 when Cn
stands for Ĉn, C

#
n or Cβn ,

- under strictly stationary alpha-mixing sequence with α(k) = O(k−a) for
some a > 1, b/n→ 0, vn = 1 when Cn stands for C̃n,

- under strictly stationary alpha-mixing sequence with α(k) = O(ak) for
some a ∈ (0, 1), b/n→ 0, vn = 1, when Cn stands for Ĉn, C#

n or Cβn ,

assuming additionally classical regularity properties on the true copula C.

3.3. Weighted version of the subsampling methodology

A weight is used to emphasize the region where the copula differs from the
tested copula. See [15] or more recently [2]. Following [1] and [2] for instance
we provide, under stronger assumptions, the weak convergence with respect to
stronger metrics. It also includes the validity of the subsampling methodology
for the empirical testing process, as it has been done in [37].

Theorem 3.3. Consider (H)C = M∅(C), depending through (2) on a set of
operators P1, . . . ,Pd. It is assumed, at least when (H) holds true, that

• {P1, . . . ,Pd} are commuting and idempotent maps.
• The associated maps {MA}A∈Pd

are Hadamard-differentiable at C tan-
gentially to C0.

• The derivatives {M′
A(C; ·)}A∈Pd

are continuous and linear on `∞([0, 1]d).

Let vn → 1 and bn →∞ such that bn = o(n). Let Cn be an empirical copula and

q a weight function such that, as n tends to infinity,

(
Cn

q , vn
C

[I1,n]

bn

q , vn
C

[I2,n]

bn

q

)
converges weakly in {`∞([0, 1]d)}3 to

(
WC

q ,
W[1]

C

q ,
W[2]

C

q

)
, where W[1]

C and W[2]
C are

independent copies of WC . Then, under (H) and as n tends to infinity,(
{DA,n/q}A∈Pd

,
{
vnD

[I1,n]
A,bn /q

}
A∈Pd

,
{
vnD

[I2,n]
A,bn /q

}
A∈Pd

)
converges weakly in {`∞([0, 1]d)}3×2d to(

{DA/q}A∈Pd
,
{
D[1]
A /q

}
A∈Pd

,
{
D[2]
A /q

}
A∈Pd

)
,

where
{
D[2]
A

}
A∈Pd

and
{
D[2]
A

}
A∈Pd

are independent copies of {DA}A∈Pd
.



Cécile Mercadier / Testing copula-based dependence hypotheses 14

Remark 12. The subsampling of the process Cn/q assumed in Theorem 3.3 has
been proved in [37]. Let ∨ and ∧ stand respectively for the maximum and the min-

imum. On [0, 1]d let g be the weight function g(x) = ∧di=1

{
xi ∧ ∨dk=1,k 6=i(1− xk)

}
.

With w ∈ [0, 1/2) and q = gw, see [37, Theorem 4.3] for the statement concern-
ing both Ĉn and C̃n and [37, Theorem 4.5] for that involving C#

n and Cβn .

3.4. The multiplier bootstrap procedure

In statistical inference on copulas, the multiplier bootstrap is a well-established
resampling technique for approximating the distribution of the limiting process.
It was initially proposed by [48] and further investigated in [44], [4], [49], [6] for
instance. We adapt here [36].

For the sake of simplicity within this section, we assume that the original time
series is serially independent. The strong mixing case can be handled in a manner
analogous to that of [5] where further details may be found to construct the
serial dependence of the multipliers. The multiplier bootstrap procedure relies
on consistent estimators of the partial derivatives involved in (15). Consider
then those based on finite-differencing of the empirical copula estimator Ĉn
defined in Remark 9. The associated empirical processes are then denoted by
Ĉn =

√
n(Ĉn−C), D̂∅,n =

√
n(Ĉn−M∅(Ĉn)) and D̂A,n =

√
nMA(Ĉn). Let hn

be a sequence tending to 0 such that infn hn
√
n > 0. Define

Ĉ [i]
n (x) =



Ĉn(x + hnei)− Ĉn(x− hnei)

2hn
xi ∈ [hn, 1− hn]

Ĉn(x1, . . . , xi−1, hn, xi+1, . . . , xd)

hn
xi ∈ [0, hn)

Ĉn(x)− Ĉn(x1, . . . , xi−1, 1− hn, xi+1, . . . , xd)

hn
xi ∈ (1− hn, 1] .

Now, let N be a large integer. Below, we define N processes that are asymp-
totically independent copies of {DA}A∈Pd

. For any k in {1, . . . , N}, the multi-

pliers {Z(k)
j,n}j∈N are defined as independent sequences of independent and iden-

tically distributed random variables with mean 0 and variance 1, which are
independent of X . For any k in {1, . . . , N}, set

Ĉ(k)
n (x) = G(k)

n (x)−
d∑
i=1

Ĉ [i]
n (x)G(k)

n (xi,1−i)

in which

G(k)
n (x) =

1√
n

n∑
j=1

Z
(k)
j,n

{
1Ûj≤x − Ĉn(x)

}
.

Finally, set D̂
(k)
∅,n = Ĉ

(k)
n −M′

∅(Ĉn; Ĉ
(k)
n ) and D̂

(k)
A,n = M′

A(Ĉn; Ĉ
(k)
n ).
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Theorem 3.4. Consider (H)C = M∅(C), depending through (2) on a set of
operators P1, . . . ,Pd. It is assumed, at least when (H) holds true, that

• {P1, . . . ,Pd} are commuting and idempotent maps.
• The associated maps {MA}A∈Pd

are Hadamard-differentiable at C tan-
gentially to C0.

• There exists some ε > 0 such that for any A ∈ Pd, (f, h) 7→M′
A(f ;h) is

continuous on {f ∈ `∞([0, 1]d), ‖f − C‖∞ < ε} × `∞([0, 1]d).

Assume that the copula C is such that for any i ∈ {1, . . . , d}, C [i] exists and is
continuous on the set {x ∈ [0, 1]d : 0 < xi < 1}. Then, under (H) and as n tends
to infinity,(
{D̂A,n}A, {D̂(1)

A,n}A, . . . , {D̂
(N)
A,n}A

)
w
 

n→∞

(
{DA}A, {D(1)

A }A, . . . , {D
(N)
A }A

)
in
{
`∞([0, 1]d)

}2d(N+1)
where {D(k)

A }A∈Pd
for k = 1, . . . , N are independent

copies of {DA}A∈Pd
.

Remark 13. When (H7,r) is under study, the previous convergence restricted
to A = ∅ is in agreement with Proposition 2 of [36].

4. The testing procedure

Natural measures of departure from the null hypothesis are Kolmogorov–Smirnov
or Cramér–von Mises statistics. We give their expressions, and a new combina-
tion derived from the concatenated testing processes is introduced and studied.
As these statistics are not distribution-free, the subsampling methodology, the
multiplier bootstrap explained in the previous section or the parametric boot-
strap will be needed to approximate p-values.

4.1. Well-known families of test statistics

Consider (H)C = M∅(C), depending through (2) on the operators P1, . . . ,Pd.
It is assumed, at least when (H) holds true, that {P1, . . . ,Pd} are commuting
and idempotent maps. Recall that the definition of DA,n is specific when A = ∅
since D∅,n = Cn −M∅(Cn) = Cn − (

∏d
i=1 Pi)(Cn) whereas, if A 6= ∅, the

definition is DA,n = MA(Cn) = (
∏
i∈A(I −Pi)

∏
i/∈APi)(Cn).

We introduce the 2d Cramér–von Mises (CvM) statistics, derived from the
functional decomposition, and associated limits as

IA,n,q =

∫
[0,1]d

{
DA,n(x)

q(x)

}2

dx and IA,q =

∫
[0,1]d

{
DA(x)

q(x)

}2

dx

for anyA ∈ Pd. Therein, the weight function q is the function already introduced
in Subsection 3.3. Replacing in the CvM statistics IA,n,q the Lebesgue product



Cécile Mercadier / Testing copula-based dependence hypotheses 16

measure dx on [0, 1]d by the empirical dCn(x) is of greater interest. We thus
introduce, for any A ∈ Pd, the alternative CvM statistics as

SA,n,q =

∫
[0,1]d

{
DA,n(x)

q(x)

}2

dCn(x) and SA,q =

∫
[0,1]d

{
DA(x)

q(x)

}2

dC(x) .

Similarly, the Kolmogorov-Smirnov statistics and associated limits are defined,
for any A ∈ Pd, by

UA,n,q = sup
x∈[0,1]d

∣∣∣∣DA,n(x)

q(x)

∣∣∣∣ and UA,q = sup
x∈[0,1]d

∣∣∣∣DA(x)

q(x)

∣∣∣∣ .
When Cn is specifically defined as Ĉn so that DA,n becomes D̂A,n, as it has

been done in Subsection 3.4, the previous statistics will be denoted by ÎA,n,q,

ŜA,n,q and ÛA,n,q. In view of bootstrap considerations, Î
(k)
A,n,q, Ŝ

(k)
A,n,q and Û

(k)
A,n,q

are obtained while D̂A,n is replaced by D̂
(k)
A,n. In view of subsampling considera-

tions, I
[Im]
A,n,q, S

[Im]
A,n,q and U

[Im]
A,n,q (resp. I[Im]

A,q , S[Im]
A,q and U[Im]

A,q ) are obtained while

DA,n (resp. DA) is replaced by D
[Im]
A,n (resp. D[Im]

A ).

Corollary 4.1. (i) Under the assumptions of Theorem 3.1, the random vec-
tors {IA,n,1}A, {SA,n,1}A and {UA,n,1}A converge in distribution to {IA,1}A,
{SA,1}A and {UA,1}A respectively.
(ii) The assumptions of Theorem 3.2 imply the convergence in distribution

of ({IA,n,1}A, {v2nI
[I1,n]
A,bn,1}A, {v

2
nI

[I2,n]
A,bn,1}A) to ({IA,1}A, {I[1]A,1}A, {I

[2]
A,1}A), where

the latter is the concatenation of independent copies. Similar results hold true
for the S and U families of test statistics (for U use vn instead of v2n).
(iii) The assumptions of Theorem 3.3 imply the convergence in distribution of

({SA,n,q}A, {v2nS
[I1,n]
A,bn,q}A, {v

2
nS

[I2,n]
A,bn,q}A) to ({SA,q}A, {S[1]A,q}A, {S

[2]
A,q}A), where

the latter is the concatenation of independent copies. Similar results hold true
for I and U families of test statistics (for U use vn instead of v2n).

(iv) Under the assumptions of Theorem 3.4, ({ÛA,n,1}A, {Û
(I1,n)
A,n,1 }A, {Û

(I2,n)
A,n,1 }A)

converges in distribution to ({UA,1}A, {U(1)
A,1}A, {U

(2)
A,1}A), concatenating inde-

pendent copies. Similar results hold true for Î and Ŝ families of test statistics.

4.2. New test statistics derived from the functional decomposition

Note that under independence or independence by block, the p-values associ-
ated with the above family of test statistics are also asymptotically mutually
independent (with respect to A). As a consequence, individual critical values
can be chosen to achieve an asymptotic global significance level. Furthermore,
it is possible to combine individual p-values and get a global p-value thanks to
the method à la Fisher (the resulting statistics are denoted by Wn) as well as à
la Tippett (the resulting statistics is denoted Tn). For more details, we refer to
the discussion in [26] or the paragraph “Combining p-values” in Section 3 of [35].
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In general, for other types of null hypotheses, the asymptotic mutual inde-
pendence is no more true. Even if our purpose in this paper is not to construct
better statistics rather than a unified theory, new test statistics are defined. The
use of the functional decomposition

M∅(C)− C =
∑
A∈P?

p

MA(C)

allows to improve the well-known statistics, that only considers the left hand
member of the above equality, by defining instead a combination that takes into
account both the left hand member and all the right hand member terms of the
above equality.

Let w = {wA}A∈Pd
be a vector of positive weights. The latter reflects the

importance we put in the test (H)C = M∅(C) through w∅, or in the test (HA)
MA(C) = 0 through wA. We introduce the statistic and associated limit by

Sw,n,q =
∑
A∈Pd

wASA,n,q and Sw,q =
∑
A∈Pd

wASA,q . (17)

Similarly, the test statistics Iw,n,q and Uw,n,q (and respective limits Iw,q and
Uw,q) are the weighted linear combination constructed from the collections IA,n,q
and UA,n,q (and from IA,q and UA,q for the limits).

Corollary 4.2. The results stated in Corollary 4.1 are inherited by the weighted
combinations Iw,n,q, Sw,n,q and Uw,n,q. To give an example, under the assump-
tions of Theorem 3.1, the test statistic Sw,n,1 converges in distribution to Sw,1.

4.3. Practical implementation of the tests

In some particular cases, and when Cn is taken as Ĉn it is possible to provide
the expression of the statistics in terms of the pseudo-observations only. See for
instance Section 4 in [25] when complete independence is under testing. See also
Proposition 10 and Proposition 13 in [35] when testing concerns independence
by blocks. Here, the calculations haven’t been taken as far. Let Rji,n denote the

rank of Xji among X1i, . . . , Xni and set Ûj·,n = (Rj1,n/n, . . . , Rjd,n/n). Then,

SA,n,q =
1

n

n∑
j=1

{
DA,n(Ûj·,n)

q(Ûj·,n)

}2

.

In general, we proceed by numerical approximation based on a grid. Let K be
a large integer and let u1, . . . ,uK be K uniformly spaced points on (0, 1)d. Then
IA,n,q ' 1

k

∑K
k=1 {DA,n(uk)/q(uk)}2 and UA,n,q ' maxk=1,...,K |DA,n(uk)/q(uk)|.

Taking into account Section 3, the p-values are approximately uniform on
[0, 1] under the null hypothesis (H). In the case of goodness-of-fit tests (H)
C = Cθ, samples of reference should not be obtained from subsampling or
multiplier bootstrapping but by parametric bootstrapping instead. Note that
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Algorithm 1: Approximating the p-value (Illustrated with the S family)

Compute S
(0)
w,n,q the value of Sw,n,q on the original series

Generate from subsampling D
[k]
A,n,q or multiplier bootstrapping D̂

(k)
A,n,q for k = 1, . . . , N

Compute S
(1)
w,n,q , . . . , S

(N)
w,n,q the value of Sw,n,q on one of these processes

Define an approximate p-value for the test statistic as following
1

N+1

(
1
2

+
∑N
k=1 1{S(k)

w,n,q > S
(0)
w,n,q}

)

[27] establish its validity when the series are independent. In the current paper,
parametric bootstrap can be applied under (H1) when p = d, (H3) or (H4)
for instance. See also [47] when studying some multivariate stochastic volatility
models. The alternative version of the algorithm is given below.

Algorithm 2: Approximating the p-value (Goodness-of-fit tests)

Compute the pseudo-observations U1, . . . ,Un on the original series, θn = θ̂(U1, . . . ,Un)
and Sw,n,q,[θn]

for k = 1 to N do
Generate U

{k}
1 , . . . ,U

{k}
n from Cθn

Compute θ
{k}
n = θ̂(U

{k}
1 , . . . ,U

{k}
n ) and S

w,n,q,[θ
{k}
n ]

on the parametric sample

end for
Define an approximate p-value for the test statistic as following

1

N + 1

(
1

2
+

N∑
k=1

1{S
w,n,q,[θ

{k}
n ]

> Sw,n,q,[θn]}
)

4.4. Numerical experiments

In this final section, we shall consider the use of the functional decomposition
in two experiments and analyze the results. First, we explore the testing prob-
lem (H1) of block independence and specifically one of the practical settings
imagined in [35]. We investigate then the goodness-of-fit test (H3) where two
Archimedean copulas, namely Clayton and Gumbel, are opposed. These copulas
have been chosen as they are part of the first example in the routine gofCopula

of the R copula package [32].

4.4.1. Independence between three continuous r−dimensional random vectors

We adapt here Section 4 from [35] that implements testing procedures for (H1).
Let X = (X1, . . . , X12) and consider the 3 groups {X1, . . . , X4}, {X5, . . . , X8}
and {X9, . . . , X12} so that r = 4, p = 3 and d = 12. The dependence is described
by the normal copula. The d×d correlation matrices Σ are structured as follows:
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X1 . . . X4 X5 . . . X8 X9 . . . X12
X1 1 ρintra
... ρinter ρinter
X4 ρintra 1
X5 1 ρintra
..
. ρinter ρinter
X8 ρintra 1
X9 1 ρintra
... ρinter ρinter

X12 ρintra 1

The quantity ρinter (resp. ρintra) controls the amount of dependence among
(resp. within) the three random vectors. Under the normal copula, the values
ρinter ∈ {0.000, 0.025, 0.050, . . . , 0.275, 0.300} for ρintra = 0.5 are considered. We
generate 1000 samples composed of n = 200 independent realizations of X. Note
that, in all the simulations, the number of randomized samples is set to 1000.

Table 1 shows the rejection rates of the null hypothesis, the proportion of
times that the different tests reject (H1), with respect to the value of ρinter.
The significance level is arbitrarily set to 5% and measured on the first column
of the table. The global Cramér-von-mises statistic In = I∅,n,1, as well as Wn

the test statistic à la Fisher, and Tn the test statistic à la Tippett are those
studied in Figure 3 of [35], with the difference that n = 200 here. Four additional
measures of the form Sw,n,1 are included. Recall that taking into account the
form of the null hypothesis (H1) with p = 3 blocks, the weights w have the
following structure

w = (w∅, w{1}, w{2}, w{3}, w{12}, w{13}, w{23}, w{123}) .

More precisely, we consider

• w1 = (1, 0, 0, 0, 0, 0, 0, 0) that only measures the left hand term of the
decomposition,

• w2 = (1, 0, 0, 0, 1, 1, 1, 1) that combines the left hand term of the decom-
position with the right hand terms of order 2 and 3 (recall that the right
hand terms associated with singletons all vanish),

• w3 = (0, 0, 0, 0, 1, 1, 1, 1) that only combines the non-null right hand terms
of the decomposition,

• w4 = (8.253373, 0, 0, 0, 2.373714, 2.344580, 2.35670, 1.989524) that com-
bines left and right hand terms proportionally to some variances. It is
an empirical choice where each wA is proportional to the estimate of
var(SA,n,1) obtained by block bootstrapping.

As can be seen in Table 1, the S-type statistics perform best among all the
approaches, with one exception: Sw3,n,1 appears twice below the values of Wn.
Additionally, there is no uniformly better S, even if Sw2,n,1 is roughly speaking
the best choice globally. However, an empirical choice of the weights as defined
in Sw4,n,1 yields a better rate for the particular value ρinter = 0.05. Note that
Sw1,n,1 which is the usual CvM test statistic from the literature leads to results
relatively close to those given by Sw2,n,1.
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ρinter
0.00 0.025 0.05 0.075 0.10 0.125 0.15

T
e
st

st
a
ti

st
ic

s Wn 0.060 0.146 0.332 0.540 0.770 0.901 0.982
Tn 0.047 0.110 0.234 0.404 0.584 0.766 0.932
In 0.054 0.128 0.287 0.503 0.711 0.854 0.971

Sw1,n,1 0.049 0.176 0.376 0.673 0.875 0.964 0.994
Sw2,n,1 0.046 0.181 0.388 0.691 0.883 0.971 0.995
Sw3,n,1 0.041 0.124 0.311 0.572 0.819 0.953 0.992
Sw4,n,1 0.046 0.173 0.400 0.683 0.878 0.969 0.994

Table 1
Percentage of rejection of (H1) that stipulates the block independence of {X1, . . . , X4},
{X5, . . . , X8} and {X9, . . . , X12} that comes from Normal copula with correlation matrices
Σ whereas the null hypothesis (H1) is only true under the x-axis value ρinter = 0.00. The

statistics Wn, Tn and In are those presented in [35] and available in the routine
multIndepTest of the R package copula. The statistics Sw,n,1, defined by (17), are evaluated

for several weights w as indicated in the text.

4.4.2. Goodness-of-fit tests

Turning to the Goodness-of-Fit tests (H3), we consider the Clayton or the Gum-
bel family in a 3-dimensional setting. These classes will both be used as the
generator of datasets or as the family being tested. To generate the original
samples, three values of Kendall’s τ are chosen: τ = .1, τ = .2 and τ = .3. Test
statistics Sw,n,1 given by (17) and where

w = (w∅, w{1}, w{2}, w{3}, w{12}, w{13}, w{23}, w{123})

are computed for the weights: w1 = (1, 0, 0, 0, 0, 0, 0, 0), w2 = (1, 0, 0, 0, 1, 1, 1, 1)
and w3 = (0, 0, 0, 0, 1, 1, 1, 1). The results are provided in Table 2 for n = 100.
The first lines are dedicated to the test (H3) when ϕ is the Clayton copula.
Similarly, Gumbel copula is tested in the last lines of the table. The parame-
ter associated with the generator ϕ is estimated at each step as the mean of
empirical Kendall’s τ . The parametric bootstrap described in Algorithm 2 with
nboot = 200 is used to compute the p-value. The rejection rates are estimated
through nrep = 500 repetitions of each experiment. Two characteristics are of
interest: the empirical level might be close to the nominal level, arbitrarily fixed
at 0.05, and the empirical power. We also add another procedure in Table 2.
The line gofCopula corresponds to the results associated with the command
gofCopula(CopulTest, rCopula(n, CopulSimu), estim.method = "itau").

As already explained, the goal of the paper is not to find an overall best test
statistics but rather about showing the interest of a functional decomposition
chosen in accordance with the null hypothesis. The analysis of Table 2 is not
straightforward but the results are interesting. First, on the right upper corner
of the table, one can remark that Sw1,n,1 always dominates in discriminating
true Gumbel from supposed Clayton. This becomes true for Sw2,n,1 in the left
bottom corner, except when the dependence becomes stronger with τ = 0.3, the
more powerful is then Sw3,n,1.
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Simulated copulas
Clayton Gumbel

τ = .1 τ = .2 τ = .3 τ = .1 τ = .2 τ = .3

Clayton w1 0.056 0.044 0.048 0.364 0.690 0.934

T
e
st

e
d

c
o
p

u
la

s w2 0.052 0.044 0.038 0.294 0.674 0.924
w3 0.044 0.060 0.046 0.160 0.494 0.852

gofCopula 0.050 0.044 0.044 0.214 0.670 0.924

Gumbel w1 0.282 0.720 0.922 0.070 0.048 0.056
w2 0.306 0.766 0.948 0.036 0.042 0.052
w3 0.254 0.710 0.960 0.024 0.042 0.048

gofCopula 0.288 0.716 0.930 0.030 0.062 0.054

Table 2
Rejection rates of the null hypothesis. In the first lines, Clayton copula is being tested,

whereas Gumbel copula is tested in the last lines of the table. The datasets are simulated for
three different strengths of dependence, calibrated through the Kendall’s τ : .1, .2 and .3.

The test statistics Sw,n are studied for three different weights: w1, w2 and w3 (definition in
the text). Additional parameters of the numerical study: sample size n = 100, parametric

bootstrap size nboot = 200 and number of repetitions of the experiment nrep = 500.

5. Concluding remarks

Identifying and modeling dependencies with copulas remain an important topic,
which has become very popular over the last decades since it has been applied in
almost every discipline. The aim in this paper is to provide a kind of unification
of various papers, as [18], [26], [25], [35], [36] among others. All derive copula-
based tests of the structure of dependence. The solution here is to dip them in
the functional decomposition context of [38] (and its recent version of [41] which
removes the linearity assumption) in order to reveal a common pattern. Then,
the goal of the paper is not really to improve a methodology but to transform
already known tools in particular cases of more general statements.

The numerical section provides two simple studies, one analyzing the inde-
pendence among p = 3 blocks in a (d =)12-dimensional setting and one exam-
ining particular Archimedean copula families in dimension d = 3. Of course,
we conclude that there is no best procedure even if one can take advantage in
analyzing the functional decomposition associated with the null hypothesis in
order to derive powerful weighted test statistics.

The dimensions d or p are small in our experiments. Nevertheless, the cur-
rent paper provides an interesting perspective on high dimensional problems.
The practical implementation of the tests relies indeed on a trade-off between
exhaustivity (all subsets of Pd) and dimensionality (exponential growth in d).
When d becomes larger, it could be interesting to use only part of the subsets.
With the help of the weight w introduced in the definition of the test statistics,
one can focus only in a given size of A or in all sizes that do not exceed a given
size. This way, we can control the underlying complexity of the method. The
question will be then: how much this selection affects the corresponding power
of the testing procedure?
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6. Proofs

Proof of Proposition 2.1. Suppose MA(C) ≡ 0 for any non-empty subset A
of {1, . . . , d}. By application of (1) inherited from Proposition 1 of [41], one
obtains C −M∅(C) ≡ 0 which is (H). Reciprocally, if (H) holds true, then

C = M∅(C) = (
∏d
j=1 Pj)(C). Combined with (2), it yields by commutativity,

MA(C) =

(∏
i∈A

(I−Pi)
∏
i/∈A

Pi

)
(C) =

(∏
i∈A

(I−Pi)
∏
i/∈A

Pi

)
(

d∏
j=1

Pj(C))

=

(∏
i∈A

(Pi −P2
i )
∏
i/∈A

Pi

)
(
∏
j 6∈A

Pj(C))

which vanishes for A 6= ∅, since Pi = P2
i by the idempotence assumption.

Proof of Theorem 3.1. By assumption,
√
n(Cn−C)

w
 

n→∞
WC in `∞([0, 1]d) and

any MA is Hadamard-differentiable at C. The functional version of the Delta
method (see Section 3.9 of [55]) applied to f 7→ (f,M∅(f), {MA(f)}A∈P?

d
) yields(√

n(Cn − C),
√
n(M∅(Cn)−M∅(C)), {

√
n(MA(Cn)−MA(C))}A∈P?

d

) w
 

n→∞(
WC ,M

′
∅(C;WC), {M′

A(C;WC)}A∈P?
d

)
in
{
`∞([0, 1]d)

}2d+1
. From the continuous mapping theorem applied to the func-

tional T (f, g, {hA}A) = (f − g, {hA}A), we obtain the weak convergence of(√
n(Cn −M∅(Cn))−

√
n(C −M∅(C)), {

√
n(MA(Cn)−MA(C))}A∈P?

d

)
in
(
`∞([0, 1]d)

)2d
to
(
WC −M′

∅(C;WC), {M′
A(C;WC)}A∈P?

d

)
. Now, when (H)

holds true, the collection of maps {Pi}i=1,...,d is assumed to form an idempo-
tent and commuting family. Consequentlty, Proposition 2.1 applies, ∩A∈P?

d
(HA)

holds true so that C−M∅(C) = 0 as well as MA(C) = 0 for any A ∈ P?d . Then,
the left hand side of the last convergence reduces to the process under study.

Proof of Theorem 3.2. Since by assumption both M∅(C) = C and MA(C) = 0
for any subset A ∈ P?d , one can observe that,

D∅,n = Cn −
√
n

(
M∅

(
C +

Cn√
n

)
−M∅(C)

)
(18)

DA,n =
√
n

(
MA

(
C +

Cn√
n

)
−MA(C)

)
(19)

D
[m]
∅,b = C[m]

b +

√
b

n
Cn −

√
b

(
M∅

(
C +

C[m]
b√
b

+
Cn√
n

)
−M∅(C)

)
(20)

D
[m]
A,b =

√
b

(
MA

(
C +

C[m]
b√
b

+
Cn√
n

)
−MA(C)

)
(21)
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for m = I1,n or I2,n in the last two displays. By assumption, the weak conver-

gence of
(
Cn, vnC

[I1,n]
b , vnC

[I2,n]
b

)
in
{
`∞([0, 1]d)

}3
to
(
WC ,W[1]

C ,W
[2]
C

)
holds

true. Using the fact that b = o(n), the following(
Cn, vnC

[I1,n]
b + vn

√
b

n
Cn, vnC

[I2,n]
b + vn

√
b

n
Cn

)

shares the same asymptotic behavior. Continuous mapping theorem with

(f1, f2, f3) 7→
(
−M′

∅(C; f1),−M′
∅(C; f2),−M′

∅(C; f3),

{M′
A(C; f1)}A, {M′

A(C; f2)}A, {M′
A(C; f3)}A)

then delivers the weak convergence of(
−M′

∅ (C;Cn) ,−M′
∅

(
C; vnC

[I1,n]

b + vn

√
b

n
Cn

)
,−M′

∅

(
C; vnC

[I2,n]

b + vn

√
b

n
Cn

)
,

{
M′

A (C;Cn)
}
A ,

{
M′

A

(
C; vnC

[I1,n]

b + vn

√
b

n
Cn

)}
A

,{
M′

A

(
C; vnC

[I2,n]

b + vn

√
b

n
Cn

)}
A

)

in
{
`∞([0, 1]d)

}3×2d
to(

−M′
∅ (C;WC) ,−M′

∅

(
C;W[1]

C

)
,−M′

∅

(
C;W[2]

C

)
,{

M′
A (C;WC)

}
A ,
{

M′
A

(
C;W[1]

C

)}
A
,
{

M′
A

(
C;W[2]

C

)}
A

)
.

It remains to show that, for m = I1,n or I2,n,

sup
[0,1]d

∣∣D∅,n − Cn + M′
∅ (C;Cn)

∣∣ P−→ 0 ; sup
[0,1]d

∣∣∣∣DA,nq −M′
A (C;Cn)

∣∣∣∣ P−→ 0 ,

sup
[0,1]d

∣∣∣∣∣vnD[m]
∅,b − vnC

[m]
b − vn

√
b

n
Cn + M′

∅

(
C; vnC[m]

b + vn

√
b

n
Cn

)∣∣∣∣∣ P−→ 0 ,

sup
[0,1]d

∣∣∣∣∣vnD[m]
A,b −M′

A

(
C; vnC[m]

b + vn

√
b

n
Cn

)∣∣∣∣∣ P−→ 0 ,

which are, once the equations (18), (19), (20) and (21) taken into account, only
the consequences of what precedes combined with the functional Delta Method
applied to the maps M∅ or MA.

Proof of Theorem 3.3. By assumption,

(
Cn

q , vn
C

[I1,n]

b

q , vn
C

[I2,n]

b

q

)
converges weakly

in
{
`∞([0, 1]d)

}3
to

(
WC

q ,
W[1]

C

q ,
W[2]

C

q

)
. Consequently, using the fact that b =
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o(n), the following

(
Cn

q , vn
C

[I1,n]

b

q + vn

√
b
n

Cn

q , vn
C

[I2,n]

b

q + vn

√
b
n

Cn

q

)
shares the

same asymptotic behaviour. Using the continuous mapping theorem with

(f1, f2, f3) 7→
(
−M′

∅(C; f1),−M′
∅(C; f2),−M′

∅(C; f3),

{M′
A(C; f1)}A, {M′

A(C; f2)}A, {M′
A(C; f3)}A)

we thus obtain that−M′
∅

(
C;

Cn
q

)
,−M′

∅

C; vn
C[I1,n]

b

q
+ vn

√
b

n

Cn
q

 ,−M′
∅

C; vn
C[I2,n]

b

q
+ vn

√
b

n

Cn
q

 ,

{
M′

A

(
C;

Cn
q

)}
A
,

M′
A

C; vn
C[I1,n]

b

q
+ vn

√
b

n

Cn
q


A

,

M′
A

C; vn
C[I2,n]

b

q
+ vn

√
b

n

Cn
q


A


converges weakly in

{
`∞([0, 1]d)

}3×2d
to(

−M′
∅

(
C;

WC

q

)
,−M′

∅

(
C;

W[1]
C

q

)
,−M′

∅

(
C;

W[2]
C

q

)
,

{
M′

A

(
C;

WC

q

)}
A
,

{
M′

A

(
C;

W[1]
C

q

)}
A

,

{
M′

A

(
C;

W[2]
C

q

)}
A

)
which is equal to−M′

∅ (C;WC)

q
,−

M′
∅

(
C;W[1]

C

)
q

,−
M′

∅

(
C;W[2]

C

)
q

,

{
M′

A (C;WC)

q

}
A
,

M′
A

(
C;W[1]

C

)
q


A

,

M′
A

(
C;W[2]

C

)
q


A


by linearity of the Hadamard derivatives in their second argument. The result

follows, when m = I1,n or I2,n, from

sup
[0,1]d

∣∣∣∣D∅,nq − Cn
q
−M′

∅

(
C;

Cn
q

)∣∣∣∣ P−→ 0 ; sup
[0,1]d

∣∣∣∣DA,nq −M′
A

(
C;

Cn
q

)∣∣∣∣ P−→ 0 ,

sup
[0,1]d

∣∣∣∣∣vnD
[m]
∅,b

q
− vn

C[m]
b

q
− vn

√
b

n

Cn
q
−M′

∅

(
C; vn

C[m]
b

q
+ vn

√
b

n

Cn
q

)∣∣∣∣∣ P−→ 0 ,

sup[0,1]d

∣∣∣∣vnD[m]
A,b

q −M′
A

(
C; vn

C[m]
b

q + vn

√
b
n

Cn

q

)∣∣∣∣ P−→ 0.

Before going through the rest of the proofs, one should remark that any
statement of the current paper assumes that Cn converges weakly to WC given in
(15). It is assumed that the latter presents continuous paths. As a consequence,

‖Cn/
√
n‖∞ = ‖Cn − C‖∞

P−−−−→
n→∞

0. (22)
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Proof of Theorem 3.4. Set Ĉn =
√
n(Ĉn−C). The regularity condition imposed

to C unable us to use Proposition 3.2 of [49]. It follows(
Ĉn, Ĉ(1)

n , . . . , Ĉ(N)
n

)
w
 

n→∞

(
WC ,W(1)

C , . . . ,W(N)
C

)
(23)

in
{
`∞([0, 1]d)

}2dN+1
where W(1)

C , . . . ,W(N)
C are all independent copies of WC .

The process under study involves D̂∅,n = Ĉn−
√
n
(
M∅(C + Ĉn/

√
n)−M∅(C)

)
,

D̂A,n =
√
n
(
MA(C + Ĉn/

√
n)−MA(C)

)
, D̂

(k)
∅,n = Ĉ

(k)
n −M′

∅(C+Ĉ/
√
n; Ĉ

(k)
n )

and D̂
(k)
A,n = M′

A(C + Ĉ/
√
n; Ĉ

(k)
n ). Taking into account (22) and (23), the de-

sired joint convergence arises from both Hadamard-differentiability of the oper-
ators and continuity of their derivatives.

Proof of Corollary 4.1. (i) Let us focus on the S family of test statistics. To
integrate with respect to Cn, we adapt the proof of [36, Proposition 3]. Applying
the continuous mapping theorem, a convergence is obtained while concatenating
C with the vector under study in Theorem 3.1. Since ‖Cn −C‖∞ tends to zero
in probability from (22), one can replace C by Cn on the left hand side of the
concatenated convergence. Again, the continuous mapping theorem allows to
conclude. (ii) - (iii) - (iv) as the proof of Corollary 4.2 are based on similar
arguments as those used throughout the proof section.
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