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Testing copula-based dependence hypotheses:

a proofreading based on functional decompositions

Cécile Mercadier

December 19, 2022

Abstract

Tests of multivariate independence may rely on asymptotically independent Cramér-von Mises statistics
derived from a Möbius decomposition of the empirical copula process. We generalize this approach to
some other copula-based assumptions, with the help of a functional decomposition based on commuting
idempotent maps. As soon as the null hypothesis reflects the stability of the copula under the action of the
composition of such operators, the methodology applies. The asymptotic joint distribution of the terms in
the decomposition of the empirical copula process is established under the null hypothesis. Since the latter
depends on the unknown copula being tested, we adapt the subsampling procedure to our setting and recall
that the multiplier bootstrap as well as the parametric bootstrap also apply to approximate p-values. The
benefit in deriving test statistics from a functional decomposition, defined in accordance with the dependence
assumption under study, are illustrated and discussed through simulations.

1 Introduction

The nature and strength of cross-sectional dependence is of crucial importance to understand economic or
environmental systems. One possible measure relies on copulas, which have become popular over the last
decades. In this paper, we review and provide a new light on the extant literature for some testing problems.

Consider Xn = {X1, . . . ,Xn} a sample of d-variate observations where Xj stands for (Xj1, . . . , Xjd)
T . At

first, one may think that Xn consists of independent copies of a d-dimensional random vector X = (X1, . . . , Xd)
T .

However, most of the results hold true for some strict stationary time series. We assume that the cumulative
distribution function (c.d.f.) F of the representative vector X has continuous univariate margins denoted by
F1, . . . , Fd. There exists then a unique copula C : [0, 1]d → [0, 1], that is a d-dimensional c.d.f. with standard
uniform margins such that

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) , ∀x = (x1, . . . , xd) ∈ Rd .

This representation, due to Sklar (1959), illustrates that the copula C characterizes the dependence between
the components of X.

The present work is concerned with testing structural hypotheses for the copula C. There exists indeed a
large number of copula families and testing procedures help guide the choice of the most appropriate. Tests
based on empirical copula processes have been successfully proposed in the literature. Let us cite for instance
Deheuvels (1981), Kojadinovic and Holmes (2009), Kojadinovic, Segers, and Yan (2011), Genest, Nešlehová,
Rémillard, and Murphy (2019) or Bücher and Pakzad (2022) that handled the independence, serial indepen-
dence, independence by blocks, or broader classes such as extreme value copulas. Whereas earlier papers focus
on one hypothesis at once, the aim of this paper is to demonstrate that several structural hypotheses for de-
pendence share a common pattern. Our contribution is thus to unify part of the theory.

Our procedure could be roughly illustrated by the pioneer idea of Deheuvels (1981) which reveals the indepen-
dence through the Möbius decomposition of the empirical process. The null hypothesis is thus equivalent to the
intersection of a finite set of assumptions since all secondary terms of the decomposition vanish. We generalize
this method by applying another functional decomposition, chosen in accordance with the structural assumption
being tested. Indeed, for a given structural form of dependence, the null hypothesis is often characterized by
the stability of the copula under the action of a transformation M∅. It leads to the test (H)C = M∅(C) against
its negation. Under various interesting examples, the transformation M∅ can be obtained as the composition of
several operators. This common functional pattern offers the possibility of generalizing the writing as unifying
the method.

In the literature, some papers already propose a common procedure to a list of copula-based dependence
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hypotheses. Based on an arbitrary finite set of points in [0, 1]d, Li and Genton (2013) reduce the weak conver-
gence of the renormalized empirical copula to a multivariate normal convergence. This is strongly different to
our tools. The method in Quessy (2016) consists in rewriting the null hypotheses with quadratic functionals.
But it still differs from our methodology. So, as far as we are aware, our generalization is completely new.

The remainder of this paper is organized as follows. Section 2 recalls the functional decomposition based
on operators and makes it explicit in the context of dependence structures. A review of copula estimators
and associated regularity conditions is dressed in Section 3, which also includes a first asymptotic statement.
Section 4 explains how it is possible to construct independent copies of some limiting processes: both subsam-
pling and multiplier bootstrap procedures are presented. Section 5 is devoted to a straightforward practical
implementation of the theoretical results: test statistics, practical definition of a p-value (including parametric
bootstrap) and numerical experiments are discussed. Concluding remarks are given in Section 6 and proofs of
Section 4 are postponed up to Section 7. A list of references ends the paper.

2 Dependence structures and associated operators

Our aim in this section is to outline a functional decomposition based on commuting idempotent maps which
will be the basis of our further developments. The link with the null hypothesis is the stability of the copula
under a composition of some of these operators. Two lists of examples are collected in the second and third
part: one listing the cases where the operators are always commuting and idempotent and one where all the
operators reduce to the identity under the null hypothesis. Each dependence structure being tested is associated
with its corresponding set of operators.

2.1 The functional decomposition of Kuo et al. (2010)

The functional decomposition mentioned here has a long story that is nicely described in van der Vaart (1998).
To provide a short presentation, let us start by quoting Hoeffding (1948). His pioneer work uses L2 projections
to decompose and study U -statistics. But it is in Hoeffding (1961) that the author proposes a recursive con-
struction, based on conditional expectations, of what can be called the Hoeffding decomposition. Its first terms,
depending on combinations of measurable functions of only one variable, corresponds to the Hajek projection.
Efron and Stein (1981) seems to be the first reference with a clear statement and proof of the Hoeffding de-
composition. It appears also in Sobol′ (1993), with its own proof, with a major impact in the field of Global
Sensitivity Analysis. This explains why his name is now attached to the first one. The generalization of the
Hoeffding-Sobol decomposition, allowing the combination of commuting, idempotent and linear operators in-
stead of conditional expectations, is due to Kuo, Sloan, Wasilkowski, and Woźniakowski (2010) and extended
in Mercadier, Roustant, and Genest (2022). In the latter, the authors have relaxed the linear condition of the
maps that are no more projections. We use below their formalism.

Let F be the linear space of real-valued functions acting on [0, 1]d. For each i ∈ {1, . . . , d}, let Pi : F → F
be an idempotent operator. We assume that the collection of functionals P1, . . . , Pd commutes. Let I : F → F
denote the identity map. Set Pd as the collection of all subsets of {1, . . . , d} and P?d = Pd \ ∅. Fix A ∈ Pd.
Note that −A stands for {1, . . . , d} \ A. The composition of the maps Pi for i ∈ A will be denoted as

∏
i∈A Pi

or PA, and equals I in the case where A = ∅. From Proposition 1 of Mercadier et al. (2022), starting with such
a collection (Pi)i∈{1,...,d}, every f ∈ F can be decomposed as

f =
∑
A∈Pd

MA(f), (1)

for the operator

MA =

(∏
i∈A

(I − Pi)
∏
i/∈A

Pi

)
(2)

which can be obtained recursively

MA = P−A −
∑
B(A

MB (3)

or with the following third equivalent formula

MA =
∑
B⊆A

(−1)|A\B|P−B . (4)
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The composition operator MA is such that Pi ◦MA = MA ◦ Pi = MA whenever i 6∈ A and vanishes otherwise.
Another way of writing the equation (1) is

f −M∅(f) =
∑
A∈P?

d

MA(f) , (5)

where from (2) one knows that M∅ =
∏d
i=1 Pi, the composition of all functionals. The main objective of this

section is to identify, for some structural dependence null hypotheses (H), their associated set of operators
{P1, . . . , Pd} that allows to write

(H)C = M∅(C) against (K)C 6= M∅(C) .

2.2 When maps involved are always commuting and idempotent

We first discuss a list of null hypotheses, describing a type of dependence or partially characterizing the copula.
The complete independence, the independence by blocks, a weak form of associativity as well as particular
Archimedean or Archimax copula are treated. Each associated alternative, denoted by (K) above, represents
the negation of the null hypothesis.

2.2.1 Complete independence

The copula approach, for testing mutual independence of the components of X, starts with the very well known
contribution of Deheuvels (1981). Subsequent analyses are recalled below in Remark 1. Set F1 = {f ∈ F , f(1) 6=
0}. Note that F1 contains the set of copulas. Define, for i ∈ {1, . . . , d}, the map Pi : F1 → F1 as following

Pi(f)(x) = xi · f(x1, . . . , xi−1, 1, xi+1, . . . , xd)/f(1, . . . , 1) . (6)

One could check that {P1, . . . , Pd} defines a collection of commuting and idempotent operators. Moreover, the
case of the complete independence

(H1)C(x1, . . . , xd) = x1 · · ·xd
can be written as (H1)C = M∅(C) where MA stands here for the combination of (2) with (6).

Remark 1. As already mentioned in Mercadier et al. (2022), the functional decomposition (1) associated with
the map (2) and the projection (6) is known as the Möbius decomposition. As explained and extended in Genest
and Rémillard (2004) or in the nice introduction of Genest, Quessy, and Remillard (2007), the pioneer work
of Deheuvels (1981) makes already use, without naming it, of the Möbius decomposition. Some results for the
case where the number of variables is of the same size, or even larger, than the sample size, have recently been
obtained by Bücher and Pakzad (2022). However, none of these works do a presentation in terms of commuting
idempotent maps. This is new.

2.2.2 Independence among subvectors

Let us structure the random vector X as the concatenation of p subvectors X = (X{1}, . . . ,X{p}) of dimension
d1, . . . , dp. Therefore, d = d1 + . . .+dp. It is possible to generalize what precedes to the independence by blocks.
For i ∈ {1, . . . , p}, set

Pi(f)(x) =
f(1{1}, . . . ,1{i−1},x{i},1{i+1}, . . . ,1{p}) · f(x{1}, . . . ,x{i−1},1{i},x{i+1}, . . . ,x{p})

f(1{1}, . . . ,1{p})
, (7)

and, to avoid a specific treatment, complete this collection with Pi = I the identity map for i ∈ {p+ 1, . . . , d}.
It is possible to prove that (7) defines a commuting set of idempotent maps. The assertion (H2) X{1}, . . . ,X{p}
are independent, or equivalently

(H2)C(x) = C(x{1},1{2}, . . . ,1{p}) · · ·C(1{1}, . . . ,1{i−1},x{i},1{i+1}, . . . ,1{p}) · · ·C(1{1}, . . . ,1{p−1},x{p})

can be rewritten as (H2)C = M∅(C) where MA stands now for the combination of (2) and (7).

Remark 2. Even if the presentation is not in terms of commuting idempotent maps, the reader should be
aware that Kojadinovic and Holmes (2009) have successfully handled the question of testing (H2) with the
help of the extended Möbius decomposition. The latter is the one which combines (1), (2) and (7). As already
mentioned in Mercadier et al. (2022), Lemma 6 in Kojadinovic and Holmes (2009) is then a particular case of (1).
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2.2.3 Associativity

According to Stupňanová and Kolesárová (2011), a function f : [0, 1]d → [0, 1] is said associative whenever for
(x1, . . . , xd, . . . , x2d−1) ∈ [0, 1]2d−1 it holds

f(f(x1, . . . , xd), xd+1, . . . , x2d−1) = f(x1, f(x2, . . . , xd+1), xd+2, . . . , x2d−1) . . . = f(x1, . . . , xd−1, f(xd, . . . , x2d−1)) .

Any archimedean copula C is associative. In particular, under archimedeanity

C(x1, . . . , xi, C(1, . . . , 1, xi+1, . . . , xd), 1, . . . , 1) = C(x1, . . . , xd), ∀x = (x1, . . . , xd) ∈ [0, 1]d,∀i ∈ {1, . . . , d−1} .

We thus propose to consider the following map

Pi(f)(x) = f(x1, . . . , xi, f(1, . . . , 1, xi+1, . . . , xd), 1, . . . , 1) , (8)

completed by Pd = I. Note that Pd−1 = I too. This is clearly an arbitrary choice of operators in comparison
with natural previous examples. To be more explicit,

Pi(f)(x) = f(1, . . . , 1, f(x1, . . . , xi, 1, . . . , 1), xi+1, . . . , xd) ,

would also be convenient, and it is not the only one. Set (1−A,xA) = (xA,1−A) =
∑d
i=1 xiei1i∈A + ei1i/∈A.

Restricted to functions f satisfying f(1−i, xi) = xi for any i in {1, . . . , d} which of course includes copulas, each
operator above is idempotent and the family commutes. We do not characterize archimedeanity this way, only
a weak version. However, it remains interesting to investigate

(H3)C = M∅(C) (9)

when MA is given by the combination of (2) and (8). It is not so obvious what C = M∅(C) means here. It can
be written C(x) = C(x1, z2, 1, . . . , 1) with zi = C(1, . . . , 1, xi, zi+1) for i = 2, . . . , d− 1 and zd = xd.

Remark 3. Testing archimedeanity consists in testing associativity as well as an appropriate condition on the
behavior of C on the diagonal. For complete details we refer to Bücher, Dette, and Volgushev (2012).

2.2.4 Describing a given Archimedean copula

The next null hypotheses need some preliminary remarks. Goodness-of-fit tests arise when C is unknown but
assumed to belong to a particular class (H̃)C ∈ {Cθ, θ ∈ Θ} where Θ is an open subset of RD for some integer
D ≥ 1. Natural tests consist in measuring a “distance” between the empirical copula and an estimation of C
obtained under (H̃). We skip here the details for the inference on the parameter and we focus below only on
the testing part of the procedure. The null hypothesis becomes (H)C = Cθ0 where the reader should think Cθ0
as Cθ̂n , where θ̂n estimates θ in Θ. Of course, convergence of the practical procedure with respect to (H̃) needs

appropriate regularity conditions on both the parametric family and the sequence of estimators θ̂n. We refer to
Genest et al. (2009) for an pioneer review and discussion on combining both testing steps.

We focus here on testing a given Archimedean copula which differs from testing Archimedeanity. Fix ϕ the
generator of interest that is a non-negative, continuous, strictly decreasing and convex function defined on [0, 1]
satisfying ϕ{1} = 0. Its pseudo-inverse, denoted ϕ[−1], is defined as the usual inverse on [0, ϕ{0}] and equals 0
elsewhere. See McNeil and Neslehova (2009) for a complete characterization of the generator ϕ.
For i ∈ {1, . . . , d}, consider the functional

Pi(f)(x) = ϕ[−1] [ϕ{f(1, . . . , 1, xi, 1, . . . , 1)}+ ϕ{f(x1, . . . , xi−1, 1, xi+1, . . . , xd)} − ϕ{f(1, . . . , 1)}] . (10)

It forms a collection of commuting idempotent maps. Testing the specific Archimedean copula generated by ϕ

(H4)C(x) = ϕ[−1] [ϕ{x1}+ . . .+ ϕ{xd}] (11)

can be rewritten as (H4)C = M∅(C) where MA combines (2) with maps given in (10).

Remark 4. The symmetric logistic extreme value copula is a particular case. Recall first that a copula C is an
extreme value copula if it can be written

C(x) = exp [−` {− ln(x1), . . . ,− ln(xd)}] (12)

for ` : [0,∞]d → [0,∞] a so-called stable tail dependence function. See for instance Chapter 7 of de Haan and
Ferreira (2006) for more details on the ` function. It is called the symmetric logistic extreme value copula model
when there exists a real θ ∈ [1,∞[ such that `(x1, . . . , xd) = (xθ1 + . . .+ xθd)

1/θ. Testing the symmetric logistic
extreme value model

(H5)C(x) = exp
[
−
{

(− ln(x1))θ + . . .+ (− ln(xd))
θ
}1/θ]

corresponds to (H5)C = M∅(C) as soon as MA stands for (2) with maps (11) and substituting ϕ(t) = (− ln(t))θ.
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2.2.5 Extension to Archimedean by blocks

A possible extension consists in mixing previous sections. Recall that the random vector X migth be seen
as the concatenation of p subvectors X{1}, . . . ,X{p} of dimension d1, . . . , dp where d = d1 + . . . + dp. The
independence by blocks of Section 2.2.2 could be replaced by an Archimedean structure by blocks. Let ϕ a
generator as described in Section 2.2.4. Then the null hypothesis

(H6)C(x) = ϕ−1
[
ϕ(C(x{1},1−{1})) + . . .+ ϕ(C(1−{p},x{p}))

]
could be written as (H6)C = M∅(C) when MA calls (2) while using the following functionals

Pi(f)(x) = ϕ−1
[
ϕ(f(x{i},1−{i}))− ϕ(f(1)) + ϕ(f(x−{i},1{i}))

]
. (13)

Nested Archimedean copulas such as (H6) have an easy interpretation. Only p-uplets of variables, each
belonging to one of the p blocks, are completely specified: Their dependence structure follows the Archimedean
copula generated by ϕ. The dependence within any groups of variables belonging partially to the same block is
not fixed.

2.2.6 Extension to some specific Archimax copulas

As before, consider ϕ a generator associated with an archimedean structure. And consider ` : [0,∞]d → [0,∞]
a stable tail dependence function. Recall from Charpentier, Fougères, Genest, and Nešlehová (2014) or more
recently from Chatelain, Fougères, and Nešlehová (2020) that

C(x) = ϕ−1 [` (ϕ(x1), . . . , ϕ(xd))]

is called an archimax copula. We restrict here the form of ` as following

`(x1, . . . , xd) = g−1
[
g{`(x{1},0−{1})}+ . . .+ g{`(0−{p},x{p})}

]
, (14)

where g is a continuous bijection from R+ to R+ satisfying g(1) = 1. From Theorem 6 in Ressel (2022), one
knows that g(x) = xθ for some θ ≥ 1. For the sake of simplicity, set ϕx{i} =

∑
j∈{i} ϕ(xj)ej . For i ∈ {1, . . . , p},

let define the operator Pi by

Pi(f)(x) = ϕ−1
[{(

`
(
ϕx{i},0−{i}

))θ
+
(
ϕ ◦ f

(
1{i},x−{i}

))θ}1/θ
]

(15)

completed with Pp+1 = . . . = Pd = I. They form a commuting set of idempotent maps. Then, testing

(H7)C(x) = ϕ−1

[{(
`(ϕx{1},0−{1})

)θ
+ . . .+

(
`(0−{p}, ϕx{p})

)θ}1/θ
]

can be rewritten (H7)C = M∅(C) for MA combining (2) and (15).

2.2.7 First summary

Let {P1, . . . , Pd} be a collection of commuting idempotent functionals. The previous examples all illustrate the

situation where the null hypothesis has the form (H)C = (
∏d
i=1 Pi)(C). Let MA denote the combination of (2)

with the set of operators involved in the definition of (H). From (5), recall that M∅ =
∏d
i=1 Pi and that

C −M∅(C) =
∑
A∈P?

d

MA(C) .

As a consequence, the summation
∑
A∈P?

d
MA(C) vanishes when the null hypothesis (H) holds true. It is thus

interesting to consider for any A ∈ P?d the null sub-hypothesis

(HA)MA(C) = 0 . (16)

A relevant question is to analyze whether any (HA) holds true under the null hypothesis (H). What is its link
exactly with the intersection? In the next proposition, we answer part of the question.

Proposition 1. Let P1, . . . , Pd be a commuting collection of idemptotent operators on F . Then, the null
hypothesis satisfies the equality

(H) =
⋂
A∈P?

d

(HA) .
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Remark 5. When the null hypothesis (H2) is under study (namely the independence among subvectors), note
that Proposition 7 in Kojadinovic and Holmes (2009) (restricted to H being a copula) can be viewed as a
consequence of Proposition 1.

Proof of Proposition 1. Suppose MA(C) ≡ 0 for any non empty subset A of {1, . . . , d}. By application of (1)
inherited from Proposition 1 of Mercadier et al. (2022), one obtains C−M∅(C) ≡ 0 which is (H). Reciprocally,

if (H) holds true, then C = M∅(C) = (
∏d
j=1 Pj)(C). Combined with (2), it yields by commutativity,

MA(C) =

(∏
i∈A

(I − Pi)
∏
i/∈A

Pi

)
(C) =

(∏
i∈A

(I − Pi)
∏
i/∈A

Pi

)
(

d∏
j=1

Pj(C)) =

(∏
i∈A

(Pi − P 2
i )
∏
i/∈A

Pi

)
(
∏
j 6∈A

Pj(C))

which vanishes, whenever A is non empty, since Pi = P 2
i by idempotence assumption.

2.3 When maps involved reduce to the identity under the null hypothesis

Another list of null hypotheses is drawn up below. The main difference with what precedes concerns the
operators which are no more idempotent nor commuting in general. But they simplify to the identity operator
(which of course is idempotent) under the null hypothesis.

2.3.1 The max-stability assumption

For a given postive integer r, let us consider the null hypothesis

(H8,r)C(x) = Cr(x1/r) ∀x ∈ [0, 1]d .

The max-stability assumption is the intersection of any such null hypothesis, that is (H8) = ∩r∈N?(H8,r).

Remark 6. The presentation above is similar to the description done in Section 3 of Kojadinovic, Segers, and
Yan (2011). Of course, the analysis in terms of specific maps injected in (2), and therefore in (1), is new.

Let ri be a positive integer. Consider the functional

Pi(f)(x) = fri(x1/ri) , (17)

which, in general, does not satisfy idempotence assumption unless f satisfies (H8), or more precisely (H8,ri). In
this case, the operator Pi becomes the identity operator I. As a consequence, under (H8) the copula C satisfies
C = M∅(C) where MA stands now for the combination of (2) with (17).

Remark 7. In the bivariate setting, P1 and P2 should be chosen in accordance with Proposition 4.2 of Klement,
Mesiar, and Pap (2005). It indeed is proven therein the equivalence between (H8) and the finite intersection
(H8,r1) ∩ (H8,r2) for two positive reals r1 and r2 such that log r1/ log r2 is irrational.

2.3.2 Exchangeability

Let Sd be the set of all permutations of {1, . . . , d} and denote xσ = (xσ(1), . . . , xσ(d)) for any σ ∈ Sd. Testing
symmetry of the copula can be handled in a very similar way to the previous one. The null hypothesis of
exchangeability of the random variables X1, . . . , Xd can indeed be expressed as

(H9) C(x) = C(xσ) ∀x ∈ [0, 1]d and ∀σ ∈ Sd .

It is the (finite here) intersection over Sd of null hypotheses of the form

(H9,σ) C(x) = C(xσ) ∀x ∈ [0, 1]d .

Let T1,d denote the set consisting of the d − 1 transpositions τi = (1i) for i = 2, . . . , d. Noting that T1,d
generates Sd, it is also possible to write here that

(H9) = ∩di=2(H9,τi) .

Consider the functional
Pi(f)(x) = f(xτi) , (18)

for i = 2, . . . , d and complete the collection with P1 = I the identity map. The map in (18) is no more
idempotent. Additionally, Pk and Pm do not commute in general. However, under the restriction that f is
assumed to be symmetric, {P1, . . . , Pd} forms a set of commuting projections since all reduce to the identity I.
Under (H9) the copula C satisfies C = M∅(C) where MA combines (2) with (18).

Remark 8. In the bivariate case, such test has been first investigated by Genest, Nešlehová, and Quessy (2012).
Testing exchangeability for copulas in arbitrary dimensions is deeply studied in Harder and Stadtmüller (2017).

6



2.3.3 Second summary

The setting associated with the second list of examples differs from the first one. The maps P1, . . . , Pd are not
commuting nor idempotent in general. And a comparison between (H) and (HA) losses its sense. However,
applied to a copula C satisfying the null hypothesis (H), all operators of the previous list reduce to the identity.
Consequently, M∅(C) = C and MA(C) ≡ 0 for any A ∈ P?d . Hence any (HA) holds true. Thus we can only
write here (H) ⊆ ∩A(HA).

The interest of the preceding two lists is to show the extent to which the functional decomposition given
through a set of operators applies successfully. It brings together, in a common scheme and writing, some
very varied structural copula-based dependence hypotheses. However, in cases as those described in the second
list, the decomposition brings no additional information. Note indeed that the composition

∏d
i=1 Pi in the

exchangeability context (18) is nothing other than the single P (f)(x) = f(xτ1◦···◦τd). Analogously, under the

max-stability hypothesis, the composition
∏d
i=1 Pi when Pi is defined by (17) reduces to the single P (f)(x) =

fp(x1/p) with p = r1× . . .×rd. As a consequence, the analysis of the terms MA(C) will not add any information
in comparison with the classical measure based on M∅(C) − C or any combination of the latter (for instance
obtained with different values of r in the max-stability example).

2.4 Focus on Hadamard-differentiability

This section may be omitted in a first reading. Let us recall the notion of differentiability for operators. Then,
it will be briefly applied to the maps Pi under study.

A functional T : D ⊆ `∞([0, 1]d) → E is Hadamard differentiable at f ∈ D tangentially to a set C0 if
there exists a map T ′(f ; ·) : C0 → E such that T ′(f ;h) is the limit with respect to the Kolmogorov distance of
(T (f + tnhn)− T (f)) /tn as n tends to infinity, for any hn converging to h ∈ C0 and for any sequence tn of reals
converging to 0 such that f + tnhn ∈ D.

Now, set

C0 =
{
h ∈ C([0, 1]d) such thath(1) = 0 andh(x) = 0 if some components of x are equal to 0

}
. (19)

Let us begin by very simple calculations. By linearity of the map defined in (18), P ′i (f ;h) = Pi(h). For
the operator Pi given in (17), we get P ′i (f ;h)(x) = rih(x1/ri)fri−1(x1/ri), which is consistent with the limiting
expression in Proposition 1 of Kojadinovic et al. (2011).

The map defined by (6), in the context of complete independence testing, is Hadamard-differentiable at every
f ∈ F1 tangentially to C0 with derivative P ′i (f ;h)(x) = xi

(
h(x−i, 1i)/f(1)− h(1)f(xi,1−i)/f(1)2

)
. Applied

to any copula C, it simplifies to P ′i (C;h)(x) = xi (h(x−i, 1i)− h(1)xi), and reduces for h ∈ C0 to

P ′i (C;h)(x) = xih(x−i, 1i) .

The mapping (7) is Hadamard-differentiable at every f ∈ F1 tangentially to C0 with derivative P ′i (f ;h)(x) =
h(1−{i},x{i})f(x−{i},1{i})/f(1)+h(x−{i},1{i})f(1−{i},x{i})/f(1)−h(1)f(x−{i},1{i})f(1−{i},x{i})/f(1)2. It
simplifies, for any copula C and h in C0, to

P ′i (C;h)(x) = h(1−{i},x{i})C(x−{i},1{i}) + h(x−{i},1{i})C(1−{i},x{i}) .

Still in this context of testing independence by blocks, Kojadinovic and Holmes (2009) give explicitly the
Hadamard-derivative of the map MA in their Lemma 4.

The maps defined in (8) are Hadamard-differentiable on F? = {f ∈ F , f is differentiable} with

P ′i (f ;h)(x) = h(1, . . . , 1, xi+1, . . . , xd) ∂i+1f(x1, . . . , xi, f(1, . . . , 1, xi+1, . . . , xd), 1, . . . , 1) .

From Theorem 2.2 in McNeil and Nešlehová (2009), one knows that any Archimedean copula is associated to
a generator at least d−2 differentiable. Assume differentiability of ϕ and ϕ[−1] on [0, 1] and (0, ϕ(0)) respectively.
Then (10) is Hadamard-differentiable at every f ∈ F [0,1] := {f ∈ F , f(x) ∈ [0, 1] for any x ∈ [0, 1]d} tangentially
to C0. Observe that any copula lies in F [0,1]. Note that

ϕ ◦ Pi(f)(x) = ϕ{f(1, . . . , 1, xi, 1, . . . , 1)}+ ϕ{f(x1, . . . , xi−1, 1, xi+1, . . . , xd)} − ϕ{f(1)}

so that

(ϕ ◦ Pi)′ (f ;h)(x) = (h× ϕ′ ◦ f) (1, . . . , 1, xi, 1, . . . , 1)

+ (h× ϕ′ ◦ f) (x1, . . . , xi−1, 1, xi+1, . . . , xd)− (h× ϕ′ ◦ f) (1) .
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Now, since Pi = ϕ[−1] ◦ ϕ ◦ Pi, one obtains

P ′i (f ;h)(x)

= (ϕ[−1])′ (ϕ ◦ Pi(f)(x))× (ϕ ◦ Pi)′ (f ;h)(x)

=
(h× ϕ′ ◦ f) (1, . . . , 1, xi, 1, . . . , 1) + (h× ϕ′ ◦ f) (x1, . . . , xi−1, 1, xi+1, . . . , xd)− (h× ϕ′ ◦ f) (1)

ϕ′
(
ϕ[−1] [ϕ{f(1, . . . , 1, xi, 1, . . . , 1)}+ ϕ{f(x1, . . . , xi−1, 1, xi+1, . . . , xd)} − ϕ{f(1)}]

) .

When computed for any copula C and any h ∈ C0, it becomes

P ′i (C;h)(x) =
h× ϕ′(xi) + (h× ϕ′ ◦ C) (x1, . . . , xi−1, 1, xi+1, . . . , xd)

ϕ′ (Pi(C)(x))
.

3 Inference and limit theorem

The purpose of this section is to introduce the testing processes. Consider a structural dependence hypothesis
for copulas expressed as (H)C = M∅(C). Recall that {MA}A∈Pd

is the set depending, through Formula (2),
on a collection of operators {P1, . . . , Pd} defined on F . It is assumed that {P1, . . . , Pd} are commuting and
idempotent maps, at least when (H) holds true. Starting from a copula estimator Cn, it is natural to construct
the test process as (

√
n(Cn −M∅(Cn))(x),x ∈ [0, 1]d) when considering (H). This is precisely what is done

in the literature. However, since (H) implies any sub-hypothesis (HA)MA(C) = 0 (and sometimes equals
their intersection) as explained in Section 2, another choice is possible. For the sake of clarity, set D∅,n =√
n(Cn −M∅(Cn)) and DA,n =

√
nMA(Cn). The empirical process(

D∅,n, {DA,n}A∈P?
d

)
forms an appropriate ingredient to test (H). We address in the current section its asymptotic behavior.

3.1 Copula estimators

Since the true copula is not assumed to be known, it is a crucial step to furnish copula estimators. Many
proposals have been made over the last decades. The list that we present below is highly inspired by the one
provided in Section 2 of Kojadinovic and Stemikovskaya (2019). Fix x = (x1, . . . , xd) ∈ [0, 1]d and consider the
estimation of C at point x. The ordinary non-parametric estimator has been constructed in Deheuvels (1979)
by plug-in principle as Fn(F−n1(x1), . . . , F−nd(xd)) where Fn is the empirical distribution function of X1, . . . ,Xn

and the F−ni’s are the marginal quantile functions. There are several asymptotically equivalent definitions of the
empirical copula. From Genest, Ghoudi, and Rivest (1995), we consider another definition and set

C̃n(x) =
1

n

n∑
j=1

d∏
i=1

1{Fnj(Xji)≤xi} .

Let Rji,n denotes the rank of Xji among X1i, . . . , Xni for i = 1, . . . , d and j = 1, . . . , n. Set Ûji,n = Rji,n/(n+1)

the pseudo-observations. Depending on the possible presence of ties in the sample, the ordinary version C̃n may
coincide with the empirical copula given by

Ĉn(x) =
1

n

n∑
j=1

d∏
i=1

1{Ûji,n≤xi} .

The latter has been introduced by Ruschendorf (1976), and a bound for its approximation of C was provided in
Deheuvels (1980). The previous estimates do not induce continuous maps on [0, 1]d but only piecewise constant
functions. Since the estimation target C is assumed continuous, two alternative smoothed versions follow. The
empirical checkerboard copula is a multilinear extension of the empirical copula defined by

C#
n (x) =

1

n

n∑
j=1

d∏
i=1

min{max{nxi −Rji,n, 0}, 1} .

We refer to Carley and Taylor (2002); Genest, Nešlehová, and Rémillard (2017); Kojadinovic and Stemikovskaya
(2019) and references therein. And, in order to smooth the indicator function in the definition of Ĉn, set Fn,r
the probability distribution function of the Beta distribution B(r, n + 1 − r). The empirical beta copula, first
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introduced in (4.1) of Segers, Sibuya, and Tsukahara (2017), and also studied in Berghaus and Segers (2018)
and Kiriliouk, Segers, and Tsukahara (2021) for instance, is given by

Cβn(x) =
1

n

n∑
j=1

d∏
i=1

Fn,Rji,n
(xi) .

These estimators represent obviously a partial summary of the literature, but are widely used in practice.
The notation Cn will denote one of them. And the corresponding empirical copula process will be denoted
Cn =

√
n(Cn − C). If needed, particular choices of the empirical copula process can be identified as follows

C̃n =
√
n(C̃n − C), Ĉn =

√
n(Ĉn − C), C#

n =
√
n(C#

n − C) or Cβn =
√
n(Cβn − C).

3.2 Regularity conditions

Before going through our asymptotic statement, we need to introduce a list of regularity conditions. Let
consider the space `∞([0, 1]d) of all uniformly bounded real-valued functions f defined on [0, 1]d equipped with
the topology induced by the Kolmogorov norm |f |∞ = supx∈[0,1]d |f(x)|. We describe here a setting where the
weak convergence of the empirical copula processes is valid. The framework presented below reveals the progress
made over the past forty years in order to refine the assumptions. See Ruschendorf (1976), Deheuvels (1979),
Deheuvels (1980), Deheuvels (1981), van der Vaart and Wellner (1996), Fermanian et al. (2004), Genest and
Rémillard (2004), Segers (2012), Bücher and Volgushev (2013), Bormann et al. (2016), Berghaus et al. (2017),
Berghaus and Segers (2018) and Kojadinovic and Stemikovskaya (2019).

RXn For any i = 1, . . . , d the ith component sample X1i, . . . , Xni does not contain ties. When the sample
X1, . . . ,Xn is a collection of independent copies of X, the assumption RXn holds true.

RGn
For any j ∈ {1, . . . , n}, set Uj = (F1(Xj1), . . . , Fd(Xjd)). The empirical cumulative distribution function
based on U1, . . . ,Un is denoted by Gn and we set Gn =

√
n(Gn−C). The empirical process Gn is assumed

to converge weakly in `∞([0, 1]d) to a tight, centered Gaussian process GC concentrated on C0, already
defined in (19). In the independent context, the condition RGn is valid from the Donsker’s Theorem. In
the serial context however, one knows since Bücher (2015) that Rα,pow allows to derive the convergence
required on Gn.

RĊ For i ∈ {1, . . . , d}, the first-order partial derivative of C with respect to its ith argument, denoted Ċi,
exists and is continuous on the set Vi = {x ∈ [0, 1]d : 0 < xi < 1}.

RC̈ For every i1, i2 ∈ {1, . . . , d}, the second-order partial derivative of C with respect to its i1th and i2th

arguments, denoted C̈i1i2 , exists and is continuous on Vi1 ∩ Vi2 . Moreover, there exists a constant K > 0
such that, ∣∣∣C̈i1i2(x)

∣∣∣ ≤ K min

{
1

xi1(1− xi1)
,

1

xi2(1− xi2)

}
.

Rα,pow (Xn)n∈Z is a strictly stationary time series assumed to be an alpha-mixing sequence with α(k) = O(k−a),
as k tends to infinity, for some a > 1. Recall that for k positive integer

α(k) = sup {|P(A ∩B)− P(A)P(B)| , A ∈ σ(Xj , j ≤ n), B ∈ σ(Xj+k, j ≥ n), n ∈ Z} .

Rα,exp (Xn)n∈Z is a strictly stationary time series assumed to be an alpha-mixing sequence with α(k) = O(ak),
as k tends to infinity, for some a ∈ (0, 1).

The following diagram allows a quick overview of the links between the assumptions under consideration:

RXn

=⇒
i.i.d.

=⇒
RGn

=⇒Rα,pow =⇒Rα,exp

3.3 Weak convergence of the empirical processes

The next result unifies the limit theorem associated with several testing problems. Before, we set

WC(x) = GC(x)−
d∑
i=1

∂Ci(x)GC(xi,1−i), x ∈ [0, 1]d , (20)

where (xi,1−i) denotes the vector with xi in the i-th component and the other components equal to 1 and
where GC refers to the limiting process from the regularity condition (RGn

).
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Theorem 2. Assume that (H)C = M∅(C), depending through (2) on a commuting and idempotent set of
operators P1, . . . , Pd, holds true. The associated maps {MA}A∈Pd

are assumed to be Hadamard-differentiable at
C tangentially to C0. Assume RĊ for i.i.d. observations, whereas the conditions RXn

−RGn
−RĊ are required

in the serial context. Let Cn stand for C̃n, Ĉn, C
β
n or C#

n . As n tends to infinity, the joint empirical processes

converge weakly in {`∞([0, 1]d)}2d(
D∅,n, {DA,n}A∈P?

d

)
w
 

n→∞

(
D∅ := WC −M ′∅(C;WC), {DA := M ′A(C;WC)}A∈P?

d

)
. (21)

Let us provide first some comments. The convergence of the first component holds true under the Hadamard
differentiability of M∅ only. Similarly, the convergence associated to a non empty subset A only requires (HA)
and Hadamard differentiability of MA. Finally, recall from Proposition 1, that if the set {P1, . . . , Pd} always
forms a commuting family of idempotent operators, then (H) = ∩A∈P?

d
(HA), otherwise (H) ⊆ ∩A∈P?

d
(HA) only.

Remark 9. Consider the null hypothesis (H2) where the independence among subvectors is investigated. Note
that part of Theorem 8 in Kojadinovic and Holmes (2009) is recovered by Theorem 2. Let us provide another
example. When testing (H6,r), a sub-max-stability assumption, set P1(f)(x) = fr(x1/r) and complete the
collection with the identity map. Then M∅ = P1 and the convergence of the left component in (21) is exactly
the one studied in the limit theorem given by Kojadinovic et al. (2011) in their Proposition 1.

Proof of Theorem 2. Section 2 of Kojadinovic and Stemikovskaya (2019) both recalls and states that under
the regularity conditions assumed here, and for any choice Cn among the list of copula estimators given in
the introduction, as n tends to infinity, the empirical copula process Cn =

√
n(Cn − C) converges weakly in

`∞([0, 1]d) to the tight, centered Gaussian process WC given in (20). Note that by composition of Hadamard-
differentiable maps, M∅ and any MA are also Hadamard-differentiable. The functional version of the Delta
method (see Section 3.9 of van der Vaart and Wellner 1996) applied to T (f) = (f,M∅(f), {MA(f)}A∈P?

d
) yields(√

n(Cn − C),
√
n(M∅(Cn)−M∅(C)), {

√
n(MA(Cn)−MA(C))}A∈P?

d

) w
 

n→∞(
WC ,M

′
∅(C;WC), {M ′A(C;WC)}A∈P?

d

)
.

The result follows from the continuous mapping theorem applied to T (f, g, {hA}A) = (f − g, {hA}A) and using
the fact that, under (H), both M∅(C) = C and MA(C) = 0 for any A ∈ P?d .

4 Approximating the limiting processes

The weak convergence of the empirical processes has just been proved but the covariance structures of the
limiting processes D∅ = WC ,M

′
∅(C;WC) and DA = M ′A(C;WC) depend on the unknown copula C. For this

reason it is not always directly applicable for statistical testing. Multiplier bootstrap and subsampling have
been introduced in the literature to reproduce independently the asymptotic behavior of such processes. Both
are discussed in this section. Note that Genest and Rémillard (2008) establishes the validity of the parametric
bootstrap method for goodness-of-fit tests of copulas when the series are independent. In the current paper,
parametric bootstrap can be applied under (H1), (H4) or (H5) for instance. See also Rémillard (2017) when
studying some multivariate stochastic volatility models.

4.1 Subsampling empirical test processes

The subsampling method is a first substitute to approximate the distribution of D∅ and DA. See Politis and
Romano (1994) and its recent adaptation in Kojadinovic and Stemikovskaya (2019) that we servilely follow and
adapt below.

Let b < n denote the size of the samples extracted from Xn = {X1, . . . ,Xn} and let Bb,n be the corresponding
number of possible subsamples. Under the i.i.d. setting, Bb,n =

(
n
b

)
since the subsamples may be obtained

without remplacement. Since Bb,n might be too large, the complete enumeration could not be possible. The
practical solution is to obtain its stochastic approximation through a N -sample of integers I1,n, . . . , IN,n inde-
pendently extracted with replacement from {1, . . . , Bb,n}. The quantities of interest would be then computed
for these N values of the index m. In the serial context, the sampling should preserve the dependence so that

the subsamples must have consecutive index, and Bb,n = n− b+ 1. Denote by X [m]
b for m ∈ {1, . . . , Bb,n} such

b-subsamples on which are computed C̃
[m]
b , Ĉ

[m]
b , C

#,[m]
b and C

β,[m]
b the replicates of the estimators C̃n, Ĉn, C

#
n

and Cβn . As before, the notation C
[m]
b will be used when Cn represents one of the copula estimators. Set now

C̃[m]
b =

√
b(C̃

[m]
b − C̃n), Ĉ[m]

b =
√
b(Ĉ

[m]
b − Ĉn), C#,[m]

b =
√
b(C

#,[m]
b − C#

n ) and Cβ,[m]
b =

√
b(C

β,[m]
b − Cβn) the
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associated replicates of the empirical copula processes, and C[m]
b =

√
b(C

[m]
b −Cn) its generic form. All of them

are already introduced in Kojadinovic and Stemikovskaya (2019). Coming back to our specific setting, set also

D̃[m]
∅,b =

√
b
(
C̃

[m]
b −M∅(C̃

[m]
b )

)
and D̃[m]

A,b =
√
bMA(C̃

[m]
b ),

D̂[m]
∅,b =

√
b
(
Ĉ

[m]
b −M∅(Ĉ

[m]
b )

)
and D̂[m]

A,b =
√
bMA(Ĉ

[m]
b ),

D#,[m]
∅,b =

√
b
(
C

#,[m]
b −M∅(C

#,[m]
b )

)
and D#,[m]

A,b =
√
bMA(C

#,[m]
b ),

Dβ,[m]
∅,b =

√
b
(
C
β,[m]
b −M∅(C

β,[m]
b )

)
and Dβ,[m]

A,b =
√
bMA(C

β,[m]
b ) .

Again, D[m]
A,b represents one of them.

Theorem 3. Assume that (H)C = M∅(C), depending through (2) on a commuting and idempotent set of
operators P1, . . . , Pd, holds true. The associated maps {MA}A∈Pd

are assumed to be Hadamard-differentiable
at C tangentially to C0 and that {M ′A(C; ·)}A∈Pd

are continuous on `∞([0, 1]d). Assume Condition RĊ holds
true. Under one of the following three situations
- i.i.d. setting, b/n→ α ∈ [0, 1) and vn = (1− b/n)−1/2 when D stands for D̃ = D̂,D# or Dβ,
- Rα,pow holds true, b/n→ 0 and vn = 1 when D stands for D̃·,
- RXn

and Rα,pow hold true, b/n→ 0 and vn = 1, when D stands for D̂, D# or Dβ,
then (

D∅,n, vnD
[I1,n]

∅,b , vnD
[I2,n]

∅,b , {DA,n}A∈P?
d
,
{
vnD

[I1,n]
A,b

}
A∈P?

d

,
{
vnD

[I2,n]
A,b

}
A∈P?

d

)
converges weakly in {`∞([0, 1]d)}3×2d to(

D∅,D
[1]
∅ ,D

[2]
∅ , {DA}A∈P?

d
,
{
D[1]
A

}
A∈P?

d

,
{
D[2]
A

}
A∈P?

d

)
,

where D[1]
∅ , D[2]

∅ are independent copies of D∅ and D[1]
A , D[2]

A are independent copies of DA.

Following Berghaus, Bücher, and Volgushev (2017) and Berghaus and Segers (2018) for instance we provide,
under stronger assumptions, the weak convergence with respect to stronger metrics. It also includes the validity
of the subsampling methodology for the empirical copula processes, as it has been done in Kojadinovic and
Stemikovskaya (2019). Let ∨ and ∧ stand respectively for the maximum and the minimum. The weight function
considered in the literature is

g(x) =

d∧
i=1

xi ∧
d∨

k=1
k 6=i

(1− xk)

 , x ∈ [0, 1]d . (22)

Theorem 4. Assume that (H)C = M∅(C), depending through (2) on a commuting and idempotent set of
operators P1, . . . , Pd, holds true. The associated maps {MA}A∈Pd

are assumed to be Hadamard-differentiable at
C tangentially to C0 and that {M ′A(C; ·)}A∈Pd

are continuous and linear on `∞([0, 1]d). Assume both Conditions
RĊ and RC̈ hold true. Under one of the two following situations
- i.i.d. setting, b/n→ α ∈ [0, 1), w ∈ [0, 1/2) and vn = (1− b/n)−1/2

- RXn
and Rα,exp hold true, b/n→ 0, w ∈ [0, 1/2) and vn = 1,

then, when D stands for D# or Dβ,D∅,n
gw

, vn
D[I1,n]

∅,b

gw
, vn

D[I2,n]

∅,b

gw
,

{
DA,n
gw

}
A∈P?

d

,

{
vn

D[I1,n]
A,b

gw

}
A∈P?

d

,

{
vn

D[I2,n]
A,b

gw

}
A∈P?

d


converges weakly in {`∞([0, 1]d)}3×2d toD∅

gw
,
D[1]
∅
gw

,
D[2]
∅
gw

,

{
DA
gw

}
A∈P?

d

,

{
D[1]
A
gw

}
A∈P?

d

,

{
D[2]
A
gw

}
A∈P?

d

 ,

where D[1]
∅ , D[2]

∅ are independent copies of D∅ and D[1]
A , D[2]

A are independent copies of DA.
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4.2 The multiplier bootstrap procedure

In statistical inference on copulas, the multiplier bootstrap is a well-established resampling technique for ap-
proximating the distribution of the limiting process. It was initially proposed by Scaillet (2005) and further
investigated in Rémillard and Scaillet (2009), Bücher and Dette (2010), Segers (2012), Bücher and Ruppert
(2013) for instance.

For the sake of simplicity within this section, we assume that the original time series is serially independent.
The strong mixing case can be handled in a manner analogous to that of Bücher and Kojadinovic (2016) where
further details may be found to construct the serial dependence of the multipliers. The multiplier bootstrap
procedure relies on consistent estimators of the partial derivatives involved in (20). Consider then those based on
finite-differencing of the empirical copula estimator. Let hn be a sequence tending to 0 such that infn hn

√
n > 0.

Define

Ĉ [i]
n (x) =



Ĉn(x + hnei)− Ĉn(x− hnei)

2hn
xi ∈ [hn, 1− hn]

Ĉn(x1, . . . , xi−1, hn, xi+1, . . . , xd)

hn
xi ∈ [0, hn)

Ĉn(x)− Ĉn(x1, . . . , xi−1, 1− hn, xi+1, . . . , xd)

hn
xi ∈ (1− hn, 1] .

Now, let N be a large integer. Below, for any A ∈ Pd we define N processes that are asymptotic independent

copies of DA. The multipliers {Z(k)
j,A,n}j∈N for k = 1, . . . , N are defined as independent sequences of independent

and identically distributed random variables with mean 0 and variance 1, which are independent of X . For
k ∈ {1, . . . , N}, and any A ∈ Pd, set

Ĉ(k)
A,n(x) = G(k)

A,n(x)−
d∑
i=1

Ĉ [i]
n (x)G(k)

A,n(x(i))

in which

G(k)
A,n(x) =

1√
n

n∑
j=1

Z
(k)
j,A,n

{
1Ûj≤x − Ĉn(x)

}
.

Then, one can prove that(
Ĉn,

{
Ĉ(1)
A,n, . . . , Ĉ

(N)
A,n

}
A∈Pd

)
w
 

n→∞

(
WC ,

{
W(1)
A,C , . . . ,W

(N)
A,C

}
A∈Pd

)
(23)

in `∞([0, 1]d)2
dN+1 where {W(1)

A,C , . . . ,W
(N)
A,C}A∈Pd

are all independent copies of WC . In consequence, set for

any k ∈ {1, . . . , N}, both D̂(k)
∅,n = Ĉ(k)

∅,n −M
′
∅(Ĉn; Ĉ(k)

∅,n) and D̂(k)
A,n = M ′A(Ĉn; Ĉ(k)

A,n) for any A ∈ Pd. From the

continuous mapping theorem and the fact that Ĉn converges uniformly in probability to C, one deduces that(
{D̂A,n, D̂(1)

A,n, . . . , D̂
(N)
A,n}A∈Pd

)
w
 

n→∞

(
{DA,D(1)

A , . . . ,D(N)
A }A∈Pd

)
in `∞([0, 1]d)2

d(N+1) where {D(1)
A , . . . ,D(N)

A }A∈Pd
are independent copies of {DA}A∈Pd

.

Remark 10. When (H8,r) is under study, the previous convergence restricted to A = ∅ is in agreement with
Proposition 1 of Kojadinovic et al. (2011).

5 The test statistics

Natural measures of departure from the null hypothesis are Kolmogorov–Smirnov or Cramér–von Mises statis-
tics, easily derived from the previous test processes. We recall their expressions and derive associated con-
vergence results. As these statistics are not distribution-free, the subsampling methodology, the multiplier
bootstrap explained in the previous section or the parametric bootstrap will be needed to approximate p-values.

5.1 Statistics derived from the test process and its functional decomposition

Assume that Conditions of Theorem 2 hold true and let Cn stand for one of the copula estimators considered
therein. The Cramér–von Mises statistic derived from the testing process is given by

I∅,n =

∫
[0,1]d
{D∅,n(x)}2dx = n

∫
[0,1]d
{Cn(x)−M∅(Cn)(x)}2dx = n

∫
[0,1]d
{Cn(x)− (

d∏
i=1

Pi)(Cn)(x)}2dx ,
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and the 2d − 1 Cramér–von Mises statistics obtained from the functional decomposition are given by

IA,n =

∫
[0,1]d
{DA,n(x)}2dx = n

∫
[0,1]d
{MA(Cn)(x)}2dx = n

∫
[0,1]d
{(
∏
i∈A

(I − Pi)
∏
i/∈A

Pi)(Cn)(x)}2dx ,

for any A ∈ P?d . For the sake of brevity, we define from now the case A = ∅ and A 6= ∅ through a unique
formula, valid for any A ∈ Pd even if the definition of D∅,n and DA,n differ. So, similarly to the CVM statistics
above, the Kolmogorov-Smirnov statistics are defined by

UA,n = sup
x∈[0,1]d

|DA,n(x)|2, ∀A ∈ Pd .

By application of the continuous mapping theorem combined with Theorem 2 we obtain that the random vector
({IA,n}A∈Pd

, {UA,n}A∈Pd
) converges in distribution to({∫

[0,1]d
D2
A(x)dx

}
A∈Pd

,

{
sup

x∈[0,1]d
D2
A(x)

}
A∈Pd

)
.

In some particular cases, and when Cn is taken as Ĉn it is possible to provide the expression of the statistics
in terms of the pseudo-observations only. See for instance Section 4 in Genest et al. (2007) when complete
independence is under testing. See also Proposition 10 and Proposition 13 in Kojadinovic and Holmes (2009)
when testing concerns independence by blocks. In general, we proceed by numerical approximation based on a
grid to calculate the test statistics. Let K be a large integer and let w1, . . . ,wK be K uniformly spaced points
on (0, 1)d. Then for any A ∈ Pd, the integral and the supremum can be approximated by

IA,n '
1

K

K∑
k=1

{DA,n(wk)}2 and UA,n ' max
k=1,...,K

|DA,n(wk)|2 .

Of greater interest is the possibility of replacing in the Cramér–von Mises statistics IA,n the Lebesgue

product measure dx on [0, 1]d by the empirical dC̃n(x). We thus introduce, for any A ∈ Pd, the alternative
Cramér–von Mises statistics as

SA,n =

∫
[0,1]d
{DA,n(x)}2dC̃n(x) .

Following the proof of Theorem 3 in Kojadinovic et al. (2011), the same ideas allow to state that under
assumptions of Theorem 2

({SA,n}A∈Pd
)

w
 

n→∞

({∫
[0,1]d

D2
A(x)dC(x)

}
A∈Pd

)
.

Set Ûj·,n = (Rj1,n/n, . . . , Rjd,n/n) where we recall that Rji,n denotes the rank of Xji among X1i, . . . , Xni. The
approximations of the previous statistics are then for any A ∈ Pd

SA,n =
1

n

n∑
j=1

{DA,n(Ûj·,n)}2 .

Finally, to increase the power of the Cramér von Mises statistics, it might be useful to introduce a weight
function. See De Wet (1980), or more recently Berghaus and Segers (2018), where a weight function emphasizing
the tails is introduced when copula differ from the independence copula in the tails mainly. Assume now that
the hypotheses of Theorem 4 hold true. Let us consider a weight function q such that g/q is bounded over [0, 1]d.
The weighted versions of the statistics are then as follows

IA,n,q =

∫
[0,1]d

{
DA,n(x)

q(x)

}2

dx ' 1

k

K∑
k=1

{
DA,n(wk)

q(wk)

}2

SA,n,q =

∫
[0,1]d

{
DA,n(x)

q(x)

}2

dC̃n(x) =
1

n

n∑
j=1

{
DA,n(Ûj·,n)

q(Ûj·,n)

}2

UA,n,q = sup
x∈[0,1]d

{
DA,n(x)

q(x)

}2

' max
k=1,...,K

{
DA,n(wk)

q(wk)

}2

.

One can easily obtain that ({IA,n,q}A∈Pd
, {SA,n,q}A∈Pd

, {UA,n,q}A∈Pd
) converges in distribution to({∫

[0,1]d

{
DA(x)

q(x)

}2

dx

}
A∈Pd

,

{∫
[0,1]d

{
DA(x)

q(x)

}2

dC(x)

}
A∈Pd

,

{
sup

x∈[0,1]d

DA(x)

q(x)

}
A∈Pd

)
.
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5.2 Practical implementation of the tests

Let w = ({wA}A∈Pd
) be a (normalized) vector of positive weights. The latter represents the importance we put

in the decision to the equality C = M∅(C) through w∅, or to MA(C) = 0 through wA since our setting provides
(H) ⊂ ∩A∈Pd

(HA). The test statistic

Sw,n =
∑
A∈Pd

wASA,n =
1

n

n∑
j=1

∑
A∈Pd

wA{DA,n(Ûj·,n)}2 (24)

should not be too large. The computation of the associated p-value is explained below. Similarly, the statistics
Iw,n or Uw,n could be constructed from the collections IA,n or UA,n. It could also be adapted for the q-weighted
versions of these statistics.

Algorithm 1: Approximating the p-value

Compute S
(0)
w,n the value of Sw,n on the original series

Generate from subsampling D[k]
A,n or from multiplier bootstrapping D̂(k)

A,n for k = 1, . . . , N

Compute S
(1)
w,n, . . . , S

(N)
w,n the value of Sw,n on one of these processes

Define an approximate p-value for the test statistic as following 1
N+1

(
1
2 +

∑N
k=1 1{S(k)

w,n > S
(0)
w,n}

)
Taking into account both Section 3 and Section 4, the p-values obtained from the statistics Sw,n (as well

as p-values computed from I or U statistics) are approximately uniform on [0, 1] under the null hypothesis. In
the case of goodness-of-fit tests (H) C = Cθ, samples of reference should not be obtained from subsampling or
multiplier bootstrapping but by parametric bootstrapping instead. The alternative version of the algorithm is
given below.

Algorithm 2: Approximating the p-value (Goodness-of-fit tests)

Compute the pseudo-observations U1, . . . ,Un on the original series, θn = θ̂(U1, . . . ,Un) and Sw,n,θn
for k = 1 to N do

Generate U
{k}
1 , . . . ,U

{k}
n from Cθn

Compute θ
{k}
n = θ̂(U

{k}
1 , . . . ,U

{k}
n ) and S

w,n,θ
{k}
n

on the parametric sample

end for
Define an approximate p-value for the test statistic as following 1

N+1

(
1
2 +

∑N
k=1 1{S

w,n,θ
{k}
n

> Sw,n,θn}
)

5.3 Numerical experiments

In this final section, we shall consider the use of the functional decomposition in two experiments and analyze
the results. First, we explore the testing problem (H2) of block independence and specifically one of the practical
settings imagined in Kojadinovic and Holmes (2009). We investigate then the goodness-of-fit test (H4) where
two archimedean copulas, namely Clayton and Gumbel, are opposed. These copulas have been chosen as they
are part of the first example in the routine gofCopula of the R copula package (Hofert et al., 2022).

5.3.1 Independence between three continuous r−dimensional random vectors

We adapt below Section 4 from Kojadinovic and Holmes (2009) that implements testing procedures under (H2).
Note that under independence or independence by block, the p-values associated with the statistics Iw,n for
weights of the form w = 1A are also asymptotically mutually independent. As a consequence, individual critical
values can be chosen to achieve an asymptotic global significance level. Furthermore, it is possible to combine
individual p-values and get a global p-value thanks to the method à la Fisher (the resulting statistics is denoted
Wn) as well as à la Tippett (the resulting statistics is denoted Tn). For more details, we refer to the discussion
in Genest and Rémillard (2004) or the paragraph “Combining p-values” in Section 3 of Kojadinovic and Holmes
(2009).

Let X = (X1, . . . , X12) and consider the p = 3 groups {X1, . . . , X4}, {X5, . . . , X8} and {X9, . . . , X12}. The
dependence is described by the normal copula. The d× d correlation matrices Σ are structured as follows:
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X1 . . . X4 X5 . . . X8 X9 . . . X12

X1 1 ρintra
... ρinter ρinter
X4 ρintra 1
X5 1 ρintra
... ρinter ρinter
X8 ρintra 1
X9 1 ρintra
... ρinter ρinter

X12 ρintra 1

The quantity ρinter (resp. ρintra) controls the amount of dependence among (resp. within) the three random
vectors. The values ρinter ∈ {0.000, 0.025, 0.050, . . . , 0.275, 0.300} for ρintra = 0.5 are considered under the
normal copula. We generate 1000 samples composed of n = 200 independent realizations of X. Note that, in
all the simulations, the number of randomized samples is set to 1000.

Figure 1 shows the rejection rates of the null hypothesis, the proportion of times that the different tests
reject (H2), with respect to the value of ρinter. The significance level is arbitrarily set to 5% and plotted in the
figure. The global Cramér-von-mises statistic In = I∅,n, as well as Wn the test statistic à la Fisher, and Tn the
test statistic à la Tippett are those studied in Figure 3 of Kojadinovic and Holmes (2009), with the difference
that n = 200 here. Four additional measures of the form Sw,n are included. Recall that taking into account the
form of the null hypothesis (H2) with p = 3 blocks, the weights w have the following structure

w = (w∅, w{1}, w{2}, w{3}, w{12}, w{13}, w{23}, w{123}) .

More precisely, we consider

• w1 = (1, 0, 0, 0, 0, 0, 0, 0) that only measures the left hand term of the decomposition,

• w2 = (1, 0, 0, 0, 1, 1, 1, 1) that combines the left hand term of the decomposition with the right hand terms
of order 2 and 3 (recall that the right hand terms associated with singletons all vanish),

• w3 = (0, 0, 0, 0, 1, 1, 1, 1) that only combines the non-null right hand terms of the decomposition,

• w4 = (8.253373, 0, 0, 0, 2.373714, 2.344580, 2.35670, 1.989524) that combines left and right hand terms
proportionally to some variances. It is an empirical choice where each wA is proportional to the estimate
of var(SA,n) obtained by block bootstrapping.

As can be seen in Figure 1, the S-type statistics perform best among all the approaches, with one exception:
Sw3,n appears twice below the values of Wn. Additionally, there is no uniformly better S, even if Sw2,n is
roughly speaking the best choice globally. However, an empirical choice of the weights as defined in Sw4,n yields
a better rate for the particular value ρinter = 0.05. Note that Sw1,n which is the usual S-version from the
literature leads to results relatively close to those given by Sw2,n. As a conclusion, and even if our purpose in
this paper is not to construct better statistics rather than a unified theory, one should retain the following. The
use of the functional decomposition

M∅(C)− C =
∑
A∈P?

p

MA(C)

allows to improve the well-known Cramér-von-Mises statistics Sw1,n = S∅,n (that only considers the left hand
member of the above equality) by defining instead Sw2,n =

∑
A∈Pp

SA,n (that takes into account both the left

hand member and all the right hand member terms of the above equality).
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Figure 1: Percentage of rejection of (H2) that stipulates the block independence of {X1, . . . , X4}, {X5, . . . , X8}
and {X9, . . . , X12} that comes from Normal copula with correlation matrices Σ whereas the null hypothesis
(H2) is only true under the x-axis value ρinter = 0.00. The statistics Wn, Tn and In are those presented in
Kojadinovic and Holmes (2009) and available in the routine multIndepTest of the R package copula. The
statistics Sw,n as defined in (24) are evaluated for several weights w as indicated in the text.

5.3.2 Goodness-of-fit tests

Turning to the Goodness-of-Fit tests (H4), we consider the Clayton or the Gumbel family in a 3-dimensional
setting. These classes will both be used as the generator of datasets or as the family being tested. To generate
the original samples, three values of Kendall’s τ are chosen: τ = .1, τ = .2 and τ = .3. Test statistics Sw,n
given by (24) and where

w = (w∅, w{1}, w{2}, w{3}, w{12}, w{13}, w{23}, w{123})

are computed for different weights: w1 = (1, 0, 0, 0, 0, 0, 0, 0), w2 = (1, 0, 0, 0, 1, 1, 1, 1), w3 = (0, 0, 0, 0, 1, 1, 1, 1).
The results are provided in Table 1 for n = 100. The first lines are dedicated to the test (H4) when ϕ is
the Clayton copula. Similarly, Gumbel copula is tested in the last lines of the table. The parameter associ-
ated with the generator ϕ is estimated at each step as the mean of empirical Kendall’s τ . The parametric
bootstrap described in Algorithm 2 with nboot = 200 is used to compute the p-value. The rejection rates are
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estimated through nrep = 500 repetitions of each experiment. Two characteristics are of interest: the empiri-
cal level might be close to the nominal level, arbitrarily fixed at 0.05, and the empirical power. We also add
another procedure in Table 1. The line gofCopula corresponds to the results associated with the command
gofCopula(copul_test, rCopula(n, copul_simu), N=nboot, estim.method = "itau")$p.value.

Copulas being simulated

Clayton Gumbel

τ = .1 τ = .2 τ = .3 τ = .1 τ = .2 τ = .3

Clayton w1 0.056 0.044 0.048 0.364 0.690 0.934

C
o
p

u
la

s
b

e
in

g
te

st
e
d w2 0.052 0.044 0.038 0.294 0.674 0.924

w3 0.044 0.060 0.046 0.160 0.494 0.852

gofCopula 0.050 0.044 0.044 0.214 0.670 0.924

Gumbel w1 0.282 0.720 0.922 0.070 0.048 0.056

w2 0.306 0.766 0.948 0.036 0.042 0.052

w3 0.254 0.710 0.960 0.024 0.042 0.048

gofCopula 0.288 0.716 0.930 0.030 0.062 0.054

Table 1: Rejection rates of the null hypothesis. In the first lines, Clayton copula is being tested, whereas
Gumbel copula is tested in the last lines of the table. The datasets are simulated for three different strengths
of dependence, calibrated through the Kendall’s τ : .1, .2 and .3. The test statistics Sw,n are studied for three
different weights: w1, w2 and w3 (definition in the text). Additional parameters of the numerical study: sample
size n = 100, parametric bootstrap size nboot = 200 and number of repetitions of the experiment nrep = 500.

As already explained, the goal of the paper is not to find an overall best test statistics but to show the
interest of a functional decomposition chosen in accordance with the null hypothesis. The analysis of Table 1 is
not straightforward but the results are interesting. First, on the right upper corner of the table, one can remark
that Sw1,n always dominates in discriminating true Gumbel from supposed Clayton. This becomes true for
Sw2,n in the left bottom corner, except when the dependence becomes stronger with τ = 0.3, the more powerful
is then Sw3,n.

6 Concluding remarks

Identifying and modeling dependencies with copulas remain an important topic, which has become very popular
over the last decades since it is applied in almost every discipline. The aim in this paper is to provide a
kind of unification of various papers, as Deheuvels (1981), Genest and Rémillard (2004), Genest et al. (2007),
Kojadinovic and Holmes (2009), Kojadinovic et al. (2011) among others. All derive copula-based tests of the
structure of dependence. The solution here is to dip them in the functional decomposition context of Kuo et al.
(2010) (and its recent version of Mercadier et al. (2022) which removes the linearity assumption) in order to
reveal a common pattern. Then, the goal of the paper is not really to improve a methodology but to transform
already known tools in particular cases of more general statements.

The numerical section provides two simple studies, one analyzing in a (d =)12-dimensional setting the
independence among p = 3 blocks and one looking at particular archimedean copula families in dimension d = 3.
Of course, we conclude that there exists no best procedure even if one can take advantage in analyzing the
functional decomposition associated with the null hypothesis in order to derive powerful weighted test statistics.

The dimensions d or p are small in our experiments. So the current paper provides an interesting perspective
for high dimensional problems. The practical implementation of the tests relies indeed on a trade-off between
exhaustivity (all subsets of Pd) and dimensionality (exponential growth in d). When d becomes larger, it could
be interesting to use only part of the subsets. With the help of the weight w introduced in the definition of the
test statistics, one can focus only in a given size of A or in all sizes that do not exceed a given size. We can
control this way the underlying complexity of the method. The question will be then: how much this selection
affects the corresponding power of the test procedure?
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7 Proofs of Section 4

Proof of Theorem 3. Let C[m]
b stands for C̃[m]

b , Ĉ[m]
b , C#,[m]

b or Cβ,[m]
b under the first item, only C̃[m]

b under

the second item and Ĉ[m]
b , C#,[m]

b or Cβ,[m]
b,c under the third one. Since by assumption both M∅(C) = C and

MA(C) = 0 for any subset A ∈ P?d , one can observe that,

D∅,n = Cn −
√
n

(
M∅

(
C +

Cn√
n

)
−M∅(C)

)
(25)

DA,n =
√
n

(
MA

(
C +

Cn√
n

)
−MA(C)

)
(26)

D[m]
∅,b = C[m]

b +

√
b

n
Cn −

√
b

(
M∅

(
C +

C[m]
b√
b

+
Cn√
n

)
−M∅(C)

)
(27)

D[m]
A,b =

√
b

(
MA

(
C +

C[m]
b√
b

+
Cn√
n

)
−MA(C)

)
(28)

for m = I1,n or I2,n in the last two displays. From Theorem 3.3 in Kojadinovic and Stemikovskaya (2019), one

knows that in each of these situations
(
Cn, vnC

[I1,n]
b , vnC

[I2,n]
b

)
converges weakly in `∞([0, 1]d)3 to

(
WC ,W[1]

C ,W
[2]
C

)
where W[1]

C and W[2]
C are independent copies of WC . As a consequence, using the fact that b = o(n), the following(

Cn, vnC
[I1,n]
b + vn

√
b

n
Cn, vnC

[I2,n]
b + vn

√
b

n
Cn

)

shares the same asymptotic behavior. Continuous mapping theorem with the map

(f1, f2, f3) 7→ (−M ′∅(C; f1),−M ′∅(C; f2),−M ′∅(C; f3), {M ′A(C; f1)}A, {M ′A(C; f2)}A, {M ′A(C; f3)}A)

then delivers the weak convergence of(
−M ′∅ (C;Cn) ,−M ′∅

(
C; vnC

[I1,n]
b + vn

√
b

n
Cn

)
,−M ′∅

(
C; vnC

[I2,n]
b + vn

√
b

n
Cn

)
,

{M ′A (C;Cn)}A ,

{
M ′A

(
C; vnC

[I1,n]
b + vn

√
b

n
Cn

)}
A

,

{
M ′A

(
C; vnC

[I2,n]
b + vn

√
b

n
Cn

)}
A

)

in `∞([0, 1]d)3×2
d

to(
−M ′

∅ (C;WC) ,−M ′
∅

(
C;W[1]

C

)
,−M ′

∅

(
C;W[2]

C

)
,
{
M ′

A (C;WC)
}
A ,
{
M ′

A

(
C;W[1]

C

)}
A
,
{
M ′

A

(
C;W[2]

C

)}
A

)
.

It remains to show that, for m = I1,n or I2,n,

sup
[0,1]d

∣∣D∅,n − Cn +M ′∅ (C;Cn)
∣∣ P−→ 0 ,

sup
[0,1]d

∣∣∣∣∣vnD[m]
∅,b − vnC

[m]
b − vn

√
b

n
Cn +M ′∅

(
C; vnC[m]

b + vn

√
b

n
Cn

)∣∣∣∣∣ P−→ 0 ,

sup
[0,1]d

∣∣∣∣DA,ngw
−M ′A (C;Cn)

∣∣∣∣ P−→ 0 ,

sup
[0,1]d

∣∣∣∣∣vnD[m]
A,b −M

′
A

(
C; vnC[m]

b + vn

√
b

n
Cn

)∣∣∣∣∣ P−→ 0 ,

which are, once the equations (25), (26), (27) and (28) taken into account, only the consequences of what
precedes combined with the functional Delta Method applied to the maps M∅ or MA.

Proof of Theorem 4. Starting from Theorem 4.5 in Kojadinovic and Stemikovskaya (2019), one knows that(
Cn
gw

, vn
C[I1,n]
b

gw
, vn

C[I2,n]
b

gw

)
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converges weakly in `∞([0, 1]d)3 to (
WC

gw
,
W[1]
C

gw
,
W[2]
C

gw

)
.

Consequently, using the fact that b = o(n), the following(
Cn
gw

, vn
C[I1,n]
b

gw
+ vn

√
b

n

Cn
gw

, vn
C[I2,n]
b

gw
+ vn

√
b

n

Cn
gw

)

shares the same asymptotic behaviour. Using the continuous mapping theorem with the map

(f1, f2, f3) 7→ (−M ′∅(C; f1),−M ′∅(C; f2),−M ′∅(C; f3), {M ′A(C; f1)}A, {M ′A(C; f2)}A, {M ′A(C; f3)}A)

we thus obtain that(
−M ′∅

(
C;

Cn
gw

)
,−M ′∅

(
C; vn

C[I1,n]
b

gw
+ vn

√
b

n

Cn
gw

)
,−M ′∅

(
C; vn

C[I2,n]
b

gw
+ vn

√
b

n

Cn
gw

)
,

{
M ′A

(
C;

Cn
gw

)}
A
,

{
M ′A

(
C; vn

C[I1,n]
b

gw
+ vn

√
b

n

Cn
gw

)}
A

,

{
M ′A

(
C; vn

C[I2,n]
b

gw
+ vn

√
b

n

Cn
gw

)}
A

)

converges weakly in `∞([0, 1]d)3×2
d

to(
−M ′

∅

(
C;

WC

gw

)
,−M ′

∅

(
C;

W[1]
C

gw

)
,−M ′

∅

(
C;

W[2]
C

gw

)
,

{
M ′

A

(
C;

WC

gw

)}
A
,

{
M ′

A

(
C;

W[1]
C

gw

)}
A

,

{
M ′

A

(
C;

W[2]
C

gw

)}
A

)

which is equal to−
M ′

∅ (C;WC)

gw
,−

M ′
∅

(
C;W[1]

C

)
gw

,−
M ′

∅

(
C;W[2]

C

)
gw

,

{
M ′

A (C;WC)

gw

}
A
,

M ′
A

(
C;W[1]

C

)
gw


A

,

M ′
A

(
C;W[2]

C

)
gw


A


by linearity of the Hadamard derivatives. It may be shown, for m = I1,n or I2,n, that

sup
[0,1]d

∣∣∣∣D∅,ngw
− Cn
gw
−M ′∅

(
C;

Cn
gw

)∣∣∣∣ P−→ 0 ,

sup
[0,1]d

∣∣∣∣∣vnD
[m]
∅,b

gw
− vn

C[m]
b

gw
− vn

√
b

n

Cn
gw
−M ′∅

(
C; vn

C[m]
b

gw
+ vn

√
b

n

Cn
gw

)∣∣∣∣∣ P−→ 0 ,

sup
[0,1]d

∣∣∣∣DA,ngw
−M ′A

(
C;

Cn
gw

)∣∣∣∣ P−→ 0 ,

sup
[0,1]d

∣∣∣∣∣vnD
[m]
A,b

gw
−M ′A

(
C; vn

C[m]
b

gw
+ vn

√
b

n

Cn
gw

)∣∣∣∣∣ P−→ 0 ,

which are, once the equations (25), (26), (27) and (28) taken into account, only the consequences of the
application of the Delta Method with the maps M∅ or MA and the preceding convergences.
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A. Bücher and H. Dette. A note on bootstrap approximations for the empirical copula process. Statistics & Probability
Letters, 80(23-24):1925–1932, 2010.

19
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A. Bücher and M. Ruppert. Consistent testing for a constant copula under strong mixing based on the tapered block
multiplier technique. Journal of Multivariate Analysis, 116:208–229, 2013.
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de l’Académie Royale de Belgique, 65(1):274–292, 1979.

P. Deheuvels. Non parametric tests of independence. In Jean-Pierre Raoult, editor, Statistique non Paramétrique
Asymptotique, pages 95–107, Berlin, Heidelberg, 1980. Springer Berlin Heidelberg.

P. Deheuvels. An asymptotic decomposition for multivariate distribution-free tests of independence. Journal of Multi-
variate Analysis, 11(1):102–113, 1981.

B. Efron and C. Stein. The jackknife estimate of variance. The Annals of Statistics, 9(3):586–596, 1981.

J.-D. Fermanian, D. Radulovic, and M. Wegkamp. Weak convergence of empirical copula processes. Bernoulli, 10(5):
847–860, 2004.

C. Genest and B. Rémillard. Tests of independence and randomness based on the empirical copula process. Test, 13(2):
335–370, 2004.

C. Genest and B. Rémillard. Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models.
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C. Genest, J. Nešlehová, and J.-F. Quessy. Tests of symmetry for bivariate copulas. Annals of the Institute of Statistical
Mathematics, 64(4):811–834, 2012.
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