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Abstract 

Background:  Post‐intensive care syndrome (PICS) encompasses physical, cognition, and mental impairments 
persisting after intensive care unit (ICU) discharge. Ultimately it significantly impacts the long‐term prognosis, both in 
functional outcomes and survival. Thus, survivors often develop permanent disabilities, consume a lot of healthcare 
resources, and may experience prolonged suffering. This review aims to present the multiple facets of the PICS, deci‑
pher its underlying mechanisms, and highlight future research directions.

Main text:  This review abridges the translational data underlying the multiple facets of chronic critical illness (CCI) 
and PICS. We focus first on ICU-acquired weakness, a syndrome characterized by impaired contractility, muscle wast‑
ing, and persisting muscle atrophy during the recovery phase, which involves anabolic resistance, impaired capacity 
of regeneration, mitochondrial dysfunction, and abnormalities in calcium homeostasis. Second, we discuss the clinical 
relevance of post-ICU cognitive impairment and neuropsychological disability, its association with delirium during the 
ICU stay, and the putative role of low-grade long-lasting inflammation. Third, we describe the profound and persistent 
qualitative and quantitative alteration of the innate and adaptive response. Fourth, we discuss the biological mecha‑
nisms of the progression from acute to chronic kidney injury, opening the field for renoprotective strategies. Fifth, 
we report long-lasting pulmonary consequences of ARDS and prolonged mechanical ventilation. Finally, we discuss 
several specificities in children, including the influence of the child’s pre-ICU condition, development, and maturation.

Conclusions:  Recent understandings of the biological substratum of the PICS’ distinct features highlight the need 
to rethink our patient trajectories in the long term. A better knowledge of this syndrome and precipitating factors is 
necessary to develop protocols and strategies to alleviate the CCI and PICS and ultimately improve patient recovery.

Keywords:  Post-ICU syndrome, Chronic critical illness, Long-term outcome, ICU sequelae, Neuromuscular disorders, 
Cognitive impairment, Acquired immunosuppression
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Introduction
Critically ill patients’ survivors often acquire multi-organ 
long-lasting sequelae described as chronic critical illness 
(CCI) and post-intensive care syndrome (PICS). The CCI 
is usually defined as a subacute disease state requiring 
high intensity of care for a protracted period, charac-
terized by lengthy hospital stays, intense suffering, high 

Open Access

*Correspondence:  jeremie.joffre@aphp.fr

20 Medical Intensive Care Unit, Saint Antoine University Hospital, APHP, 
Sorbonne University, 75012 Paris, France
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-4465-8392
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13613-022-01038-0&domain=pdf


Page 2 of 14Voiriot et al. Annals of Intensive Care           (2022) 12:58 

mortality rates, and substantial resource consumption. 
In contrast, the PICS represents the remaining health 
issues caused by the ICU stay after hospital discharge. 
These terms encompass several distinct pathological 
and physiological processes that vary among the initial 
organ injury and the underlying conditions but ultimately 
impact the functional outcome and long-term survival.

Inflammation, catabolism, and neuroendocrine disor-
der, also called “Persistent Inflammation, Immunosup-
pression, and Catabolism Syndrome,” precipitate chronic 
organ failure and frailty, delay adverse clinical outcomes, 
and govern clinical trajectories. Therefore, despite a sub-
stantial decrease in ICU mortality, the rate of patients 
discharged to rehabilitation or long-term facilities 
increases substantially [1]. As today around 50% of ICU 
patients in OECD countries are over 65 years of age, with 
increasing comorbidities and frailty criteria, an ICU stay 
can induce a significant downturn and compromise suc-
cessful aging.

Today accumulative evidence reported that acute organ 
failure, even reversible, can cause chronic disorder at 
a distance or precipitate other systems’ degradation by 
organs interplays. This review describes the common or 
organ-specific pathophysiological mechanisms leading 
to neurocognitive, muscular, respiratory, renal, and car-
diovascular long-lasting functional impairment or frailty 
(Fig.  1). The specific case of children’s ICU survivors is 
also discussed. Each section describes the established or 

putative cellular mechanisms involved and their potential 
consequences for the clinician.

Catabolism syndrome and neuromuscular disorders
Critical illness polyneuropathy (CIP) and critical ill-
ness myopathy (CIM), clinically defined by a Medical 
Research Council (MRC) sum score < 48, contribute 
unequivocally to ICU-acquired weakness (ICUAW). 
Patients with ICUAW experience poor short-term conse-
quences (e.g., increased mechanical ventilation duration, 
length of stay, and in-hospital mortality) [2]. ICUAW 
also impacts long-term outcomes. A low MRC score 
at ICU discharge, even below 55, was associated with 
increased medium and long-term mortality [3–5]. Iso-
lated diaphragmatic dysfunction was not associated with 
increased 2-year mortality, unlike isolated limb muscle 
weakness, but when both are combined, the prognosis 
worsened [5]. Post-ICU follow-up studies also revealed 
that ICU survivors, including COVID-19 patients [6, 7], 
frequently exhibited sustained weakness and long-term 
physical consequences. In the year following ICU dis-
charge, survivors displayed a severe reduction in force 
development and endurance contraction [8], reported 
by patients as impacting physical performance and 
health-related QOL [9]. These consequences persist at 
5 years with a persistent limitation in the 6-min walk test 
[10–12], an impairment in aerobic capacities (decrease 
in VO2 max) frequently involved in muscle limitations 
[13], and still have an impact on physical performance 

Fig. 1  ICU survivors with post-intensive care syndrome. Clinical characteristics and consequences, and futures research directions for each 
long-lasting sub-syndrome after ICU stay
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and health-related QOL [10–12]. This has been mainly 
studied after septic shock [9] and ARDS [10–12]. Such 
consequences on physical performance ultimately impact 
the autonomy of patients. In one study, almost half of 
patients who lived at home independently before hospi-
talization lost this ability 6  months after ICU stay [14]. 
However, the subsequent trajectory of ICU survivors is 
variable [15]. While some will improve their functional 
status, others will never recover. For example, two-thirds 
of patients surviving septic shock did not recover their 
previous physical status at 1 year [10]. Diagnostic tools to 
predict this evolution are currently limited.

Although CIP persists in nearly half of surviving ICU 
patients [16, 17], both animal and human studies suggest 
that the neural component is little involved in sustained 
ICUAW. Conversely, alteration of the muscle component 
would be the main mechanism [10, 18]. Sustained weak-
ness following CIM is characterized by strength loss due 
to impaired contractility and muscle wasting. Following 
the acute insult, proteolysis pathways are intensely acti-
vated—due to energetic impairment and increased pro-
inflammatory mediators—and are directly involved in 
muscle wasting [19, 20]. Although proteolysis appears 
to be deleterious to muscle mass, it is essential to mus-
cle homeostasis [21]. In addition, to providing substrates 
to maintain an energetic level, the ubiquitin–proteasome 
system (UPS) allows the clearance of non-functional 
cleaved proteins. In the rat, proteasomal overload was 
associated with a necrotizing muscle phenotype during 
long-term critical illness, suggesting an accumulation of 
proteins insufficiently degraded by UPS [22]. Further-
more, early or late pharmacological inhibition of the 
proteasome by bortezomib in an experimental model 
of extensive burn decreased the hypermetabolic muscle 
response but increased mortality [23].

During the recovery phase, while catabolic pathways 
are attenuated and protein synthesis is increased, some 
degree of muscle atrophy persists, suggesting anabolic 
resistance [24–27]. Animal and human studies have 
also revealed a decrease in muscle autophagy during 
the recovery phase of a murine sepsis model [28] and in 
skeletal muscle of prolonged critically ill patients [29], 
respectively, impacting muscle contractility. Autophagy 
is a massive degradation system of damaged cellular 
components (e.g., mitochondria, damaged organelles, 
toxic protein aggregates, unfolded or oxidized proteins) 
that accumulate during critical illnesses due to inflam-
mation and oxidative stress and whose inhibition con-
tributes to various myopathies and muscle wasting [30, 
31]. Finally, in response to catabolic muscle damage, the 
muscle also has a great capacity for regeneration via its 
satellite cells [32]. This function is also impaired in ICU 
survivors, with both a decrease in satellite cell content 

6  months after ICU stay [24] and aberrant up-regula-
tion of genes involved in the structural and functional 
muscle development and extracellular matrix remod-
eling [33], suggesting a defect in the muscle repair 
process [27]. Moreover, the presence of mitochondrial 
dysfunction in satellite cells was demonstrated experi-
mentally, and intramuscular injection of mesenchymal 
cells improved skeletal muscle function and prognosis 
in mice sepsis [34–36]. Mitochondria play a critical role 
in muscle physiology and ICUAW pathogenesis [37]. 
Its dysfunction may contribute to muscle weakness 
persistence over time. One month after murine sepsis, 
the mitochondrial population in the skeletal muscle of 
survivors remained profoundly altered with reduced 
respiration and severe morphological abnormalities. 
Mitochondrial dysfunction was also associated with an 
oxidized protein profile [38]. Abnormalities in calcium 
homeostasis may also occur due to channelopathies 
and alter mitochondrial function by calcium overload 
[39].

Moreover, both animal and human studies have 
shown persistent muscle weakness despite muscle mass 
restoration [24, 28, 38], and neuromuscular stimulation 
of quadriceps in ICU patients restored muscle mass 
but failed to improve muscle strength in a randomized 
controlled trial [40]. Overall, these data suggest that the 
biomechanical quality of muscle fibers seems to be at 
least as important as their quantity.

The persistence of these deleterious mechanisms 
which are responsible for sustained ICUAW would be 
related to persistent inflammation. Despite the insult 
resolution, a low-grade inflammatory state may persist 
in ICU survivors. Up-regulation of inflammation genes 
expressed in the muscle tissue was found at 7 days and 
6  months after an ICU stay and was correlated with 
muscle strength decrease [29]. Persistent inflammation 
could be a possible explanation for the observed accel-
erated aging of limb muscles in ICU survivors, a con-
cept described as inflamm-aging [41].

Despite the growing interest in the subject, signifi-
cant efforts are needed to fill the knowledge gap and 
better understand the mechanisms underlying accel-
erated muscle aging in ICU survivors, summarized in 
Fig.  2. The search for relevant preclinical models to 
study long-term ICU consequences is crucial to find-
ing innovative therapeutic targets [42]. Currently, there 
is no pharmacological treatment to prevent or improve 
weakness after critical illness [43]. Nutritional strategy 
is of first importance, but its effect could be lessened 
due to persistent inflammation and anabolism resist-
ance [44]. On top of age-related loss of skeletal muscle 
mass and function [45], accelerated ICUAW and sarco-
penia are a critical issue, particularly in the elderly. At 
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ICU discharge, referral to an appropriate physical reha-
bilitation route may be valuable but little evidence sup-
ports this strategy [46].

Long‑term cognitive impairment and neuropsychic 
disability
Population-based datasets and prospective cohorts 
have reported that ICU survivors have a higher odds 
of a substantial and persistent cognitive downturn and 
functional disability. One prospective study showed that 
ICU patients hospitalized for severe sepsis were 3.33 
more likely (multivariate analysis) to develop moderate/
severe cognitive impairment at one year than to non-
septic patients hospitalized in general hospitalization 
[47]. Similarly, another retrospective study showed that 
ICU patients hospitalized for sepsis were 2 more likely 
to develop dementia than age- and sex-matched con-
trols and after adjusting for age, sex, and comorbidities 
[48]. Using the same methodology but a reverse design, 
another study revealed that patients with dementia had 
a higher odds of previous sepsis than the control group. 
Besides sepsis and septic shock, a prospective study 
showed that 40% of ICU patients presented global cogni-
tion scores that were 1.5 SD below the population means 
at 3  months post-discharge and that 26% had scored 2 
SD below the population mean (equivalent to mild Alz-
heimer’s disease) whatever the reason for ICU admission 
[49]. Deficits persisted at 12 months and were responsi-
ble for significant impairment in QOL (quality of life) and 
Instrumental Activities of Daily Living associated with 
psychopathological symptoms as previously reported 
in ARDS patients or cardiac surgery [50–52]. Remark-
ably, in this study, a longer duration of delirium in the 
hospital was associated with worse global cognition and 
executive function scores at 3 and 12 months. Since then, 

this finding has been corroborated in multiple studies, 
establishing a solid association between delirium sever-
ity/duration and long-term cognitive decline acceleration 
and or severe psychological issues, such as PTSD [53, 
54]. In studies focusing on predictive factors of acceler-
ated post-ICU cognitive decline, the intensity of delirium 
(or need for neuroleptic), sepsis, hypoglycemia, and high 
NSE seem to be associated with poor cognitive outcomes 
[55, 56]. Overall, despite some heterogeneity in inclusion 
criteria, definition and measurement methods/tests for 
post-ICU cognitive impairment, and long-lasting neu-
ropsychological disorders, there is mounting evidence for 
the clinical relevance of post-sepsis/post-ICU cognitive 
impairment and a significant association with delirium/
sepsis-associated encephalopathy during the ICU stay 
[57]. However, the biological substratum of these altera-
tions remains elusive yet.

In a rat model of polymicrobial sepsis (CLP) com-
pared to sham surgery, sepsis directly causes learning 
and memory impairment even after complete recovery 
(10  days) [58]. In a non-septic acute inflammation ani-
mal model (LPS-induced non-lethal endotoxemia), sur-
vivors displayed memory deficits in the radial maze and 
changes in open field exploratory patterns 3  months 
after complete recovery [59]. Interestingly these changes 
were associated with neuroanatomical changes, such as 
loss of neurons in the hippocampus and the prefrontal 
cortex and reduced cholinergic innervation in the pari-
etal cortex. Interestingly, in rodent experimental stud-
ies, the severity of sepsis (estimated by sepsis behavioral 
score and plasma IL-6) at 24 h correlated to the increased 
permeability of the blood–brain barrier in the amyg-
dala, prefrontal cortex, and hippocampus and correlates 
to persistent oxidative stress in the brain. Ultimately, 
the sepsis score negatively correlates with cognitive 

Fig. 2  Putative mechanisms of intensive care unit‐acquired weakness
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performance in rats at ten days post-CLP [60]. Multiple 
inflammatory mediators are potentially involved in acute 
and long-lasting neuroinflammation. Among them, IL-1β 
seems to play a pivotal role. In one study [61], while WT 
mice displayed impaired long-term memory consolida-
tion after the LPS challenge, those receiving IL-1 recep-
tor antagonists were protected. It also demonstrated that 
IL-1β caused hippocampal neuronal dysfunction and 
may drive neuronal death.

In humans, translational studies are scarce, and most 
of the literature comes from studies focusing on cogni-
tive decline after major surgery, which is highly relevant 
in the elderly. In this context, several biomarkers of neu-
ronal injury have been associated with postoperative 
delirium (POD) and subsequent postoperative cognitive 
decline (POCD) [62]. Non-specific markers of systemic 
inflammation, such as CRP, IL-6, IL-1B, or TNF-a, in the 
blood or CSF are frequently associated with delirium but 
poorly predict POCD [63–66]. Conversely, biomarkers of 
neuronal damage, such as S100ß, NSE [67], or phospho-
rylated neurofilament heavy subunit, are more consist-
ently associated with POD and POCD [68]. In 2012, one 
study explored ICU survivors in a pilot study combin-
ing diffusion tensor imaging MRI, acute delirium moni-
toring, and cognitive outcomes in 47 patients evaluated 
after 3 and 12 months of follow-up. They observed that 
the duration of delirium was associated with significant 
white matter disruption [defined by a low fractional ani-
sotropy (FA)] at hospital discharge, notably in the corpus 
callosum and anterior limb of the internal capsule. It also 
reported that a low FA in the anterior limb of the internal 
capsule at discharge and in the genu of the corpus callo-
sum at three months was associated with poor cognitive 
outcomes at 3 and 12  months, suggesting that modern 
neuroimaging techniques could help screen patients at 
risk of post-ICU cognitive decline [69].

To date, the mainstream hypothesis is that sepsis/
inflammatory critical illness-associated systemic inflam-
mations can induce some acute CNS injury and poten-
tially long-lasting activation of the CNS cells, such as 
blood–brain barrier endothelial cells [70] or neuroglial 
cells, and therefore promote a low-grade long-lasting 
inflammation responsible for neuronal death and neuro-
logical disorders. However, experimental data are feeble 
to support such a statement yet and whether systemic- or 
SNC-inflammation-induced acute brain dysfunction and 
long-term neurocognitive disorders occur by overlapping 
or discrete mechanisms remains to investigate. Neverthe-
less, because of the strong association with pre-existing 
mild cognitive impairment and intensity of delirium in 
the acute setting, measures to detect brain frailty and 
prevent delirium in ICU should be promoted and belong 
to a “standard of care bundle in ICU,” with the putative 

opportunity to limit the long-term cognitive impairment. 
In addition, older patients and patients at risk might be 
eligible for a long-term follow-up to favor early diagnosis 
of mild cognitive impairment or dementia.

Immunosuppression and persistent inflammation
Following acute critical illness—especially sepsis—a 
growing body of evidence reveals profound and persis-
tent alteration of immune response in survivors. All cel-
lular components of the immune response studied so far 
appear to be altered. At the acute phase of critical ill-
ness, chemokines, cytokine, and adrenergic storms trig-
ger the rapid mobilization of innate myeloid cells from 
the spleen and the bone marrow during acute critical 
illness. This release of functional but mainly immature 
monocytes and neutrophils, called myeloid-derived sup-
pressive cells (MDSCs), aims at the same time to fight the 
invading pathogen and initiate the resolution of inflam-
mation. Thus, circulating neutrophils show reduced 
effector capacity (respiratory burst and chemotaxis), and 
recent reports reveal that these immature granulocytes 
(G-MDSCs) are circulating, displaying immunosuppres-
sive properties, with their abundance in the blood being 
correlated with dire outcomes [71, 72]. Similarly, mono-
cytes display diminished capacity to respond to further 
insult (experimentally explored by measuring amounts of 
cytokine production after microbial stimulation). Mono-
cytic MDSC produces a tremendous amount of IL-10 
that causes the deactivation of innate and immune cells 
and has impaired antigen presentation capacities char-
acterized by a low HLA-DR surface expression [73, 74]. 
Low surface expression of HLA-DR on monocyte mem-
brane is one commonly reported surrogate marker of this 
immunosuppressive state, strongly correlated with noso-
comial infections and mortality. Overall, MDSCs are a 
heterogeneous population of immature and immunosup-
pressive myeloid cells, found in critical patients from the 
early phase to as late as 6  weeks after sepsis onset [75] 
and are consistently associated with nosocomial infec-
tions and bad outcome [76]. Massive MDSC release also 
creates a void in the bone marrow niche that stimulates 
the expansion of early myeloid progenitors at the expense 
of both lymphopoiesis and hematopoiesis [77], which 
partly explains the persistent lymphopenia and chronic 
anemia observed in ICU survivors.

Lymphocytes are also involved in immune dysfunc-
tion following critical illness. First, lymphopenia is a 
classical biological feature of sepsis, and persistent lym-
phopenia on days 3 and 4 after sepsis onset has been 
associated with nosocomial infection and subsequent 
death [78]. Data regarding B cells are relatively scarce, 
but B cell depletion has been documented in early and 
later phases of critically ill conditions, possibly through 
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increased apoptosis and reduction in B cell maturation 
[79–81]. Besides B cell depletion, phenotype (B cells 
subpopulations) and function also seem altered, with 
data suggesting a switch toward regulatory profile and/
or exhausted status, associated with mortality [80, 82]. 
Regarding T cells, numerous studies have first reported 
blood depletion during critical illness (especially sepsis) 
and concomitant apoptosis [83]. Conventional T cells 
are classically dichotomized as CD4 + or CD8 + , with 
the CD4 + subset exerting “helper” functions, notably 
by producing cytokines that shape immune response, 
and CD8 + being characterized by cytotoxic activi-
ties. Different CD4 + T cells subsets are not all similarly 
affected by apoptosis, and surviving cells undergo mul-
tiple phenotypic changes that alter their functions [84]. 
Thus, the increased proportion of regulatory T cells 
and decreased proportion of major “helper” subsets 
(namely, Th1, Th2, and Th17, able to produce IFN) have 
been documented. Besides numerical changes, functions 
are also documented, and the main Th subset seems to 
adopt an “anergic” hyporesponsive state after acute criti-
cal illness, characterized by decreased ability to produce 

cytokine and expression of co-inhibitory receptors. T 
CD8 + response has also been shown to be altered after 
experimental sepsis, with decreased response to antigen 
encounter, reduced proliferative capacity, and ability to 
clear pathogen [85]. Ultimately, these alterations con-
verge to a defect in the adaptive response, characterized 
by a massive T and B lymphocytes apoptosis in lymphoid 
organs, a drastic reduction in their TCR or BCR reper-
toires, and a decreased effector function leading to insuf-
ficient response to further insults, such as nosocomial 
infections. In addition, persisting low-grade inflamma-
tion due to long-lasting tissue injury might perpetuate 
this phenomenon and paradoxically cause immunosup-
pression (Fig. 3). In older patients, on top of the immune 
senescence and inflamm-aging process, the post-septic 
immune profile notably contributes to the increased inci-
dence and severity of infectious diseases and possibly 
cancers.

Overall, readers should keep in mind that immune 
responses are highly dynamic, seldom dichotomic 
(“pro”/“anti”-inflammatory, for example), and can, at the 
same time, be compartmentalized. Also, as many human 

Fig. 3  Putative mechanisms of ICU-acquired immune deficiency
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studies on immune function during and after critical ill-
ness are conducted in blood, conclusions should not be 
extrapolated to distant peripheral organs where immune 
cells exercise their function [86]. Thus, even if we can be 
affirmative on persistent alteration of immune response 
after critical illness, a more comprehensive, dynamic—
and ideally regionalized—immune monitoring appears a 
prerequisite for future targeted therapeutic interventions.

Long‑term acute kidney injury issues: risk for progression 
to chronic kidney disease and systemic consequences
Acute Kidney Injury (AKI) has long been considered an 
utterly reversible syndrome. However, recent evidence 
shows that AKI is a major risk factor for progression to 
Chronic Kidney Disease (CKD) (Hazard Ratio HR 8.8) 
and end-stage renal disease (HR 3.1) [87], especially in 
ICU patients [88]; the risk increases with AKI severity. 
AKI is also associated with cardiovascular risk: conges-
tive heart failure (HR up to 2.2) [87] and acute coronary 
event (HR 1.7 after renal replacement therapy-requiring 
AKI) [89]; the risk of death or admission for a major 
adverse cardiac event is higher after AKI than after myo-
cardial infarction [90]. From those epidemiologic find-
ings emerged the concepts of “maladaptive repair” [91] 
and interconnection between AKI and CKD [92]. The 
predominant experimental model for progression from 
AKI to CKD is ischemia/reperfusion (I/R) in rodents. 
Two main mechanisms of kidney damage emerge from 
experimental findings, implying different cell death 
mechanisms: tubular and vascular damage, both leading 
to interstitial fibrosis. I/R in proximal tubules induces 
necroptosis, prolonged expression of pro-inflammatory 
cytokines (IL-18, IL-1ß and TGF-ß), macrophage infil-
trate, and inflammasome activation, with an amplifica-
tion loop, even after kidney function normalization [93, 
94]. Those lesions are responsible for fibrosis and CKD. 
Mitochondria is a key effector of maladaptive repair. In 
proximal tubules, ATP dynamic-related protein 1deple-
tion induced by I/R is responsible for mitochondrial fis-
sion via Dynamic-Related Protein 1, inducing Reactive 
Oxygen Species liberation.  Therefore, the tubular cell 
proliferation is inhibited, whereas IL-6 secretion , neu-
trophils recruitment [95] and apoptosis are increased. 
Infusion of a mitoprotective agent 1  month after AKI 
decreases inflammation, restores structural kidney integ-
rity (capillaries and podocytes), and decreases intersti-
tial fibrosis [94]. Autophagy in tubular cells, despite a 
protective effect on initial AKI, is responsible for more 
inflammation and worse kidney outcome 30  days after 
I/R in mice [96], via cell cycle arrest in G2—M phase. It 
results in up-regulation of profibrotic cytokines (TGF ß, 
connective tissue growth factor), activation of COL4A1 
and COL1A1 genes, and cellular dedifferentiation [97, 

98]. The intensity of fibrosis does not depend on the 
level of apoptosis (preponderant role of cell cycle arrest 
over apoptosis on fibrosis process). Epigenetic phenom-
enon is also involved: histone deacetylase inhibition 
improves long-term kidney function by reducing fibrosis 
[99]. Peritubular capillary density decreases in the weeks 
following I/R, despite an initial repair of tubular dam-
age [100]. Thus, sensitivity to angiotensin 2 and hyper-
tension increases. The delayed expression of TGF-ß in 
ischemic kidney is implied in capillary rarefaction [100, 
101], such as endothelin-1, which transcription is sus-
tainably increased after I/R, resulting in a reduction in 
kidney mass [102]. Capillary rarefaction induces chronic 
hypoxia, persistent up to 5  weeks after I/R, with eleva-
tion in HIF 1 (hypoxia-inducible growth factor) [103]. 
Basile et al. demonstrated evidence of endothelial–mes-
enchymal transition, which is much more prevalent than 
epithelial–mesenchymal transition [104]. Apoptosis also 
plays a role in capillary rarefaction: indeed, caspase-3 
(the main effector of apoptosis) remains activated several 
weeks after I/R, and caspase-3−/− mice show less micro-
vascular rarefaction and renal fibrosis [103]. In human 
cell culture, hypoxia enhances apoptosis in endothelial 
but not epithelial cells, while necrosis is rather a tubular 
concern [103]. Finally, mitochondrial fission induced by 
DRP 1 is also implied in capillary rarefaction [95].

Beyond kidney lesions, AKI is a multisystemic concern, 
with repercussions, for example, in lymph nodes (fibro-
sis) [105], and lung and brain (increased transcription of 
pro-inflammatory cytokines) [106, 107]. Among those 
distant consequences, cardiovascular repercussions are a 
major concern. I/R in mice induces an increase in TNF-α 
and IL1, endothelial dysfunction, and cardiomyocytes 
apoptosis [108] (Fig. 4).

In conclusion, the physiopathology of progression from 
AKI to CKD has been well described in the last two dec-
ades, opening the field for renoprotective interventional 
studies: mitoprotection [94], inhibition of deleterious 
effectors, such as histone deacetylase [109], TGF-ß, or 
endothelin [101], or administration of renoprotective 
effectors, such as VEGF or arginine [100, 104].

Long‑lasting pulmonary dysfunction after ARDS
The pathogenesis of ARDS involves an extensive insult 
of distal lung airspaces in response to direct or indirect 
aggression. Its resolution is an active and complex process 
that begins from the onset of injury and aims to restore 
both the structural and functional properties of the 
lungs. The inflammatory phase resolves through phago-
cytosis of apoptotic neutrophils by alveolar macrophages, 
while restoring the alveolar–capillary barrier integrity 
occurs during the proliferative phase. Epithelial repair 
involves migration, proliferation, and differentiation of 
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type II alveolar cells associated with fibroblasts influx, 
aiming to remodel the denuded basement membrane. 
An inappropriate, extensive, and prolonged inflammation 
and excessive extracellular matrix deposition and remod-
eling may lead to residual pulmonary injuries, contrib-
uting to the patient’s long-term physical disability. After 
a sufficient delay, radiological, functional, and physical 
tests can assess sequelae. Radiological investigations per-
formed after the first year in ARDS survivors may show a 
complete resolution of parenchymal infiltrates. However, 
persistent abnormalities, mainly reticular patterns, and 
ground-glass opacities, are observed in more than half 
survivors [110–113]. The overall extent is usually low, 
ranging from 8 to 15% of the lung parenchyma, with a 
preferential location to the non-dependent regions. Inter-
estingly, patients with ARDS due to primary pulmonary 
causes, such as pneumonia display more severe fibrotic 
sequelae than patients with extrapulmonary ARDS 
[110]. In addition to residual anatomic abnormalities, 
many ARDS survivors have persistent pulmonary func-
tion impairments. The diffusion capacity of the lungs for 

carbon dioxide (DLCO) improved during the first year 
post-ARDS, but without reaching the lower limit of the 
normal range [114]. Thus, one study reported a DLCO 
of 65% of the predicted value at 6 months, while another 
described an improvement from 63% at 3 months to 72% 
at 12  months, then stability over the 4 following years 
[115–117]. Regarding spirometry, very mild obstruc-
tive and restrictive patterns have been described within 
the first year post-ARDS [114–116, 118]. Forced expira-
tory volume in one second (FEV1) and FEV1/forced vital 
capacity (FVC) ranged, respectively, from 85 to 87% and 
from 96 to 101% of the predicted value at 12  months, 
while total lung capacity (TLC) ranged from 88 to 95% 
of the predicted value at 12  months [114–116, 119]. 
Interestingly, a protective ventilation strategy (using a 
low tidal volume) did not provide benefit in terms of 
long-term pulmonary function in ARDS survivors [114, 
118]. Moreover, no difference in lung volumes has been 
observed between ARDS due to primary pulmonary 
cause and extrapulmonary ARDS and between patients 
who had prone positioning or not [110, 119]. Assessment 

Fig. 4  Mechanisms underlying progression toward chronic kidney disease after AKI
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of physical function using the 6-min walking test (6-WT) 
has shown a significant and persistent exercise limitation 
in ARDS survivors. At 3 months, one study described a 
6MWT distance of 49% of the predicted value, while val-
ues ranged from 66 to 72% at 12 months post-ARDS [116, 
119]. Notably, this inability to exercise seems dispropor-
tionate to mild structural and functional abnormalities 
reported in ARDS survivors. This discrepancy may be 
explained by extrapulmonary long-lasting alterations, 
such as cardiac dysfunction, muscle deconditioning, and 
neuromyopathy. Accordingly, no correlation has been 
found between CT scan lesions’ extent or the importance 
of spirometry abnormalities and the 6MWT distance in 
ARDS survivors. In conclusion, these findings illustrate 
long-lasting pulmonary consequences of ARDS, which 
are relatively mild in terms of radiological abnormalities 
and spirometry alterations, but more critical in reducing 
diffusion capacity and exercise limitation.

Post‑intensive care syndrome in children
Like adults, child PICU survivors may develop dete-
rioration in physical, cognitive, social, and psychologi-
cal functioning [120]. Recently, the conceptualization of 
PICS in children has led to the development of the PICS-
Pediatrics framework. Factors specific to child health are 
critical to note. Critical illnesses occur at a time of tre-
mendous growth and maturation, and an increasing pro-
portion of children admitted to intensive care units have 
chronic diseases and developmental disorders at baseline. 
Consistently, upon discharge, the child’s physical, cogni-
tive, emotional, and social health are strongly influenced 
by the child’s pre-PICU condition, development, and 
maturation. Family, parents, and siblings’ emotional and 
social health may also be affected. Therefore, the trajec-
tory and duration of recovery are highly variable [121].

Physical function impairment
PICU-acquired new dysfunctions (respiratory disabilities, 
pain, poor mobility, and impaired self-care and feeding) 
occur in 10% of all admissions [122, 123]. A Functional 
Status Scale (FSS), involving six domains (mental status, 
sensory, communication, motor function, feeding, and 
breathing), has been recently developed [124]. Identi-
fied risks for poor functional outcomes include baseline 
disability, admission for trauma, neurologic or oncologic 
disorders, cardiac arrest, age < 1 year, and disease severity 
[120, 125]. Children with normal baseline function expe-
rience a more significant functional decline, albeit with 
faster recovery than those with impaired baseline func-
tion [126]. The FSS does not assess sleep disturbance, 
fatigue, and severe weakness which may be underesti-
mated [127].

Pediatric ICU‑acquired weakness (PICUAW)
Unlike adults, data on PICUAW are limited, but it 
reportedly occurs in 1.7–4.7% of PICU survivors, which 
is much lower than that in adults [128, 129]. This discrep-
ancy remains unclear, but differences between children 
and adults can be considered: children’s axons are shorter 
making them less susceptible to injury, and children have 
better mitochondrial function and higher/better restora-
tive neurotrophic factor concentration/function. Con-
sistently, they recover better from immune-mediated 
peripheral neuropathies [130]. Furthermore, children 
have fewer pre-existing nerve or muscle-damaging medi-
cal conditions, like diabetes, cancer, chronic organ fail-
ure, or chronic drug use. However, studies focusing on 
high-risk groups with multi-organ failure, severe sep-
sis, patients with high-frequency oscillatory ventilation, 
ARDS, or polytrauma, may better estimate the real risk of 
PICUAW in susceptible critically ill children.

Lung consequences of prolonged mechanical ventilation 
in children
Experimental pediatric data show an age-related suscep-
tibility to VILI [131]. The concentration of elastin in the 
infant’s lung increases tenfold during the first 20 days of 
life and then increases less rapidly. Collagen concentra-
tion increases linearly from infancy to childhood [132]. 
Differences in lung elastic properties may account for 
differences in lung strain. Age-dependent differences 
in NF-κB have been described in animal models, show-
ing less inflammation in neonatal mice after exposure to 
hyperoxia [133]. Injurious mechanical ventilation does 
not activate innate immunity in infants or young children 
to the same extent as in adults, because the full capac-
ity of the innate immune system is not reached until ado-
lescence [134]. Adaptive immunity also differs between 
young children and adults, with a tendency toward a 
more anti-inflammatory response in children [135]. In 
summary, pediatric patients may be less susceptible than 
adults to VILI [136].

Pediatric neurocritical illness and cognitive function 
impairment
To assess the onset of new cognitive impairment, the 
6-point Pediatric Brain Performance Category (PBPC) 
is commonly used to estimate baseline global cogni-
tive function and changes during and after the PICU 
stay [137]. Cognitive decline reportedly occurs in 3.4% 
of PICU survivors. Risk factors include admission diag-
nosis of trauma, poisoning, neurologic disease or can-
cer, invasive mechanical ventilation, and extracorporeal 
life support [138]. Acute neurological condition was the 
most significant predictor of an adverse cognitive out-
come at 6 months, after adjusting for illness severity and 
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pre-PICU functioning [139]. Blood biomarkers of injury, 
inflammation, regeneration, and plasticity may be useful 
in assessing the risk of functional impairment after acute 
brain injury [140]. In children with traumatic brain injury 
or cardiac arrest, diagnostic and prognostic biomarkers, 
such as NSE and S100b, have been evaluated [141, 142]. 
Recently, low blood levels of brain-derived neurotrophic 
factor and vascular endothelial growth factor, which are 
biomarkers of regeneration, have identified children at 
risk for new cognitive impairment among survivors of 
pediatric neurocritical care [143]. Ultimately, the cog-
nitive impairments will evolve afterward and the PCPC 
score at PICU discharge may worsen or improve [120].

Psychological function impairment
From 17 to 62% of PICU survivors experienced post-
traumatic stress disorder (PTSD) [121, 144]. Depression, 
changes in self-esteem, delusional memories or fears, and 
sleep disturbances have also been reported in children 
after PICU discharge. Pieces of evidence suggest that 
children with psychiatric morbidity after discharge are 
more likely to be readmitted for physical problems in the 
following 6–12 months [145]. Several factors increase the 
risk of psychological issues. Delusional memories were 
independently associated with length of sedation and 
subsequent PTSD symptoms when adjusting for illness 
severity and emergency admission status. Conversely, 
factual memories of the ICU stay were not associated 
with PTSD symptoms, but emergency admission status 
was, as were illness severity, exposure to invasive proce-
dures, and sepsis [146].

Social manifestations and PICS family
Qualitative studies of PICU survivors have revealed 
themes related to disrupted lives, social stigma, and the 
need to rebuild social identities, particularly in older chil-
dren [147]. Parents of PICU survivors may experience 
post-traumatic stress, anxiety, and depression symptoms 
shortly after discharge and during the recovery process 
[148]. Risk factors for long-term problems include unex-
pected PICU admission and the number of medical pro-
cedures performed in the PICU, as well as a history of 
traumatic events, psychological problems before PICU 
admission, limited social support, and negative memories 
of the PICU stay [109, 120].

Conclusion
Despite significant improvement in global ICU survival, 
patients often develop a multi-faceted post-ICU syn-
drome, encompassing multi-organ frailty and causing 
substantial impairment in QOL. Given that ICU’s popu-
lation is rapidly aging in western countries, these issues 
are particularly meaningful. As a research agenda, a 

better understanding of the underlying biological mecha-
nisms linking acute disorder and long-lasting impairment 
through translational studies is a matter of great priority, 
such as clinical trials to explore interventions to prevent 
or treat PICS. Nevertheless, this field of research is chal-
lenging due to the multiple facets of PICS, and the need 
for long-term follow-up collaborative studies.

Therefore, we believe that general practitioners, intern-
ists, or geriatricians must be sensitized alongside with 
intensivists to long-term follow-up of ICU survivors and 
its specific issues, so that patients could benefit durably 
and thoroughly from the in-ICU mortality reduction 
observed over the last 20 years.
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