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Summary 

1. Collisions of large soaring raptors with wind turbines and other infrastructures represent 

a growing conservation concern. We describe a way to leverage knowledge about raptor 

soaring behaviour to forecast the probability that raptors fly in the rotor-swept zone. 

Soaring raptors are theoretically expected to select energy sources (uplift) optimally, 

making their flight height dependent on uplift conditions. This approach can be used to 

forecast collision hazard when planning or operating wind farms. Empirical investigations 

of the factors influencing flight height have however so far been hindered by observation 

error.  

2. We propose a two-pronged approach. First, we fitted state-space models to z-axis GPS 

tracking data to filter heavy-tailed observation error and estimate the relationship 

between vertical movement parameters and weather variables describing the energy 

landscape (thermal and orographic uplift potential). Second, we fitted a mechanistic 

model of flight height above-ground based on aerodynamics and resource selection 

theories. The approach was replicated for five GPS-tracked Andean condors Vultur 

gryphus, eight griffon vultures Gyps fulvus, and six golden eagles Aquila chrysaetos.  

3. In all individuals, movement parameters correlated with thermal uplift potential in the 

expected direction. In all species, collision hazard was lowest for high thermal uplift 

potential values. Species-specificities in the presence of a peak in collision hazard for 

medium values of thermal uplift potential could be explained by differences in wing 

loading and aspect ratio.  

4. Synthesis and applications. Our fitted models convert weather data (thermal uplift 

potential) into a prediction of collision hazard (probability to fly in the rotor-swept zone), 

making it possible to prioritize different wind development projects with respect to the 

relative hazard they would pose to raptors. However, our model should be combined 
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with post-construction monitoring to document, and eventually account for turbine 

avoidance behaviours in collision rate predictions.  

Key-words: flight height, movement ecology, 3D, human-wildlife conflict, wind turbines, 

wind power, continuous-time, raptor, state-space models, z-axis GPS tracking data  

 

Introduction 

Large raptors extract energy from the atmosphere to sustain long-distance flight (Pennycuick 

1971; Duriez et al. 2014). They primarily use two types of uplift: orographic uplift, 

corresponding to the rise in elevation of air masses above rising terrain, and thermal uplift, 

corresponding to convection cells caused by small-scale heterogeneity in solar heat 

absorption and storage by the surface of the Earth. At any given time, the “energy 

landscape” can thus be characterized by the distance between thermals, the vertical velocity 

of air masses inside thermals, plus the relief features that create orographic uplift in 

combination with wind direction and speed (Shepard et al. 2013).  

How this energy landscape controls collision risk with human infrastructure and 

aircraft has received little attention so far, yet this information is critical to minimize the 

effect of infrastructures on wildlife populations, and in particular the effect of wind farms 

(Barrios & Rodríguez 2004; Vasilakis et al. 2016). Because of the conjunction of several 

vulnerability factors (slow pace of life, relatively poor manoeuvrability when soaring, 

tendency to focus on the ground below them rather than surveying for threats above and in 

front), soaring raptors are especially at risk from wind power developments. In fact, the 

viability of some populations is already jeopardized by this new source of mortality (Carrete 

et al. 2009). Soaring raptors, however, have high public profiles and provide recognized 

ecosystem services, setting the stage for a rapidly emerging controversy. In that context, an 
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evidence-based strategy to inform wind farm siting decisions and to manage the operation 

of existing facilities has been developed, based on a predictive model of collision risk that is 

periodically updated as new data about actual collisions are collected, analysed, and 

compared to predictions (Péron et al. 2013; New et al. 2015; Katzner et al. 2016). That 

framework has been tailored to and focused on golden eagles (Aquila chrysaetos) in the 

USA, so there remains a knowledge gap for most species and regions. To fill that gap, we 

propose a protocol to analyse the flight height of GPS-tracked raptors in order to predict the 

probability that they will fly in the rotor-swept zone of wind turbines, a proxy for collision 

hazard (Katzner et al. 2012). We aimed to predict collision hazard as a function of 

environmental covariates across the landscape, in a way that can readily be reproduced and 

applied across species and places. To do so, we based our approach on a combination of 

remotely-sensed and weather data that is available for most locations on Earth (in particular 

via movebank.org; Wikelski & Kays 2016).   

The proposed protocol is two-pronged. First, we dealt with observation error: z-axis 

GPS data are typically much noisier than xy-axes GPS data, and, combined with error in the 

digital elevation model used to estimate where the ground is below the flying bird (see 

“Analysis step 1” in the Methods section), this high rate of error represented an immediate 

and unavoidable challenge to the estimation of collision hazard. Indeed, in this study, about 

36% of our raw flight height records were classified as underground (negative height). 

Discarding negative flight height records would substantially reduce the sample size, would 

introduce a problematic skew in the distribution of errors and would artificially select only 

the records that are far from the ground, thereby massively biasing the inference about 

flight height. Proper treatment of observation error was therefore required before any 

inference about vertical space use could be made (Blackwell 1997; Jonsen, Flemming & 
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Myers 2005; Johnson et al. 2008; Pozdnyakov et al. 2014). We fitted a continuous-time 

stochastic movement model (Blackwell 1997; Johnson et al. 2008; Fleming et al. 2014a) 

within a state-space framework (de Valpine & Hastings 2002), in order to “filter out” the 

observation error from our flight height data (Albertsen et al. 2015). We also used the state-

space analysis to estimate the link between vertical movement parameters and covariates 

that describe the energy landscape, to validate these covariates as ecologically meaningful in 

this context. We expected that the mean flight height would increase, the volatility would 

increase, and the temporal autocorrelation of flight height would decrease with uplift speed 

(see “Uplift potential metrics” in the Methods section).  

In a second step, we used the flight heights, corrected for observation error, as input 

in a nonlinear regression to estimate the parameters of a mechanistic model of collision 

hazard. To derive this model, we used the framework laid out for birds by Pennycuick (2008) 

based on theory developed for glider planes by MacCready (1958), and we combined it with 

a resource selection function representing the expected switch from orographic to thermal 

uplift when thermal uplift speed changes (see “Analysis step 2” in the Methods section). We 

applied the methodology to five Andean condors (Vultur gryphus), eight griffon vultures 

(Gyps fulvus), and six golden eagles (Table 1). These three species have markedly different 

foraging strategies, wing loading, and aspect ratio, so we expected the sensitivity of flight 

height to thermal uplift condition to decrease from the condor to the eagle. We eventually 

outlined how our mechanistic model of collision hazard can inform management strategies. 
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Material and methods 

DATA COLLECTION 

We collected long-term time series of flight height records from GPS-tracked birds, using a 

relatively coarse sampling resolution (1-15 minute intervals) but long monitoring durations 

(4-28 months) to capture change in flight behaviour over time (e.g., with seasonal variation 

in uplift conditions). 

For five juvenile condors, GPS units (Table 1) were duty-cycled to transmit their 

position in 3D (longitude, latitude, and elevation above the Earth reference ellipsoid) every 

day from dawn to dusk every 15 minutes. We kept the data collected between 11:00 and 

15:00 ART, because preliminary data examination indicated that the birds are almost always 

airborne during that time. Importantly, we did not filter the data with respect to recorded 

flight height, only by time of day.  

For eight adult vultures, the loggers (Table 1) were programmed to collect their 

position in three dimensions every day from dawn to dusk every 1 - 5 minutes. The data 

were downloaded by Bluetooth connection when birds where coming to a feeding station. 

Based on preliminary examination of the accuracy of altitude measurements, we selected 

only the records obtained when 6 or more satellites were available. We kept the data 

collected between 9:00 and 16:00 CET.  

For six adult eagles, the loggers (Table 1) were solar-powered and programmed to 

collect their position in three dimensions every day from dawn to dusk every 1 - 15 minutes 

(depending on season and solar radiation). The data were downloaded by UHF transmission 

close to the nest or roost site. Contrary to vultures and condors, eagles spend >50% of time 

perched during the day. We therefore used horizontal displacement between two records as 
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an indicator of whether the bird was flying. We discarded records that were less than 15 

meters apart from the previous record (a.k.a. immobility threshold). We also discarded data 

collected before 8:00 and after 17:00 CET. Note that the adult eagles in this study are range-

resident throughout the year (no marked seasonal migration).  

For all birds and species in this study, between the last record of one day and the first 

record of the next day, the individual roosted for the night, i.e., each day represented a 

separate flight path (Fig. 1).  

UPLIFT POTENTIAL METRICS 

We used uplift potential metrics derived by Bohrer et al. (2012) to characterize the energy 

landscape at any given time. These metrics are, dimensionally speaking, velocities. They 

scale to the expected speed of thermal convection and of orographic uplift.  

Thermal uplift potential, a.k.a. convective velocity scale (Wyngaard 2010), is 

computed as a function of temperature, pressure, height of the atmospheric boundary layer, 

and surface sensible heat flux as provided by regional models based on a network of balloon 

and ground weather station data (Bohrer et al. 2012). The spatial resolution of this 

computation is 32 km and its temporal resolution is 3 hours. Thermal uplift potential scales 

to the expected speed of convection (Stull 1988). The convection is fastest when the heating 

from the ground is most vigorous, when the air temperature is coldest, and when the 

atmospheric boundary layer is highest. However thermal convection cells remain turbulent 

by nature. They vary at scales finer than the spatial and temporal resolutions of the thermal 

uplift potential computation. For this reason, there was initially no guarantee that thermal 

uplift potential would be of any value for applications like those presented in this study 

(Bohrer et al. 2012; Katzner et al. 2012). We used the regression between thermal uplift 
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potential and individual-specific movement parameters as a validation of the ecological 

meaningfulness of thermal uplift potential (see “Analysis step 1” below). 

Orographic uplift potential is computed from a digital elevation model and wind 

speed and direction interpolations (Bohrer et al. 2012). Preliminary analyses indicated that 

orographic uplift potential did not relate to any of the quantities we investigated in this 

study (Fig. S2 in Appendix S1; see also “Orographic uplift potential” in the Discussion 

section). Orographic uplift potential was therefore not further analysed nor directly 

employed in the modelling framework below. 

ANALYSIS STEP 1: CONTINUOUS-TIME STOCHASTIC MOVEMENT MODELS WITH OBSERVATION 

ERROR 

Flight height was measured as the difference between the GPS-derived flight height above 

ellipsoid, and the ground elevation above sea level extracted from a digital elevation model. 

This simple operation yielded a metric that accumulated (at least) four sources of error: 1) 

error on latitude and longitude GPS positioning, flawing the coupling between flight height 

and ground elevation data, 2) error on the remote-sensed ground elevation data used to 

generate the digital elevation model, 3) ground elevation interpolation error (Gorokhovich & 

Voustianiouk 2006; Januchowski et al. 2010), and 4) error on the GPS-based measure of 

flight height above ellipsoid, which itself is slightly different from flight height above sea 

level. Each type of error encompasses multiple non-independent events, such as interactions 

between relief features, between relief and weather, between interpolation error and 

satellite availability, etc. The propagation of these non-independent sources of error is thus 

expected to create heavy tails in the distribution of the error term, much in the way that the 

multiplication of Gaussian variables creates a non-Gaussian heavy-tailed variable 
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(Mitzenmacher 2004). Heavy tails are a source of bias in statistical analyses when they occur 

but are ignored (Lange, Little & Taylor 1989). Gel, Miao & Gastwirth's (2007) SJ-test applied 

to the raw data was significant in all birds (P< 0.01), indicating that heavy tails occurred in 

the distribution of the process variance, the observation variance, or both, which our 

modelling approach addresses (see below). No skewness was visually detected using QQ-

plots. 

We employed a state-space model to systematically separate the variance in flight 

height data into a process component (the actual vertical movements) and a sampling 

component (observation error) (Blackwell 1997; de Valpine & Hastings 2002; Jonsen, 

Flemming & Myers 2005; Johnson et al. 2008), and thereby estimate the flight height in 

order to assess collision hazard. In this study, the state process was a one-dimensional 

continuous-time stochastic movement model (a.k.a. correlated random walk).  Based on the 

semivariogram of the flight height time series (Fig. 2: A, E, I), we used the Ornstein-

Uhlenbeck position process (OU-p), which is bounded to a finite domain (Blackwell 1997; 

Fleming et al. 2014b). OU-p models are described by parameter μ representing the mean 

position of the process (the height towards which the birds are reverting to), parameter τ 

representing the characteristic position autocorrelation time (the rate at which the birds 

revert to their mean flight height after a random deviation), and parameter σ representing 

the volatility rate, which is akin to the initial diffusion rate for small time lags (the rate at 

which deviations from the mean occur). We enforced the loss of temporal autocorrelation in 

flight height from one day to the next by drawing the first flight height of each day from a 

normal distribution with the same mean as the OU-p process, and a between-day variance 

parameter to be estimated jointly with the parameters of the within-day OU-p process. Our 

state-space approach was developed in the context of medium temporal resolutions (5-30 
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minute intervals), i.e., when there is potentially more than one change in flight behaviour 

between two subsequent flight height records (cf. “Method discussion” in the Discussion 

section).  

To investigate how flight behaviour varied with uplift conditions and validate uplift 

potential metrics as ecologically relevant, the parameters of the OU-p process were made to 

vary log-linearly with thermal uplift potential. We expected that the process mean flight 

height (μ) would increase with thermal uplift potential, modelling reversion towards higher 

heights above ground when thermal uplift is faster. The volatility rate (σ) was expected to 

increase with thermal uplift potential, and the autocorrelation time (τ) to decrease, 

modelling faster and more frequent changes in flight height above-ground when thermal 

uplift was faster. This effect of thermal uplift potential also effectively incorporated a 

seasonal effect into the movement models, because thermal uplift potential is strongly 

seasonal in the study regions (preliminary results not shown). Including such covariate 

effects into the OU-p model also accommodated potential departures from the purely 

Gaussian distribution, i.e., heavy tails in the distribution of process variance. 

The observation process was assumed to follow a generalized Student’s t-distribution 

with a mean equal to the actual position of the bird, a scale parameter to be estimated, and 

ν degrees of freedom (ν ≥ 3, to be estimated). ν controlled the heaviness of the tails of the 

distribution of the observation variance.  

We used Template Model Builder (TMB; Kristensen et al. 2014) to fit this state-space 

model to flight height track records separately for each individual bird. We provide in 

Appendix S2 the C++ and R scripts to fit our model by likelihood maximization and test the 

approach with simulated data.  
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Likelihood optimization, even with simple movement models, is increasingly 

recognized as a challenge not to be underestimated by movement ecologists (Auger-Méthé 

et al. 2016). This issue stems from both the well-known difficulty to optimize 

multidimensional problems (Varadhan 2014), and from the specificity of movement models, 

such as the large statistical covariance between volatility and autocorrelation time (Blackwell 

1997; Fleming et al. 2014a).  In this study, we found it most efficient to 1) perform the 

optimization in several steps, i.e., first fit a model without covariate effects (fixing 

corresponding parameters to zero using the “map” option in TMB objects), and then to 

estimate each parameter separately (µ, σ, and τ in this order) while fixing the others to their 

best values so far. 2) We used the BFGS algorithm in R because the Nelder-Mead algorithm 

almost systematically converged towards saddle points (with non-invertible hessians) or 

encountered issues of non-estimable gradients, which seems to be an ongoing issue with 

TMB objects around saddle points. For two problematic datasets, we used 30 generations of 

a genetic algorithm with derivative (Mebane & Sekhon 2011) in order to weed out saddle 

points. 3) The choice of the initial input for the position time series was very important to 

obtain a global maximum. We tried the following initial values: the mean recorded height 

above-ground, a moving average with window 5 plus random deviation of 5 meters, and a 

moving average with window 20 plus random deviation of 40 meters. The first option 

performed best for the vultures and eagles, and the third option best for the condors. 

Importantly, flight height above-ground must obviously be positive, but the Laplace 

approximation framework employed by TMB requires that the focal variable is distributed 

between + and -∞. To implement the constraint that flight height is strictly positive, we 

employed a custom link function, denoted g (Eq. 1). This technique is like the use of the log 

link in the generalized linear model framework, but contrary to log, g is almost linear over 
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most of its domain. See Appendix S1 (section 2) for fuller justification and comparison with 

other candidate link functions. 

Eq. 1 ݖᇱ = ;ݖ)݃ (ܤ = ൜ ܤݖ + ܤ ∙ atanh൫ݖ ൗܤ − 1൯ ݖ	݂݅ ≥ ݖ	݂݅ܤ <  ܤ

where atanh denotes the hyperbolic arctangent, a standard mathematic function 

with well-characterized properties, and B is a fixed parameter (taken as B = 4 meters in our 

study). The state process acted on the transformed scale (z’ variable). The z’ variable was 

back-transformed before applying the observation process. Thereby, all negative flight 

height records were considered erroneous, and helped inform the amount of error in the 

observation process. 

We investigated whether the two innovations proposed in this section (the 

generalized Student’s t-distribution of observation error and the custom link function) 

improved the fit compared to what would have been available otherwise (the Gaussian 

distribution of observation error and the log link function) in a single condor individual using 

the Akaike Information Criterion (AIC = deviance + twice the number of parameters). Both 

features were found to greatly improve the model fit for that individual (>100 AIC points 

differences). Based on this preliminary result, we decided to use these two model features 

for all individuals without further assessment of model fit. 

ANALYSIS STEP 2: COMPUTATION OF COLLISION HAZARD 

In step 1 we generated a probabilistic estimate of the modal flight heights at the time of the 

records, corrected for observation error. We transformed these into a time series of Boolean 

variables featuring zeros when the birds were flying out of the zone that a turbine rotor 

would sweep (should a turbine exist), and ones when the birds were flying in the rotor-

swept zone. We then fitted a mechanistic model to these data.  
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To derive this mechanistic model, we used the framework laid out for birds by 

Pennycuick (2008) based on theory developed for glider planes by MacCready (1958). 

Initially, we assumed that thermals were not a limiting resource, i.e., a bird could always find 

a thermal within reach. In this simple model, birds moved cross-country (i.e., laterally) by 

gliding from thermal to thermal, and used thermal uplift to regain the potential energy they 

lost during the glides (Akos, Nagy & Vicsek 2008; Appendix S1, section 1). Following previous 

authors, we denoted w the thermal uplift speed, h the flight height at which the bird left the 

current thermal to glide towards the next thermal (or its final destination), ݒ௫ the gliding 

velocity of the bird on the horizontal plane, and ݒ௭ the sinking rate of the bird when gliding 

(negative, vertical velocity component).  

During each thermal ascension phase, the bird spent a time ݐଵ = -in the rotor ݓ/ܽ

swept zone, where a is the span of the turbine blades and w is the thermal uplift speed, i.e., 

the vertical velocity of the bird in the thermal (Fig. S1 in Appendix S1). To also characterize 

the time spent outside of the rotor-swept zone, we assumed a linear relationship between 

optimal thermal exit height ℎ∗ and thermal uplift speed w, following Shepard et al. (2011) 

(we rescaled Shepard et al.’s relationship using the range of observed flight height values in 

our study species). Throughout, an asterisk indicates the optimal value of a variable, e.g., ℎ∗ 

denotes optimal thermal exit height.  

During each gliding phase, the bird spent a time ݐଶ =  ௭ in the rotor-swept zoneݒ/ܽ

(Fig. S1 in Appendix S1). From McCready’s (1958) theory there is a generic relationship 

between the two velocity components, the gliding polar curve p such that: ݒ௭∗ =  By .(∗௫ݒ)݌

assuming that the bird minimized the time spent in flight when traveling between two 
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locations (see also Horvitz et al. 2014), we got, as explained by e.g., Akos, Nagy & Vicsek 

(2008): 

Eq.2 ݌(ݒ௫∗) − ∗௫ݒݓ =  (∗௫ݒ)′݌
where p’ is the derivate of the gliding polar curve p. If one has an analytical form for p, Eq. 2 

can be solved for ݒ௫∗, yielding a formula for ݒ௫∗ as a function of w only. We used the quadratic 

parameterization of p given by Pennycuick (2008), populated with wing shape and body 

weight data using Pennycuick’s (2008) ‘Flight’ software. Condor and vulture morphometrics 

were measured on the same individuals that were GPS-tracked in this study, while eagle 

morphometrics were taken out of the ‘wing database’ of the Flight software. 

When flying cross country over a distance D, the bird in this model spent a time ݐ	 = ஽௅ ∙ ଵݐ) +  ଶ) in the rotor-swept zone, where L is the cross-country distance travelledݐ

during one iteration of the thermal soaring / inter-thermal gliding process (Fig. S1). There is a 

simple trigonometric relationship between L, h* and v* (Fig. S1). Replacing the formula for ݐଵ, ݐଶ, and L in the equation for t, we got that ݐ = ܦ ∙ ܽ ∙ ቀଵ௪ + ଵ௩೥∗ቁ ∙ ௩೥∗௩∗ೣ∙௛∗. Further replacing ݒ௭∗ 

by the polar curve, h* by its linear relationship with w, and ݒ௫∗ by its relationship with w 

(derived from Eq. 2), we obtained that the time spent in the rotor-swept zone per unit of 

cross-country distance travelled depends solely on the thermal uplift speed w [m/s] and on 

the span of the turbine blades a [m] (Eq. 3). 

Eq.3 ݐ௥௜௦௞(ܽ, (ݓ = ܽ ∙ ((ݓ)∗௫ݒ)݌ + (ݓ)∗ℎݓ ∙ ݓ ∙  (ݓ)∗௫ݒ
This equation now needed to be modified to account for occasions when thermals were not 

available or were less profitable than other sources of uplift. To do so, we assumed that the 

bird planned as if thermals were always available, but when that proved not to be the case, 
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it switched to orographic uplift. In other words, in our model, orographic uplift acted as a 

back-up energy source in the absence of thermal uplift. 

When flying in orographic uplift, we could assume that 1) the effect of terrain 

decreased with height above-ground, yielding a low upper bound for flight height above-

ground when riding orographic uplift (Shepard, Williamson & Windsor 2016); 2) in 

orographic currents, the bird simply followed the terrain and therefore maintained a 

relatively constant flight height above-ground (Katzner et al. 2015). Whether this behaviour 

in orographic currents translates into a decrease or increase in collision hazard compared to 

when alternating between thermal soaring and gliding is likely to be situation-specific 

(Johnston et al. 2014; Miller et al. 2014; our results). We modified Eq. 3 by introducing the 

proportion ߠ of time spent riding orographic uplift, modelled, as is commonplace in resource 

selection theory, with a logistic function: ߠ = ଵଵା௘ೢషೢఱబೢೝ , where ݓ௥  [m/s] represents the rate 

at which a change in thermal uplift speed translates into a change in the proportion of time 

spent using orographic uplift rather than thermal uplift, and ݓହ଴ [m/s] denotes the thermal 

uplift speed for which half the time is spent alternating between thermal soaring and gliding, 

and half is spent riding orographic uplift. Combining this model of resource selection and Eq. 

3, we expressed the probability of flying in the rotor-swept zone as ܴ(ܽ,  .in Eq. 4 (ݓ

Eq.4 ܴ(ܽ,ݓ) = ܿ଴1 + ݁௪ି௪ఱబ௪ೝ + ൭1 − 11 + ݁௪ି௪ఱబ௪ೝ ൱ ∙ ,ܽ)௥௜௦௞ݐ) (ݓ ∙ ܿଵ + ܿଶ) 
with ݐ௥௜௦௞  as in Eq. 3. The values of the tuning parameters ܿ଴ [dimensionless], ܿଵ [s/m], and ܿଶ [dimensionless], which were estimated from the data jointly with ݓ௥ and ݓହ଴, partly 

depended on how much more or less dangerous riding orographic uplift was compared to 
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alternating between thermal soaring and inter-thermal gliding, depending on thermal uplift 

speed.  

To obtain the maximum likelihood estimates of the parameters of Eq. 4, we 

performed a least squares nonlinear logistic regression. Importantly, we replaced thermal 

uplift speed in Eq. 4 by thermal uplift potential (cf. “Uplift potential metrics” above), keeping 

notation w for both. The standard errors of parameter estimates were computed by 

inverting the hessian of the negative log-likelihood of the least squares nonlinear logistic 

regression model at its minimum. The amount of variation in collision hazard left 

unexplained by the nonlinear relationship with thermal uplift potential was quantified using 

McFadden’s r2 and Somer’s D (Appendix S1, section 3). 

Results 

CONTINUOUS-TIME STOCHASTIC MOVEMENT MODELS  

The models attributed a large part of the observed variance in flight height to observation 

error (estimated standard error of the t distributions: inter-individual mean 95 ± inter-

individual SD 56 m in condors, 77 ± 11 m in vultures, 152 ± 54 m in eagles). These large 

estimated standard errors confirmed the need to adequately treat observation error before 

making inference about vertical space use. As a side note, the difference in error rate 

between species agreed with differences in the technical capabilities of the different GPS 

devices and the precision of the digital elevation models. The estimated flight heights were 

still quite variable after removing observation variance (Figs. 1 & 2). In particular, there were 

several instances of fast gain in flight height, suggestive of a fast thermal, several instances 

of gain in height above-ground but loss in absolute elevation above sea level, suggestive of 

long gliding bouts, and there were periods when the flight height was closely coupled with 
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the ground elevation, suggestive of soaring in orographic uplift (Fig. 1). As predicted, the 

process mean µ and the volatility rate σ increased with thermal uplift potential (Table 2), 

indicating that the average and variance of flight height increased with thermal uplift 

potential in all species and individuals (Fig. 2: C, G, K). Also as predicted, the autocorrelation 

time τ decreased with thermal uplift potential in vultures and eagles (negative w effects in 

Table 2). By contrast, for condors, autocorrelation times were much longer than other 

species, and did not consistently decrease with thermal uplift potential (inconsistent sign of 

w effects in Table 2).  

COMPUTATION OF COLLISION HAZARD 

For Andean condors, collision hazard reached a maximum for intermediate thermal uplift 

potential values (Fig. 2B), indicating that in this species riding orographic uplift was initially 

less dangerous than riding thermal uplift, but the reverse was true for high thermal uplift 

potential values. The switch from orographic to thermal uplift occurred over a relatively 

small range of thermal uplift speed values (ݓ௥ = 0.20 ± SD 0.03 m.s-1) around w50 = 1.5 ± SD 

0.04 m.s-1. For large values of thermal uplift potential, collision hazard decreased because 

condors increasingly flew above the rotor-swept zone. Large amounts of variation in collision 

hazard were, however, left unexplained by thermal uplift potential (McFadden’s pseudo 

correlation coefficient: r = 0.15; Somers’ index of association: D = 0.20). 

For griffon vultures, collision hazard decreased steadily as thermal uplift potential 

increased (Fig. 2F), indicating that in this species riding orographic uplift was always more 

dangerous than using thermal uplift. The modelled behavioural switch occurred over a 

broader range of thermal uplift speed values than in condors (ݓ௥ = 0.41 ± SD 0.07 m.s-1) 

around w50 = 1.25 ± SD 0.06 m.s-1. Large amounts of variation in collision hazard were left 
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unexplained by thermal uplift potential (McFadden’s pseudo correlation coefficient: r = 0.16; 

Somers’ index of association: D = 0.21). 

For golden eagles, collision hazard showed little variation with thermal uplift 

potential (Fig. 2J). There was a moderate increase initially, indicating that riding orographic 

uplift was less dangerous than riding thermals for low thermal uplift potential values. 

Contrary to the previous two species, the decrease in collision hazard for high values of 

thermal uplift potential was small (Fig. 2J). This indicated that the flight height of this species 

was only moderately affected by the availability of thermals. The modelled behavioural 

switch occurred over the smallest range of thermal uplift speed values of the three species 

௥ݓ)  = 0.11 ± SD 0.02 m.s-1), also quite early at w50 = 0.79 ± SD 0.03 m.s-1, but the behaviour 

switch did not affect flight height very much. Most of the variation in collision hazard was 

left unexplained by thermal uplift potential (McFadden’s pseudo correlation coefficient: r = 

0.04; Somers’ index of association: D = 0.05). 

Discussion  

In this study, 36% of raw flight height records were initially classified as underground. This 

high rate of error, which we believe to be typical of flight height data computed as the 

difference between the GPS-derived height above ellipsoid and the ground elevation from a 

digital elevation model, makes it necessary to correct for observation error before inference 

about vertical space use. We developed a new method, based on the TMB framework 

(Kristensen et al. 2014), to correct flight height above-ground for large, heavy-tailed 

observation error. In a second step, we used the flight heights, corrected for observation 

error, to fit a mechanistic model of the probability that large soaring raptors fly in the height 

zone above ground that would be swept by turbine blades.  
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VALIDATION OF THERMAL UPLIFT POTENTIAL FOR APPLICATIONS IN CONSERVATION BIOLOGY  

Collision hazard was lowest for highest thermal uplift potential values, and that 

phenomenon was most obvious in the two species most reliant on thermals (condors and 

vultures). Vertical flight speed (Fig. 2), process mean height (µ; Table 2), and volatility (σ; 

Table 2) consistently and statistically significantly increased with thermal uplift potential in 

all individuals, as expected if thermal uplift potential is a good proxy for thermal uplift speed. 

Autocorrelation time decreased with thermal uplift potential also as predicted, although not 

systematically in condors (τ; Table 2). The latter result may suggest that flight height is 

subjected to a different process in condors than in lighter species, especially because a 

simple resampling exercise indicated that this result is unlikely to come from the coarser 

sampling schedule of the condors relative to the other species (Fig. S3 from Appendix S1). 

Overall, our results validated the good performance of thermal uplift potential as a proxy for 

the actual uplift conditions experienced by the birds. This variable can effectively be used for 

applications in conservation biology. 

OROGRAPHIC UPLIFT POTENTIAL 

We offer the following three hypotheses to explain the lack of relationship between the 

vertical movement rates of soaring birds and orographic uplift potential (Fig. S2 in Appendix 

S1). First, the wind velocity interpolations upon which the orographic uplift potential 

computations rest are probably too rough to appropriately represent the conditions that the 

birds are experiencing. More precise wind velocity data (e.g., embarked airspeed sensors) 

might in the future make it possible to better address the relationship between wind speed, 

orographic uplift, and flight behaviour (Taylor, Reynolds & Thomas 2016). Wind speed may 

also affect flight height through the efficiency of thermal soaring rather than through the 
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speed of orographic uplift. The most straightforward way to incorporate wind speed into our 

framework would probably be to make wr and w50 of Eq. 4 vary with wind speed. Ground 

elevation, another factor entering in the computation of orographic uplift potential, might 

also influence flight height and collision hazard directly rather than via orographic uplift. For 

example, our data suggested that eagles flew on average lower above ground when ground 

elevation was higher (Figs. S4 & S5 in Appendix S1).  

Second, when using orographic uplift, soaring birds gain horizontal velocity, but their 

flight elevation does not vary much (Katzner et al. 2015; Shepard, Williamson & Windsor 

2016). Since our approach focuses on the vertical component of movement, it is therefore 

not completely surprising that we did not find any effect of orographic uplift potential.  

Third, our model assumes that orographic uplift acted as a “back-up” energy source 

when thermal uplift was not available or was too slow, i.e., the value of orographic uplift 

speed is less important than the mere availability of orographic uplift. In other words, the 

lack of relationship between orographic uplift potential and collision hazard is largely implied 

by our working hypothesis. To our knowledge, we are the first to formally propose this 

hypothesis that large soaring birds prioritize between sources of uplift, which was well 

supported by the condor and vulture data. Lending some additional support to this 

hypothesis, during migration, soaring birds are known to accumulate along the barriers that 

delimit areas without orographic uplift, as they await favourable thermal conditions (Miller 

et al. 2016), i.e., soaring birds travelling through environments without orographic uplift are 

considered to decide not to fly at all when thermal availability is poor (K.S., unpublished 

data). Note that none of the above three hypotheses negate the importance of orographic 
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uplift in the ecology of our study species. Indeed, in many parts of their range, these species 

are restricted to areas where orographic uplift is available.    

COMPARISON BETWEEN SPECIES 

The collision hazard of eagles did not decrease as much as in the other two species when 

thermal uplift potential increased. We relate this difference to the lighter weight and lower 

aspect ratio of eagles compared to vultures and condors, making eagles more willing to use 

flapping flight and less reliant on thermals than vultures and condors, i.e., more likely to 

leave thermals before reaching the energetically-optimal height. In addition, being active 

predators who need to be able to locate and capture small prey, eagles typically maintain a 

low flight elevation above ground when they are foraging (Watson 2010; Fig. S4 in Appendix 

S2). By contrast, condors and vultures can reach relatively high elevation above ground while 

still effectively detecting large carcasses, and they can also use conspecifics to form a 

network of observers (Deygout et al. 2010; Cortés-Avizanda et al. 2014).  

The comparison between Andean condors and griffon vultures further highlights the 

role of body mass and wing loading. The heavier weight and greater wing loading of the 

condor renders the conversion of thermal uplift into potential energy less effective for this 

species than for vultures (Pennycuick 2008). In support of this, we observed that condors 

flew on average lower above ground than vultures, that their vertical speed started to 

increase at much higher thermal uplift potential values than vultures (Fig. 2D vs. 2H), and 

that they abandoned orographic uplift at higher thermal uplift potential values but more 

abruptly than vultures (w50 and wr estimates). Overall, condors therefore appeared more 

reliant on orographic uplift than vultures, and less able to exploit slow thermals, yielding the 

observed initial increase in collision hazard with thermal uplift potential. When they use 
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thermals of moderate speed, condors need more iterations of the thermal soaring/inter-

thermal gliding sequence than vultures, and therefore spend more time in the danger zone, 

explaining the peak in collision hazard at intermediate values of thermal uplift potential. 

METHOD DISCUSSION 

In this study, we directly analysed the difference between the ground elevation and the 

flight height above ellipsoid. It could be argued that this approach mixes a time-varying error 

term (error on flight height) and a time-constant one (error on ground elevation). However, 

the error on horizontal positioning, although small (a few meters), undoes the association 

between the digital elevation model and the track records, thereby introducing a time effect 

on the error on the ground elevation below the bird. 

Another particularity of our approach is that the mechanistic model (step 2) was fitted to the 

output of the stochastic model (step 1), rather than fitting the mechanistic model directly to 

the data without the stochastic model step. The energy landscape covariate (thermal uplift 

potential) entered the analytical protocol in the two steps, potentially causing some 

statistical covariance issues. However, the estimated flight heights were qualitatively similar 

when step 1 did not include the dependency on thermal uplift potential (preliminary results 

not shown), so this issue is not believed to affect our results. We are not aware of any study 

attempting to fit a mechanistic model when the data are both strongly autocorrelated and 

affected by observation error, although opportunities exist should the data support them 

(e.g., multistate approaches). 

IMPLICATIONS FOR MANAGING THE COLLISIONS OF SOARING BIRDS IN WIND FARMS 

Our fitted models convert weather data (thermal uplift potential) into a prediction of 

collision hazard (probability to fly in the rotor-swept zone), making it possible to compare 
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the relative hazard that different wind development projects would pose to raptors. To 

further convert collision hazard into collision risk, i.e., the probability that an individual in 

the study population will collide with a turbine over a given amount of time, two other 

quantities need to be assessed: 1) the rate at which raptors in the focal population fly over 

wind farms (a.k.a. raptor use of the wind farms; New et al. 2015), and 2) their avoidance 

behaviour (i.e., the way in which they modify their flight height in direct response to the 

presence of wind turbines; Johnston, Bradley & Otter 2014). Under the understanding that 

risk is the product of hazard and vulnerability, one could term the above two quantities 

“vulnerability factors”. The combination of pre-construction assessments of collision hazard, 

pre-construction assessments of raptor use of a development area, and post-construction 

assessment of realized collision rates, could effectively bring information about avoidance 

behaviour, i.e., the rate at which different species and populations manage to modify their 

flight behaviour (vertically or horizontally or both) to avoid collision.  

In conclusion, GPS tracking data, combined with an understanding of the mechanisms 

underlying vertical movement, can make it possible to leverage behavioural knowledge for 

conservation purposes in a situation-tailored way. For wildlife biologists tasked with advising 

developers and controlling the risk that infrastructures and aircraft pose to large soaring 

raptors, our results can be used to prioritize potential development areas with respect to the 

relative hazard they pose.  
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Tables 

Table 1: Study species characteristics, trapping and tagging information. Measurements 

represent typical variation across age and sex classes.  

Species Study 
area 

Trapp
ing 
perio
d 

Devices Individ
ual 
days 

Bod
y 
weig
ht 
(kg) 

Wing 
loadi
ng 
(kg/
m2) 

Asp
ect 
ratio
*1 

Social 
foragi
ng*2 

Main 
food 
source 

Referen
ces for 
field 
method
s 

Andean 
condor  

(Vultur 
gryphus
) 

Patago
nia, 
Argenti
na  

(36°44’
S, 
69°73’
W) 

2014-
2015 

Solar GPS–
GSM 
loggers 
(Vektortek 
LLC) 
attached 
with 
backpack 
(120 g) 

1,692 9-14 9-13 7-8 Yes Carrio
n 

Shepard 
& 
Lambert
ucci 
2013; 
Lambert
ucci et 
al. 2014 

Griffon 
vulture  

(Gyps 
fulvus) 

Grands 
Causse
s, 
France  

(44°10’
N, 
3°08’E) 

2010 Battery-
powered 
GPS-
Bluetooth 
loggers 
Gipsy-2 
(Technos
mart), 
attached 
with leg-
loop 
harness 
(100 g) 

2,697 7-11 7-10 6.5-
7.5 

Yes Carrio
n 

Monsarr
at et al. 
2013 

Golden 
eagle  

(Aquila 
chrysae
tos) 

S. 
Massif 
Central
, 
France  

(43°45’
N, 
3°16’E) 

2013-
2014 

Solar GPS-
GSM-UHF 
loggers 
Skua 
(Ecotone) 
attached 
with 
backpack 
(50 g) 

3,103 4-5 5.5-
8.5 

6-7 No Mediu
m-
sized 
mam
mals 
and 
birds 

Hitherto 
unpublis
hed 
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*1Aspect ratio is the ratio of the wing span to the mean chord (average width of the 

extended wing; e.g., Pennycuick 2008) 

*2 (Deygout et al. 2010; Cortés-Avizanda et al. 2014) 

 

Table 2: Parameter estimates of the Ornstein-Uhlenbeck vertical position process (OU-p). 

Intercepts (“Intcp.”) and slopes of the effect of thermal uplift potential (“w”) are given. 

Autocorrelation times and volatility rates are log-transformed. Individual identification 

numbers (“indiv#”) are for future reference only. Also given are the number of GPS fixes 

used (“N”) and the median time interval between fixes of the same day (“D”, in minutes). 

Andean condors   

indiv# 

autocorrelation time τ (min, 
log-scale) 

volatility rate σ (m.min-1/2, 
log-scale) 

process mean μ 
(m) 

N D
Intcp. SE w SE Intcp. SE w SE Intc

p. SE w SE 

JVEC
K1 5.68 0.32 -0.08 0.20 2.01 0.19 0.69 0.16 123 8 95 31 193

1 
1
5 

JVEC
K2 10.79 0.99 0.68 0.55 -3.82 0.57 2.35 0.31 -2 1 76 14 288

6 
1
5 

JVEC
K3 8.59 4.24 -1.53 2.67 2.08 0.12 0.43 0.14 99 6 21

4 55 186
7 

1
5 

JVEC
K4 7.62 1.98 2.06 1.27 2.17 0.17 0.26 0.17 135 11 34

4 72 127
1 

1
5 

JVEC
K5 9.66 3.01 3.30 1.87 0.53 0.54 0.17 0.42 50 4 32 28 192

9 
1
5 

Griffon vultures   

indiv# 

autocorrelation time τ (min, 
log-scale) 

volatility rate σ (m.min-1/2, 
log-scale) 

process mean μ 
(m) 

N D
Intcp. SE w SE Intcp. SE w SE Intc

p. SE w SE 

TY092
6-2 3.51 0.11 -0.25 0.12 3.74 0.05 0.47 0.04 149 10 80 13 380

6 2 
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TY142
6 4.46 0.12 -0.28 0.14 3.05 0.04 0.55 0.04 122 8 54 0.

1 
446
0 5 

TY161
9 2.84 0.17 -0.55 0.17 4.19 0.05 0.37 0.05 172 17 92 23 148

2 1 

TY171
9 3.76 0.12 -0.30 0.23 3.61 0.02 0.50 0.01 74 9 35 11 432

7 2 

TY217
7 2.71 0.09 -0.04 0.08 4.09 0.03 0.09 0.03 136 8 31 11 327

8 1 

TY373
0 3.37 0.08 -0.01 0.06 4.01 0.02 0.27 0.01 169 11 86 15 392

2 2 

TY374
5 3.34 0.03 -0.26 0.04 4.13 0.01 0.32 0.01 195 5 69 5 256

88 3 

TY448
5 3.16 0.15 -0.17 0.19 4.17 0.05 0.10 0.04 144 22 17 27 126

7 1 

Golden eagles   

indiv# 

autocorrelation time τ (min, 
log-scale) 

volatility rate σ (m.min-1/2, 
log-scale) 

process mean μ 
(m) 

N D
Intcp. SE W SE Intcp. SE W SE Intc

p. SE w SE 

2 4.44 0.10 -0.22 0.11 2.23 0.05 0.41 0.07 7 2 19 3 807
6 

1
0 

6 4.37 0.16 -0.19 0.17 2.01 0.09 0.50 0.08 -4 3 17 4 292
2 

1
5 

11 4.06 0.06 -0.04 0.09 3.21 0.03 0.45 0.02 6 4 36 4 114
29 

6 

12 4.27 0.05 -0.35 0.05 2.53 0.03 0.46 0.03 38 2 22 2 229
85 

1
0 

14 3.90 0.03 -0.32 0.03 2.98 0.01 0.56 0.03 11 2 22 2 258
94 6 

18 3.77 0.04 -0.46 0.04 3.69 0.02 0.64 0.02 128 4 87 5 220
56 6 
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Figures 

Fig. 1: Visualization of the flight data for one adult griffon vulture tracked over 12.2 

months. Upper panel: 80% and 95% contours of the 3D kernel density estimate (computed 

after Fleming et al. 2015; Calabrese, Fleming & Gurarie 2016 and plotted against a digital 

elevation model by Institut Géographique National). 80% and 95% of the locations fall within 

the green and blue volumes respectively. The z-axis is magnified 10 times in this panel. The 

red spheres represent a 48-hour exploration of the outskirts of the home range. The arrow 

indicates the north and is approximately 5 km long. Lower panel: simplified visualization of 

the exploration flight represented by red sphere in the upper panel. Red symbols: recorded 

data (c. one location per minute). Black line: Estimated flight height after removing 

observation error. This time window was chosen because flight mode switches are easily 

discernible, but the observation error was lower than average during this time window. Dark 

grey areas: ground elevation. During the first 40 minutes, the bird is flying near the colony, 

gaining elevation in thermals or orographic current until it reaches a flight elevation that 

allows gliding towards the west for the next 40 minutes over 15 km. At the 48th minute of 

the sequence, the bird picks a thermal and reaches the highest flight height of the sequence 

within 8 minutes. During the next day (after the vertical bar representing a time ellipse with 

no data), the flight height is more closely coupled to the ground elevation, suggesting that 

the bird mostly uses orographic uplift and glides along leeward slopes to get back to the 

colony. 

Fig. 2: (A, E, I): Semivariograms of the z-axis flight height data, averaged over 

individuals for each species, showing the horizontal asymptote characteristic of range-

residency. Black line: empirical semivariogram. Grey line: fitted curve showing the 
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theoretical semivariogram function of an Ornstein-Uhlenbeck position process. Grey area: 

95% confidence interval of the semivariogram. Complete details about semivariance theory 

for movement models are in Fleming et al. (2014). Departures from the theoretical 

semivariogram are due to variation between individuals (in both their semivariance and the 

time lags of their time series) and to the stochastic nature of the process. (C, G, K): 

Relationship between estimated flight height, corrected for observation error using the 

state-space model, and thermal uplift potential. The mean and variance of flight height both 

increase with thermal uplift potential. The histogram represents the frequency of thermal 

uplift potential values along the birds’ trajectories.  (D, H, L): Relationship between 

estimated vertical velocity and thermal uplift potential, showing the increase in variance 

with thermal uplift potential. Vertical velocity is computed as the vertical displacement 

between to flight height records, corrected for observation error using the state-space 

model, and divided by the time interval between the records. Note the different scales for 

each species. (B, F, G): Collision risk. Round symbols: probability of presence in the rotor-

swept zone (60-180 meters above ground), corrected for observation error and binned into 

100 bins of equal size. Solid line: nonlinear logistic regression model predictions based on Eq. 

3. Shaded area: 95% confidence interval from a parametric bootstrap with 1000 replicates. 
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