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Weighting the transitivity of undirected weighted social networks with triadic 

edge dissimilarity scores 

Running title: Triadic edge dissimilarity scores for undirected graphs 

 

Guillaume Péron 

 

Abstract 

When an individual is socially connected to two others, the resulting triplet can be closed (if the two 

social partners are themselves connected) or open (if they are not connected). The proportion of 

closed triplets, referred to as the binary network transitivity, is a classic measure of the level of 

interconnectedness of a social network. However, in any given triplet, if the closing link is weak, or 

indeed if any of the links in the triplet is weak, then the triplet should not contribute as much to 

network transitivity as if all three links were equally strong. I propose two ways to weight the 

contribution of each triplet according to the dissimilarity between the three links in the triplet. 

Empirically, the resulting new metrics conveyed information not picked up by any other network-

level metric. I envision that this approach could prove useful in studies of triadic mechanisms, i.e., 

situations where pre-existing social ties influence the interactions with third parties. These metrics 

could also serve as repeatable synthetic variables that summarize information about the variability of 

the strength of social connections. 

Key-words: animal association network; indirect interactions; clustering coefficient; valence; graph 

theory; social style; intransitivity; socio-spatial structure 

 

  



2 
 

Introduction 1 

In undirected social networks, whenever an individual A is separately connected to two other 2 

individuals B and C, the resulting triplet can be closed (if B and C are also connected) or open (if B 3 

and C are not connected) (Fig. 1). The proportion of closed triplets measures the level of 4 

interconnectedness and is referred to as the binary network transitivity (Newman, 2008). Introducing 5 

the variable 𝛿𝑡 = 1 if the triplet t is closed and 𝛿𝑡 = 0 if the triplet t is open, the binary network 6 

transitivity 𝒞0 corresponds to the sum of 𝛿𝑡  across all the triplets (Newman, 2008). 7 

Eq. 1 
𝒞0 =

1

𝒯
∑ 𝛿𝑡

𝒯

𝑡=1

 

𝒯 is the number of triplets in the network.  8 

The binary network transitivity has become one of the most used metrics to characterize the 9 

structure of social networks. Many properties of social networks depend on transitivity, e.g., the 10 

occurrence of clusters of interconnected individuals, the expected length of the minimum path 11 

between a given pair of individuals, the expected number of different paths that connect a given pair 12 

of individuals. However, in the binary definition of transitivity, all the triplets that are closed 13 

contribute equally to the transitivity of the network. Yet, in many instances, the connections 14 

(synonyms: links, edges, bonds) vary in strength (synonyms: weight, valence). For example, not all 15 

connections are necessarily active at any given time. Intuitively, if the closing link is weak or rarely 16 

active, the triplet does not contribute as much to network transitivity compared to if the closing link 17 

is strong or frequently active. To address this issue, one might use the strength of the closing links to 18 

weight the contribution of the triplets to network transitivity (Eq. 2). 19 

Eq. 2 
𝒞0,𝑐𝑙𝑜𝑠𝑖𝑛𝑔 =

1

𝒯
∑ 𝛾𝑡

𝒯

𝑡=1
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𝛾𝑡 is the strength of the closing link in triplet t, rescaled to vary between 0 and 1. If the network was 20 

dichotomized by setting all the link strengths to 0 for a missing link or to 1 for a link with non null 21 

strength, then 𝛾𝑡 = 𝛿𝑡, and Eq. 2 would reduce to Eq. 1. 22 

Alternatively, following Opsahl and Panzarasa (2009), one can weigh the contributions of the triplets 23 

according to the strength of their first two links, yielding the weighted network transitivity 𝒞1. There 24 

are several variations (Eqs. 3a-3c). 25 

Eq. 3a 
𝒞1,𝑔𝑒𝑜𝑚 =

∑ √𝛼𝑡𝛽𝑡 ∙ 𝛿𝑡
𝒯
𝑡=1

∑ √𝛼𝑡𝛽𝑡
𝒯
𝑡=1

 

Eq. 3b 
𝒞1,𝑚𝑖𝑛 =

∑ 𝑚𝑖𝑛(𝛼𝑡 , 𝛽𝑡) ∙ 𝛿𝑡
𝒯
𝑡=1

∑ 𝑚𝑖𝑛(𝛼𝑡 , 𝛽𝑡)𝒯
𝑡=1

 

Eq. 3c 
𝒞1,𝑚𝑎𝑥 =

∑ 𝑚𝑎𝑥(𝛼𝑡, 𝛽𝑡) ∙ 𝛿𝑡
𝒯
𝑡=1

∑ 𝑚𝑎𝑥(𝛼𝑡 , 𝛽𝑡)𝒯
𝑡=1

 

𝛼𝑡 and 𝛽𝑡 are the strengths of the first two links in triplet t (Fig. 1). If the network was dichotomized 26 

by setting all the link strengths to 0 or to 1, then Eqs. 3a-3c would, like Eq. 2, reduce to Eq. 1. 27 

Eqs. 3a-3c only use two of the three links in each triplet; Eq. 2 only used one. There does not exist yet 28 

a method that takes all three links into account. To address that issue, I quantified the dissimilarity 29 

between the three links in each triplet. First, I reordered and renamed the three link strengths 30 

𝛼𝑡 , 𝛽𝑡 , 𝛾𝑡 into 𝑎𝑡 , 𝑏𝑡, 𝑐𝑡  with 𝑎𝑡 ≥ 𝑏𝑡 ≥ 𝑐𝑡 (Fig. 1). The notation change means that 𝑐𝑡 does not 31 

compulsorily correspond to the closing link. I then computed the pairwise proportional difference in 32 

each triplet t (Eq. 4a) (Péron, 2022a). 33 

Eq. 4a 
𝜔𝑡 =

𝑎𝑡 − 𝑐𝑡

𝑎𝑡
+

𝑏𝑡 − 𝑐𝑡

𝑎𝑡
− 1 =

𝑏𝑡 − 2𝑐𝑡

𝑎𝑡
 

𝜔 compares the weakest link 𝑐𝑡 to the other two links. 𝜔 = 0 for a false triplet (𝑏 =  𝑐 =  0; Fig. 1), 34 

𝜔 = 1 for an open triplet made of two equally strong links (𝑎 = 𝑏 and 𝑐 = 0), and 𝜔 = −1 for a 35 

closed triangle made of three equally strong links (𝑎 = 𝑏 = 𝑐) (Fig. 1).  If the network was 36 

dichotomized, the largest link 𝑎𝑡 would be set to 1 and 𝑏𝑡 and 𝑐𝑡 would take either value 0 or 1 37 
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(instead of varying between 0 and 1). Then the only possible values for 𝜔𝑡 would be -1, 0, or 1 38 

(instead of varying between -1 and +1). 39 

Next, I computed the Gini coefficient of the three link strengths (Péron, 2022a). 40 

Eq. 4b 
𝑔𝑡 =

1

2

(𝑎𝑡 − 𝑏𝑡) + (𝑏𝑡 − 𝑐𝑡) + (𝑎𝑡 − 𝑐𝑡)

𝑎𝑡 + 𝑏𝑡 + 𝑐𝑡
=

𝑎𝑡 − 𝑐𝑡

𝑎𝑡 + 𝑏𝑡 + 𝑐𝑡
 

The Gini coefficient is a classic measure of inequality (Gini, 1936), often used to quantify how much 41 

larger is the largest quantile of a distribution. Applied to three values, 𝑔 = 1 for a false triplet (𝑏 =42 

 𝑐 =  0), 𝑔 = 0.5 for an open triplet made of two equally strong links (𝑎 = 𝑏 and 𝑐 = 0), and 𝑔 = 0 43 

for a closed triangle made of three equally strong links (𝑎 = 𝑏 = 𝑐) (Fig. 1). If the network was 44 

dichotomized, the only possible values for 𝑔𝑡 would be 0, 0.5, or 1 (instead of varying between 0 and 45 

1). Throughout, the strengths of the links a, b, and c were rescaled to vary between 0 (no link) and 1 46 

(strongest recorded link).  47 

Fig. 1: Illustrated glossary and representation of the domain of definition of ω and g as well as the 48 

four quadrants to distinguish between four different types of weighted triadic interactions. 49 
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Compared to previous computations of network transitivity (Eqs. 1-3) (Newman, 2008; Opsahl and 52 

Panzarasa, 2009), my framework uses the terminology in a slightly different way (Fig. 1). (i) In my 53 

framework, missing links with a strength of 0 are special cases of weak links. By contrast, in Eqs.1 and 54 

3, as soon as even the most tenuous closing link was recorded, the triplet would change from open 55 

to closed. (ii) In my framework, Eqs. 4a-4b actually apply to “triads”, meaning that they only require 56 

one non-missing link (Fig. 1). By contrast, Eqs. 1-3 apply to “triplets” with at least two non-missing 57 

links. The difference is important. On the one hand “false triplets” (Fig. 1) count as triads but not as 58 

triplets (Fig. 1). On the other hand, a triangle made of three interconnected individuals and three 59 

links (a,b,c) contributes a single triad to the computation of Eq. 4, but three triplets to the 60 

computation of Eqs 1-3: triplets (a,b) closed by c, (a,c) closed by b, and (b,c) closed by a  (Newman, 61 

2008; Opsahl and Panzarasa, 2009). (iii) As mentioned earlier, in my framework, I ordered the link 62 

strengths in each triad (1 ≥ 𝑎 ≥ 𝑏 ≥ 𝑐 ≥ 0) before computing ω and g. Then I introduced phrases 63 

like “weak triplet closed by a strong link” to refer to specific triangular configurations (Fig. 1). A 64 

“weak triplet closed by a strong link” is a triangle (a,b,c) with c smaller than a and b. As mentioned 65 

above, in Eqs. 2 and 3, that triangle would have contributed three triplets, each with a different 66 

weight. By contrast, in my framework, these three triplets all have the same weights ω and g. In 67 

summary, I associated specific meanings to the terms “triplet” and “triad”. 68 

By computing 𝜔 and g for all the triads, I reduced the 3D space  𝔸 = {𝑎, 𝑏, 𝑐 | 1 ≥ 𝑎 ≥ 𝑏 ≥ 𝑐 ≥ 0} 69 

into a 2D space 𝕎 = {𝜔, 𝑔 | 1 ≥ 𝑎 ≥ 𝑏 ≥ 𝑐 ≥ 0}. Because of the condition that 𝑎 ≥ 𝑏 ≥ 𝑐 and 70 

because of the non independence between the formulae for ω and g, the domain 𝕎 exhibits a 71 

specific shape (Fig. 1). For interpretation purposes, I then divided the 𝕎 space into four quadrants 72 

(Fig. 1).  73 

1. Quadrant 1 contained the “balanced triangles” where the three links are of similar strengths: 74 

𝑎 ≈ 𝑏 ≈ 𝑐. In this situation, 𝜔 → −1 and 𝑔 → 0. I drew the limits of quadrant 1 by 75 
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considering the two extreme cases 𝑏 = 2𝑐 yielding 𝜔 = 0; and 𝑏 = 𝑐 = 𝑎/2 yielding 𝑔 =76 

1/4 (Fig. 1). 77 

2. Quadrant 2 contained the “weak triplets closed by a strong link” where a is much larger than 78 

both b and c. I drew the limits of quadrant 2 by considering the two extreme cases 𝑏 = 2𝑐 79 

yielding 𝜔 = 0; and 𝑏 = 𝑐 = 𝑎/2 yielding 𝑔 = 1/4 (Fig. 1). 80 

3. Quadrant 3 contained the “strong triplets closed by a weak link” where c is much smaller 81 

than both a and b. I drew the limits of quadrant 3 by considering the two extreme cases 𝑏 =82 

2𝑐 yielding 𝜔 = 0; and 𝑐 = 0 plus 𝑏 = 𝑎/2 yielding 𝑔 = 2/3 (Fig. 1). 83 

4. Quadrant 4 contained the “nearly false triplets” where a is extremely much larger than b and 84 

c. In this situation, 𝜔 → 0 and 𝑔 → 1. I drew the limits of quadrant 4 by considering the two 85 

extreme cases 𝑏 = 2𝑐 yielding 𝜔 = 0; and 𝑐 = 0 plus 𝑏 = 𝑎/2 yielding 𝑔 = 2/3 (Fig. 1). 86 

Next, I averaged 𝜔 and g over all the triads in the network (Eq. 5a and 5b).  87 

Eq. 5a 

𝒞𝜔 =
1

𝒯̃
∑ 𝜔𝑡

𝒯̃

𝑡=1

 

 Eq. 5b 

𝒞𝑔 =
1

𝒯̃
∑ 𝑔𝑡

𝒯̃

𝑡=1

 

𝒯̃ is the number of triads. The difference between 𝒯̃ and the number of triplets 𝒯 depends on the 88 

number of missing links in the network. The R script to compute 𝒞𝜔 and 𝒞𝑔 is provided in Appendix 89 

S1. 90 

𝒞𝜔 and 𝒞𝑔 are new network-level metrics. In this paper, I performed the initial evaluation of their 91 

relevance. In particular, I assessed whether 𝒞𝜔 and 𝒞𝑔  captured information not captured by other 92 

metrics. To do so, I simulated theoretical networks and I reanalyzed published animal association 93 

networks. 94 

Material and methods 95 
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Comparing with other network metrics 96 

First I considered three metrics that quantify the shape of the distribution of link strengths: 97 

1. The variance in link strength denoted Var(w) 98 

2. The skewness of the link strength distribution denoted Skew(w) 99 

3. The Gini coefficient of the link strength distribution denoted Gini(w) 100 

The Gini coefficient was here computed for all the links in the networks, whereas 𝑔𝑡 from Eq. 4b is 101 

for three links only. Next I computed five classic network-level summary metrics: 102 

4. The binary edge density 𝒟0, corresponding to the proportion of non-missing links among all 103 

the possible links in the network. 104 

5. The binary network transitivity, 𝒞0 (Eq. 1) 105 

6. The weighted network transitivity with the geometric mean of link strengths as weight, 106 

𝒞1,𝑔𝑒𝑜𝑚 (Eq. 3a) 107 

7. The network modularity ℳ. I delineated modules of individuals that interact more among 108 

themselves than across modules using the short random walk community-finding algorithm: 109 

routine cluster_walktrap (Pons and Latapy, 2005) from igraph (Csardi and Nepusz, 110 

2006). I took into account the weight of the links when delineating the modules (argument 111 

weights = E(graph)$weight). I then computed the modularity score following the 112 

usual formula (Newman et al., 2002). 113 

8. The network fragmentation ℱ. I computed the network fragmentation as the overall network 114 

size divided by the average size of the modules that contained more than one individual. A 115 

large fragmentation score meant that there were many small modules. 116 

Simulating theoretical networks  117 

To demonstrate the type of information that the new metrics convey in a unique way, I designed 118 

scenarios corresponding to each of the four quadrants. I predicted that, using the new metrics, the 119 

resulting networks would be categorized as belonging to the correct quadrant.  120 
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1. Scenario 1 with many balanced triangles. I generated full networks with no missing links. 121 

Then, at random, half of the links were strong (assigned a weight of 1) and half of the links 122 

were weak (assigned a weight drawn at random between 0 and 0.5). This procedure 123 

generated balanced triangles where either all three links were weak or all three links were 124 

strong. 125 

2. Scenario 2 with many weak triplets closed by a strong link. I generated full networks with no 126 

missing links. Then, at random, 85% of the links were weak (assigned a weight of 0.1) and 127 

15% of the links were strong (assigned a weight drawn at random between 0.75 and 1). This 128 

procedure generated more triangles with two weak links and one strong link than if the link 129 

strength distribution was unimodal for example. 130 

3. Scenario 3 with many strong triplets closed by a weak link. First I generated networks with a 131 

𝒞0-score of 0.8, using the rguman routine in R-package sna (Butts, 2020). Next, processing 132 

each triangle one by one in a random order, I made one of the three links weaker than the 133 

other two (by assigning a weight drawn at random between 0 and 0.1). This routine 134 

generated more triangles with two strong links and one weak link than if I omitted the 135 

reassignment step. Note that the routine processed each link multiple times because some 136 

links belonged to several triangles. 137 

4. Scenario 4 with many false triplets. I generated scale-free networks (Barabási and Albert, 138 

1999) and then attributed random weights to the existing links. The weights were drawn 139 

from either a Gaussian or uniform distribution. Scale-free networks feature more false 140 

triplets (as defined in Fig. 1) than full networks with no missing link. 141 

In addition to these 4 scenarios, I considered a few classic theoretical networks. 142 

5. Full networks with no missing links (i.e., 𝒟0 = 1) in which I attributed random weights to the 143 

existing links. The link strengths were drawn from either a Gaussian or uniform distribution. 144 
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6. Half-full networks in which I removed half of the links at random (i.e., 𝒟0 = 0.5), and then 145 

assigned random weights to the remaining links. The link strengths were drawn from either a 146 

Gaussian or uniform distribution. 147 

7. Lattice graphs. In lattice graphs, each individual is connected to a fixed number of immediate 148 

neighbors. I considered 2D, 3D, and 4D lattices. The link strengths were drawn from either a 149 

Gaussian or uniform distribution. 150 

8. Modular graphs made of a set number of full networks (from 1 to 8 full networks) of which 151 

the link strengths varied between 0.75 and 1. These modules were then connected by weak 152 

links varying between 0 and 0.25, thereby ultimately obtaining a full network with no missing 153 

link, but a high modularity score as defined above. 154 

9. Star graphs made of a central node connected to all other individuals by strong links varying 155 

between 0.9 and 1, while the remaining links were all weak and varied between 0 and 0.1. 156 

I generated 100 examples of these 9 types of theoretical networks using igraph for R (Csardi and 157 

Nepusz, 2006). For each simulated network, I computed the two triadic edge dissimilarity scores and 158 

the 8 comparison metrics. I then performed a principal component analysis (PCA) of the 8 159 

comparison metrics to find axes of covariation between them. I assessed whether the triadic edge 160 

dissimilarity scores or the PCA scores could discriminate between the 9 network types, i.e., if one 161 

could determine the network type using only the triadic edge dissimilarity scores or only the PCA 162 

scores. Lastly, using linear models, I computed the proportion of the variance in the new metrics that 163 

was explained by the variation in the 8 comparison metrics. 164 

Using the new metrics to assess triadic mechanisms 165 

A “triadic mechanism” hereafter refers to any situation where an existing link influences the 166 

occurrence or the strength of links with third parties (e.g., Perry et al., 2004; Wittig et al., 2014). If 167 

that influence was negative, strong links would be surrounded by weak links, which in the parlance of 168 
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this paper corresponds to weak triplets closed by a strong link. The corresponding triads would score 169 

into quadrant 2. 170 

As an illustration, I reanalyzed the association networks of experimental flocks of captive barnacle 171 

geese Branta leucopsis (Kurvers et al., 2013).  I expected triadic mechanisms in geese flocks because 172 

bonded individuals are dominant over non-bonded individuals (Black and Owen, 1989; Kurvers et al., 173 

2013). In free-ranging flocks, bonds correspond to family units or pairs. In the experiments of which I 174 

reanalyzed the data, bonds were artificially created by raising goslings in separate subgroups, before 175 

pooling the groups together, separately for males and females (Kurvers et al., 2013). In both sexes, 176 

after the subgroups were pooled together, the goslings still bonded preferentially with members of 177 

their initial subgroups (Kurvers et al., 2013). The recorded link strengths corresponded to the 178 

frequency at which individuals fed on the same patch during standardized observation sessions in an 179 

artificially patchy environment. There was no missing link in these networks, i.e., every dyad was 180 

recorded to associate at least once. Before analysis, I applied a logit transformation on the link 181 

strengths so they varied between 0 and 1 and had a median value of 0.5.  182 

Because males are more aggressive and dominant than females in geese (Black and Owen, 1989), I 183 

predicted that the effect of the triadic mechanism should be stronger in males than females. To 184 

support that hypothesis, I quantified whether the male triads were more often in quadrant 2 or 185 

deeper into quadrant 2 (i.e., further away from the borders with the other quadrants) than the 186 

female triads using Hotelling’s T-squared test (Hotelling, 1931). 187 

Using the new metrics as synthetic variables  188 

Even without triadic mechanism, the new metrics can prove useful because they summarize 189 

information that would otherwise require many metrics.  190 

As an illustration, I reanalyzed and compared 6 datasets of grooming interactions within groups of 191 

rhesus macaques (Macaca mulatta), that I obtained through the ASNR repository (Sah et al., 2019). 192 

Rhesus macaques exhibit an “intolerant social style” characterized in particular by strong preference 193 
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for kin in social interactions such as grooming (Thierry, 2007). Therefore, the kinship structure of the 194 

group is expected to influence who grooms whom in a macaque group. Among the 6 datasets, there 195 

were three groups of nonkin that met each other after weaning age (all from the same study: 196 

Balasubramaniam et al., 2018).  Then there were two free-ranging groups with naturally occurring 197 

kinship structure (Griffin and Nunn, 2012; Puga-Gonzalez et al., 2018) (these are from the same 198 

locality but different time periods). Another group was captive but featured locally born adult and 199 

immature offspring, therefore similar to the natural kinship structure (Massen and Sterck, 2013). In 200 

summary, I obtained data from free-ranging groups of kin, captive groups of kin, and captive groups 201 

of nonkin, making it possible to decipher the influence of kinship and captivity. I used Hotelling’s T2 202 

statistic for this purpose. 203 

Link strength corresponded to the frequency of recorded allogrooming interactions for each dyad 204 

during standardized observation sessions. I did not distinguish who was the groomer and who was 205 

the recipient. These networks featured many missing links, i.e., most of the dyads never groomed 206 

each other. Based on the results of the simulation exercise (see below), this is a situation where the 207 

overwhelming influence of missing links can cause binary metrics such as 𝒟0 and 𝒞0 to outperform 208 

the new metrics in terms of discriminatory power. In other words, this exercise represented a 209 

challenge for the new approach. Before analysis, I applied a logit transformation on the link strengths 210 

so they varied between 0 and 1 and had a median value of 0.5.  211 

Results 212 

Simulation study 213 

Visually, the two new metrics clearly discriminated among the 9 theoretical networks (Fig. 2a). In 214 

particular, Scenarios 1-4 neatly fell in the expected quadrants (Fig. 2a).  215 

The PCA of the 8 comparison metrics also discriminated among the 9 theoretical networks (Fig. 2b).  216 

However, there was some overlap that did not occur with the new metrics, in particular between 217 

Scenarios 2 and 3 and between modular networks and Scenario 2. All in all, the main advantage of 218 
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the new metrics in terms of discriminatory power was the dimension reduction (2 metrics instead of 219 

8), the removal of the PCA step, and the possibility to interpret the scores using the quadrants.  220 

29% of the variance in 𝒞𝜔 was left unexplained by any of the 8 comparison metrics. This means that  221 

𝒞𝜔 unambiguously picked up information not captured by any of the 8 comparison metrics. 4% of the 222 

variance in 𝒞𝑔 was left unexplained by any of the 8 comparison metrics. This latter result mostly 223 

stemmed from the correlation between 𝒞𝑔 and the edge density 𝒟0 (Appendix S2). However, for full 224 

networks with no missing link, 𝒟0 was always equal to 1 but 𝒞𝑔 was still very variable. In other 225 

words, the new metrics were most informative when there were no or few missing links in the study 226 

networks. 227 

Fig. 2: Simulation study results. (a) Network-level triadic edge dissimilarity scores (new method). The 228 

network-level scores 𝒞𝜔 and 𝒞𝑔  can fall outside of the domain of definition of the triad-level scores 229 

ω and g (𝕎, white shape). However, the network-level scores are always within the dotted lines. (b) 230 

Principal component analysis (PCA) of 8 other network-level metrics (see list in the main text).  231 

 232 

Using the new metrics to assess triadic mechanisms 233 

Barnacle goose flocks of both sexes scored in quadrant 2, but as predicted, there were more weak 234 

triplets closed by a strong link among males than females (Hotelling’s T-squared on 2 and 2908 235 

degrees of freedom: 65.3; P < 0.001; Fig. 3a: “M” vs. “F”). This suggests that bonded males were 236 

more dominant over non-bonded males than bonded females were over non-bonded females.  237 
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The 8 comparison metrics were also different between the male and female networks (Fig. 3b). In 238 

particular, the distribution of link strength was more skewed in males than females (5.4 vs. 2.8). This 239 

suggests that the excess of weak triplets closed by a strong link in males relative to females might 240 

simply stem from the rarity of strong links among males. Repeat samples would be necessary to 241 

decipher the effect of the rarity of strong links from the triadic mechanism hypothesis. 242 

Fig. 3: Application cases: barnacle geese and rhesus macaques. (a) Network-level triadic edge 243 

dissimilarity scores (new method). (b) Principal component analysis (PCA) of 8 other metrics (see list 244 

in the main text). The PCA coefficients and axes are different from Fig. 2b. 245 

 246 

Using the new metrics as synthetic variables 247 

Among the macaque grooming networks, kinship explained more variation in the triadic edge 248 

dissimilarity scores than captivity (Fig. 3a; Hotelling’s T-squared for kin vs. nonkin: 3793.8 on 2 and 249 

122780 degrees of freedom; for captive vs. free-ranging: 656.1; both P < 0.001). 250 

The edge density alone would have been sufficient to discriminate between groups of kin and groups 251 

of nonkin: 𝒟0= 0.62 ± SD 0.02 vs 0.19 ± 0.02. This suggests that in this case, triadic dissimilarities 252 

depended mostly on the frequency of missing links, and thereby reaffirm the above conclusion that 253 

the new metrics are most informative when there are no or few of these missing links. This 254 

conclusion was further verified by permutation exercises (Péron, 2022a): when I permuted the link 255 
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strengths while keeping the edge density constant, the triadic edge dissimilarity scores and the above 256 

conclusion remained largely unchanged (not shown). Lastly, the captive groups exhibited more 257 

skewed distributions of link strength than the free-ranging groups (4.2 ± SD 0.2 vs. 2.8 ± 0.6; Fig. 3b). 258 

The triadic edge dissimilarity scores did not pick up this information (Fig. 3a: the symbols for captive 259 

groups are closer to each other than in Fig. 3b). This means that in the macaque case contrary to the 260 

goose case, the rarity of strong links did not contribute much to the triadic edge dissimilarities. The 261 

dissimilarities mostly came from missing links rather than from variation in the strength of non-262 

missing links.  263 

Discussion 264 

In this paper, I weighted the computation of network transitivity in a way that takes into account the 265 

strength of all three links in each triplet. Previously, network transitivity was either not weighted for 266 

link strength, yielding what I denoted the binary transitivity 𝒞0 (Newman et al., 2002). Alternatively, 267 

the transitivity was weighted but using only the strength of the first two links, yielding what I 268 

denoted the weighted transitivity 𝒞1 (Opsahl and Panzarasa, 2009). Both 𝒞0 and 𝒞1 ignore the 269 

strength of the closing link and the variation between links in the triplets. The new metrics in this 270 

paper are based on the dissimilarity between the three links. I propose the phrase “triadic edge 271 

dissimilarity scores”, the notation ω and g for triad-level scores, and 𝒞𝜔 and 𝒞𝑔 for network-level 272 

scores. The two set of metrics are complementary and should be interpreted together.  273 

What’s the use? 274 

Based on the simulations and case studies, the new metrics are most relevant for full networks with 275 

no missing links. The main advantages of the new metrics appeared to be: 276 

1) Ease of interpretation. The new metrics are geared to respond to the occurrence of triadic 277 

mechanisms. Of course, as illustrated by the geese case, strong inference about the actual 278 

occurrence of triadic mechanisms requires more than a point comparison. In particular, 279 

triadic patterns may emerge as a by-product of the rarity of strong links rather than as the 280 
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consequence of the position of strong links relative to each other (Péron, 2022a). 281 

Nevertheless, in large comparative analyses, the new metrics should help deciphering the 282 

triadic mechanism hypothesis from alternative explanations. Studies into triadic mechanisms 283 

should in any case consider the new triadic edge dissimilarity scores to summarize the 284 

emerging triadic-level properties of the networks. 285 

2) Repeatable dimension reduction. In both the geese and the macaque cases, the new metrics 286 

removed to need to explore a wide range of metrics or to train a multivariate model. Most 287 

importantly, in the simulation study, up to 30% of the information that the new metrics 288 

captured was not picked up by any of the 8 alternatives. This means that the new metrics 289 

indicated variation in the structure of weighed networks that the other metrics did not 290 

indicate. This was particularly the case in full networks with no missing link. 291 

A major caveat is that, like all weighed network analysis techniques, the new triadic edge dissimilarity 292 

scores are sensitive to the way the link strengths are computed and rescaled. In this paper, I used a 293 

centered logit transformation, so that the link strengths varied between 0 and 1. Selecting another 294 

rescaling method would have changed the point value of the triadic dissimilarity scores, and for 295 

example changed the categorization in terms of quadrants. It is therefore important to standardize 296 

the computation of link strength as much as possible. 297 

Another caveat is the influence of missing links on the triadic edge dissimilarity scores. I recommend 298 

sensitivity analyses where missing links are artificially replaced with increasingly strong links, or 299 

where an increasingly high threshold is used to consider a link as missing. In the simulation study, 300 

lattice graphs, which feature a lot of missing links, all grouped together tight into the rightmost 301 

corner of the domain of definition (Fig. 2), providing another illustration of the overwhelming 302 

influence of missing links on the dissimilarity scores. Lattice graphs have applications in behavioral 303 

ecology, e.g., they can describe the interactions between neighbors in territorial species (Péron, 304 

2022b).  In this case, the appropriate level of investigation might be the individual rather than the 305 
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network, e.g., use the weighted degree centrality score, the individual transitivity score, etc. (Barrat 306 

et al., 2004). 307 

Conclusion 308 

In this paper, I followed up on an intuition that the contributions of triplets to network transitivity 309 

ought to be weighted according to the strength of all three links in the triplets. In doing so, I created 310 

new network-level metrics. Whether these new metrics will prove useful remains to be established. 311 

Indeed, pre-existing network metrics, if used together, appeared to already capture a lot of the 312 

information conveyed by the new metrics. But not all of it. I envision that the new approach could 313 

prove useful for studies into triadic mechanisms. Another, potentially widespread, use for these 314 

metrics would be to convey the variability of the strength of social connections in a way that 315 

complements the moment theory approach (Fisher, 1930) and the inequality approach (Gini, 1936) 316 

(Appendix S2, Fig. 3). 317 

Supplementary material 318 

Appendix S1: R script to compute the new metrics from the adjacency matrix of a social network 319 

Appendix S2: Colinarity between the new metrics and the 8 comparison metrics in the simulation 320 

study 321 
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