
HAL Id: hal-03905409
https://hal.science/hal-03905409v1

Submitted on 18 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predicting the Score of Atomic Candidate OWL Class
Axioms

Ali Ballout, Andrea G B Tettamanzi, Célia da Costa Pereira

To cite this version:
Ali Ballout, Andrea G B Tettamanzi, Célia da Costa Pereira. Predicting the Score of Atomic Can-
didate OWL Class Axioms. WI-IAT 2022 - 21st IEEE/WIC/ACM International Conference on Web
Intelligence and Intelligent Agent Technology, Nov 2022, Niagara Falls, Canada. �hal-03905409�

https://hal.science/hal-03905409v1
https://hal.archives-ouvertes.fr

Predicting the Score of Atomic Candidate OWL
Class Axioms

Ali Ballout
Université Côte d’Azur, I3S, Inria

Sophia Antipolis, France
ali.ballout@inria.fr

Andrea G. B. Tettamanzi
Université Côte d’Azur, I3S, Inria

Sophia Antipolis, France
andrea.tettamanzi@unice.fr

Célia da Costa Pereira
Université Côte d’Azur, I3S, CNRS

Sophia Antipolis, France
celia.pereira@unice.fr

Abstract—Candidate axiom scoring is the task of assessing the
acceptability of a candidate axiom against the evidence provided
by known facts or data. The ability to score candidate axioms
reliably is required for automated schema or ontology induction,
but it can also be valuable for ontology and/or knowledge graph
validation. Accurate axiom scoring heuristics are often compu-
tationally expensive, which is an issue if you wish to use them
in iterative search techniques like level-wise generate-and-test or
evolutionary algorithms, which require scoring a large number
of candidate axioms. We address the problem of developing a
predictive model as a substitute for reasoning that predicts the
possibility score of candidate class axioms and is quick enough
to be employed in such situations. We use a semantic similarity
measure taken from an ontology’s subsumption structure for this
purpose. We show that the approach provided in this work can
accurately learn the possibility scores of candidate OWL class
axioms and that it can do so for a variety of OWL class axioms.

Index Terms—Ontology Learning, OWL Axioms, Concept
Similarity

I. INTRODUCTION AND RELATED WORK

An ontology is the explicit representation of components of
a shared conceptualization [13]. In machines, an ontology is a
vocabulary which is used by said machine in the representation
of knowledge. An AI knowledge-based system would take an
ontology as its universe of components and their relations and
derive new implicit knowledge within that universe.

As for the components of an ontology, Z. Dragisic [9]
defines them as follows:

• Concepts (classes) - the types of objects in a domain or area.
• Relations (properties, roles) - the relations between two con-

cepts/classes.
• Instances (individuals) - instances of concepts/classes.
• Axioms - model sentences that are always correct in the domain.

They’re often utilized to represent information that cannot be
formally specified by the other components [8].

Ontologies play a vital role in data and knowledge inte-
gration by making a common schema available [14]. Un-
fortunately, ontology construction is extremely expensive, in
terms of both time and resources, and dependent on the
availability of knowledge experts [14], [23]. The construction
of an ontology for a certain field requires the contribution
of a knowledge engineer and of an expert in that specific
field. This dependency persists throughout the lifetime of an
ontology as an expert is required to develop and expand it
as new requirements arise. To overcome such a bottleneck
in knowledge acquisition, the field of ontology learning was
conceived. Ontology Learning [14], [16], [18] is the task

consisting of the automatic generation of ontologies. Ontology
learning includes a variety of techniques and those are grouped
into:

• Linguistic techniques - Natural language processing mostly used
in the preprocessing of data, and some learning tasks such as
term extraction [2].

• Statistical techniques - such as data mining and information
retrieval methods used to extract terms and associations between
them [11], [12].

• Inductive logic programming (ILP) is a branch of machine
learning that uses logic programming to generate hypotheses
based on prior knowledge and a set of examples [10], [15],
[20].

Each one of these technique groups is involved in one or
more of the stages of ontology learning, those stages being
preprocessing, term and concept extraction, relation extrac-
tion, concepts and relations hierarchies, axioms schemata and
general axioms [2]. Linguistic techniques can have a role in
almost all the stages, but as we mentioned they are mostly
used for data preprocessing.

As for statistical techniques, they are methods that rely
entirely on the statistics of the textual resources without any
concern for the semantics. One such method is the possibilistic
(statistics-based) heuristic detailed in [25], where the authors
have developed a possibilistic framework for the Web ontology
language (OWL 2) to test axioms against evidence expressed
in the Resource Description Framework (RDF). The heuristic
uses support, confirmations, and counterexamples to define
possibility and necessity of an axiom and an acceptance/rejec-
tion index combining both of them. They test the developed
theory on SubClassOf axiom testing against the DBpedia1

database. The results of their experiments showed that the
method was suitable for axiom induction and ontology learn-
ing [24]. The suggested heuristic has the drawback of being
time consuming; this was addressed in a revision of the method
that added a time cap for the querying process, of course at the
cost of a little increase in error rate reaching 3.96% [26]. The
number of axioms tested was 5050 and it took almost 342 CPU
hours and a half with an average of 244 s per axiom with time
capping. This is a significant improvement, considering that
testing the same amount of axioms without a time cap would
have taken approximately 2,027 CPU days. Another limitation
is that lack of support means an inconclusive judgement, as

1https://www.dbpedia.org/resources/ontology/

the method queries for confirmations and counterexamples,
and sometimes it might find none. The third drawback is that
being a statistical approach it relies solely on instance data
from the dataset, data that is prone to errors.

In comparison, ILP techniques are a sub-field of machine
learning that follow exhaustive statistical or linguistic process-
ing. One such example is [17], where the authors describe a
method for the automated induction of fuzzy ontology axioms
which follows the machine learning approach of ILP named
SoftFOIL. One of SoftFOIL’s limits is a result of its
sequential covering strategy. As it uses a greedy search to
find rules, it does not guarantee to find the smallest or best
set of rules that explain the training examples. Another is
susceptibility to being trapped in a loop while searching for
the best rule.

A new emerging group of techniques, is a hybrid breed
that takes advantage of combining classical ILP and statistical
machine learning. To stay in the context of the previous exam-
ples, a model would be trained with axioms having their scores
assigned by a statistical method such as [25], as well as using
a similarity measure that results from the logical processing
of the data. This is exactly what was done in [19], where the
authors modified the support vector clustering algorithm to
attempt to predict the possibilistic score of OWL axioms. They
used the heuristic from [25] as the scorer, and used a model
originally developed for inferring the membership function for
fuzzy sets. As a similarity measure they used one specific
for subsumption axioms based on semantic considerations and
reminiscent of the Jaccard index. The predictor performance
was poor in terms of root mean square error (RMSE) scoring
0.572 (Table 3 in [19]). In addition, the authors mentioned that
they found a group of axioms that were hard to predict, and
could not find a reason that explains why. This method was
computationally far more efficient than [24], yet it was still
reliant on the instances in the data set and querying them to
construct the similarity measure, meaning that even though it
is an improvement, it still falls victim to the same problems.
The authors explicitly mention that a major weakness of their
method is that training such a model consumes a significant
amount of resources.

Our work addresses the shortcomings of the previous tech-
niques that heavily rely on error-prone instance-dependent
statistics. It is also able to predict the scores of multiple
types of axioms and is not bound to simply subsumption.
We propose a method that can be used as a building-block
or an extension/plug-in to other existing statistical analysis
or ILP options, such as DL-Learner [4], to allow faster
execution while maintaining high scoring accuracy, while still
having the ability to perform as a simpler stand-alone scorer.
The method works by training a model on a set of atomic
class axioms scored by an algorithm, in this case [25]. This
enables the model to predict the score of any new atomic
(consisting of a single concept on each side) candidate axiom.
We experimented using multiple machine learning methods,
and compared our work to the state of the art [19] that aims
to achieve the same goal.

This paper is structured as follows: Sect. II provides some
background about both axiom scoring and concept semantic
similarity which are both prerequisites to training the models.
As for Sect. III it lays out the methodology explaining how the
axioms were extracted and scored, how the semantic measure
we use was developed, and also how an axiom based vector
space was modeled leading to the prediction of the scores.
We detail our experiments including a comparison with the
method presented in [19] in Sect. IV then present the results
while listing our observations and findings. We end the paper
with some notes and conclusions.

II. BACKGROUND

A. Axiom Scoring

Axiom scoring can be done using statistical analysis, we
mentioned in the previous section a heuristic [25] that does
this using the theory of possibility. Possibility theory [27]
is a mathematical theory of epistemic uncertainty. Its central
notion is that of a possibility distribution which assigns to
each elementary event a degree of possibility ranging from
0 (impossible, excluded) to 1 (completely possible, normal).
A possibility distribution π induces a possibility measure Π,
corresponding to the greatest of the possibilities associated to
an event and the dual necessity measure N , equivalent to the
impossibility of the negation of an event.

Here we provide a brief explanation of the theory behind
the scoring. Given a candidate OWL 2 axiom ϕ, expressing
a hypothesis about the relations holding among some entities
of a domain, we wish to evaluate its credibility, in terms of
possibility and necessity, based on the evidence available in
the form of a set of facts contained in an RDF dataset K.

The content of ϕ is defined as a (finite) set of basic
statements ψ which are logical consequences of ϕ, i.e., ϕ |= ψ.
The open-world hypothesis (OWA) is fully taken into account.
Therefore, given K, for each such ψ, there are three cases:

1) K |= ψ: in this case, we will call ψ a confirmation of
ϕ;

2) K |= ¬ψ: if so, we will call ψ a counterexample of ϕ;
3) K ̸|= ψ and K ̸|= ¬ψ: in this case, ψ is neither a

confirmation nor a counterexample of ϕ.
If we denote by uϕ the support of ϕ, which is the cardinality

of its content, by u+ϕ the number of confirmations of ϕ and by
u−ϕ the number counterexamples of ϕ, the possibility and the
necessity of candidate axiom ϕ may be defined as follows:
• if uϕ > 0,

Π(ϕ) = 1−

√√√√1−

(
uϕ − u−

ϕ

uϕ

)2

; (1)

N(ϕ) =

√

1−
(

uϕ−u+
ϕ

uϕ

)2

, if u−
ϕ = 0,

0, if u−
ϕ > 0;

(2)

• if uϕ = 0, Π(ϕ) = 1 and N(ϕ) = 0, i.e., we are in a
state of maximum ignorance, given that no evidence is

available in the RDF dataset to assess the credibility of
ϕ.

The possibility and necessity of an axiom can then be
combined into a single handy acceptance/rejection index

ARI(ϕ) = N(ϕ) + Π(ϕ)− 1 = N(ϕ)−N(¬ϕ)
= Π(ϕ)−Π(¬ϕ) ∈ [−1, 1], (3)

because N(ϕ) = 1−Π(¬ϕ) and Π(ϕ) = 1−N(¬ϕ) (duality
of possibility and necessity). A negative ARI(ϕ) suggests
rejection of ϕ (Π(ϕ) < 1), whilst a positive ARI(ϕ) suggests
its acceptance (N(ϕ) > 0), with a strength proportional to its
absolute value. A value close to zero reflects ignorance about
the status of ϕ.

B. Ontological Semantic Similarity

Semantic similarity is a notion used to define a distance
between terms or concepts based on meaning or semantics. It
includes in its calculation only relations of the type IS-A [3].
It is often confused with semantic relatedness, for example
a train and train tracks are functionally complementary, where
as a train and an airplane are functionally similar. The latter
is an instance of semantic similarity where the relatedness
of both terms is based on the defining features they share
where both are vehicles [3], [6]. Most semantic similarity
measures that rely on a structured ontology, are based on path
lengths between concepts as well as depth of concept nodes
in an IS-A hierarchy. As for information-based measures they
use information content (IC) of concept nodes derived from
the ontology hierarchy structure and corpus statistics [1].

The similarity measure we utilize in our work is the one
detailed in [5], [6], under the subsection titled Ontological
Approximation. The idea is to calculate the ontological dis-
tance between two concepts by using the subsumption path
length. Following is the general definition:

∀(t1, t2) ∈ H2,

DH(t1, t2) = mint(lH(⟨t1, t⟩) + lH(⟨t2, t⟩))

= mint

 ∑
{x∈<t1,t>,x ̸=t1}

1/2dH (x) +
∑

{x∈<t2,t>,x ̸=t2}

1/2dH (x)

(4)

Formula 4 translates to: for all type pairs t1 and t2 in an
inheritance hierarchy H, the ontological distance between t1
and t2 in the inheritance hierarchy H is the minimum of the
sum of the lengths of the subsumption paths between each
of them and a common super type. And the length of the
subsumption path between a type t1 and its direct super type
t is equal to 1/2dH(t) with dH(t) being the depth of t in H.

The authors of [6] implemented this measure as part of a
larger ontology-based search engine tool named Corese [7]2.
This is the tool that has been used as means of extracting the
semantic similarity between concepts in our method.

We propose an extension to this similarity to present simi-
larities between axioms, this process is detailed in Sect. III-B.

2https://project.inria.fr/corese/

C. Instance Semantic Similarity

This similarity is used in the state of the art method detailed
in [19]. The support vector clustering method the authors used
requires a kernel function which was assumed to return the
similarity between two axioms.

Similar to the ontological similarity, it is based on the
semantics of axioms and not on their syntax. The measure S is
defined with values in [0, 1], satisfying the following desirable
properties: for all axioms ϕ and ψ,

1) 0 ≤ S(ϕ, ψ) ≤ 1;
2) S(ϕ, ψ) = 1 if and only if ϕ ≡ ψ;
3) S(ϕ, ψ) = S(ψ, ϕ).

The similarity is defined based on a fuzzy implication
operator =⇒ : we can say two axioms ϕ and ψ are similar
to the extent that ϕ⇒ ψ and ψ ⇒ ϕ.

A fuzzy definition, based on the Herbrand semantics of the
axioms, might be the following:

=⇒ (ϕ, ψ) =
∥{I : I |= ¬ϕ ∨ ψ}∥

∥Ω∥ =
∥[¬ϕ] ∪ [ψ]∥

∥Ω∥ =
∥[ϕ] ∪ [ψ]∥

∥Ω∥ ,

(5)
where [ϕ] denotes the set of the models of ϕ.3

One problem is that instead of exactly computing the
numerator, which would require to count the models and
counter models of both axioms being compared, a not so
convincing rough approximation of it was used. This approxi-
mation was obtained by replacing models and counter models
with instances occurring in the RDF dataset that confirm or
contradict the two axioms. This renders the similarity bound
to and limited by instance data, which means it is prone to
errors as well as unusable in case instance data is scarce or
non existent.

The similarity addresses and works with subsumption ax-
ioms only, of the form C ⊑ D, where C and D are two
OWL class expressions, and their negation C ̸⊑ D. Given an
individual a occurring in an RDF dataset, we may say that

• a confirms axiom C ⊑ D (contradicts C ̸⊑ D) iff C(a)∧D(a);
• a contradicts axiom C ⊑ D (confirms C ̸⊑ D) iff C(a) ∧

¬D(a).
Instead of counting the models of an axiom, the individuals

that confirm it are counted; instead of counting its counter
models, the individuals that contradict it. Given four OWL
class expressions A, B, C, and D, the similarity which is
also the degree to which axiom A ⊑ B implies axiom C ⊑ D
can be computed as

S(A ⊑ B,C ⊑ D) =
∥[A] ∩ [B] ∪ [C] ∩ [D]∥

∥[A] ∪ [C]∥ . (6)

In order to predict the ARI of subsumption axioms in this
case, similarities between positive and negated subsumption
axioms need to be computed.

The similarity between two candidate OWL axioms of the
form A ⊑ B and C ⊑ D, can be computed using SPARQL
counting queries. For instance, the denominator ∥[A] ∪ [C]∥
may be computed by

SELECT (count(DISTINCT ?x) AS ?n)
WHERE { { ?x a A . } UNION { ?x a C . } }, (7)

3A model of ϕ is an interpretation that satisfies ϕ and a counter-model is
an interpretation that does not satisfy ϕ.

whereas the numerators (which are four when comparing two
axioms and their negations) may be computed by SPARQL
queries of the form

SELECT (count(DISTINCT ?x) AS ?n)
WHERE { { Q([A]) . Q([B]) . }
UNION{ { Q([C]) . Q([D]) . } },

(8)

where

Q([X]) = ?x a X,

Q([X]) = FILTER NOT EXISTS ?x a X.

This is a slow process, and for every candidate axiom you
would need to calculate the similarity for it and its negation.
Since the queries used are counting queries similar to those
used in the scoring heuristic this means it also suffers from the
same limitations such as heavy computation cost and instance
dependency.

III. METHODOLOGY

In an OWL ontology containing an inheritance hierarchy of
concepts formed by the subsumption axiom rdfs:subClassOf,
our aim is to predict an acceptability score for a candidate
atomic class axiom by learning a set of previously scored
axioms of the same type, the score used is the one detailed
in II-A. A model is built for each type of axiom to be predicted,
this means that the method is repeated for the number of axiom
types being dealt with. To measure the similarity between
(candidate) axioms, we construct a similarity measure by
extending the ontological distance discussed in II-B, which is
defined among concepts, not axioms. To this end, we consider
the following necessary steps:

1) Axiom extraction and scoring: This step constitutes the
creation of the set of scored axioms of a certain type to
be learned. We either use a ready scored set such as we
did for our comparison, or we score a new generated
set.

2) Semantic measure construction and assignment: This
step involves the retrieval of concepts used in our
set of axioms, and their ontological distance from the
ontology. Followed by extending that similarity to those
axioms. This was done by calculating a single value that
represents the similarity between each pair of axioms, by
applying a function such as Average to the ontological
distances of concepts in those axioms.

3) Axiom base vector space modeling: This step focuses
on using axiom similarity measures as weights, each
axiom can be represented as a vector in an axiom based
vector space.

4) Score prediction: This step is dedicated to training
a Machine Learning model with the data set (vector
space model in addition to the scores) and predicting
the acceptability score of new candidate axioms.

We start by collecting the set of scored axioms we plan
to train and test our method with. After that, we query
the ontology to retrieve the ontological distances between
all concepts. Then similarity measures between axioms will

be derived from those distances and assigned as weights to
represent the axioms as vectors in an axiom-based vector
space. Machine learning models are used in the end to learn
the set of scored axioms with their similarity weights and
predict the acceptability score of a candidate axiom. We will
consider subClassOf axioms for the comparison with [19]
since that is the only type of axiom they can address, and
their dataset which we use for said comparison is made of
subClassOf axioms. We will also use disjointWith axioms for
our experiment to show that we can apply our method to
all atomic owl class axiom types, as well as highlight that
no leakage or bias is present from utilizing the subclass of
hierarchy.

A. Axiom Extraction and Scoring

In this paper, we consider two approaches. First generating
a number of atomic class candidate axioms randomly. The
generated candidates are filtered for duplicates. We then make
sure non of the candidates already exist in the ontology ex-
plicitly or implicitly, using the search engine and its reasoner,
then we score them.

The other, which we prefer and use for controlled tests
is to query existing axioms. To make sure we have posi-
tive scores we query the ontology for existing axioms and
score them. The same can be said for negatively scored
axioms, we can query the counter type and score it as if
it were the first. For example subClassOf and disjointWith
are counter types so if disjointWith(C1C2) has a positive
score, subClassOf(C1C2) will have a negative one. This is
bound by how many axioms exist to be queried (after inferring
implicit axioms).

Query 1 is used to extract existing axioms of both types
and labeling them to be scored after with the heuristic. The
search engine used is Corese [7] and the ontology is Dbpedia.
After the extraction of the axioms, we select an equal amount
of both classes.

0 SELECT ?class1 ?class2 ?label WHERE {
1 { ?class1 a owl:Class . ?class2 a owl:Class . ?class1

rdfs:subClassOf ?class2
2 filter (!isBlank(?class1) && !isBlank(?class2))
3 filter (?class1 != ?class2)
4 bind(1.0 as ?label) }
5 Union{ ?class1 a owl:Class . ?class2 a owl:Class .

?class1 owl:disjointWith ?class2
6 filter (!isBlank(?class1) && !isBlank(?class2))
7 filter (?class1 != ?class2)
8 bind(0.0 as ?label) }}

Query 1: Axiom extraction

The second step is to score, this is done by simply inputting
the extracted axioms as a text file using the possibilistic
heuristic [25], and receiving an output file containing the
scores (ARI), it should be noted that the process is very slow
thus the need for a method such as ours.

For disjointWith axioms, possibility only is considered
since necessity is meaningless in the case of this axiom and
incalculable. So the score is between 0 and 1.

Concepts C0 C1 . . . Cn

C0 1 S0,1 . . . S0,n

C1 S1,0 1 . . . S1,n

...
...

...
. . .

...
Cn−1 Sn−1,0 Sn−1,1 . . . Sn−1,n

Cn Sn,0 Sn,1 . . . 1

Matrix 1: Concept similarity matrix

Scores Axioms A0 A1 . . . Am

score0 A0 1 S0,1 . . . S0,m

score1 A1 S1,0 1 . . . S1,m

...
...

...
...

. . .
...

scorem−1 Am−1 Sm−1,0 Sm−1,1 . . . Sm−1,m

scorem Am Sm,0 Sm,1 . . . 1

Matrix 2: Axiom similarity matrix with labels

B. Semantic Measure Construction and Assignment

To be able to assign similarity measures between axioms, we
need to retrieve the ontological distances between all classes.
Using Corese in which the ontological distance metric is im-
plemented, this translates into a function added to the SPARQL
query. Query 2 retrieves three columns, the first two contain
the combination of all classes with the third containing the
ontological distance denoted by similarity. Blank nodes are
ignored.

0 select * (kg:similarity(?class1, ?class2) as
?similarity) where {

1 ?class1 a owl:Class . ?class2 a owl:Class
2 filter (!isBlank(?class1) && !isBlank(?class2)) }

Query 2: Class ontological distance retrieval

After retrieving the table of similarities it is pivoted to
construct a symmetric n×n matrix where the first column and
the first row are the classes and the cells are the similarities
between them with a diagonal of only 1’s since as we
mentioned the similarity between a class C and itself is 1.
The shape of the concept similarity matrix is illustrated in
Matrix 1.

From this matrix, we can derive the similarity between
axioms. The goal is to end up with a similar square symmetric
matrix of the shape m ×m, m being the number of axioms,
that has axioms instead of concepts as both first row and
column, and the cells would be the similarities between a pair
of axioms. Exactly as in the case of the concept similarity
matrix, the diagonal of this matrix will contain only 1’s as the
similarity between an axiom A and itself is 1.

In order to construct this axiom similarity matrix MA

depicted in Matrix 2 alongside the labels, we use Algorithm 1.
The algorithm iterates over the set of labeled axioms TA which
we extracted in Section III-A, comparing each axiom Ai to all
other axioms Aj in TA having j increment from i to length of
TA−1 after each iteration of i. This is so we avoid redundant
calculations. While comparing axioms Ai and Aj , we first deal
with the concept on the left side of each axiom, so the left

Algorithm 1 Constructing the matrix of axiom similarities
Require: All concepts included in axioms in TA be present in concept similarity matrix
MC

Ensure: 0 ≤ S ≤ 1 ▷ S is the similarity between 2 axioms
MC ← Concept similarity matrix
TA ← Set of labeled axioms
MA ← Axiom similarity matrix to be filled
for i = 0→ Length(TA)− 1 do

for j = i→ Length(TA)− 1 do
SL ←MC [Ai[L], Aj [L]]
SR ←MC [Ai[R], Aj [R]]
S1 ← Avg(SL, SR) ▷ Experiments were done with (min, Avg)
if Axiom Type is Disjointness or Equivalence then

SL ←MC [Ai[L], Aj [R]]
SR ←MC [Ai[R], Aj [L]]
S2 ← Avg(SL, SR)

else
S2 ← 0

end if
S ←Max(S1, S2)
MA.Add(Ai, Aj , S)

end for
end for
Note: For Symmetric axioms, we have to compare both ways which is what we do
inside the if statement for Disjointness and Equivalence axioms.

concept of Ai denoted by Ai[L] and that of Aj denoted by
Aj [L]. To retrieve SL the similarity between those concepts
from MC , we search in the first row of the concept similarity
matrix MC for concept Ai[L], and in the first column of MC

for concept Aj [L]. MC [Ai[L], Aj [L]], the intersection between
the row where Ai[L] was found, and the column where Aj [L]
was found represents the left side similarity between axioms
Ai and Aj . The same process is repeated for the right side,
and then the axiom similarity S is calculated as a function
between SL and SR. In this work we applied two functions
and they were minimum and average. After calculating S in
each iteration of j it is added to MA in the cell where the row
is the index of Ai and column the index of Aj .

C. Axiom Base Vector Space Modeling

We define a vector-space model to represent axioms as
vectors. The number of dimensions d of our vector space is
equal to the number of axioms we have in the labeled set
TA. Each axiom can be represented as a vector V in this d-
dimensional space. Now that we have the similarities between
axioms in our ontology, looking at the axiom-similarity matrix
it would be intuitive to consider each row of the matrix as a
vector V in a vector space where the dimensions d are the
columns which are the axioms themselves having as weights
the similarities S. Thus Algorithm 1 is utilized whenever an
axiom is generated or a new candidate axiom is suggested and
will encode said axiom into a vector V in this vector space.

D. Score Prediction

After constructing our vector space and representing axioms
as vectors, we consider the set of scored axioms as a set
of vectors. It is now possible to apply regression machine
learning methods on the vector space representation of an
axiom base. We used a range of methods throughout our
experiments such as random forests, Support vector regressor,
and neural networks. Trees and random forests were mostly
used to check that there was no bias during the prediction,

since they allow us to interpret our predictive model easily
and visually analyse the decisions.

To avoid information leakage since the matrix is symmetric,
considering the size of the matrix is n × n, all models
would be trained using an m × m sub-matrix of the axiom
similarity matrix with the labels, and then tested on a z ×m
sub-matrix. This means an axiom vector V will have m
dimensions (features) which are the ones used to train the
model, regardless what the number of dimensions (features)
in the full matrix is. In other words the symmetric part of the
matrix equivalent to z (the columns of n outside the range of
m) is discarded. The model’s goal is to predict the score of
a candidate axiom, which is represented as a vector V in our
vector space having m dimensions (features), which are the
axiom’s similarities with the axioms of the same type used
to train the model. The score is a number between -1 and
1 for subClassOf and equivalence, and between 0 and 1 for
disjointWith. where 1 represents the highest acceptability. Any
scorer/scoring algorithm can be used, we decided on [25] to
be able to compare our results with [19].

IV. EXPERIMENTS AND RESULTS

For the experiments4, the workstation that was used had the
following hardware configuration:

• Dual CPUs: 2 × Intel(R) Xeon(R) CPU E5-2689 0 @ 2.60GHz
base and 3.30 all core boost. With 8 cores and 16 threads per
CPU for a total of 16 cores and 32 threads.

• A total of 32 GB of RAM memory with frequency 1600 MHZ
distributed as 8 × 4 GB sticks with 4 sticks assigned to each
CPU.

• 1 TB of NVME SSD storage with read and write speeds of up
to 2000 MB per second.

A. Dataset Preparation

For our testing and experiments, and to comply with both
the scorer and the experiment of [19], the ontology used is
Dbpedia. This also allows us to show how our method would
perform in a real-world case.

We used two datasets for our experiments, one for axiom
type subClassOf and it is the one used in [19], and another for
axiom type disjointWith which is a generated set of atomic
disjointWith candidate axioms, as described in Sect. III-A,
scored using [25].

For the axiom set used in [19], they have 722 subClassOf
axioms and their negations, making it 1444 axioms. The
negations are specific for that similarity and for the support
vector clustering method that was applied in [19]. These
negations serve no meaning if it is possible to predict the
scores of the original 722 axioms. For this reason, and since
we had the possibility of an axiom and its negation, we can
use that to calculate the ARI using 3. Then the dataset we
work this will be the 722 axioms with their ARI score, since
we will not be using the same machine learning method nor
similarity for our proposed solution.

4All the data and code needed to replicate the experiments available at
https://anonymous.4open.science/r/axiom-score-prediction-BC16

We did not include tests of equivalentClass axiom types
since the process of creating the axiom similarity matrix of
that axiom type is the same as disjointWith. They are both
symmetrical axioms and equivalentClass axioms are basically
a two way subClassOf axiom. For that reason we decided to
include our experiment on the type disjointWith.

For the set of axioms of type disjointWith, we load the
Dbpedia OWL file into Corese. The OWL file contains no
individual data which means faster processing in the search
engine, corese reasoner was applied to it to deduce the
maximum number of axioms. Positively scored disjointness
axioms were obtained from the results of [22].5 Negatively
scored disjointWith axioms were existing subClassOf axioms,
explained in Section III-A. In case the used ontology is already
populated with explicit axioms, this would be done in an
attempt to obtain a set of axioms that the scorer will not
provide a score close to 0 i.e., a score that implies ignorance
for lack of instance data. This allows us to learn a better model
that makes better predictions and surpasses the limitations a
statistical scorer can face. But in our case this would result in a
small set of 1120 scored axioms. One of the issues the authors
of [19] faced is that the dataset they were working with was
too small and they point out that this had prevented them from
running certain experiments. For this case we combined both
approaches expressed in Section III-A. Randomly generating
atomic candidates and checking that they do not already exist,
we managed to score an additional 2748 axioms for a total
of 3868. This will allow better testing to see how the method
performs in real-world cases and on a different axiom type.

We will denote by TA the axiom set being used. We will
not be comparing the time needed to score the set of axioms
since they both use the same scorer. Heuristic [25] takes a list
of candidate axioms as input and provides as output a list of
scored candidate axioms. It is a slow but precise heuristic that
depends on instance data and counting queries.

After preparing the set of axioms, we have to produce the
concept similarity Matrix (CSM) 1, a process we detailed in
Section II-B. The processing time for creating the (CSM) is
dependent on the number of concepts. In our tested dataset, the
number of unique concepts was 762 and creating its (CSM)
took 2.0362 seconds.

The next step is constructing the axiom similarity matrix
(ASM), and encoding each of the axioms as vectors V in
our vector space. This step is detailed in the second half
of Section III-B and in Section III-C. The algorithm applied
to our axiom data set TA is Algorithm 1, this is the same
algorithm used to encode candidate axioms into the vector
space, it is the equivalent of running queries 7 and 8 for the
method proposed in [19] to retrieve the similarity. In contrast
the algorithm we use is not based on instance counting and is
much faster in comparison. Table I details the time required
to complete the axiom similarity matrix. As observed the time
needed to complete the task of building the ASM significantly

5https://bitbucket.org/RDFMiner/classdisjointnessaxioms/src/
master/Results/ClassDisjointnessAxioms/

Similarity Method Type Set size ASM Candidate processing NN Random Forest SVR Modified SVC Explained variance
Instance based subClassOf 1444 649,440 1,799 0.35299 0.30707 0.26721 0.572 0.52652

Ontological based subClassOf 722 13.7275 0.01901 0.31442 0.30231 0.33972 NA 0.88859
Ontological based disjointWith 3868 129.9637 0.03359 0.23325 0.21754 0.23771 NA 0.73462

TABLE I: Time cost in seconds, performance scores in RMSE per model, and the explained variance score of the best performing model per experiment.

increases as the number of axioms processed increases, but
we also know that it depends on the size of the CSM as
well from the time needed to encode a single axiom into a
vector. As the number of concepts increases the CSM being
searched increases as it has the shape nconcepts × nconcepts
and the number of cells n2. We would note that the test
scenario (3868 disjointWith axioms) presented in Table I is
extreme, especially the case of Dbpedia, as the number of
axioms needed for training a model does not need to be as
large to achieve peak accuracy/results. It is possible with a
dataset size of subClassOf experiment (722).

While constructing the ASM using the instance similarity
method, we had to calculate the denominators of all axiom
pairs as in Equation 6. We ran into an issue of lack of instance
data, this means a 0 in the denominator which is obviously a
huge problem. The authors of [19] address this by denoting
any similarity between a pair of axiom where the denominator
is 0 (lack of instances) with a 0 as well. This highlights the
weakness of instance based similarity methods. We do not
believe that simply saying the similarity between a pair of
axioms is 0 because they do not share individual data.

B. Training and Testing

After obtaining our datasets as described in the previous
section, we applied different regression methods as mentioned
in Section III-D to check how the similarity measure performs.

The methods we tested include, but are not limited to, Ran-
dom Forests, Neural Networks and Support Vector Regression.
Experiments were with both Average and Minimum functions
to get the similarity S between axioms, from SL and SR (as
explained in Section III-B), we will denote by ASF the axiom
similarity function here on out. All this means that the number
of experiments performed was large so we will only report on
some scenarios.

We used RMSE (root mean squared error) as the score, to
be consistent with [19] during the comparison. We applied
hyper-parameter tuning using grid search as well as five fold
cross validation to infer better models. Table I shows the best
results (in terms of RMSE) for each experiment using each
model.

While replicating the experiment of [19], we decided to test
other methods in addition to theirs. We will use the authors’
best result for the comparison with the original model. We
will be using the original 722 for our proposed method, since
our similarity does not require negated axioms (no need for
the extra 722 negated axioms).

C. Results and Observations

Comparing ASM creation and candidate axiom encoding
time costs in Table I, for both our proposed method and the

one in [19], our ontological based similarity seems almost
instantaneous. For the instance based similarity it is a problem
during dataset preparation as it needs seven and a half days to
prepare a data set of 722 axioms (and their negations), as well
as candidate axiom encoding/processing where it takes half an
hour to process every candidate axiom we want to predict a
score to, whereas our ontological based method requires about
fourteen seconds to process and prepare the exact same dataset,
and less than 0.1 s to encode a new axiom, making it much
more preferable with regards to time cost.

During the experiments we were unable to compare both
methods in anything other than subClassOf axioms. This is be-
cause the method detailed in [19] can only handle subClassOf
axioms making it very limited and constrained, whereas our
proposed method can address all atomic class axiom types, all
that is needed is training one model for each set. Considering
the timing needed to prepare the training data (ASM), as seen
in Table I, this is easily doable and very efficient.

We observe in Table I that the time cost for creating
the disjointWith (129 seconds for 3868 axioms) experiment’s
ASM was almost ten times that of the subClassOf (13 seconds
for 722 axioms), even though the number of axioms is not ten
times as much, only about five. This is normal since disjoin-
tWith axioms are symmetrical, and as shown in Algorithm 1
and explained in Section III-B, the calculation is doubled for
every axiom to check forwards and backwards the similarity
between the pair of axioms.

It is very important to note that the instance-based similarity
method performed better when used with a machine learning
method different from the modified support vector clustering
method used in [19]. It was able to achieve less than half the
RMSE score of what was stated in [19]. This suggests that
the modified support vector clustering method is unnecessarily
complicated and not the most appropriate method to deal with
this problem, which turns out to be relatively easy once a
good similarity measure manages to transform it to a suitable
representation. The ontological based method outperformed
the instance based method in Neural Network and Random
forests models. For the same data set, the subClassOf set,
the two methods seem to perform closely in terms of RMSE,
while the ontological distance method seems to be achieving
very good scores in the larger disjointWith set. This made
us look more in-depth to what was happening. Turning our
attention to the support vector regression model, we can
see in Table I that for the same dataset (subClassOf) the
instance based measure performed considerably better than
the ontological based method, but was still outperformed in
the larger (disjointWith) set as far as performance goes. So
we investigated the reason behind this specific performance
for this specific dataset in this model, and found the best

explanation in the explained variance score. We found that
for the instance based method, according to the explained
variance score of 0.56252 for its best performing model the
support vector regressor, this performance is specific to this
dataset. This means there exists a bias in the training set and
it is expected that any new candidate will suffer from a higher
error rate than what is experienced in the training stage. This is
explained by the fact that both similarity method and dataset
were handcrafted and picked to work with a support vector
clustering method modified to work as a regressor. On the
other hand for the ontological based method the explained
variance score throughout all our experiments ranged between
0.71 up to 0.88 meaning this method will produce better results
when predicting scores for new candidate axioms.

All results shown in Table I were obtained using the Average
ASF, as it outperformed the Minimum ASF in all our runs.

V. CONCLUSION

We have proposed a method with the aim of learning predic-
tors for the acceptability of an atomic candidate OWL axiom of
any type. The method relies on a semantic similarity measure
derived from the ontological distance between concepts in a
subsumption hierarchy. Extensive tests that covered multiple
parameters and settings were carried out to investigate the
effectiveness and potential of the method compared with the
state of the art.

The results obtained strongly support the effectiveness of the
proposed method in predicting the scores of the considered
OWL axiom types with a consistently low error rate. This
allows us to confidently say that our proposed method can
be used in combination with ILP or statistical methods, such
as Dl-learner [4] or a Grammatical evolution approach such
as [21], as a building block or extension/plugin to allow faster
execution while maintaining accuracy.

We attribute the high accuracy and extremely good perfor-
mance of our method to the close relation between the similar-
ity measure and the model-theoretic semantics of axioms. This
merits further investigation of links between similarity/dis-
tance measures and semantics, and the effect on performance
of machine learning models in logical reasoning tasks.

Based on our findings, some research paths emerge, includ-
ing:

• Developing the method to predict the scores of complex candi-
date axioms.

• Extending the method to property axioms since they also
possess an IS-A hierarchy, which is the base of our similarity
measure.

• Considering an ensemble approach that incorporates active
learning based of the agreement or disagreement of included
models based on a threshold such as the variance.

REFERENCES

[1] Al-Mubaid, H., Nguyen, H.A.: A cluster-based approach
for semantic similarity in the biomedical domain. IEEE
Engineering in Medicine and Biology, pp. 2713–2717 (2006).
https://doi.org/10.1109/IEMBS.2006.259235

[2] Asim, M.N., Wasim, M., Khan, M.U.G., Mahmood, W., Abbasi, H.M.:
A survey of ontology learning techniques and applications. Database
2018(2018), 1–24 (2018). https://doi.org/10.1093/database/bay101

[3] Ballatore, A., Bertolotto, M., Wilson, D.C.: An evaluative baseline for
geo-semantic relatedness and similarity. GeoInformatica 18(4), 747–767
(2014). https://doi.org/10.1007/s10707-013-0197-8

[4] Bühmann, L., Lehmann, J., Westphal, P.: Dl-learner—a
framework for inductive learning on the semantic
web. Journal of Web Semantics 39, 15–24 (2016).
https://doi.org/https://doi.org/10.1016/j.websem.2016.06.001

[5] Olivier Corby, Rose Dieng-Kuntz, Catherine Faron-Zucker, and Fabien
Gandon. 2006. Searching the Semantic Web: Approximate Query Pro-
cessing Based on Ontologies. IEEE Intelligent Systems 21, 1 (January
2006), 20–27. https://doi.org/https://doi.org/10.1109/MIS.2006.16

[6] Corby, O., Dieng-Kuntz, R., Faron Zucker, C. & Gandon, F. Ontology-
based Approximate Query Processing for Searching the Semantic Web
with Corese. (INRIA,2006), https://hal.inria.fr/inria-00070387

[7] Corby, O., Dieng-Kuntz, R., Faron-Zucker, C.: Querying the semantic
web with corese search engine. ECAI 2004, pp. 705–709.

[8] Corcho, O., Fernández-López, M., Gómez-Pérez, A.: Ontological en-
gineering: Principles, methods, tools and languages. Ontologies for
Software Engineering and Software Technology pp. 1–48 (2006).
https://doi.org/10.1007/3-540-34518-3 1

[9] Dragisic, Z.: Completion of Ontologies and Ontology Networks. Ph.D.
thesis, Linköping University, Faculty of Science & Engineering (2017).
https://doi.org/10.3384/diss.diva-139487

[10] Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL concept learning in
description logics. ILP 2008, pp. 107–121. https://doi.org/10.1007/978-
3-540-85928-4 12

[11] Fleischhacker, D., Völker, J.: Inductive learning of disjointness axioms.
OTM 2011, pp. 680–697. https://doi.org/10.1007/978-3-642-25106-1 20

[12] Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for
property axioms. OTM 2012, pp. 718–735. https://doi.org/10.1007/978-
3-642-33615-7 18

[13] Gruber R., T.: Toward Principles for the Design of Ontologies Used for
Knowledge Sharing. International Journal of human-computer studies
43(5-6), 907–928 (1995)

[14] Hadzic, M., Wongthongtham, P., Dillon, T., Chang, E.: Introduction to
ontology learning. Studies in Computational Intelligence 219, 37–60
(2009). https://doi.org/10.1007/978-3-642-01904-3 3

[15] Lehmann, J.: DL-Learner: Learning concepts in description logics.
Journal of Machine Learning Research 10, 2639–2642 (2009)

[16] Lehmann, J., Völker, J. (eds.): Perspectives on Ontology Learning,
Studies on the Semantic Web, vol. 18. IOS Press, Amsterdam (2014).
https://doi.org/10.3233/978-1-61499-379-7-i

[17] Lisi, F.A., Straccia, U.: A logic-based computational method for the au-
tomated induction of fuzzy ontology axioms. Fundamenta Informaticae
124(4), 503–519 (2013). https://doi.org/10.3233/FI-2013-846

[18] Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE
Intelligent Systems 16(2), 72–79 (March 2001)

[19] Malchiodi, D., Tettamanzi, A.G.: Predicting the possibilistic score of
OWL axioms through modified support vector clustering. SAC 2018,
pp. 1984–1991. https://doi.org/10.1145/3167132.3167345

[20] Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K.,
Srinivasan, A.: ILP turns 20: Biography and future challenges. Machine
Learning 86, 3–23 (2012). https://doi.org/10.1007/s10994-011-5259-2

[21] Nguyen, T.H., Tettamanzi, A.G.B.: Learning Class Disjointness Ax-
ioms Using Grammatical Evolution. EuroGP 2019, pp. 278–294.
https://doi.org/10.1007/978-3-030-16670-0 18,

[22] Nguyen, T.H., Tettamanzi, A.G.: An evolutionary ap-
proach to class disjointness axiom discovery. WI 2019.
https://doi.org/10.1145/3350546.3352502

[23] Simperl, E., Bürger, T., Hangl, S., Wörgl, S., Popov, I.: ON-
TOCOM: A reliable cost estimation method for ontology de-
velopment projects. Journal of Web Semantics 16, 1–16 (2012).
https://doi.org/10.1016/j.websem.2012.07.001

[24] Tettamanzi, A.G., Faron-zucker, C., Gandon, F.: Testing owl ax-
ioms against RDF facts: A possibilistic approach. EKAW 2014.
https://doi.org/10.1007/978-3-319-13704-9 39

[25] Tettamanzi, A.G., Faron-Zucker, C., Gandon, F.: Possibilistic testing of
OWL axioms against RDF data. International Journal of Approximate
Reasoning (2017). https://doi.org/10.1016/j.ijar.2017.08.012

[26] Tettamanzi, A.G., Zucker, C.F., Gandon, F.: Dynamically time-capped
possibilistic testing of SubClassOf axioms against RDF data to enrich
schemas. K-CAP 2015. https://doi.org/10.1145/2815833.2815835

[27] Dubois, D. & Prade, H. Possibility Theory—An Approach to Comput-
erized Processing of Uncertainty. (Plenum Press,1988)

