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Supercritical percolation on graphs of polynomial
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À la mémoire de Claude Danthony (1961�2021)

Abstract

We consider Bernoulli percolation on transitive graphs of polynomial growth. In

the subcritical regime (p < pc), it is well known that the connection probabilities

decay exponentially fast. In the present paper, we study the supercritical phase

(p > pc) and prove the exponential decay of the truncated connection probabilities

(probabilities that two points are connected by an open path, but not to in�nity).

This sharpness result was established by [CCN87] on Zd and uses the di�cult slab

result of Grimmett and Marstrand. However, the techniques used there are very

speci�c to the hypercubic lattices and do not extend to more general geometries.

In this paper, we develop new robust techniques based on the recent progress in

the theory of sharp thresholds and the sprinkling method of Benjamini and Tassion.

On Zd, these methods lead to a completely new proof of the slab result of Grimmett

and Marstrand.

Figure 1: Lattice Zd (left), Cayley graph of Zd (centre), Heisenberg (right).
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1 Introduction

1.1 General context

After its introduction in the sixties by Broadbent and Hammersley [BH57], percolation was
mainly studied on the hypercubic lattice Zd, where most of the main features of the model
have been rigorously described. In 1996, with their paper �Percolation beyond Zd, many
questions and few answers� [BS96], Benjamini and Schramm initiated the systematic study
of percolation on general transitive graphs, leading to a new and fascinating research area.
In this generality, new questions emerged, new techniques were used to establish deep
relations between the geometric properties of a graph and the behaviour of percolation
processes on this graph. Interesting in their own right, these percolation results also shed
new light on the theory on Zd. The present paper is exactly in this spirit: motivated
by questions emerging in the general study of percolation on transitive graphs (such as
Schramm's Locality Conjecture [BNP11]), we prove a supercritical sharpness result on
transitive graphs with polynomial growth. An interested reader will also �nd below a
new proof of the Grimmett�Marstrand Theorem, which is a central result in the study of
supercritical percolation on Zd. The proof is robust, and we expect it to have applications
to the study of more general percolation processes on Zd, such as FK-percolation or level
sets of Gaussian processes.

Geometric framework: transitive graphs of polynomial growth Let G = (V,E)
be a vertex-transitive graph with a �xed origin o ∈ V (for every x, y ∈ V , there exists a
graph automorphism mapping x to y). Throughout the paper, all the graphs are assumed
to be locally-�nite and connected and we will always make these hypotheses without
further mention. Write Bn for the ball of radius n centred at o. We say that G has
polynomial growth if there exists a polynomial P such that ∣Bn∣ ≤ P (n) for every n ≥ 1.
A celebrated theorem of Gromov and Tro�mov [Gro81, Tro85] states that such a graph
is always quasi-isometric to a Cayley graph of a �nitely-generated nilpotent group (see
also Theorem VII.56 of [dLH00], which is there attributed to �Diximier, Wolf, Guivarc'h,
Bass, and others�). This deep structure result has a long and ongoing history: see [Bas72,
Gui73, Kle10, ST10, TT21]. An important consequence is that there exists an integer d,
called the growth exponent of G, such that

∃c > 0 ∀n ≥ 1 cnd ≤ ∣Bn∣ ≤ 1
cn

d.

Important examples of graphs of polynomial growth include the hypercubic lattice Zd,
more general Cayley graphs of Zd, and the Heisenberg group1: see Figure 1.

Percolation on transitive graphs Let G = (V,E) be a transitive graph. Let Pp

be the Bernoulli bond percolation measure Pp on {0,1}E, under which ω = (ω(e))e∈E is
a product of i.i.d. Bernoulli random variables of parameter p (we refer to [Gri99] and

1The discrete Heisenberg group {(
1 x z
0 1 y
0 0 1
) ∶ x, y, z ∈ Z} is generated by a = (

1 1 0
0 1 0
0 0 1
) and b = (

1 0 0
0 1 1
0 0 1
) .
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[LP16] for general introductions to percolation). We identify ω with the subgraph of G
obtained by keeping the edges such that ω(e) = 1 (called open edges) and deleting the
edges such that ω(e) = 0 (the closed edges). The connected components of ω are called
clusters. Percolation on G undergoes a phase transition at a critical parameter: there is
a parameter pc ∈ (0,1] such that for all p < pc, there is Pp-almost surely no in�nite cluster
and for all p > pc, there is Pp-almost surely at least one in�nite cluster. It was recently
proved in [DGR+20] that this phase transition is non-trivial if and only if the graph G

has superlinear growth: for such graphs, we have 0 < pc(G) < 1.

Subcritical sharpness It was proved in [AB87] and [Men86] (see also [DT16]) that the
phase transition is sharp, in the following sense: For every p < pc, there exists a constant
c = c(p) > 0 such that

∀n ≥ 1 Pp[o←→ ∂Bn] ≤ e−cn,

where o ←→ ∂Bn is the event that there exists of an open path from a �xed origin o to

distance n around it. The original papers [AB87] and [Men86] prove this result on the
hypercubic lattice Zd, but the two proofs extend to general transitive graphs [AV08]. This
result is central in the theory: it leads to the important notion of correlation length, and
is the starting point of several �ner analyses of the subcritical regime (see e.g. [Gri99]
and references therein).

Supercritical sharpness There should be a supercritical counterpart of sharpness. In
the supercritical regime p > pc, the natural quantities to consider are the truncated connec-
tion probabilities, which encode the connectivity properties of the random graph obtained
from ω by removing the in�nite cluster(s). It is expected (see e.g [HH21, Conjecture 5.3])
that every p > pc, there is a constant c = c(p) > 0 such that

∀n ≥ 1 Pp[o←→ ∂Bn, o←→/ ∞] ≤ e−cn,

where o ←→/ ∞ denotes the event that the origin does not belong to an in�nite cluster.
Currently, the decay above is known for the hypercubic lattice [CCN87, GM90] and non-
amenable graphs [HH21].

In general, the study in the supercritical regime is much more delicate than the sub-
critical regime. A �rst reason is geometrical: a key idea to study subcritical clusters is a
domination by subcritical branching processes, whose asymptotic features do not rely on
the precise geometry of the underlying G. This explains the robustness of the subcritical
argument. In contrast, the study of the supercritical clusters requires to understand the
in�nite cluster(s), whose geometry may be very related to the underlying graph, and so
far there is no robust approach to the supercritical regime. A second reason is more
technical. The truncated connection events (i.e. of the form {A ←→ B, A ←→/ ∞} where

A ←→/ ∞ is the event that A is not connected to in�nity in ω) are neither increasing nor
decreasing events, which reduces considerably the size of the available �toolbox� for the
study of such events.
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In this paper, we obtain a clear description of the supercritical phase for transitive
graphs of polynomial growth, as presented in the next section. In particular, we prove
that supercritical sharpness holds for these graphs.

1.2 Main results

Let G be a transitive graph of polynomial growth, with growth exponent d ≥ 2. Equiva-
lently, G is taken to be a transitive graph of polynomial growth satisfying pc(G) < 1. In
this paper, we develop new methods that give a precise description of the supercritical
phase of Bernoulli percolation on such graphs (p > pc). More precisely, we build �nite-size
events that ensure the local existence and uniqueness of large clusters: see Proposition 1.3.
This enables us to use powerful renormalisation methods, which extend several pertur-
bative arguments (valid only for p close to 1) to the whole regime p > pc(G). Our main
two results are about the geometry of the �nite clusters in the supercritical regime, but
our methods would also imply several other results regarding the geometry of the in�nite
cluster2. Our �rst result states that the radius of a �nite cluster has an exponential tail
in the supercritical regime.

Theorem 1.1. Let G be a transitive graph of polynomial growth with d ≥ 2 and p > pc(G).
There exists a constant c > 0 such that

∀n ≥ 1 Pp[o←→ ∂Bn, o←→/ ∞] ≤ e−cn.

The second result is the stretch-exponential decay in volume of the �nite clusters.

Theorem 1.2. Let G be a transitive graph of polynomial growth with d ≥ 2 and p > pc(G).
Let Co denote the cluster of o. There exists a constant c > 0 such that

∀n ≥ 1 Pp[n ≤ ∣Co∣ < ∞] ≤ exp (−cn d−1
d ) .

1.3 Comments

Previous work on hypercubic lattices Both Theorems 1.1 and 1.2 were known for
the hypercubic lattice Zd. In dimension d = 2, they were proved by Kesten [Kes80]. In
dimension d ≥ 3, they were proved by [CCN87] and [KZ90], by making use of the di�cult
slab result of Grimmett and Marstrand [GM90]: for any p > pc(Zd), the percolation on Zd
restricted to a su�ciently thick slab (i.e. a graph of the form Z2×{0, . . . , k}d−2 for k large)
contains an in�nite cluster. These previous methods do not extend to general graphs of
polynomial growth for two main reasons. First, the proof of Grimmett and Marstrand
relies strongly on the symmetries of Zd (in particular re�ections and rotations). Such
symmetries are not available for general graphs: one can think of Cayley graphs of Zd
with respect to non-symmetric generating sets (see Figure 1). As for g ↦ g−1, it is generally

2A graph of polynomial growth is necessarily amenable: otherwise, the growth would be exponential.

The Burton�Keane Theorem [BK89] ensures that, for amenable transitive graphs, for any p, there is at

most one in�nite cluster almost surely. In particular, for p > pc, there is a unique in�nite cluster.
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not a graph automorphism for Cayley graphs of non-Abelian groups. A second obstacle
is the lack of �slab�-structure for general graphs of polynomial growth: the hypercubic
Zd can naturally be partitioned into slabs. In contrast, the Cayley graph of the discrete
Heisenberg group illustrated on Figure 1 has no natural notion of slab3. In our present
proof, we replace the slab result by estimates on the two-point function inside �corridor�
subgraphs introduced in Section 1.4. Contrary to the lattice case, our proof does not
distinguish between d = 2 and d ≥ 3. In this sense, this uni�es the two approaches for
hypercubic lattices.

Dynamic versus static renormalisation In the case of the hypercubic lattice, the
Grimmett�Marstrand Theorem is proved by using a dynamic renormalisation argument
(in the sense of [Gri99, Chapter 7]). In the present paper, we construct a local existence-
and-uniqueness event, which allows us to directly perform a static renormalisation.

A new quantitative proof of Grimmett�Marstrand The interested reader may
extract from the present paper a new proof of the Grimmett�Marstrand Theorem on Zd.
When applying the methods of the present paper to hypercubic lattices, some simpli�ca-
tions occur at several places, using symmetries. For example, the whole Section 6 may
be replaced by a reference to the stronger result of Cerf [Cer15], and Section 7.2 may be
drastically simpli�ed. The proof is quantitative and would give an estimate of the same
order as the one obtained in [DKT].

Lower bounds The bounds in Theorems 1.1 and 1.2 are sharp at the exponential scale:
This easier result is classical for the hypercubic lattice Zd and the same techniques can
be used to prove that, for every p ∈ (pc,1), there exists a constant c′ > 0 such that

∀n ≥ 1 Pp[o←→ ∂Bn, o←→/ ∞] ≥ e−c′n.

and
∀n ≥ 1 Pp[n ≤ ∣Co∣ < ∞] ≥ exp (−c′n d−1

d ) .

Remark 2.5, Lemma 2.6 and Lemma 4.2 guarantee that the geometry of G is � as far as
this argument is concerned � as nice as that of Zd.

Locality In the context of graphs of polynomial growth (which are amenable), super-
critical sharpness is related to the existence of some local existence and uniqueness event
in a �nite box: see Proposition 1.3. This allows us to obtain a �nite volume character-
isation of p > pc(G). In [CMT], we use the present work to prove Schramm's Locality
Conjecture (stated in [BNP11]) in the particular case of transitive graphs of polynomial
growth. This extends [MT17], with di�erent techniques. The case of transitive graphs
with (uniformly lower-bounded) exponential growth has been established in [Hut20].

3If we try to mimic the de�nition of slabs in Zd, we want to take a thickened version of the subgroup

generated by a and b. The problem is that, in the case of the Heisenberg group, this subgroup is equal

to the whole group.
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Related works Several related works regarding the sharpness of the supercritical phase
have been developed in the last few years. For the hypercubic lattice Zd, a quantitative
version of the Grimmett�Marstrand Theorem was presented in [DKT]. In the case of non-
amenable graphs, [HH21] proved exponential decay for the �nite cluster size distribution.
For the Ising Model, [DGR20] obtained exponential decay for the truncated two-point
function in the supercritical regime. As for Gaussian �elds, we can mention the work
[DGRS] on the Gaussian free �eld in Zd for d ≥ 3 and [Sev] for general results on continuous
Gaussian �elds in Rd (d ≥ 2) with correlations decaying reasonably fast.

1.4 De�nitions and notation

Throughout the paper, G = (V,E) denotes a �xed transitive graph of polynomial growth,
whose growth exponent d satis�es d ≥ 2. The graph G is taken to be simple: there are no
multiple edges, no self-loops, no orientations on the edges. We also �x some origin o ∈ V .

Graph notation For x ∈ V , we write Bn(x) for the ball of radius n centred at x, and
we simply write Bn = Bn(o) for the ball centred at the origin. The boundary ∂A of a set
A ⊂ V is de�ned as the set of edges having one endpoint in A and the other in V ∖A. A
path of length ` in A is a sequence γ = (γ0, . . . , γ`) of vertices of A such that γi and γi+1

are neighbours for every i.

Percolation de�nitions Let ω be a percolation con�guration. A path γ is said to be
open if all its edges {γi, γi+1} are open. For A ⊂ V , we call clusters in A the connected
components of the graph with vertex set A and edge set the elements of ω with both
endpoints in A. For A,B,C ⊂ V , we say that A and B are connected in C if there exists

an open path in C from A to B. We denote the corresponding event by A
C←→ B and its

complement by A
C←→/ B. In the case C = V , we simply write A←→ B and A←→/ B.

Corridor function Let m,n ≥ 0 and p ∈ [0,1]. We de�ne the corridor function of
length m and thickness n at parameter p by

κp(m,n) = min
γ ∶ length(γ)≤m

Pp[o(γ)
Bn(γ)←ÐÐ→ e(γ)],

where o(γ) and e(γ) denote the �rst and last vertices of γ and Bn(γ) = ⋃iBn(γi). The
quantity has two di�erent interpretations, depending on whether m ≤ n (�short corridor�)
or m ≥ n (�long corridor�): In the �rst case, the set Bn(γ) always looks roughly like a
ball, and the quantity is similar to the two point-function restricted to a ball. In contrast,
when m ≫ n, the set Bn(γ) takes the shape of a long corridor and the parameter m
becomes relevant for its geometry. This quantity will be instrumental in our paper. First,
the corridor function has an important renormalisation property, presented in Section 3.
Second, it is deeply related to the local uniqueness events, de�ned below. Finally, it will
be the central object in the proof of the main proposition of this paper, in Section 9: we
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strengthen some a priori bounds on the short-corridor function into strong estimates in
long corridors.

Pivotal and uniqueness events For 1 ≤m ≤ n we de�ne the pivotal event

Piv(m,n) = ⋃
x,y∈Bm

{x←→ ∂Bn, y ←→ ∂Bn, x
Bn←→/ y}.

In other words, the event Piv(m,n) occurs if there are two disjoint clusters (for the
con�guration restricted to Bn) connecting Bm to ∂Bn. Even if the event is not formally
de�ned in terms of the pivotality of a set for a certain event, we use the notation Piv

because the event will typically occur when the ball Bm is pivotal for large connection
events. This is also known in the literature as the two-arm event (see [Cer15]). Similarly,
for x ∈ V , we de�ne Pivx(m,n) as the event Piv(m,n), but centred at x instead of o. For
1 ≤m ≤ n, we de�ne the uniqueness event by

U(m,n) = {there exists at most one cluster in Bn intersecting Bm and ∂Bn}.

Notice that U(m,n) ∶= Piv(m,n)c. We emphasise that the event U(m,n) does not require
the existence of a cluster crossing from Bm to ∂Bn in Bn. When the event U(m,n) occurs,
there is either one or no such crossing cluster. The event U(m,n) is particularly useful,
as it allows us to �glue� locally macroscopic clusters.

Monotone coupling Let P = U([0,1])⊗E be the product of Lebesgue measures on
[0,1]E and consider the canonical maps ωp ∶ [0,1]E → {0,1}E, (xe) ↦ (1xe≤p). Notice that,
under P, the random con�guration ωp has law Pp. The random con�guration ωp naturally
gives rise to the notions of p-open edge, p-cluster, p-open path and p-connectivity. For

A,B,C ⊂ V we write A
C←→
p
B if A and B are p-connected in C, and A

C←→
p
/ B for the

complement event. When we are looking at all the p-con�gurations coupled together,
additional interesting events appear. For instance, we can look at how p-clusters are
connected at a parameter q ≥ p, and the following generalisation of the uniqueness event
will be useful. For p ≤ q and n ≥m ≥ 1, we de�ne the sprinkled uniqueness event by

Up,q(m,n) = {All the p-clusters in Bn intersecting Bm and ∂Bn are q-connected in Bn}.

The event above has some useful monotonicity properties: For �xed n ≥ m ≥ 1, the
function f(p, q) = P[Up,q(m,n)] is nonincreasing in p and nondecreasing in q. In contrast,
the probability of the uniqueness event Pp[U(m,n)], which is equal to f(p, p), has no
clear monotonicity in p.

1.5 Organisation of the paper

The main ingredient in the proof of Theorems 1.1 and 1.2 is the following proposition,
which provides local existence and uniqueness of certain crossing clusters in large boxes.
From there, we apply a coarse-graining argument, presented in Section 10. In Zd, standard
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coarse-graining arguments use the scaling property of Zd: the set nZd is a rescaled version
of Zd. For general transitive graphs of polynomial growth, we circumvent scaling by using
an n-independent percolation with su�ciently high marginals.

Proposition 1.3. Let G be a transitive graph of polynomial growth with d ≥ 2 and let
p > pc. Then, for all n large enough, we have

Pp[Bn/10 ←→ ∂Bn, U(n/5, n/2)] ≥ 1 − e−
√
n.

The main goal of the paper is the proof of the proposition above. The proof itself is
presented in Section 9. It relies on several independent arguments and intermediate results
established in Sections 2�8. Section 2 is a geometric toolbox. In each of the Sections 3�8,
we isolate one important ingredient. Each section may use the results from previous ones,
but can be read roughly independently. Once the central Proposition 1.3 is established,
the two theorems can be proved by using some adaptation of standard renormalisation
arguments, which are presented in Section 10. Here is a more detailed roadmap of the
forthcoming sections:

Section 2: Geometric lemmas This section provides several de�nitions and lemmas on
the geometry of graphs of polynomial growth, in particular related to cutsets, annuli,
spheres, and �nding many in�nite distant paths exiting Bn. The reader may want to read
this section only when other sections require it.

Section 3: Renormalisation of the corridor function In this section, we reduce the proof
of Proposition 1.3 to showing that, at in�nitely many scales, long corridors can be crossed
with probability larger than some constant. This involves a renormalisation property of
the corridor function.

Section 4: Probability that two clusters meet at one point We prove that the probability
Pp[Piv(1, n)] that two clusters of radius n meet at one point decays polynomially fast
in n, uniformly in p. We use an adapted version of the beautiful exploration argument
of Aizenman, Kesten, and Newman [AKN87] (see also [GGR88, Cer15, Hut20]), which
relates such meeting points to the deviation of the sum of i.i.d. Bernoulli(p) random
variables. The argument extends to amenable transitive graphs.

Section 5: Sharp threshold results via hypercontractivity We establish a general sharp

threshold result for connectivity probabilities of the form Pp[A
C←→ B], A,B,C ⊂ V . To

do so, we rely on the general inequalities on in�uences for Boolean functions of Talagrand
[Tal94] and [KKL88]. In the spirit of recent applications of sharp threshold results to
percolation [DRT18, DKT], our argument does not involve approximations by symmetric
events on the torus. Instead, we only use the bounds on the in�uences in the �bulk� (at
a su�cient distance from the set A and B) provided by Section 4.
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Section 6: A priori bound on the uniqueness zone We consider the following problem:
for n large, for which value of s(n) can we ensure that at most one cluster in Bn crosses
from Bs(n) to ∂Bn? Ultimately, Proposition 1.3 shows that we can choose s(n) ≥ n/3. In
order to prove this, we need an a priori lower bound as an intermediate step: in Section 6,
we prove that for p > pc, we can choose s(n) larger than any power of logn. To achieve
this, we have to overcome di�culties that are not present for the lattice Zd. In the lattice
case, a result of Cerf [Cer15] shows directly that we can choose s(n) ≥ nc for a positive
constant c > 0 independent of p ∈ [0,1]. Due to the lack of symmetry, this argument does
not extend to general graphs of polynomial growth. Here we combine some arguments of
[Cer15] together with a new renormalisation method.

Section 7: Sharp threshold results via Hamming distance This section presents the main
new argument, which relies on a general di�erential inequality involving the Hamming
distance on the hypercube. We prove that, in the supercritical regime, if the corridor
function is small, then large annuli are crossed with high probability. In Section 9, this
enables us to split the proof of Proposition 1.3 into two tractable cases: either the corridor
function is large or large annuli are crossed with high probability.

Section 8: Uniqueness via sprinkling We consider the con�guration in Bn and assume
that the large clusters �ll su�ciently well the ball Bn, in the sense that all the balls
Bk(x), x ∈ Bn, are p-connected to ∂Bn, for some k ≪ n. In this case, we prove that for
a small sprinkling δ > 0, the sprinkled uniqueness event Up,p+δ(n/4, n) occurs with high
probability: all the p-clusters crossing the annulus Bn ∖Bn/4 get connected in Bn at p+ δ.
We use a non-trivial re�nement and generalisation of [BT17].

Section 9: Proof of Proposition 1.3 This section gives the proof of Proposition 1.3. It
uses all the results from Sections 3�8.

Section 10: Proof of sharpness: coarse grains without rescaling We use Proposition 1.3
to establish Theorems 1.1 and 1.2. We perform a coarse-graining argument to reduce the
study of the supercritical regime to that of a suitable perturbative regime. This is not
done by rescaling the graph G but by de�ning a k-independent percolation process on the
original graph G.
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2 Geometric lemmas

In this section, we collect a certain number of geometric lemmas that will prove useful
throughout the paper. This can be skipped in a �rst reading.

2.1 Cutsets

Percolation is primarily concerned with �connectivity events� and existence of open paths.
The complement of a such an event is well understood in terms of closed cutsets, which
are dual to open paths. In this section, we de�ne and provide useful properties of cutsets.

If F and Π denote two subsets of V (G), we say that Π is a cutset between F and ∞
if Π∩F = ∅ and every in�nite self-avoiding path starting in F has to intersect Π at some
point. If, furthermore, no strict subset of Π is a cutset between F and ∞, we say that Π

is a minimal cutset between F and ∞.

The following well-known lemma provides some geometric control on these minimal
cutsets.

Lemma 2.1 (Coarse connectedness of minimal cutsets). Let G be a transitive graph of
polynomial growth with d ≥ 2. Then, there is some constant R such that the following
holds.
Let o be a vertex of G. Every minimal cutset disconnecting o and ∞ is R-connected: For
every minimal cutset C, the graph having C as vertex set and with edges connecting two
elements of C if their distance in G is at most R is connected.

Proof. By [Tro85], G is quasi-isometric to a Cayley graph H of some �nitely generated
nilpotent group Γ. As Γ is �nitely generated and nilpotent, it is �nitely presented (see
Propositions 13.75 and 13.84 of [DK17]). Therefore, there is some constant RH such
that every �nite cycle of H is a sum modulo 2 of cycles of length at most RH . As G
is quasi-isometric to H, there is some constant RG such that every �nite cycle of G is a
sum modulo 2 of cycles of length at most RG. To see this, �x ϕ ∶ G → H and ψ ∶ H → G

quasi-isometries that are quasi-inverse of each other. To every edge {u, v} of G (resp.
H) correspond two vertices ϕ(u) and ϕ(v) (resp. ψ(u) and ψ(v)), which are at bounded
distance of each other. For each such edge {u, v}, select once and for all some geodesic
path connecting the two corresponding vertices in the other graph. This enables us to
associate with each cycle in one graph a cycle in the other. The properties of this process
allow us to derive from the existence of RH the existence of a constant RG as above. This
condition extends to in�nite cycles (bi-in�nite paths) if one allows in�nite (locally �nite)
sums, because G is one-ended (d ≥ 2). This permits us to use Theorem 5.1 of [Tim07]
(see also [BB99, Tim13]), which yields the conclusion.

The goal of this paper is to reduce the study of the whole supercritical regime to some
perturbative regime, where the Peierls' argument applies. Studying this perturbative
regime will require some quantitative control in the usual entropy-vs-energy spirit of the
Peierls' argument. The next three lemmas will help us get such a control.
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Lemma 2.2. Let G be a transitive graph of polynomial growth with d ≥ 2. Let R be so
that the conclusion of Lemma 2.1 holds. Let Π be a cutset disconnecting o and ∞. Then,
Π intersects the ball of centre o and radius R∣Π∣.

Proof. Assume that Π does not intersect BR∣Π∣. Since G is an in�nite transitive graph,
there is a bi-in�nite geodesic path passing through o. The cutset Π has to intersect each
of the two geodesic rays this path induces from o. As a result, one has diam(Π) > 2R∣Π∣.
Since R satis�es the conclusion of Lemma 2.1, we also have diam(Π) ≤ R∣Π∣, which is
contradictory.

The next lemma is related to Lemma 2.6 and [FGO15, Proposition 5]. The existence
of a bi-in�nite geodesic path will once again be the key of the proof.

Lemma 2.3. Let G be an in�nite transitive graph. Let F be a �nite subset of V (G)
containing o. Let Π be a cutset disconnecting F and∞. Then, we have diam(Π) ≥ diam(F )

2 .

Proof. Let F̃ ⊂ V (G) denote the set of all vertices that can be reached from F by a path
avoiding Π. If F is connected, this is simply the connected component of F in G∖Π. We
set m = diam(Π) and n = diam(F ). Let us prove that m ≥ n

2 .

First, assume that there is a vertex v ∈ F̃ such that Bn/4(v) ⊂ F̃ . As in the proof
of Lemma 2.2, the existence of a bi-in�nite geodesic path passing through v yields m >
2n/4 = n/2, hence the desired result.

Now, assume that, on the contrary, for every vertex v ∈ F̃ , one has Bn/4(v) /⊂ F̃ .
In particular, one can take u and v two vertices of F at distance n of each other, and
then �nd vertices u′ and v′ in Π such that d(u,u′) ≤ n/4 and d(v, v′) ≤ n/4. Indeed, by
de�nition of F̃ , its external vertex-boundary is a subset of Π � and it is equal to Π if Π

is a minimal cutset. By considering u′ and v′, one gets m ≥ n − 2n/4 = n/2.

Lemma 2.4. Let G be a transitive graph of polynomial growth with d ≥ 1. There exists
c > 0 such that the following holds. Let F be a �nite connected subset of V (G) containing
o. Let Π be a cutset disconnecting F and ∞. Then, we have ∣Π∣ ≥ c∣F ∣ d−1d .

Proof. Let F̃ ⊂ V be the set of vertices that can be connected to F by a path not
intersecting Π. Then F ⊂ F̃ and every edge of ∂F̃ intersects Π. As ∣Br∣ ≍ rd and since
every transitive amenable graph is unimodular [SW90], Lemma 7.2 of [LMS08] yields the
existence of c > 0 such that for every choice of (F,Π), we have ∣Π∣ ≥ c∣F̃ ∣ d−1d ≥ c∣F ∣ d−1d .

2.2 Spheres and annuli

The most basic example of a cutset is the sphere of radius r. In the hypercubic lattice
of dimension d ≥ 2, spheres are coarsely connected, in the sense of Lemma 2.1 (one can
take R = 2). Actually, for hypercubic lattices, spheres centred at o are minimal cutsets
disconnecting o and ∞. Such statements are not true any more for general graphs � not
even for one-ended transitive graphs of polynomial growth.

In order to recover coarse connectedness of spheres, we use a notion of exposed sphere
[BG18, Pet08, Tim13], that only contains the points accessible from in�nity, and where
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the �nite �pockets� are removed. For r ≥ 0 and x a vertex of a graph G, let S∞r (x)
denote the set of all vertices y such that d(x, y) = r and there exists an in�nite self-
avoiding path starting at y and intersecting Br(x) only at y. Notice that replacing the
self-avoiding condition by �visiting in�nitely many vertices� in this de�nition yields the
same set S∞r (x). If some vertex o is �xed as a root in G, we may write S∞r for S∞r (o).
Remark 2.5. For every r ≥ 1, the set S∞r is a minimal cutset between Br−1 and ∞. In
particular, Lemma 2.1 yields coarse connectedness of these sets.

Not only does S∞r disconnect Br−1 and ∞ but it even disconnects it from ∂B2r, as
stated in Lemma 2.6. This lemma corresponds to Proposition 5 in [FGO15]. For the
reader's convenience, we have included below its short and nice proof.

Lemma 2.6. Let G be an in�nite transitive graph and o a vertex of G. Let r ≥ 0 and let
γ be a �nite path starting in Br and that intersects ∂B2r. Then, the path γ intersects S∞r .

Proof. Let us �x x and y such that x is a vertex of γ at distance 2r from the origin o and
y is a neighbour of x satisfying d(o, y) = 2r + 1. Since G is in�nite and transitive, we can
�x some bi-in�nite geodesic path γ′ passing through y at time 0. It is impossible for γ′ to
intersect Br in both positive and negative times. Indeed, since γ′ is geodesic, this would
imply the existence of two points in Br at distance larger than 2r + 1 away of each other.

Therefore, by following γ′ from y in the positive or the negative direction, we get an
in�nite self-avoiding path γ′′ that does not intersect Br. Since γ starts in Br and intersects
∂B2r, it visits at least one vertex at distance exactly r from the origin. Take k to be the
largest integer such that d(o, γk) = r and set v = γk. This vertex v necessarily belongs to
S∞r . Indeed, following the path γ started at time k, then the edge {x, y}, and then the
path γ′′ yields a path that starts at v and then leaves Br forever (and that visits in�nitely
many vertices).

While studying percolation on Zd, it is customary to use not only spheres but also
annuli. Annuli will also be useful when G is a one-ended transitive graph of polynomial
growth. The next lemma provides some control on their geometry.

Lemma 2.7 (Control on the intrinsic diameter of annuli). Let G be a transitive graph
of polynomial growth with d ≥ 2. Let R ≥ 1 be such that the conclusion of Lemma 2.1
holds, and let n ≥ k ≥ R. Then for all x, y ∈ S∞n , there exists a path from x to y within the
2k-neighbourhood of S∞n , of length at most 3k∣B3n∣/∣Bk∣.

Proof. Let x, y ∈ S∞n . By de�nition of R and S∞n , we can �x some path (v0, . . . , v`) from
x to y that stays in the R-neighbourhood of S∞n . Recursively, we de�ne some new �nite
sequence of vertices as follows. Set w0 = v0 = x. For every i > 0, let mi be such that
vmi ∈ B2k(wi−1) and none of the vertices vmi+1, . . . , v` belongs to B2k(wi−1). We then set
wi = vmi+1. This process is well-de�ned until it reaches some wt that satis�es d(wt, y) ≤ 2k,
and the process stops there. Notice that the sets Bk(wi) are disjoint when i ranges over
{0, . . . , t} and that all these balls are subsets of B3n. Therefore, we have t + 1 ≤ ∣B3n∣

∣Bk ∣ . By
means of paths of length at most 2k + 1 each, we can connect w0 to w1, . . . , wt−1 to wt,
and wt to y. Concatenating theses paths produces a path of length at most (2k+1)(t+1)
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that stays within the 2k-neighbourhood of S∞n . As (2k+1)(t+1) ≤ 3k∣B3n∣/∣Bk∣, the proof
is complete.

2.3 Crafting many distant paths

In Section 3, we will need many paths that stay away from each other in G. The purpose
of the current subsection is to explain how to get such paths. The proper (deterministic)
statement is given by Lemma 2.8, which makes use of the following de�nition.

A path γ ∶ N→ V is said to be a c-quasi-geodesic ray if for any m and n in N, we have
d(γm, γn) ≥ c∣m − n∣.

Lemma 2.8. Let G be a transitive graph of polynomial growth with d ≥ 2. Then, there
exist c > 0 such that for every n ≥ 1/c, for every a ∈ [1, cn], one can �nd ⌈na ⌉ distinct c-
quasi-geodesic rays that intersect Bn and that stay at distance at least ca from each other
� if x belongs to some ray and y to another one, then d(x, y) ≥ ca.

Proof. By [Gro81, Tro85], there is a �nitely generated nilpotent group Γ with one end
such that G is quasi-isometric to any Cayley graph of Γ. Let S be some �nite generating
subset of Γ. By [HT, Lemma 3.23], we can pick a surjective homomorphism π ∶ Γ→ Z2.

Notice that the conclusion of Lemma 2.8 obviously holds for the square lattice. As
this conclusion is stable under quasi-isometry, it holds for the Cayley graph of Z2 relative
to the generating subset π(S). By using π, lifting suitable paths for this Cayley graph
of Z2 yields suitable paths for the Cayley graph of Γ relative to S. As this graph is
quasi-isometric to G, we have the desired result.

3 Renormalisation of the corridor function

Recall that we �xed G = (V,E) a transitive graph of polynomial growth with one end,
and that d denotes the growth exponent of G. Namely, d is an integer larger than 1 such
that ∣Bn∣ ≍ nd. We also �x R ≥ 1 some constant such that the conclusion of Lemma 2.1
holds.

Proposition 3.1. Let G be a transitive graph of polynomial growth with d ≥ 2. Let
p ∈ (0,1) be such that

lim sup
n

κp(n log3d n,n) > 0.

Then, for every q ∈ (p,1], for every n large enough, we have

Pq[{Bn/10 ←→ ∂Bn} ∩U(n/5, n/2)] ≥ 1 − e−
√
n. (1)

In order to prove Proposition 3.1, we will mimic the orange-peeling argument developed
for percolation on Zd [Gri99, Lemma 7.89]. Since we will extend this argument in several
ways, let us recall brie�y how it works to obtain some lower bound on the probability of
U(n,2n) for percolation on Zd at a parameter p > pc. First, partition B2n ∖Bn into n/m
annuli of the form Bk+m ∖Bk (m is a �xed constant here, but its role will be important in
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our context so we keep it explicit). Using the slab technology [GM90], one can show that
in each of these annuli, any two vertices are connected with probability larger than some
positive constant δ. Now, consider two clusters C(x) and C(y) that cross the annulus
B2n∖Bn and start at some �xed vertices x and y at the boundary of Bn. Explore them in
a recursive manner by revealing the con�guration in the annuli Bk+m∖Bk the one after the
other. At each such step, conditionally on the past, there is a probability at least δ that
the clusters C(x) and C(y) get connected in Bk+m ∖Bk. This shows that the probability
that C(x) and C(y) reach the boundary of B2n without merging is smaller than e−δn/m.
Summing over all the possible x and y, we get

P[U(n,2n)] ≥ 1 − ∣∂Bn∣2e−δn/m.

However, two di�culties arise when extending this argument to more general graphs.
First, the annuli given by the induced subgraph of Bk+m ∖Bm may not be connected in
our setting. To overcome this, we rather work with the following annuli. For n ≥ m ≥ 0,
we de�ne

A(n,m) = ⋃
x∈S∞n

Bm(x).

If m is large enough, Lemma 2.1 implies that A(n,m) is connected and Lemma 2.7
provides us with a good control on the distances in the graph induced by A(n,m).

A second and more serious di�culty is the lack of symmetry, which prevents us from
using the slab technology of the Euclidean lattice, and makes the control of the two-
point functions in annuli more delicate. Instead of symmetries, our approach uses a
renormalisation property of the corridor function, presented in Lemma 3.3. The latter
relies on a �sprinkled� version of the orange-peeling argument, presented in Lemma 3.2
below.

Lemma 3.2. There exists a constant c > 0 such that the following holds. Let p ∈ (0,1),
δ ∈ (0,1 − p) and n ≥m ≥ R. If

κp(3m∣Bn∣/∣Bm∣,m) ≥ δ, (2)

then, for every ` ≥ 1, we have

κp+δ(`, n) ≥ δ2 − `∣Bn∣2 exp(−cδ
3n

m
) . (3)

Proof. For simplicity, we will proceed as if all the ratios (n/m, n/10, cin/m...) appearing
in the proof were integer-valued. The more general statement can easily be obtained by
appropriate �⌈⋅⌉-and-⌊⋅⌋-management�. Let c0 > 0 be a constant as in Lemma 2.8.

By possibly reducing the value of the constant c, one may assume without loss of
generality that the ratio n/m is large. In particular, we may assume that

3

c0

m ≤ c0

10
n and

11

10c0

n ≤m ∣Bn∣
∣Bm∣

.

In this proof, we work with the coupled con�gurations (ωp)0≤p≤1 under the measure P.
First, we show that the classical annulus Bn ∖ Bn/10 is crossed by at least one p-cluster
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with high probability. To this end, apply Lemma 2.8 with a = 3
c0
m. It guarantees that

there exist c1n/m disjoint corridors of thickness m connecting Bn/10 to ∂Bn and of length
at most 11

10c0
n. Each one of these corridors is crossed with probability at least δ, by the

assumption (2). By independence, we have

P[Bn/10 ←→p/ ∂Bn] ≤ (1 − δ)c1n/m ≤ exp(−δc1n

m
) . (4)

By automorphism-invariance, any classical annulus Bn(x) ∖Bn/10(x) is crossed by at
least one p-cluster with high probability. The main idea to prove (3) is to consider a
chain of p-clusters and show that they all get connected at p + δ, with high probability
(as illustrated in Fig. 2). To this end, we use an adapted version of the orange-peeling
argument, and show that all the p-clusters in Bn/2 crossing from Bn/5 to ∂Bn/2 are locally
(p + δ)-connected to each other with high probability. More precisely, we prove that

P[Up,p+δ(n/5, n/2)] ≥ 1 − ∣Bn∣2 exp(− δ3n

140m
) . (5)

To achieve this, for 0 ≤ i < n
140m , consider the connected annuli Ai = A(ni,3m), where

ni = n
5 +4m+7im. Notice that n

5 +4m ≤ ni ≤ n
4 −3m and the annuli Ai are disjoint subsets

of Bn/4 ∖ Bn/5. The choice of 3m for the thickness of the annulus ensures that for any
vertices x, y in S∞ni , one can �nd a corridor from x to y of thickness m and length smaller
than 3m∣B3ni ∣/∣Bm∣ that fully lies inside Ai, by Lemma 2.7. Let us de�ne Cp(x) to be the
p-cluster of x in Bn/2. For x, y ∈ Bn/5, we have

P[x←→
p
∂Bn/2, y ←→p ∂Bn/2, x

Bn/2←ÐÐ→
p + δ
/ y] (6)

= ∑
C,C′

P[C
Bn/2←ÐÐ→
p + δ
/ C ′ ∣ Cp(x) = C, Cp(y) = C ′] ⋅P[Cp(x) = C, Cp(y) = C ′]

where the sum is over the pairs of disjoint clusters (C,C ′) joining respectively x and y to
∂Bn/2. Let us �x such C and C ′. Notice that under the conditional law

P̃ = P[ ⋅ ∣ Cp(x) = C, Cp(y) = C ′],

the con�guration ωp+δ is an independent percolation process with marginals satisfying

P̃[ωp+δ(e) = 1]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

= 1 if e ∈ C ∪C ′,

≥ δ if e ∈ ∂C ∪ ∂C ′,

= p + δ otherwise.

By Lemma 2.6, both C and C ′ must intersect all the exposed spheres S∞ni (since ni ≤ n/4).
Furthermore, for every i, Lemma 2.7 ensures that there exists a corridor included in Ai
from a point of C to a point of C ′, of thicknessm and of length smaller than 3m∣B3ni ∣/∣Bm∣.
Using that 3ni ≤ n and the bound (2), we obtain

P[∂C Ai←→
p
∂C ′ ∣ Cp(x) = C, Cp(y) = C ′] ≥ κp (3m∣Bn∣/∣Bm∣,m) ≥ δ.
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Above, we do not directly get that the two clusters C and C ′ are connected by a (p + δ)-
open path, because we are conditioning on an event where the edges at the boundary
of C and C ′ are p-closed. Nevertheless, using that each such edge is (p + δ)-open with

probability larger than δ, independently of the event ∂C
Ai←→
p
∂C ′, one obtains the following

lower bound:
P[C Ai←ÐÐ→

p + δ
C ′ ∣ Cp(x) = C, Cp(y) = C ′] ≥ δ3,

where one additional δ appears in order to leave C and another δ to reach C ′. Finally,
since all Ai's are disjoint, one has, by independence:

P[C
Bn/2←ÐÐ→
p + δ
/ C ′ ∣ Cp(x) = C, Cp(y) = C ′] ≤ (1 − δ3)n/140m.

Plugging this into (6) and then summing over all pairs x, y ∈ Bn/5, one gets

P[Up,p+δ(n/5, n/2)] ≥ 1 − ∣Bn∣2 exp(− δ3n

140m
) .

Now, we use the two estimates (4) and (5) in order to prove that (3) holds. Let
γ = (v0, v1, . . . , vk) be a path of length k ≤ ` connecting a vertex x = v0 to some vertex
y = vk. Let K be the corridor around γ of thickness n. Consider the following three
conditions:

(i) x←→ ∂Bn(x) and y ←→ ∂Bn(y),

(ii) for all j = 1, . . . , k, one has Bn/10(vj) ←→p ∂Bn(vj),

(iii) for all j = 1, . . . , k, the uniqueness event Up,p+δ(n/5, n/2) centred at vj occurs.

Figure 2: Gluing paths via local uniqueness.

As illustrated in Fig. 2, the simultaneous occurrence of the three events above implies that
there exists a (p + δ)-open path in K between x and y. The bounds P[z ←→ ∂Bn(z)] ≥
κp(n,m) for z = x, y together with the Harris�FKG Inequality imply that (i) occurs with
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probability at least κp(n,m)2. Therefore, by the union bound and by automorphism-
invariance, we obtain

P[x K←ÐÐ→
p + δ

y] ≥ κp(n,m)2 − kP[Bn/10 ←→p/ ∂Bn] − k(1 −P[Up,p+δ(n/5, n/2)])

(4),(5)
≥ δ2 − ` exp(−δc1n

m
) − `∣Bn∣2 exp(− δ3n

140m
) ,

which concludes the proof of (3).

Lemma 3.3 (Renormalisation property of the corridor function). Let p > 0 and assume
that

lim sup
n→∞

κp(n log3d n,n) > 0. (7)

Then for all q > p and C > 2d, for all n large enough, one has

κq(nC , n) ≥ n−1/C . (8)

Proof. Let us �x p > 0 such that (7) holds. Let η ∈ (0, 1−p
2 ) and q = p+ 2η, let C > 2d. The

assumptions imply that

δ ∶= min{η, 1
2 lim sup

n→∞
κp(n log3d−3 n,n log−2 n)} > 0.

Consider a large n satisfying κp(n log3d−3 n,n log−2 n) ≥ δ and writem = n
log2 n

. As ∣Bn∣ ≍ nd,
we have 3 ∣Bn∣

∣Bm∣ ≤ log2d+1 n and therefore κp(3m ∣Bn∣
∣Bm∣ ,m) ≥ δ. Applying Lemma 3.2 to n,m

and ` = nC2 , we obtain

κp+η(nC
2

, n) ≥ κp+δ(nC
2

, n) ≥ δ2 − nC2 ∣Bn∣2 exp ( − cδ3 log2 n).

Since one can �nd arbitrarily large n satisfying the equation above, we get

lim sup
n→∞

κp+η(nC
2

, n) > 0. (9)

To get (8), we perform a renormalisation argument. Let c0 be a constant as in Lemma 3.2.
Equation (9) allows us to take m0 ≥ max{1+η

η ,R} such that

κp+η(mC2

0 ,m0) ≥
1

m
1/C
0

and, for every m ≥m0,

mC3 ∣Bm2 ∣2e−c0m1−3/C ≤ 1

m2/C − 1

m
and 3m

∣Bm2 ∣
∣Bm∣

≤mC2

.

Let mi = mCi

0 and pi+1 = pi + 1/mi−1, with p0 = p + η. We will prove by induction that for
every i ≥ 0,

κpi(mi+2,mi) ≥
1

mi−1

. (10)
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Notice that the relation holds for i = 0, by de�nition of m0. Let us �x some i such that

(10) holds. Since 3mi

∣B
m2
i
∣

∣Bmi ∣
≤mC2

i =mi+2, one has

κpi(3mi∣Bm2
i
∣/∣Bmi ∣,mi) ≥

1

mi−1

.

Using Lemma 3.2 and observing that mi+1 ≥m2
i , we get

κpi+1(mi+3,mi+1) ≥ κpi+1(mi+3,m
2
i ) ≥

1

m2
i−1

−mi+3∣Bm2
i
∣2 exp(−

c0m2
i

m3
i−1mi

)

≥ 1

mi

,

where the last inequality holds due to the choice of m0. This completes the induction.

Now, for n large, consider j such that mj ≤ n < mj+1. Using that pj ≤ p + 2η and
monotonicity, we get

κp+2η(nC , n) ≥ κpj(mj+2,mj) ≥
1

m
1/C
j

≥ 1

n1/C .

Proof of Proposition 3.1. As mentioned before, the strategy of the proof is an adaptation
of the orange-peeling argument used in [Gri99, Lemma 7.89]. Fix p ∈ (0,1) and η ∈
(0, (1 − p)/2). We will prove that the statement (1) holds for q = p + 2η. Let C = 8d.
By Lemma 3.3, we can �x m0 ≥ 1 such that for all m ≥ m0, we have κq(mC ,m) ≥ m−1/C .
Let n be large enough, so that it is possible to choose an m satisfying

m0 ≤m ≤ n1/9 and mC ≥ 3m∣B3n∣/∣Bm∣. (11)

As in the proof of Lemma 3.2, we consider disjoint annuli insideBn/4∖Bn/5: for 0 ≤ i < n
140m ,

consider the connected annuli Ai = A(ni,3m), where ni = n
5 + 4m + 7im. The gist of the

proof is to establish, for all i < n
140m and all x, y ∈ Ai, a good lower bound for Pq[x

Ai←→ y].
Let i < 1

140m and x, y ∈ Ai. Denote by x′ a vertex of S∞ni such that d(x,x′) = d(x,S∞ni).
De�ne y′ in the same manner, with respect to y instead of x. By Lemma 2.7, one can
�nd a corridor from x′ to y′ of thickness m and length smaller than 3m∣B3ni ∣/∣Bm∣ that
fully lies within Ai. Using the Harris�FKG Inequality, we get

Pq[x
Ai←→ y] ≥ Pq[x

B2m(x′)
←ÐÐÐ→ x′] ⋅ κq(3m∣B3n∣/∣Bm∣,m) ⋅Pq[y

B2m(y′)
←ÐÐÐ→ y′]. (12)

Then, we only need to �nd a good lower bound for each term. Observe that (11) and
Lemma 3.3 directly yield the following lower bound for the central factor of the product
above:

κq(3m∣B3n∣/∣Bm∣,m) ≥m−1/C . (13)

For the other factors of (12), by automorphism-invariance, it is enough to get a lower

bound for Pp[o
B3m←Ð→ z], where z ∈ B3m. In order to get this bound, we will use a chaining

argument, which goes as follows. For all k, set mk =m2k

0 . Let j ≥ 0 be such that

m0 +⋯ +mj−1 ≤ d(o, z) <m0 +⋯ +mj.
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Figure 3: Illustration of the chaining argument: a chain of corridors is used
to connect the centre of the ball to a boundary vertex x0. For the corridors to
be subsets of the ball, the thickness is chosen to be smaller when approaching
the boundary.

Let γ be a geodesic path between z and o. Fix a sequence of points x0 = z, x1, . . . , xj+1 = o
in γ such that for all 0 ≤ i < j, d(xi, xi+1) = mi and d(xj, o) < mj. Notice that for every
1 ≤ i < j, the corridor around γ of thickness mi−1 between xi and xi+1 is contained in
the ball B3m. This is not the case for i = 0, but in this case we use the trivial bound

Pp[x0
B3m←Ð→ x1] ≥ pm0 . Then, using the Harris�FKG Inequality, we get

Pq[o
B3m←Ð→ z] ≥ pm0

j

∏
i=1

κq(mi,mi−1) ≥
pm0

3m
. (14)

Using (12), (13) and (14), we obtain that for all m large enough,

Pq[x
Ai←→ y] ≥ p2m0

(3m)2

1

m1/C ≥ 1

m3
. (15)

Now, we describe the adaptation of the orange-peeling argument presented in [Gri99,
Lemma 7.89] to our context. Let x and y denote two distinct vertices of Bn/10. We explore
their clusters step by step, starting from the inside ball Bn/10. The ith step explores these
clusters until they touch the annulus Ai � or until we are sure they will never do so.
Denote by xi and yi the respective points where they touch Ai for the �rst time. Let x′i
and y′i be the closest points in S

∞
ni

to xi and yi, respectively (see Figure 4). We know by

(15) that Pq[xi
Ai←→ yi] ≥ 1

m3 . By conditional independence, we obtain that for every n
large enough,

Pq[U(n/5, n/2)] ≥ 1 − ∣Bn/10∣2 (1 − 1

m3
)
n/140m

≥ 1 − e
−
√
n

2
,

where we use that m ≤ n1/9. It remains to prove that for every n large enough, we have

Pq[Bn/10 ←→ ∂Bn] ≥ 1 − e
−
√
n

2
,
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Figure 4: Orange-peeling argument: when the explorations of two clusters
from Bn/10 reach the annulus Ai, they get connected inside Ai with proba-
bility at least 1/m3.

which can be proved as Equation (4) by using that there exist at least cn1−1/C disjoint
corridors of thickness n1/C from Bn/10 to ∂Bn, and that each of these corridors is inde-
pendently crossed with probability at least n−1/C .

4 Probability that two clusters meet at one point

This section is devoted to the proof of the following proposition, which extends the quan-
titative uniqueness argument of [AKN87, GGR88] to graphs of polynomial growth. The
proof presented below follows the more recent presentations of [Cer15] and [Hut20].

Proposition 4.1. Let G be a transitive graph of polynomial growth. Let ε > 0 and η > 0.
There is a constant c = c(G,ε, η) such that for all p ∈ [η,1] and all n ≥ 1, we have

Pp[Piv(1, n)] ≤ cn−1/2+ε.

The interest of Proposition 4.1 is twofold. On the one hand, it will be useful to bound
the probability of pivotal edges when studying the derivative of crossing probabilities:
it will be important to establish the general sharp threshold result of Proposition 5.1.
On the other hand, the work [Cer15] shows that for G = Zd the bound above can be
strengthened into bounds on the probability Pp[Piv(m,n)] for m ≥ 1. For more general
graphs, we will obtain a similar result in Proposition 6.1, but we need to combine the
approach of [Cer15] with a new renormalisation argument in order to overcome the lack
of symmetry of G.

In order to prove Proposition 4.1, we will make use of the following geometric obser-
vation.
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Lemma 4.2. Let G be a transitive graph of polynomial growth. There is a constant c
such that the following holds: for every n ≥ 1, there is an integer m such that n ≤m < 2n

and ∣∂Bm∣/∣Bm∣ ≤ c/n.

Proof. Using that the sum ∑2n−1
m=n ∣∂Bm∣ is smaller than the total number of edges in B2n,

we have

min
n≤m<2n

∣∂Bm∣
∣Bm∣

≤ 1

n

2n−1

∑
m=n

∣∂Bm∣
∣Bm∣

≤ 1

n
⋅ ∣E(B2n)∣

∣Bn∣
.

Since ∣Bn∣ ≍ nd and G has bounded degree, ∣E(B2n)∣
∣Bn∣ is bounded from above by a constant,

which concludes the proof.

Proof of Proposition 4.1. Let c1 > 0 be a constant such that the conclusion of Lemma 4.2
holds, and let n be a positive integer. Then, there is an integer m such that n ≤ m < 2n

and
∣∂Bm∣/∣Bm∣ ≤ c1/n.

Let us �x such an m.

Following [Cer15], let us consider the random set of edges H de�ned as follows: we
look at the con�guration restricted to Bm and we say that e belongs to H if it is closed
and its endpoints belong to disjoint clusters in Bm that both touch ∂Bm. Since 4n ≥ 2m,
one can use the �nite-energy property and automorphism-invariance to prove that for
every x ∈ Bm−1,

p ⋅Pp[Piv(1,4n)] ≤ 2∑
e∋x

Pp[e ∈ H].

Summing over all x ∈ Bm−1, we get

∣Bm−1∣ ⋅ p ⋅Pp[Piv(1,4n)] ≤ 4Ep[∣H∣]. (16)

Let us de�ne C to be the family of all the open clusters in Bm that intersect ∂Bm. De�ne
C to be the union of all these clusters. Given a subset S of Bm, we write open(S) (resp.
closed(S)) for the set of open (resp. closed) edges of E(Bm) adjacent to at least one vertex
of S. In order to bound the size of H, we rely on the following identities,

∑
C∈C

∣open(C)∣ = ∣open(C)∣ (17)

∑
C∈C

∣closed(C)∣ = ∣closed(C)∣ + ∣H∣, (18)

which are proved by a counting argument. The �rst sum counts all the open edges in Bm

connected to the boundary of Bm, which also corresponds to the open edges adjacent to
C. The second sum counts all the closed edges which are connected to the boundary of
Bm, except that the edges of H are counted twice.

Furthermore, using that the event {e ←→ ∂Bm} is independent of the status of the
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edge e, we �nd

p ⋅Ep[∣closed(C)∣] = ∑
e⊂Bm

p ⋅P[e is closed, e←→ ∂Bm]

= ∑
e⊂Bm

p(1 − p) ⋅P[e←→ ∂Bm]

= ∑
e⊂Bm

(1 − p) ⋅P[e is open, e←→ ∂Bm]

= (1 − p) ⋅Ep[∣open(C)∣].

Taking the expectation in (17) and (18), and using the computation above, we get

Ep[∣H∣] = 1

p
Ep[∑

C∈C
h(C)], (19)

where h(C) = p∣closed(C)∣ − (1 − p)∣open(C)∣. In the right-hand side above, the fact that
the sum is over a random set makes it delicate to study. To overcome this di�culty, we
will �root� each cluster at some of its vertices, and sum over the possible roots. For every
x ∈ Bm, let Cx be the cluster of x in Bm. Using that for every cluster C, there are exactly
∣C∣ vertices x such that Cx = C, we get

Ep [∑
C∈C
f(C)] = ∑

x∈Bm
Ep [

f(Cx)
∣Cx∣

1{x←→∂Bm}] , (20)

for every function f ∶ P(Bm) → R. Applying this to f = h, and using the Cauchy�Schwarz
inequality, we get

Ep [∑
C∈C
h(C)] ≤ ( ∑

x∈Bm
Ep [

h(Cx)2

∣Cx∣1+ε
])

1/2 ⎛
⎝ ∑x∈Bm

Ep

⎡⎢⎢⎢⎢⎣

1{x←→∂Bm}

∣Cx∣1−ε
⎤⎥⎥⎥⎥⎦

⎞
⎠

1/2

. (21)

Applying (20) to f(S) = ∣S∣ε and using Hölder's inequality with parameters 1
ε and

1
1−ε (we

may and will assume that ε < 1), we obtain

∑
x∈Bm

Ep

⎡⎢⎢⎢⎢⎣

1{x←→∂Bm}

∣Cx∣1−ε
⎤⎥⎥⎥⎥⎦
= Ep[∑

C∈C
∣C∣ε] ≤ Ep[(∑

C∈C
∣C∣)ε∣C∣1−ε] ≤ ∣Bm∣ε ∣∂Bm∣1−ε, (22)

where in the third step we used that every cluster in C has to touch ∂Bm. By (16), (19),
(21) and (22), we �nd

Pp[Piv(1,4n)] ≤ c2 ( 1
∣Bm∣ ∑

x∈Bm
Ep [

h(Cx)2

∣Cx∣1+ε
])

1/2

(∣∂Bm∣
∣Bm∣

)
(1−ε)/2

,

where c2 is a �nite constant depending only on η. To conclude the proof, it su�ces to
show that for every �xed x ∈ Bm, the quantity

Ep [
h(Cx)2

∣Cx∣1+ε
]
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is smaller than some constant c3 < ∞. This will be achieved by interpreting h(Cx) as the
value of a martingale at some stopping time, when we perform a certain exploration of
the cluster Cx.

First, �x an arbitrary deterministic ordering of the edges of Bm. Set (O0,C0) = (∅,∅).
Then, let e1 be the smallest edge adjacent to x and set

(O1,C1) =
⎧⎪⎪⎨⎪⎪⎩

({e1},∅) if e1 is open

(∅,{e1}) if e1 is closed.

By induction, for t ≥ 2, de�ne et to be the smallest edge that is adjacent to an edge of
Ot−1 (if it exists) and

(Ot,Ct) =
⎧⎪⎪⎨⎪⎪⎩

(Ot−1 ∪ {et},Ct−1) if et is open

(Ot−1,Ct−1 ∪ {et}) if et is closed.

If there is no such edge, we de�ne (Ot,Ct) = (Ot−1,Ct−1). Observe that at this moment,
(Ot,Ct) corresponds to (open(Cx), closed(Cx)). Let T = ∣open(Cx)∣ + ∣closed(Cx)∣ be the
time at which the exploration stabilises. We de�ne

Xt =
t∧T
∑
k=1

p1{ω(ek)=0} − (1 − p)1{ω(ek)=1}.

Notice that XT = h(Cx) and T ≤ deg(o)∣Cx∣, since any vertex is adjacent to at most deg(o)
edges in Bm. Thus,

Ep [
h(Cx)2

∣Cx∣1+ε
] ≤ deg(o)1+εEp [

X2
T

T 1+ε ] . (23)

In order to upperbound Ep[X2
T /T 1+ε], we use that (Xt) is a martingale with respect to

the �ltration generated by {ω(et)}t. By �rst applying Doob's maximal inequality and
then using orthogonality of the increments, we obtain

Ep[max
k≤t

X2
k] ≤ 4Ep[X2

t ] = 4
t

∑
k=1

Ep[(Xk −Xk−1)2] ≤ t. (24)

We conclude the proof by decomposing the expectation in the right-hand side of (23) as

Ep [
X2
T

T 1+ε ] ≤ ∑
i≥0

1

2i(1+ε)
Ep [ max

2i≤t≤2i+1
X2
t 1{2i≤T≤2i+1}]

(24)
≤ ∑

i≥0

2

2iε
≤ 2

1 − 2−ε
.

5 Sharp threshold results via hypercontractivity

In this section, we establish a general sharp threshold result for connection events. Its
proof involves the polynomial upper bound on the probability of Piv(1, n) from Section 4,
together with an abstract result from the theory of Boolean functions. Given a set A ⊂ V ,
we write As for its s-thickening. Formally, As is de�ned to be the set of vertices at distance
at most s from A.
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Proposition 5.1. Let G be a transitive graph of polynomial growth with d ≥ 1. Let η > 0.
There is a constant c = c(η,G) > 0 such that for every p ∈ (η,1 − η) and δ ∈ (0,1 − η − p),
the following holds. For every C ⊂ V (G), A,B ⊂ C and s ≥ 1, we have

Pp[A
C←→ B] > 1

(cs)δ/20
Ô⇒ Pp+δ[As

Cs←→ Bs] > 1 − 1

(cs)δ/20
.

Remark 5.2. The �rst application of an abstract sharp threshold result to percolation
theory dates from the 2000's, in the paper [BR06] computing the critical value for planar
Voronoi percolation. Since then, it has become a standard tool to study or prove sharpness
of the phase transition for percolation processes. Standard applications involve a certain
increasing event on a torus which is translation-invariant, and for which the result of
[KKL88] ensures a sharp threshold phenomenon.

Proposition 5.1 above is inspired by the works [DRT18] and [DKT] where abstract
sharp threshold results are used directly on Zd, without relying on translation-invariant
events on a torus. Let us brie�y expose the main di�culty we have to overcome in the
present paper. An important idea in the two works mentioned above is that the event

E = {A C←→ B} is �geometrically similar� to its translate τ ⋅ E by a small vector, in the
sense that A, B and C are close to their translates τ ⋅A, τ ⋅B and τ ⋅C respectively. This is
true for Zd (and more generally for Cayley graphs of abelian groups), but not for general
transitive graphs.

Proof. In the proof below, c1, c2, . . . denote positive constants that may depend on η and
G but are independent of everything else. Without loss of generality, we may (and will)
assume that A, B and C are �nite. By [BKK+92] and [Tal94, Corollary 1.2], there exists
c1 = c1(η) > 0 such that the following inequality holds for any increasing eventA depending
on �nitely many edges:

∑
e∈E

Pp[e is pivotal for A] ≥ c1Pp[A](1 −Pp[A])fp(A), (25)

where

fp(A) = log( 1

maxe∈E Pp[e is pivotal for A]
) .

Using Russo's formula together with (25), we obtain

d

dp
log(

Pp[A]
1 −Pp[A]

) ≥ c1fp(A). (26)

To prove the desired inequality, we will de�ne a sequence of nested and increasing

events Ei such that {A C←→ B} ⊂ Ei ⊂ {As
Cs←→ Bs}. The �rst step will consist in �nding

a uniform lower bound for fp(Ei). We will do so by proving that the probability of any
edge to be pivotal is uniformly small. Set r = 2⌊

√
s/2⌋. Without loss of generality, we may

assume that s ≥ 4 and look for a suitable c in (0,1/4), so that r > 0. For i ∈ {0, . . . , r − 1},
consider the set Di = (A(i+1)r ∖Air) ∪ (B(i+1)r ∖Bir), the event Ei = {Air

C(i+1)r←ÐÐ→ Bir}, and

mi = max
e⊂Di

Pp[e is a closed pivotal for Ei]. (27)
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Figure 5: The red path illustrates the event Fi and the blue one F ′
i .

For every i, let ei be a �xed edge that maximises the probability in (27) and de�ne Fi to
be the event {ei is a closed pivotal for Ei}. We now �x i, j ∈ {0, . . . , r−1} with i < j. First,
let us assume that the event Fi occurs. Then the edge ei is closed and its two endpoints
are connected in C(i+1)r by disjoint open paths to Air and Bir, respectively. This implies
that there is an open path connecting Ajr to Bjr in C(i+1)r. Thus, Fi ⊂ Ej. On the other
hand, if Fj occurs, the fact that ej is closed and pivotal implies that there is no open path
connecting Ajr to Bjr in Cjr. Thus Fj ⊂ Ecj . This leads us to a key observation, which is
that Fi ∩ Fj = ∅ for i < j. Therefore, we have

r−1

∑
i=0

mi =
r−1

∑
i=0

Pp[Fi] ≤ 1. (28)

Similarly, for i ∈ {0, . . . , r − 1}, we can de�ne the set D′
i = C(i+1)r ∖Cir and

m′
i = max

e′⊂D′
i

Pp[e′ is an open pivotal for Ei]. (29)

For every i, let e′i be a �xed edge that maximises the probability in (29) and de�ne F ′
i to

be the event {e′i is an open pivotal for Ei}. Using the same reasoning as before, we can
prove that for i < j, we have F ′

i ⊂ Ei and F ′
j ⊂ Eci . Thus, F ′

i ∩ F ′
j = ∅. This, together

with (28), implies that ∑r−1
i=0 mi +m′

i ≤ 2. From this, it follows that we can �x a set I with
∣I ∣ ≥ r/2 and such that, for all i ∈ I, we have max{mi,m′

i} ≤ 4
r . Since the status of an edge

is independent of the event that it is pivotal, we obtain

max
e⊂Di∪D′

i

Pp[e is pivotal for Ei] ≤ max{1

p
,

1

1 − p
} ⋅ 4

r
≤ 4

ηr
. (30)

Pick any i ∈ I. Let e be an edge in Cs such that e /⊂Di∪D′
i. If e ⊂ Air ∪Bir ∪(Cs∖C(i+1)r)

then Pp[e is pivotal for Ei] is equal to 0. Otherwise, the r-neighbourhood of e lies in
C(i+1)r. By Proposition 4.1, we get

Pp[e is closed pivotal for Ei] ≤ Pp[Piv(1, r)] ≤
1

c2s1/5 .
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Combined with (30), this means that for all i ∈ I,

max
e⊂Cs

Pp[e is a pivotal for Ei] ≤
1

c3s1/5 .

Using this, we obtain the following inequality:

r

∑
i=1

fp(Ei) ≥ ∑
i∈I
fp(Ei) ≥

r

2
log(c3s

1/5). (31)

Now, we can use (26) for all the events Ei, where i ∈ {1, . . . , r}. Integrating between p and
p + δ and using (31), we get

r

∑
i=1

log(
Pp+δ[Ei]

1 −Pp+δ[Ei]
⋅
1 −Pp[Ei]

Pp[Ei]
) ≥ δr

2
log(c3s

1/5).

Therefore, there exists an index i such that

log(
Pp+δ[Ei]

1 −Pp+δ[Ei]
⋅
1 −Pp[Ei]

Pp[Ei]
) ≥ δ

2
log(c3s

1/5),

which implies

1

(1 −Pp+δ[Ei])Pp[Ei]
≥

Pp+δ[Ei]
1 −Pp+δ[Ei]

⋅
1 −Pp[Ei]

Pp[Ei]
≥ (c4s)δ/10.

Since {A C←→ B} ⊂ Ei ⊂ {As
Cs←→ Bs}, we have

Pp+δ[As
Cs←→ Bs] ≥ Pp+δ[Ei] ≥ 1 − 1

Pp[Ei](c4s)δ/10
≥ 1 − 1

Pp[A
C←→ B](c4s)δ/10

.

Proposition 5.1 follows.

Corollary 5.3. Let G be a transitive graph of polynomial growth with d ≥ 2. Let p > pc.
There exist δ > 0 and c > 0 such that, for all s ≥ 1, we have

Pp[Bs ←→∞] ≥ 1 − 1

(cs)δ
.

Proof. Let δ > 0 be such that p > pc + 20δ. We know that Pp−20δ[o ←→ ∞] > 0. By

Proposition 5.1 applied to A = {o}, B = ∂Bn and C = V (G), we have Pp[Bs ←→ ∂Bn−s] >
1 − (cs)−δ, where c is a positive constant independent of s and n. The proof follows by
letting n tend to in�nity.

6 A priori bound on the uniqueness zone

The goal of this section is to prove Proposition 6.1 below.
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Proposition 6.1. Let G be a transitive graph of polynomial growth. Let p > pc. There
are some χ ∈ (0,1) and c > 0 such that the following holds: for every q ∈ [p,1], for every
n ≥ 1, we have

Pq[Piv(s(n), n)] ≤ cn−1/4, (32)

where s(n) = exp((logn)χ).

We say that the annulus of inner radius s(n) and outer radius n is a uniqueness zone
because Pq[U(s(n), n)] = 1 − Pq[Piv(s(n), n)] converges to 1 � actually at a controlled
speed. The size of this uniqueness zone will in fact determine the region in which we
are able to glue clusters. This will lead to the important notion of seeds, which will be
instrumental in Section 7.2.

In order to prove Proposition 6.1, we will use a bootstrap argument, where the itera-
tions consist in alternating uses of Lemma 6.2 and Lemma 6.3.

The �rst lemma, directly adapted from [Cer15, Lemma 7.2], provides an upper bound
on the probability of Piv(u,n) provided some uniform lower bound on the two-point
function restricted to a ball. Conversely, the second lemma deduces some lower bound
on the two-point function in a ball, provided some upper bounds on the probability of
Piv(u,n).

From there, the proof goes as follows. Proposition 4.1 and Lemma 6.2 provide us
with a good upper bound on the probability of Piv(u,n), for some �xed and large (u,n).
Then Lemma 6.3 provides us with a good lower bound on the two-point function at the
scale above. Plugging this estimate in Lemma 6.2 yields a good upper bound on the
probability of Piv(u,n) at this larger scale. Repeated inductively, this procedure leads to
the quantitative estimate (32).

Notation. In this section, given two vertices a and b of Bm, we set τp,m(a, b) = Pp [a
Bm←Ð→ b].

Besides, for u ≥ 0, we set Su to be the sphere of centre o and radius u, where o is the root
of G that we use in the notation Bm = Bm(o).

Lemma 6.2. For all p ∈ [0,1] and 1 < u ≤m ≤ n/2, we have

Pp[Piv(u,n)] ≤ Pp[Piv(1, n/2)] ⋅
∣Su∣2∣Bm∣

mina,b∈Su τp,m(a, b)
.

Proof. Let us �x u, m and n as in the statement of Lemma 6.2. Given a vertex a ∈ Bn,
we denote by Ca the cluster of a in Bn. Given a second vertex b ∈ Bn, de�ne Cba to be the
family of all connected subsets of Bn that contain a, do not contain b, and intersect ∂Bn.
By the union bound, we have

Pp[Piv(u,n)] ≤ ∑
a,b∈Su

Pp[a←→ ∂Bn, b
Bn∖Ca←ÐÐ→ ∂Bn]

= ∑
a,b∈Su

∑
C∈Cba

Pp[b
Bn∖C←ÐÐ→ ∂Bn]Pp[Ca = C],

where we used that the two last events are independent, since they depend on disjoint
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Figure 6: In the complement of Ca, the existence of an open path inside Bm

joining the cluster of b with an edge {x, y} ∈ ∂Ca implies that x and y are in
disjoint clusters of diameter at least n/2.

sets of edges. Let us �x some C ∈ Cba. The Harris�FKG Inequality yields

Pp[b
Bn∖C←ÐÐ→ ∂Bn] ≤

Pp[b
Bn∖C←ÐÐ→ ∂Bn, b

Bm←Ð→ ∂outC]

Pp[b
Bm←Ð→ ∂outC]

,

where ∂outC is the (deterministic) set of vertices adjacent to C but not belonging to it.

Observe that for every C ∈ Cba, we have Pp[b
Bm←Ð→ ∂outC] ≥ τp,m(a, b). Using the bound

above and independence again, we get

∑
C∈Cba

Pp[b
Bn∖C←ÐÐ→ ∂Bn]Pp[Ca = C] ≤ 1

τp,m(a, b) ∑C∈Cba
Pp[Ca = C, b

Bn∖C←ÐÐ→ ∂Bn, b
Bm←Ð→ ∂outC]

= 1

τp,m(a, b)
Pp[a←→ ∂Bn, b

Bn∖Ca←ÐÐ→ ∂Bn, b
Bm←Ð→ ∂outCa].

When the event in the last equation occurs, we can �nd a closed edge e = {x, y} ∈ ∂Ca such
that x

Bn∖Ca←ÐÐ→ ∂Bn and y
Ca←→ ∂Bn. Hence, when this event occurs, so does Pivx(1, n −m):

see Figure 6. Therefore, by the union bound, we have

Pp[a←→ ∂Bn, b
Bn∖Ca←ÐÐ→ ∂Bn, b

Bm←Ð→ ∂outCa] ≤ ∣Bm∣Pp[Piv(1, n/2)].

Putting all the equations together, we get

Pp[Piv(u,n)] ≤ ∑
a,b∈Su

Pp[Piv(1, n/2)]
∣Bm∣

τp,m(a, b)

≤ Pp[Piv(1, n/2)] ⋅
∣Su∣2∣Bm∣

mina,b∈Su τp,m(a, b)
.
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Figure 7: The event {a ←→ ∞, b ←→ ∞, Bu/2(xi) ←→ ∞ for all i} is depicted

in blue. Notice that if there is no i such that Pivxi(u,m) holds, then we
have the red dotted paths in the �gure, thus creating an open path between
a and b within B2m.

Lemma 6.3. Let p > pc. There exist δ > 0 and u0 ≥ 1 such that for every u ≥ u0 and every
m ≥ u1+δ, we have

Pp[Piv(u,m)] ≤ δ

uδ
Ô⇒ ∀a, b ∈ Bu1+δ τp,2m(a, b) ≥ δ.

Proof. Take c and δ to satisfy the conclusion of Corollary 5.3. We may further assume
that δ is small enough, so that the following inequality holds

θ(p)24−8(2/c)δ ≥ 9δ. (33)

Let a, b ∈ Bu1+δ . We can �nd vertices x0 = a, x1, . . . , xk = b in Bm such that k ≤ 2 ⌊u1+δ⌋
⌊u/2⌋ ≤ 8uδ

and ∀i < k, d(xi, xi+1) ≤ u/2. Assume that a ←→ ∞, b ←→ ∞, and Bu/2(xi) ←→ ∞ for all

i ∈ J1, k − 1K. Then there are two possibilities: either a
B2m←Ð→ b, or there is some i ∈ J1, kK

such that Pivxi(u,m) occurs. See Figure 7. Therefore, by the union bound, we get

Pp[a←→∞, b←→∞, Bu/2(xi) ←→∞ for all i] ≤ τp,2m(a, b) +
k

∑
i=1

Pp[Pivxi(u,m)].

By our choice of c and δ, for every i, we have Pp[Bu/2(xi) ←→ ∞] ≥ 1 − 1
(cu/2)δ . By the

Harris�FKG Inequality, by transitivity of G, and because Pp is invariant under graph
automorphisms, we have

τp,2m(a, b) ≥ Pp[a←→∞]Pp[b←→∞](1 − (cu/2)−δ)8uδ − kPp[Piv(u,m)]

≥ θ(p)2(1 − (cu/2)−δ)8uδ − 8uδPp[Piv(u,m)].

Assuming that u ≥ u0 ∶= 21+1/δ/c and that Pp[Piv(u,m)] ≤ δ
uδ
, we get

τp,2m(a, b) ≥ θ(p)24−8(2/c)δ − 8δ.

By (33), the proof is complete.
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We are now ready to prove Proposition 6.1, following the strategy described at the
beginning of the section.

Proof of Proposition 6.1. Let p > pc. Let δ ∈ (0,1/4) and u0 ≥ 2 be as in Lemma 6.3. By
Lemma 6.2, Proposition 4.1 and the polynomial growth of G, we can �x c1 = c1(G,p) ≥ 1

such that for every 1 < u ≤m ≤ n/2, we have

∀q ≥ p Pq[Piv(u,n)] ≤
c1u2dmdn−1/3

mina,b∈Su τp,m(a, b)
. (34)

Applying the inequality above to u =m = u0 allows us to choose n0 ≥ max(2(c1/δ2)1/d, u1+δ
0 )

such that

∀q ≥ p Pq[Piv(u0, n0)] ≤
δ

n
1/4
0

.

Consider the sequences (uk) and (nk) de�ned by uk+1 = u1+δ
k , nk+1 = n50d

k for every k ≥ 0.
By induction, we will prove that for every k ≥ 0,

∀q ≥ p Pq[Piv(uk, nk)] ≤
δ

n
1/4
k

. (35)

This will conclude the proof of (32) for any χ < log(1 + δ)/ log(50d) along the sequence
(nk). The statement for general n follows by interpolation.

Let k ≥ 0 and assume that (35) holds. Since n1/4
k ≥ uδk, the quantity Pp[Piv(uk, nk)] is

at most δ/uδk. Applying Lemma 6.3 to u = uk and m = nk ≥ u1+δ
k gives

∀a, b ∈ Buk+1 τp,2nk(a, b) ≥ δ.

Equation (34) applied to u = uk+1, m = 2nk and n = nk+1 �nally gives

∀q ≥ p Pq[Piv(uk+1, nk+1)] ≤
c1u2d

k+1(2nk)dn
−1/3
k+1

δ
≤ δ

n
1/4
k+1

,

where we used uk+1 = u1+δ
k ≤ nk and nk ≥ n0 ≥ 2(c1/δ2)1/d in the last inequality.

The bound on the uniqueness zone gives us the following bound on the corridor func-
tion, which will be an important ingredient in the �nal proof of Proposition 1.3.

Corollary 6.4. Let G be a graph of polynomial growth, let p > pc. Let {s(n)}n≥1 be a
sequence as in Proposition 6.1. Then, for every n large enough, we have

κp(s(n), n) ≥ θ(p)2/2.

Proof. Notice that x ∈ Bs(n) is connected to the origin by an open path in Bn if the
following conditions hold:

� both o and x are connected to ∂Bn and

� there is a unique cluster crossing from s(n) to n.
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By the Harris�FKG Inequality and the union bound, we have

∀x ∈ Bs(n) Pp[o
Bn←→ x] ≥ θ(p)2 −Pp[Piv(s(n), n)] > θ(p)2/2,

where the last inequality holds if n is large enough, by Proposition 6.1. Since any cor-
ridor of length s(n) and thickness n contains the ball Bn, the equation above implies
κp(s(n), n) > θ(p)2/2 for every n large enough.

Corollary 6.5. Let G be a transitive graph of polynomial growth. For all p > pc, δ ∈
(0,1 − p), and k ≥ 1, there exists n0 ≥ 1 such that for every n ≥m ≥ n0,

κp(2m,n) >
1

logkm
Ô⇒ κp+δ(2m logkm,2n) ≥ θ(p)2/3.

The proof of Corollary 6.5 is analogous to the proof of Lemma 6.3. However, here, we
need to apply Proposition 6.1 to get a quantitative estimate.

Proof. Let p, δ and k be as stated in Corollary 6.5, and assume that κp(2m,n) ≥ log−km.
Let γ be a path of length at most 2m logkm starting at x and ending at y. Consider the
sequence {s(j)}, where s(j) is de�ned as in Proposition 6.1 at the parameter p. If the
distance between x and y is smaller than s(m), Corollary 6.4 directly concludes that x and
y are connected in Bn with probability at least θ(p)2/3 (because s(m) ≤ s(n)). We can
therefore focus on the case when x and y are at distance at least s(m). In that case, we
may �ndM ≤ 2 logkm points xi ∈ γ such that x1 = x, xM = y and s(m)/2 ≤ d(xi, xi+1) ≤ 2m.
Let C be the corridor of thickness n around γ. Set t = s(⌊s(m)/2⌋). By our assumption
on κp(2m,n) and by Proposition 5.1, we have for m large enough that s ≤m/2 and

Pp+δ [Bt(xi)
C←→ Bt(xi+1)] ≥ 1 − 1

(ct)δ/20
≥ 1 − 1

logkm

for every i. If we assume that x ←→ ∞, y ←→ ∞ and Bt(xi)
C←→ Bt(xi+1) for every i, then

either x
C←→ y or there exists i such that Pivxi(t, s(m)/3) happens. Also, Proposition 6.1

enables us to make Pp+δ[Pivxi(t, s(m)/3)] su�ciently small. As in the proof of Lemma 6.3,
we conclude by using the Harris�FKG Inequality, the union bound, the transitivity of G
and the invariance of Pp+δ under graph automorphisms.

7 Sharp threshold results via Hamming distance

This section is devoted to the proof of the following proposition.

Proposition 7.1. Let G be a transitive graph of polynomial growth. Let p > pc. There
exists n0 such that for every n ≥m ≥ n0,

κp(m,2n) ≤ θ(p)2/2 Ô⇒ Pp[Bm ←→ ∂Bn] ≥ 1 − e− log3 n.
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The statement above may seem slightly counter-intuitive at a �rst look: we use some
negative information (the function κp is small) to obtain a large connection probability.
Let us sketch the proof, which will be detailed in Section 7.3, and explain how this negative
information can be used to our advantage.

Due to the uniqueness of the in�nite cluster and the Harris�FKG Inequality, the two-
point function in the whole graph is uniformly lower bounded by θ(p)2. Assume that
when we restrict the connections to a box, we get something substantially smaller, in the
sense that

κp(m,2n) < θ(p)2/2.

By reducing the parameter from p to p − δ > pc and using the sharp threshold results of
Section 7.1 below, we strengthen this bound as follows. For k = log10(n), we show that
two points x and y at distance ≃m/k of each other always satisfy

Pp−δ[x
B2n←Ð→ y] ≤ 1

k
. (36)

Now, consider k points in Bm at distance at least m/k of each other. On the one hand, a
proportion at least θ(p − δ) of them are connected to the boundary of B2n. On the other
hand, the estimate (36) implies that all these points typically belong to di�erent clusters
of B2n, which forces the paths that connect them to ∂Bn to be disjoint. It is at this point
that our �negative� assumption on κp, combined with the �positive� assumption that
p > pc, yields a �positive� statement regarding connectivity of our percolation process:
the expected number of disjoint paths from Bm to ∂B2n is ≳ k. From this estimate,
a well-known di�erential inequality involving the Hamming distance on the hypercube
guarantees that, at parameter p = (p − δ) + δ, we have Pp[Bm ←→ ∂B2n] ≥ 1 − e−δk. This
concludes the proof.

In Section 7.1, we present this new Hamming distance argument in a more general
framework, since we believe it can have further applications.

7.1 Connectivity bounds via Hamming distance

In the current Section 7.1, contrary to elsewhere in the paper, G denotes any �nite con-
nected graph with vertex set V (G) and edge set E(G). Besides, p is arbitrary in [0,1]
and Pp stands for the Bernoulli bond percolation measure of parameter p on {0,1}E(G).

Proposition 7.2. Let A,B ⊂ V (G). Let p ∈ [0,1] and θ > 0. Assume that

min
x∈A

Pp[x←→ B] ≥ θ ≥ 2∣A∣ ⋅max
x,y∈A
x≠y

Pp[x←→ y]. (37)

Then, for every δ ∈ (0,1 − p], we have

Pp+δ[A←→ B] ≥ 1 − e−2δθ∣A∣.

Remark 7.3. The proposition above also applies to FK-percolation measures with clus-
ter weight q ≥ 1, and more generally to measures for which the �exponential steepness�
property of [Gri06, Section 2.5] holds.
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Before proving Proposition 7.2, we recall a general inequality for monotone events.
The Hamming distance from a con�guration ω to an event A is de�ned by

HA(ω) = inf{H(ω,ω′) ∶ ω′ ∈ A},

where H(ω,ω′) = ∑e∈E(G) ∣ωe − ω′e∣ is the usual Hamming distance on the hypercube
{0,1}E(G). When A is decreasing, one can interpret HA(ω) as the minimal number of
edges in ω that need to be closed for the event A to occur. Furthermore, the Hamming
distance provides exponential bounds on the variation of Pp[A] relative to p (see [Gri06,
Theorem 2.53]): for every decreasing event A and every p ∈ (0,1), we have

d

dp
− log Pp[A] ≥ 4Ep[HA].

By integrating the equation above and using that HA is increasing, we get that for every
p ∈ [0,1] and every δ ∈ [0,1 − p],

Pp+δ[A] ≤ e−4δEp[HA]Pp[A] ≤ e−4δEp[HA]. (38)

Proof of Proposition 7.2. Let A,B ⊂ V (G), let p ∈ [0,1] and δ ∈ [0,1 − p]. Applying (38)
to the decreasing event A = {A←→/ B}, we get

Pp+δ[A←→ B] ≥ 1 − e−4δEp[HA]. (39)

The Hamming distance HA is clearly at least4 the maximal number of disjoint open paths
from A to B. In particular, HA is larger than the number of disjoint clusters intersecting
both A and B. By inclusion-exclusion, this number of crossing clusters can be lower
bounded by

∑
x∈A

1[x←→ B] − ∑
x,y∈A
x≠y

1[x←→ y].

Fixing θ as in (37) and taking the expectation above, we get

Ep[HA] ≥ ∑
x∈A

Pp[x←→ B] − ∑
x,y∈A
x≠y

Pp[x←→ y] ≥ θ∣A∣/2.

Plugging the estimate above in (39) completes the proof.

7.2 Seeds and two-seed function

The notation G now recovers its initial meaning and denotes once again a transitive graph
of polynomial growth with d ≥ 2. In this section, we �x p > pc. Let χ = χ(p) ∈ (0,1) be as
in Proposition 6.1. For every n, we de�ne

σ(n) = exp(logχ
3

n) and t(n) = exp(logχ
2

n).
4Actually, if A and B are disjoint, Menger's Theorem states that this is an equality [Die17, Corollary

3.3.5] � but we only need the easy inequality.
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For every positive integer n and every vertex x, set

Sn = Bσ(n) and Sn(x) = Bσ(n)(x).

Following the terminology introduced by Grimmett and Marstrand [GM90], we call Sn(x)
the seed of x. An important property of seeds is that they are connected to in�nity with
high probability. For every n ≥ 1, de�ne

εn =
1

log10 n
.

Since σ(n) is asymptotically larger than arbitrarily large powers of logn, Corollary 5.3
implies that, for every n large enough, we have

Pp[Sn ←→∞] ≥ 1 − 1
100εn.

Another important property of seeds is that they can be used to �glue� clusters. Intu-
itively, if two large clusters of Bn touch a certain seed Sn(x), then the local uniqueness
around Sn(x) implies that they must be connected within Bn � which means that the
two clusters are equal. Formally, we will use the following upper bound on the probability
that two distinct clusters reach a �xed seed, provided by Proposition 6.1. For every n
large enough we have

Pp[Piv(σ(n), t(n))] ≤ 1
100εn. (40)

This follows from Proposition 6.1 together with the observations that σ(n) = exp(logχ(t(n))
and c ⋅ t(n)−1/4 ≤ 1

100εn for n large enough. Similarly, we also have

Pp[Piv(3t(n), n/2)] ≤ 1
100εn, (41)

using that 3t(n) ≤ exp(logχ(n/2)) for n large.

Remark 7.4. In other works, �seed� may refer to other constructions that guarantee a high
probability of connection to in�nity and that can be used to glue clusters. In [GM90], this
is done by de�ning a seed to be a large fully open box. In [MT17], one takes advantage of
the fact that if an exploration reaches some vertex, then there is a long open path leading
to it � in particular, see [MT17, Lemma 3.6].

We de�ne the two-seed function by

τp,n(x, y) = Pp[Sn(x)
Bn←→ Sn(y)]

for every x, y ∈ Bn. Notice that for n large enough, we have τp,n(x, y) = 1 whenever x
and y are neighbours in Bn. As we will prove in Lemma 7.6, the two-seed function shares
some features with the standard two-point function. One main advantage of replacing
points by seeds is that we can make use of the following sharp threshold phenomenon.

Lemma 7.5. Let δ ∈ (0, p − pc). For every n large enough, for every x, y ∈ Bn, we have

Pp−δ[x
Bn←→ y] ≥ ε2n Ô⇒ τp,2n(x, y) ≥ 1 − ε2n.
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Proof. It is a direct consequence of Proposition 5.1, together with the observation that
for all δ > 0, c > 0, for every n large enough, we have (cσ(2n))δ/20 ≥ ε2n.

Lemma 7.6. For every n large enough, for all x, y, z ∈ Bn/2, we have

τp,n(x, z) ≥ τp,n(x, y)τp,n(y, z) − εn, (42)

Pp[x
Bn←→ y] ≥ θ(p)2 ⋅ τp,n(x, y) − εn. (43)

Proof. We begin with the proof of (42). Without loss of generality, we may and will
assume that d(x, y) ≥ d(y, z). We distinguish three di�erent cases. For readability, we
drop the indices p and n from the notation τp,n in this proof.

Case 1: d(x, y) ≥ d(y, z) ≥ 2t(n).

By the Harris�FKG Inequality, we have

τ(x, y)τ(y, z) ≤ Pp[Sn(x)
Bn←→ Sn(y), Sn(y)

Bn←→ Sn(z)].

When there exist a cluster connecting Sn(x) to Sn(y) and a cluster connecting Sn(y)
to Sn(z), then either these two clusters are connected together within Bt(n)(y), or
we observe two disjoint clusters crossing from Sn(y) to the boundary of Bt(n)(y).
Therefore, by the union bound

τ(x, y)τ(y, z) ≤ τ(x, z) +Pp[Piv(σ(n), t(n))]
(40)
≤ τ(x, z) + εn.

Case 2: d(x, y) ≥ 2t(n) > d(y, z).

The probability that the seeds Sn(z) and Sn(y) are both connected to in�nity is
larger than 1 − 1

50εn. Therefore, we have

τ(x, y) − 1
50εn ≤ Pp[Sn(x)

Bn←→ Sn(y), Sn(y) ←→ ∂Bn, Sn(z) ←→ ∂Bn].

If both Sn(y) and Sn(z) are connected to ∂Bn, then either there exists a cluster in
Bn that intersects Sn(y), Sn(z) and ∂Bn, or there exist two disjoint clusters crossing
from B3t(n)(y) to ∂Bn/2(y). Therefore, using the clusters inside Bt(n)(y) as in Case
1, we have

τ(x, y)− 1
50εn ≤ τ(x, z)+Pp[Piv(σ(n), t(n))]+Pp[Piv(3t(n), n/2)]

(40)+(41)
≤ τ(x, z)+ 1

50εn,

which implies τ(x, z) ≥ τ(x, y) − εn.

Case 3: 2t(n) > d(x, y) ≥ d(y, z).

In this case, we use that 1 − 1
50εn ≤ Pp[Sn(x) ←→ ∂Bn, Sn(z) ←→ ∂Bn]. Reasoning as

in Case 2, we get

1 − 1
50εn ≤ τ(x, z) +Pp[Piv(3t(n), n/2)]

(41)
≤ τ(x, z) + 1

100εn,

which implies τ(x, z) ≥ 1 − εn.
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For the proof of (43), we proceed similarly. If d(x, y) ≥ 2t(n), we �rst use the Harris�
FKG Inequality to show

θ(p)2τ(x, y) ≤ Pp[x←→ ∂Bn, y ←→ ∂Bn, Sn(x)
Bn←→ Sn(y)].

If the event estimated on the right-hand side occurs, then either x is connected to y or
there is no local uniqueness around x or around y. Therefore,

θ(p)2τ(x, y) ≤ Pp[x
Bn←→ y] + 2Pp[Piv(σ(n), t(n))]

(40)
≤ Pp[x

Bn←→ y] + εn.

If d(x, y) < 2t(n), using the estimate (41), we directly get that Pp[x
Bn←→ y] ≥ θ(p)2 − εn ≥

θ(p)2τ(x, y) − εn.

Lemma 7.7. For every n large enough, the following holds. For every u ∈ Bn/2 satisfying

τp,n(o, u) ≤ 2/3,

there exists a set A ⊂ Bd(o,u) of cardinality at least log4 n such that

∀x, y ∈ A τp,n(x, y) ≤ 1 − εn.

Remark 7.8. When the underlying graph G is the hypercubic lattice Zd, the lemma above
can be easily proved using the symmetries of the graph.

Proof. Let n be a large integer. Let u ∈ Bn/2 and �x γ some geodesic path from the origin o
to u. If a and b denote two vertices belonging to this �xed path, we denote by [a, b] the set
of all vertices x of the path lying between a and b, i.e. satisfying d(a, b) = d(a, x)+d(x, b).
Sets of this form will be called segments in this proof. By convention, we always assume
that d(o, a) ≤ d(o, b) when we consider a segment [a, b].

We will build the set A as a subset of the segment I = [o, u], in a way reminiscent of the
construction of the triadic Cantor set. We construct two suitable subsegments I0 = [a0, b0]
and I1 = [a1, b1], such that the two-seed function τ(x, y), x ∈ I0, y ∈ I1 is well-controlled
and both τ(a0, b0) and τ(a1, b1) have a nice upper bound. Then, we repeat this splitting
operation in each of the two segments. After k steps, we construct 2k intervals with a
well-controlled two-seed functions between each segments. The proof is then concluded
by choosing a suitable number of steps. The �splitting operation� of an interval at one
step relies on the following claim.

For convenience, as in the proof of Lemma 7.6, we drop the indices p and n from the
notation τp,n and εn.

Claim 7.9. Let α ≥ 1
2 . Let [a, b] be a segment such that τ(a, b) ≤ α. Then, there exist two

vertices a′, b′ ∈ [a, b] such that

∀x ∈ [a, a′] ∀y ∈ [b′, b] τ(x, y) ≤ α1/3 + 6ε (44)

and
max(τ(a, a′), τ(b, b′)) ≤ α1/3. (45)
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Proof of Claim 7.9. First, notice that if α ≥ 1, then the claim is straightforward: taking
I1 and I2 any two (possibly equal) subsegments of I works. We therefore assume that
α < 1.

Observe that, provided n is large enough, x ↦ τ(a, x) is ε-Lipschitz on Bn/2. This
follows from Lemma 7.6 and the fact that for any two adjacent vertices x and y in
Bn/2, we have τ(x, y) = 1. Since τ(a, a) = 1 and τ(a, b) ≤ α < α1/3, by the discrete
Intermediate Value Theorem for Lipschitz functions, we can de�ne a′ ∈ [a, b] satisfying
α1/3 ≥ τ(a, a′) ≥ α1/3 − ε. By choosing a′ to be the closest vertex to a with this property,
we additionally have

∀x ∈ [a, a′] τ(a, x) ≥ α1/3 − ε.

Similarly, we take b′ ∈ [a, b] such that τ(b′, b) ≤ α1/3 and

∀x ∈ [b′, b] τ(x, b) ≥ α1/3 − ε.

Equation (45) holds by de�nition and it remains to prove (44). Let x ∈ [a, a′] and y ∈ [b, b′].
Since τ(a, b) ≤ α, Lemma 7.6 implies

α ≥ τ(a, x)τ(x, y)τ(y, b) − 2ε.

Using the inequality α ≥ 1
2 and recalling that both τ(a, x) and τ(y, b) are larger than

α1/3 − ε, we obtain
τ(x, y) ≤ α1/3 + 2α−2/3ε + 2ε ≤ α1/3 + 6ε.

Let us prove by induction that for every k ≥ 0, we can �nd a family of segments
I1, . . . , I2k that satis�es the following conditions:

� for i ≠ j, for any x ∈ Ii and any y in Ij, we have τ(x, y) ≤ (2/3)1/3k + 6kε,

� for any segment [a, b] of the family, we have τ(a, b) ≤ (2/3)1/3k .

For k = 0, taking [o, u] works, by hypothesis. Let k ≥ 0 be such that the property holds
at rank k, and let us prove that the property holds at rank k + 1. Let us take I1, . . . , I2k

as above. For every i, we apply Claim 7.9 to Ii, which yields two subsegments I(1)i and
I
(2)
i of Ii. For x ∈ I(1)i and y ∈ I(2)i , we have

τ(x, y) ≤ ((2/3)1/3k + 6kε)
1/3

+ 6ε ≤ (2/3)1/3k+1 + 6(k + 1)ε.

Likewise, if [a, b] denotes either I(1)i or I(2)i , we have τ(a, b) ≤ (2/3)1/3k+1 . It remains
to check that if i ≠ j, then for every x ∈ I(0)i ∪ I(1)i and every y ∈ I(0)j ∪ I(1)j , we have
τ(x, y) ≤ (2/3)1/3k+1 + 6(k + 1)ε. But this is clear: since x ∈ Ii, y ∈ Ij and i ≠ j, we have

τ(x, y) ≤ (2/3)1/3k + 6kε ≤ (2/3)1/3k+1 + 6(k + 1)ε.

The result thus holds for all k.
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Let us use this result for k = ⌈8 log logn⌉, which we will handle as 8 log logn for read-
ability. Let I1, . . . , I2k be as above for this speci�c value of k. Let x1 ∈ I1, . . . , x2k ∈ I2k .
Given i ≠ j, we have

τ(xi, xj) ≤ (2/3)1/3k + 6kεn ≤ elog(2/3)/ log(n)8 log 3 + 48
log logn

log10 n
.

Since 8 log(3) < 10, taking n large enough guarantees that τ(xi, xj) ≤ 1−εn/2. In particular,
we have τ(xi, xj) < 1, hence xi ≠ xj. We set A = {x1, . . . , x2k}. It remains to check that
A contains at least log4 n elements, which is straightforward as 2k = (logn)8 log 2 and
8 log 2 > 4.

7.3 Proof of Proposition 7.1

Assume that κp+δ(m,2n) ≤ θ(p)2/2. We can thus take u ∈ Bm such that

Pp+δ[o
B2n←Ð→ u] ≤ θ(p)2/2.

By Lemma 7.6, this implies that τp+δ,2n(o, u) ≤ 1
2 +

ε2n
θ(p)2 ≤ 2

3 , provided n is taken large

enough. By Lemma 7.7, we can �nd a set A ⊂ Bm satisfying log4 n ≤ ∣A∣ ≤ log5 n such that
for every x, y ∈ A, we have

τp+δ,2n(x, y) ≤ 1 − ε2n.

In words, the inequality above states that the two-seed function is not too close to 1 for
every pair of points of A. By decreasing the edge density from p + δ to p, we obtain that
the points of A are pairwise connected with low probability. More precisely, the equation
above and the sharp-threshold result of Lemma 7.5 imply

∀x, y ∈ A Pp[x
Bn←→ y] ≤ ε2n.

Together with min
x∈A

Pp[x ←→ ∂Bn] ≥ θ(p) ≥ 2∣A∣ε2n (which holds for n large enough), we

obtain
min
x∈A

Pp[x←→ ∂Bn] ≥ θ(p) ≥ 2∣A∣max
x,y∈A

Pp[x
Bn←→ y].

By applying Proposition 7.2 to the graph G induced by the ball Bn, we �nally get

Pp+δ[A←→ ∂Bn] ≥ 1 − e−2δθ(p)∣A∣,

which concludes the proof since A ⊂ Bm and ∣A∣ ≥ log4 n.

8 Uniqueness via sprinkling

In this section, we establish the following proposition, which revisits the techniques of
[BT17]. Recall that the coupled measure P and the sprinkled uniqueness event Up,q(m,n)
are de�ned in Section 1.4.
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Proposition 8.1. Let G be a transitive graph of polynomial growth with d ≥ 2. Let R ≥ 1

be so that the conclusion of Lemma 2.1 holds. Let 0 ≤ p ≤ 1. Let η, δ > 0 be such that
p+δ ≤ 1. Let (k,m,n) be such that R ≤ k ≤m ≤ n and n ≥ log ∣B2n∣. We make the following
two assumptions:

(a) Pp[Bk ←→ ∂B6n] ≥ 1 − η
∣B2n∣ ,

(b) ∀x, y ∈ B3k Pp[x
Bm←Ð→ y] ≥ δ.

Then,

P[Up,p+δ(n,4n)] ≥ 1 − η − 100∣B2n∣2 exp(− δ3n

8m log ∣B2n∣)
) .

In this section, we consider the family of coupled con�guration (ωp)p∈[0,1] under the
measure P. Our goal is to show that, with high probability, all the p-clusters crossing
from Bn to ∂B4n are (p + δ)-connected to each other within the annulus An,2n. In this
section and contrary to the connected annuli of Section 3, the annulus Ar,s is de�ned as
the set of all edges e ⊂ B4n that intersect Bs but not Br. If we achieve our goal, the
crossing p-clusters will a fortiori get (p + δ)-connected within the larger set B4n.

For every r ≤ 2n, consider the percolation con�guration Yr in B4n de�ned as follows:
for every edge e ⊂ B4n,

Yr(e) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ωp(e)1{e←→
p
∂B4n} if e intersects Br

ωp+δ(e) if e ∈ Ar,4n.

The con�guration Yr can be explored and understood in the following manner. First, we
perform the classical exploration from ∂B4n of all the ωp-clusters touching it � by doing
so, we also reveal the (closed) edges at the boundary of these clusters. Then, we further
reveal the ωp+δ-status of every single edge included in Ar,4n. Conditionally on Yr, the
status of the edges in Br are independent. Besides, for any such e that does not already
satisfy Yr(e) = 1, we have:

P[ωp+δ = 1 ∣ Yr]
⎧⎪⎪⎨⎪⎪⎩

≥ δ if e is adjacent to some e′ satisfying Yr(e′) = 1,

= p + δ otherwise.

For every con�guration ω in B4n and every r ≤ 2n, de�ne Cr(ω) to be the set of all
the clusters of ω intersecting both Br and ∂B4n. We further set

Nr(ω) = ∣Cr(ω)∣.

We aim at proving that with high probability, we have Nn(Yn) = 1. We will do so by
making use of the following event, which roughly states that �large clusters grow from
everywhere in B2n�:

E = {∀x ∈ B2n Bk(x) ←→p ∂B4n}.
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Figure 8: The con�guration Yr is the union of the grey area and the red one.

We will prove that Nn(Yn) = 1 holds with high probability by proving that E holds
with high probability and that, conditionally on this event, Nn(Yn) = 1 holds with high
probability.

This will be done by repeatedly using the following lemma. Lemma 8.2 guarantees
that sprinkling a layer of thickness ≃ n

logB2n
is very likely to divide the number of �crossing

clusters� by a factor at least 2 � except if this number is already 1. Iterating this process
≃ logB2n times inwards (going from the sphere of radius 2n to that of radius n) will yield
Nn(Yn) = 1 with high probability.

Lemma 8.2. For every r, s ∈ [n,2n] such that r ≤ s, we have

P[E ∩ {Nr(Yr) > max(1, 1
2Ns(Ys))}] ≤ 25∣B2n∣ exp(−δ

3(s − r)
3m

) . (46)

Proof of Lemma 8.2. Fix r, s ∈ [n,2n] such that r ≤ s. The con�guration Yr is obtained
from Ys by adding some open edges in the annulus Ar,s. In particular, we have Yr ≥ Ys
and our goal is to show that, with high probability, every cluster of Cs(Ys) gets merged
with at least one other cluster of Cs(Ys) in the con�guration Yr. To analyse this �merging
e�ect�, let us introduce the con�guration

Z = Yr − Ys.

Let us condition on the possible values for Ys. Say that a con�guration ξ in B4n is
admissible if P[Ys = ξ] > 0 and Bk(x) is connected to ∂B4n in ξ for every x ∈ B2n. Writing
Pξ ∶= P[ ⋅ ∣Ys = ξ] for every admissible ξ, we can rewrite the left-hand side of (46) as
follows:

P[E ∩{Nr(Yr) > max(1, 1
2Ns(Ys))}] = ∑

ξ admissible

Pξ[Nr(ξ +Z) > max(1, 1
2Ns(ξ))]P[Ys = ξ].

From now on, we �x an admissible con�guration ξ and the proof will be complete once
we show

Pξ[Nr(ξ +Z) > max(1, 1
2Ns(ξ))] ≤ 25∣B2n∣ exp(−δ

3(s − r)
3m

) . (47)
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Notice that under Pξ, the coordinates Z(e), e ⊂ Bs, are independent and satisfy

Pξ[Z(e) = 1]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

= p + δ if e ∈ Ar,s and e is not adjacent to an edge of ξ

≥ δ if e ∈ Ar,s, ξ(e) = 0 and e is adjacent to an edge of ξ,

= 0 if e intersects Br.

If Nr(ξ) = 1, then we also have Nr(ξ +Z) = 1. Indeed, all the open edges of ξ intersecting
Br are already connected to ∂B4n in ξ, and no open edge of Z intersects Br: therefore,
adding the edges of Z to ξ cannot create a new cluster crossing from Br to ∂B4n. As a
result, if Nr(ξ) = 1, the left-hand side of (47) is equal to 0 and there is nothing to prove.
We thus assume that Nr(ξ) > 1 and we will prove that

Pξ[Nr(ξ +Z) > 1
2Ns(ξ)] ≤ 25∣B2n∣ exp(−δ

3(s − r)
3m

) .

We will say that a cluster of Cs(ξ) is merged if it is connected to at least one other cluster
of Cs(ξ) in the con�guration ξ+Z. Please note that even if the cluster under consideration
is taken in Cr(ξ) ⊂ Cs(ξ), it is said to be merged if it is connected to at least one other
cluster of Cs(ξ) in the con�guration ξ + Z. We will prove that typically any cluster of
Cs(ξ) that crosses the annulus Ar,s is merged with high probability. More precisely we
will prove that

∀C ∈ Cr(ξ) Pξ[C is not merged] ≤ 25 exp(−δ
3(s − r)

3m
) . (48)

The main idea behind (48) is that the cluster C crosses ≃ (s − r)/m disjoint annuli of
thickness m. In each annulus, the cluster C comes at distance ≤ k to another cluster of
Cs(ξ). Morally, Hypothesis (b) can thus be used to bound the probability that the two
clusters get connected by a (ξ +Z)-open path lying inside the considered annulus. Since
these events are independent (we have disjoint annuli), we obtain the bound (48). We
postpone the rigorous derivation of (48) to the end of the proof, and we now explain how
to deduce (47) from (48).

The key observation is that if every cluster of Cr(ξ) is merged, thenNr(ξ+Z) ≤ 1
2Ns(ξ).

To see this, let us assume that every of Cr(ξ) is merged, and let us prove that every cluster
of Cr(ξ + Z) contains at least two clusters of Cs(ξ). Let C ∈ Cr(ξ + Z). We have already
seen that adding Z to ξ can create no new cluster crossing from Br to ∂B4n. In other
words, we can �x some C1 ∈ Cr(ξ) such that C1 ⊂ C. Since C1 is merged, we can take
some other cluster C2 ∈ Cs(ξ) such that C2 ⊂ C, which ends the proof of the observation.
Using this observation, the union bound, (48) and r ≤ 2n yields

Pξ[Nr(ξ +Z) > 1
2Ns(ξ)] ≤ Pξ[∃C ∈ Cr(ξ), C is not merged]

≤ 25∣Cr(ξ)∣ exp(−δ
3(s − r)

3m
) ≤ 25∣B2n∣ exp(−δ

3(s − r)
3m

) ,

which is the desired inequality.

We now give the details of the proof of (48). Fix C ∈ Cr(ξ). Set

J ∶= 3mZ ∩ [r + 3m,s − 3m].
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For every j ∈ J , we will use the set S∞j introduced on page 12. Notice that ∣J ∣ ≥ s−r
3m − 3

and that C intersects every S∞j , by Lemma 2.6. De�ne C̃ to be the union of all clusters
of Cs(ξ) ∖ {C}. We claim that for every j ∈ J , there exists xj ∈ Sj such that

d(xj,C) ≤ 3k and d(xj, C̃) ≤ 3k.

To prove this, consider a path γ from some vertex x ∈ C ∩ Sj to another vertex in C̃ ∩ Sj
which stays in the R-neighbourhood of Sj (such path exists by Lemma 2.1). If x is at
distance k or less from C̃, we simply choose xj = x and we are done. Otherwise, consider
z ∈ γ at distance exactly k + 1 from C̃. Since Bk(z) is connected to ∂B4n in ξ (because ξ
is admissible) and Bk(z) ∩ C̃ = ∅, we must have Bk(z) ∩C ≠ ∅. It now su�ces to choose
xj ∈ Sj ∩BR(z), use the triangle inequality and remember that R ≤ k to get the claim.

For every j ∈ J , �x some xj as above and introduce the event

Ej = {C
Bm(xj)←ÐÐÐ→ C̃ in ξ +Z} .

By Hypothesis (b) and the standard �sprinkling� argument, we have

P[Ej] ≥ δ2 min
x,y∈B3k(xj)

Pp[x
Bm(xj)←ÐÐÐ→ y] ≥ δ3.

As soon as one of the event Ej occurs, the cluster C gets connected to another cluster of
Cs(ξ) in the con�guration ξ +Z. Since the events Ej are independent, we get

Pξ[C is not merged] ≤ (1 − δ3)∣J ∣ ≤ exp(3δ3 − δ
3(s − r)

3m
) ≤ 25 exp(δ

3(s − r)
3m

) .

Proof of Proposition 8.1. We wish to prove that

P[Nn(Yn) > 1] ≤ η + 100∣B2n∣2 exp(− δ3n

8m log ∣B2n∣)
) .

First, we have
P[Nn(Yn) > 1] ≤ P[Ec] +P[E ∩ {Nn(Yn) > 1}]. (49)

The �rst term on the right hand side can be bounded as follows, using the union bound,
automorphism-invariance and Hypothesis (a):

P[Ec] ≤ ∑
x∈B2n

Pp[Bk(x) ←→/ ∂B6n(x)] ≤ ∣B2n∣Pp[Bk ←→/ ∂B6n] ≤ η. (50)

In order to bound the second term, we use the property established in Lemma 8.2,
namely that clusters merge with high probability in annuli of the form Ar,r+∆ for ∆ ∶=
⌈ n

4 log ∣B2n∣⌉, when sprinkling from p to p + δ. Recall that Nr(Yr) counts the number of
p-clusters crossing from Br to ∂B4n, where the clusters are identi�ed if they are (p + δ)-
connected in the annulus Ar,4n. We start with the trivial bound N2n(Y2n) ≤ ∣B2n∣ for the
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number of clusters in Y2n intersecting the ball ∣B2n∣. Applying Lemma 8.2 to r = 2n −∆

and s = 2n, we obtain

P[E ∩ {N2n−∆(Y2n−∆) > max(1, 1
2 ∣B2n∣)}] ≤ 25∣B2n∣ exp(−δ

3∆

3m
) .

Then, by induction, we get for every i ≤ n/∆,

P[E ∩ {N2n−i∆(Y2n−i∆) > max(1,2−i∣B2n∣)}] ≤ 25i∣B2n∣ exp(−δ
3∆

3m
) .

Choosing i = ⌊n/∆⌋ and observing that ∣B2n∣ ≤ 2i, we obtain

P[E ∩ {Nn(Yn) > 1] ≤ 25 × 4 × ∣B2n∣ log ∣B2n∣ exp(−δ
3∆

3m
) . (51)

Plugging the two bounds (50) and (51) in (49) concludes the proof.

9 Proof of Proposition 1.3

Our goal is to prove that there exists a unique large cluster in large balls with high
probability: for every n large enough, we want to show that

Pp[Bn/10 ←→ ∂Bn, U(n/5, n/2)] ≥ 1 − e−
√
n. (52)

Let us start with two reductions of the problem.

First reduction: a lower bond on the two-point function in long corridors. At
several places in the paper, we saw that the desired local uniqueness is intimately related
to lower bounds on the two-point function inside �nite regions. In particular, Proposition
3.1 asserts that Equation (52) holds if we can prove the lower bound

∀p > pc lim sup
n→∞

κp(n log3d n,n) > 0. (53)

Second reduction: a lower bond on the two-point function in short corridors.

In Section 5, we proved that crossing probabilities always undergo a sharp threshold
phenomenon: the probabilities jump rapidly from 0 to 1 as p varies. An important
consequence of this phenomenon is quanti�ed in Corollary 6.5: a lower bound on the
two-point function in a corridor at parameter p implies a lower bound in a longer corridor
at a slightly larger parameter p + δ. Using this corollary, one can see that Equation (53)
will be established if one can show the following weaker statement

∀p > pc lim sup
n→∞

κp(n/ log4 n,n) > 0.
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Setup of the proof Let us �x p0 > pc. Let δ be such that 0 < δ < θ(p0)2/3 and p0+2δ < 1.
We will prove that

lim sup
n→∞

κp0+2δ(n/ log4 n,n) > 0. (54)

Observe that if in�nitely many values of n satisfy κp0(n/ log4 n,n) ≥ δ, then Equation (54)
holds by monotonicity. We may thus assume that we are given some n0 ≥ 100 such that

∀n ≥ n0 κp0(n/ log4 n,n) < δ. (H)

The remaining of the section is devoted to the proof of (54) under the hypothesis (H).

High probability of connection for balls The hypothesis (H) is a �negative� estimate
for the connection probabilities. This is useful because it allows us to apply the results
of Section 7 (sharp threshold via Hamming distance), in which we showed that an upper
bound on the two-point function implies a �positive� estimate, namely that balls are
connected far away with high probability. In order to obtain the strongest estimate
possible, for every n ≥ n0, we de�ne α(n) to be the smallest integer satisfying

κp0(α(n), n) < δ. (55)

The hypothesis (H) and Corollary 6.4 imply that there exist χ > 0 and n1 ≥ n0 such that

∀n ≥ n1 exp(logχ n) ≤ α(n) ≤ n/ log4 n. (56)

Since δ < θ(p0)2/2, the upper bound (55) together with Proposition 7.1 implies that we
can choose n2 ≥ n1 such that

∀n ≥ n2 Pp0[Bα(n) ←→ ∂Bn/2] ≥ 1 − e− log3(n/2). (57)

In order to conclude the proof from the strong estimate above, we will apply Propo-
sition 8.1 (uniqueness via sprinkling). To achieve this, we need to complement Equa-
tion (57) with a lower bound on the two-point function at scale α(n), which is the object
of the next paragraph.

An improved lower bound on the two-point function via sharp-threshold Since
α(n) was chosen to be the smallest integer satisfying the inequality (55), this inequality
is not satis�ed for α(n) − 1 and we have the lower bound

∀n ≥ n2 κp0(α(n) − 1, n) ≥ δ.

This bound will not be su�cient, and we use a sharp threshold result to improve it. Using
Corollary 6.5 and the lower bound (56) on α(n), we get, for every n large enough,

κp0+δ(α(n) log5 n,2n) > δ. (58)
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Uniqueness via sprinkling We want to apply Proposition 8.1 along a certain in�nite
sequence of good scales, which we now de�ne. A scale n is said to be good if

α(n) ≤ log4(n) ⋅ α(⌈n/ log4 n⌉). (59)

It is elementary to check that there exist in�nitely many good scales. Indeed, if (59) fails
for every n large enough, then we have lim sup α(n)

n > 0, which contradicts α(n) ≤ n/ log4 n.

Let n ≥ n2 be a good scale. Set k = α(n) andm = ⌈n/ log4 n⌉. By (57) and monotonicity,
we have

Pp0+δ[Bk ←→ ∂Bn/2] ≥ 1 − e− log3(n/2). (60)

Furthermore, Equation (58) applied to m gives κp0+δ(α(m) log5m,2m) ≥ δ. Then, using
that n is a good scale and monotonicity, we obtain

κp0+δ(6k,2m) ≥ δ. (61)

Equations (60) and (61) enable us to use Proposition 8.1, which yields

P[Up0+δ,p0+2δ(n/40, n/10)] ≥ 1 − e− log2 n. (62)

Conclusion As in the proof of Lemma 3.2, we can use the �sprinkled� uniqueness esti-
mate (62) to deduce a lower bound on the two-point function. The origin o is connected
to another �xed vertex x ∈ Bn/40 by a (p0 + 2δ)-open path in Bn as soon as both o and
x are (p + δ)-connected to ∂Bn and the uniqueness event Up0+δ,p0+2δ(n/40, n/10) occurs.
Using the Harris�FKG Inequality and the union bound, for every good scale n ≥ n2, we
get

κp0+2δ(n/ log4 n,n) ≥ κp0+2δ(n/40, n)
≥ min
x∈Bn/40

P[{o←ÐÐ→
p + δ

∂Bn, x←ÐÐ→
p + δ

∂Bn} ∩Up0+δ,p0+2δ(n/40, n/10)]

≥ θ(p0 + δ)2 − e− log2 n.

It follows that lim supn→∞ κp0+2δ(n/ log4 n,n) > 0, which concludes the proof.

10 Proof of sharpness: coarse grains without rescaling

In this section, we prove Theorem 1.1 and Theorem 1.2. Both proofs involve the use of
Proposition 1.3 as the building block of a Peierls-type argument.

On the hypercubic lattice Zd, a natural way to conclude from Proposition 1.3 is to
use a standard renormalisation procedure: we look at blocks at a larger scale, and these
blocks can be seen as vertices of a rescaled of Zd. This strategy relies on a self-similarity
property of Zd that does not hold for general groups. In order to overcome this di�culty,
we will keep the de�nition of large blocks (sometimes called �coarse grains�), but we will
replace the rescaling argument by the use of a k-independent5 process with su�ciently

5Recall that a site percolation process X is k-independent if for any two sets of vertices V1 and V2

such that ∀(v1, v2) ∈ V1 × V2, d(v1, v2) > k, the restrictions of XV1 and XV2 are independent.
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high marginals. To each vertex v of G, we attach a block made of vertices at distance
k around v and de�ne a new process on the graph G without rescaling it. Contrary to
the renormalisation approach, a given block overlaps ≃ kd other blocks, inducing some
dependencies on the new process.

In order to apply this strategy, we rely on the following lemma, which ensures that
a �nite-range site percolation with su�ciently high marginals does not have large closed
cutsets. Recall that a minimal cutset between o and ∞ is a subset Π ⊂ V such that the
connected component of o in V ∖Π is �nite, and it is minimal for the inclusion among all
sets satisfying this property. For every n ≥ 1, write P≥n for the set of all minimal cutsets
Π between o and ∞ that satisfy ∣Π∣ ≥ n.

Lemma 10.1. Let R be so that the conclusion of Lemma 2.1 holds. For every k ≥ R,
there exists c = c(k,G) > 0 such that the following holds. Let X be a 2k-independent site
percolation on G with marginals satisfying P[X(v) = 1] ≥ 1 − 1

2e∣B5k ∣ for every v ∈ V (G).
Then, for every n ≥ 1, we have

P[∃Π ∈ P≥n, Π is closed in X] ≤ e−cn.

Proof. Fix k ≥ R and set D = ∣B5k∣. Let Π ∈ P≥n. Since R satis�es the conclusion of
Lemma 2.1, the set Π is R-connected. Besides, by Lemma 2.2, Π intersects the ball of
radius R∣Π∣.

Say that a set of vertices is r-separated if any two distinct vertices u, v of it satisfy
d(u, v) > r. Let Π′ be a 2k-separated subset of Π that is maximal for inclusion among all
such subsets. By maximality, any ball of radius 2k centred at a vertex of Π must contain
a vertex of Π′. Therefore, the quantity m ∶= ∣Π′∣ is at least ∣Π∣/D. Furthermore, we claim
that Π′ satis�es the following properties:

� Π′ is 2k-separated,

� ∣Π′∣ =m,

� Π′ is 5k-connected,

� Π′ intersects BRDm+2k.

The �rst two items follow from the de�nitions above. The third and fourth items follow
from the properties of Π together with the hypothesis k ≥ R and the observation that Π′

intersects any ball of radius 2k centred at a vertex of Π.

For every m ≥ 1, write P ′
m for the collection of all subsets of V satisfying the four

properties listed above. By de�nition, all the elements of P ′
m intersect BRDm+2k and they

are connected subsets of the graph G′ = (V,E′) with E′ = {{x, y} ∶ d(x, y) ≤ 5k}. Since
the degree of G′ is D, standard bounds on the number of connected subsets of a graph
(see e.g. [Bol06, Problem 45]) give

∣P ′
m∣ ≤ ∣BRDm+2k∣(eD)m.
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From this bound, we get

P[∃Π ∈ P≥n, Π is closed in X] ≤ ∑
m≥n/D

P[∃Π′ ∈ P ′
m, Π′ is closed in X]

≤ ∑
m≥n/D

∣P ′
m∣ ⋅ (2eD)−m by our assumptions on X

≤ ∑
m≥n/D

∣BRDm+2k∣ ⋅ 2−m.

Since the volume of the ball BDn grows at most polynomially in n, the proof follows from
the estimate above.

Proof of Theorems 1.1 and 1.2 . Let p > pc(G) and let ω be a Bernoulli bond percolation
of parameter p on G. By Proposition 1.3 and by polynomial growth of G, we can choose
k such that

Pp[Bk/10 ←→ ∂Bk, U(k/5, k/2)] ≥ 1 − 1

2e∣B5k∣
.

From now on and until the end of the proof, we �x k as above. For each v ∈ V (G), we will
denote by Uv = Uv(k/5, k/2) the event U(k/5, k/2) centred at v instead of o. We de�ne
the site percolation process X on G by setting

X(v) =
⎧⎪⎪⎨⎪⎪⎩

1 if both Bk/10(v) ←→ ∂Bk(v) and Uv occur,

0 otherwise.

Notice that X is a 2k-independent site percolation with marginals satisfying

Pp[X(v) = 1] ≥ 1 − 1

2e∣B5k∣
.

Let us consider n > ∣Bk∣. We denote by Co the cluster of o in ω. Assume that ∣Co∣ ≥ n. In
this case, the key observation about the process X is that having an in�nite open path
in X touching Co entails the existence of a path between o and ∞ in ω. Let us explain
this fact. Since ∣Co∣ ≥ n > ∣Bk∣, for every v ∈ Co, we have that v ←→ ∂Bk(v) in Co. Then,
let us assume that there is an in�nite self-avoiding path v1, v2, . . . with v1 ∈ Co and such
that X(vi) = 1 for all i ≥ 1. This implies that, for every i ≥ 1, one can �x a cluster Ci in
ω ∩ Bk(vi) that connects Bk/10(vi) to ∂Bk(vi). Notice that for every i ≥ 1, Ci and Ci+1

both connect Bk/5(vi) to Bk/2(vi). Since the event Uvi(k/5, k/2) holds for every i, we have
that all the Ci are forced to be connected to each other in ω. If we choose C1 to be the
connected component of v1 in Co ∩Bk(v1), we have that o is connected to ∞ in ω. Since
{o←→ ∂Bn} ⊂ {∣Co∣ > n}, this observation implies that

Pp[o←→ ∂Bn, o←→/ ∞] ≤ Pp[Co ←Ð→
X
/ ∞, n ≤ diam(Co) < ∞]. (63)

If the event on the right-hand side of (63) is satis�ed, then, by Lemma 2.3, there exists an
X-closed cutset Π disconnecting o and∞ of diameter at least n/2. Since Π is R-connected,
this yields ∣Π∣ ≥ n

2R . One can thus use Lemma 10.1 to upper-bound the right-hand side of
(63) by exp(− cn

2R), for some constant c > 0. This concludes the proof of Theorem 1.1.
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Regarding the proof of Theorem 1.2, we have, similarly to before, that for n > ∣Bk∣,

Pp[n ≤ ∣Co∣ < ∞] = Pp[Co ←Ð→
X
/ ∞, n ≤ ∣Co∣ < ∞]. (64)

In this case, if the event on the right-hand side of (64) is satis�ed, then Lemma 2.4
yields an X-closed cutset disconnecting o and ∞ of size larger than cn

d−1
d . Hence, using

Lemma 10.1, the right-hand side of (64) is upper bounded by exp(−c′n d−1
d ) for some

positive constant c′. This concludes the proof of Theorem 1.2.
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