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Supercritical percolation on graphs of polynomial growth

We consider Bernoulli percolation on transitive graphs of polynomial growth. In the subcritical regime (p < p c ), it is well known that the connection probabilities decay exponentially fast. In the present paper, we study the supercritical phase (p > p c ) and prove the exponential decay of the truncated connection probabilities (probabilities that two points are connected by an open path, but not to innity). This sharpness result was established by [CCN87] on Z d and uses the dicult slab result of Grimmett and Marstrand. However, the techniques used there are very specic to the hypercubic lattices and do not extend to more general geometries. In this paper, we develop new robust techniques based on the recent progress in the theory of sharp thresholds and the sprinkling method of Benjamini and Tassion. On Z d , these methods lead to a completely new proof of the slab result of Grimmett and Marstrand.

Introduction

General context

After its introduction in the sixties by Broadbent and Hammersley [START_REF] Broadbent | Percolation processes: I. Crystals and mazes[END_REF], percolation was mainly studied on the hypercubic lattice Z d , where most of the main features of the model have been rigorously described. In 1996, with their paper Percolation beyond Z d , many questions and few answers [START_REF] Benjamini | Percolation beyond Z d , many questions and a few answers[END_REF], Benjamini and Schramm initiated the systematic study of percolation on general transitive graphs, leading to a new and fascinating research area.

In this generality, new questions emerged, new techniques were used to establish deep relations between the geometric properties of a graph and the behaviour of percolation processes on this graph. Interesting in their own right, these percolation results also shed new light on the theory on Z d . The present paper is exactly in this spirit: motivated by questions emerging in the general study of percolation on transitive graphs (such as Schramm's Locality Conjecture [START_REF] Benjamini | Is the critical percolation probability local? Probability Theory and Related Fields[END_REF]), we prove a supercritical sharpness result on transitive graphs with polynomial growth. An interested reader will also nd below a new proof of the GrimmettMarstrand Theorem, which is a central result in the study of supercritical percolation on Z d . The proof is robust, and we expect it to have applications to the study of more general percolation processes on Z d , such as FK-percolation or level sets of Gaussian processes.

Geometric framework: transitive graphs of polynomial growth Let G = (V, E) be a vertex-transitive graph with a xed origin o ∈ V (for every x, y ∈ V , there exists a graph automorphism mapping x to y). Throughout the paper, all the graphs are assumed to be locally-nite and connected and we will always make these hypotheses without further mention. Write B n for the ball of radius n centred at o. We say that G has polynomial growth if there exists a polynomial P such that B n ≤ P (n) for every n ≥ 1.

A celebrated theorem of Gromov and Tromov [Gro81,[START_REF] Tromov | Graphs with polynomial growth[END_REF] states that such a graph is always quasi-isometric to a Cayley graph of a nitely-generated nilpotent group (see also Theorem VII.56 of [START_REF] De | Topics in geometric group theory[END_REF], which is there attributed to Diximier, Wolf, Guivarc'h, Bass, and others). This deep structure result has a long and ongoing history: see [START_REF] Bass | The degree of polynomial growth of nitely generated nilpotent groups[END_REF][START_REF] Guivarc | Croissance polynomiale et périodes des fonctions harmoniques[END_REF][START_REF] Kleiner | A new proof of Gromov's theorem on groups of polynomial growth[END_REF][START_REF] Shalom | A nitary version of Gromov's polynomial growth theorem[END_REF][START_REF] Tessera | A nitary structure theorem for vertex-transitive graphs of polynomial growth[END_REF]. An important consequence is that there exists an integer d, called the growth exponent of G, such that ∃c > 0 ∀n ≥ 1

cn d ≤ B n ≤ 1 c n d .
Important examples of graphs of polynomial growth include the hypercubic lattice Z d , more general Cayley graphs of Z d , and the Heisenberg group 1 : see Figure 1.

Percolation on transitive graphs Let G = (V, E) be a transitive graph. Let P p be the Bernoulli bond percolation measure P p on {0, 1} E , under which ω = (ω(e)) e∈E is a product of i.i.d. Bernoulli random variables of parameter p (we refer to [START_REF] Grimmett | Percolation[END_REF] and 1 The discrete Heisenberg group 1 x z 0 1 y 0 0 1 ∶ x, y, z ∈ Z is generated by a = 1 1 0 0 1 0 0 0 1 and b = 1 0 0 0 1 1 0 0 1 .

[LP16] for general introductions to percolation). We identify ω with the subgraph of G obtained by keeping the edges such that ω(e) = 1 (called open edges) and deleting the edges such that ω(e) = 0 (the closed edges). The connected components of ω are called clusters. Percolation on G undergoes a phase transition at a critical parameter: there is a parameter p c ∈ (0, 1] such that for all p < p c , there is P p -almost surely no innite cluster and for all p > p c , there is P p -almost surely at least one innite cluster. It was recently proved in [DGR + 20] that this phase transition is non-trivial if and only if the graph G has superlinear growth: for such graphs, we have 0 < p c (G) < 1.

Subcritical sharpness It was proved in [START_REF] Aizenman | Sharpness of the phase transition in percolation models[END_REF] and [START_REF] Menshikov | Coincidence of critical points in percolation problems[END_REF] (see also [START_REF] Duminil-Copin | A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model[END_REF]) that the phase transition is sharp, in the following sense: For every p < p c , there exists a constant c = c(p) > 0 such that ∀n ≥

1 P p [o ← → ∂B n ] ≤ e -cn ,
where o ← → ∂B n is the event that there exists of an open path from a xed origin o to distance n around it. The original papers [START_REF] Aizenman | Sharpness of the phase transition in percolation models[END_REF] and [START_REF] Menshikov | Coincidence of critical points in percolation problems[END_REF] prove this result on the hypercubic lattice Z d , but the two proofs extend to general transitive graphs [START_REF] Antunovi¢ | Sharpness of the phase transition and exponential decay of the subcritical cluster size for percolation on quasitransitive graphs[END_REF]. This result is central in the theory: it leads to the important notion of correlation length, and is the starting point of several ner analyses of the subcritical regime (see e.g. [START_REF] Grimmett | Percolation[END_REF] and references therein).

Supercritical sharpness There should be a supercritical counterpart of sharpness. In the supercritical regime p > p c , the natural quantities to consider are the truncated connection probabilities, which encode the connectivity properties of the random graph obtained from ω by removing the innite cluster(s). It is expected (see e.g [HH21, Conjecture 5.3]) that every p > p c , there is a constant c = c(p) > 0 such that

∀n ≥ 1 P p [o ← → ∂B n , o ←→ ∞] ≤ e -cn ,
where o ←→ ∞ denotes the event that the origin does not belong to an innite cluster.

Currently, the decay above is known for the hypercubic lattice [START_REF] Chayes | Bernoulli percolation above threshold: an invasion percolation analysis[END_REF][START_REF] Grimmett | The supercritical phase of percolation is well behaved[END_REF] and nonamenable graphs [START_REF] Hermon | Supercritical percolation on nonamenable graphs: Isoperimetry, analyticity, and exponential decay of the cluster size distribution[END_REF].

In general, the study in the supercritical regime is much more delicate than the subcritical regime. A rst reason is geometrical: a key idea to study subcritical clusters is a domination by subcritical branching processes, whose asymptotic features do not rely on the precise geometry of the underlying G. This explains the robustness of the subcritical argument. In contrast, the study of the supercritical clusters requires to understand the innite cluster(s), whose geometry may be very related to the underlying graph, and so far there is no robust approach to the supercritical regime. A second reason is more technical. The truncated connection events (i.e. of the form {A ← → B, A ←→ ∞} where A ←→ ∞ is the event that A is not connected to innity in ω) are neither increasing nor decreasing events, which reduces considerably the size of the available toolbox for the study of such events.

In this paper, we obtain a clear description of the supercritical phase for transitive graphs of polynomial growth, as presented in the next section. In particular, we prove that supercritical sharpness holds for these graphs.

Main results

Let G be a transitive graph of polynomial growth, with growth exponent d ≥ 2. Equivalently, G is taken to be a transitive graph of polynomial growth satisfying p c (G) < 1. In this paper, we develop new methods that give a precise description of the supercritical phase of Bernoulli percolation on such graphs (p > p c ). More precisely, we build nite-size events that ensure the local existence and uniqueness of large clusters: see Proposition 1.3.

This enables us to use powerful renormalisation methods, which extend several perturbative arguments (valid only for p close to 1) to the whole regime p > p c (G). Our main two results are about the geometry of the nite clusters in the supercritical regime, but our methods would also imply several other results regarding the geometry of the innite cluster 2 . Our rst result states that the radius of a nite cluster has an exponential tail in the supercritical regime.

Theorem 1.1. Let G be a transitive graph of polynomial growth with d ≥ 2 and p > p c (G).

There exists a constant c > 0 such that

∀n ≥ 1 P p [o ← → ∂B n , o ←→ ∞] ≤ e -cn .
The second result is the stretch-exponential decay in volume of the nite clusters.

Theorem 1.2. Let G be a transitive graph of polynomial growth with d ≥ 2 and p > p c (G).

Let C o denote the cluster of o. There exists a constant c > 0 such that

∀n ≥ 1 P p [n ≤ C o < ∞] ≤ exp -cn d-1 d .

Comments

Previous work on hypercubic lattices Both Theorems 1.1 and 1.2 were known for the hypercubic lattice Z d . In dimension d = 2, they were proved by Kesten [START_REF] Kesten | The critical probability of bond percolation on the square lattice equals 1 2[END_REF]. In dimension d ≥ 3, they were proved by [START_REF] Chayes | Bernoulli percolation above threshold: an invasion percolation analysis[END_REF] and [START_REF] Kesten | The probability of a large nite cluster in supercritical Bernoulli percolation[END_REF], by making use of the dicult slab result of Grimmett and Marstrand [START_REF] Grimmett | The supercritical phase of percolation is well behaved[END_REF]: for any p > p c (Z d ), the percolation on Z d restricted to a suciently thick slab (i.e. a graph of the form Z 2 ×{0, . . . , k} d-2 for k large) contains an innite cluster. These previous methods do not extend to general graphs of polynomial growth for two main reasons. First, the proof of Grimmett and Marstrand relies strongly on the symmetries of Z d (in particular reections and rotations). Such symmetries are not available for general graphs: one can think of Cayley graphs of Z d with respect to non-symmetric generating sets (see Figure 1). As for g ↦ g -1 , it is generally 2 A graph of polynomial growth is necessarily amenable: otherwise, the growth would be exponential.

The BurtonKeane Theorem [START_REF] Burton | Density and uniqueness in percolation[END_REF] ensures that, for amenable transitive graphs, for any p, there is at most one innite cluster almost surely. In particular, for p > p c , there is a unique innite cluster. Dynamic versus static renormalisation In the case of the hypercubic lattice, the GrimmettMarstrand Theorem is proved by using a dynamic renormalisation argument (in the sense of [START_REF] Grimmett | Percolation[END_REF]Chapter 7]). In the present paper, we construct a local existenceand-uniqueness event, which allows us to directly perform a static renormalisation.

A new quantitative proof of GrimmettMarstrand The interested reader may extract from the present paper a new proof of the GrimmettMarstrand Theorem on Z d .

When applying the methods of the present paper to hypercubic lattices, some simplications occur at several places, using symmetries. For example, the whole Section 6 may be replaced by a reference to the stronger result of Cerf [START_REF] Cerf | A lower bound on the two-arms exponent for critical percolation on the lattice[END_REF], and Section 7.2 may be drastically simplied. The proof is quantitative and would give an estimate of the same order as the one obtained in [DKT].

Lower bounds The bounds in Theorems 1.1 and 1.2 are sharp at the exponential scale:

This easier result is classical for the hypercubic lattice Z d and the same techniques can be used to prove that, for every p ∈ (p c , 1), there exists a constant c ′ > 0 such that

∀n ≥ 1 P p [o ← → ∂B n , o ←→ ∞] ≥ e -c ′ n . and ∀n ≥ 1 P p [n ≤ C o < ∞] ≥ exp -c ′ n d-1 d .
Remark 2.5, Lemma 2.6 and Lemma 4.2 guarantee that the geometry of G is as far as this argument is concerned as nice as that of Z d .

Locality

In the context of graphs of polynomial growth (which are amenable), supercritical sharpness is related to the existence of some local existence and uniqueness event in a nite box: see Proposition 1.3. This allows us to obtain a nite volume characterisation of p > p c (G). In [CMT], we use the present work to prove Schramm's Locality Conjecture (stated in [START_REF] Benjamini | Is the critical percolation probability local? Probability Theory and Related Fields[END_REF]) in the particular case of transitive graphs of polynomial growth. This extends [START_REF] Martineau | Locality of percolation for Abelian Cayley graphs[END_REF], with dierent techniques. The case of transitive graphs with (uniformly lower-bounded) exponential growth has been established in [START_REF] Hutchcroft | Locality of the critical probability for transitive graphs of exponential growth[END_REF].

3 If we try to mimic the denition of slabs in Z d , we want to take a thickened version of the subgroup generated by a and b. The problem is that, in the case of the Heisenberg group, this subgroup is equal to the whole group.

Related works Several related works regarding the sharpness of the supercritical phase have been developed in the last few years. For the hypercubic lattice Z d , a quantitative version of the GrimmettMarstrand Theorem was presented in [DKT]. In the case of nonamenable graphs, [START_REF] Hermon | Supercritical percolation on nonamenable graphs: Isoperimetry, analyticity, and exponential decay of the cluster size distribution[END_REF] proved exponential decay for the nite cluster size distribution.

For the Ising Model, [START_REF] Duminil-Copin | Exponential decay of truncated correlations for the Ising model in any dimension for all but the critical temperature[END_REF] obtained exponential decay for the truncated two-point function in the supercritical regime. As for Gaussian elds, we can mention the work [DGRS] on the Gaussian free eld in Z d for d ≥ 3 and [Sev] for general results on continuous Gaussian elds in R d (d ≥ 2) with correlations decaying reasonably fast.

Denitions and notation

Throughout the paper, G = (V, E) denotes a xed transitive graph of polynomial growth, whose growth exponent d satises d ≥ 2. The graph G is taken to be simple: there are no multiple edges, no self-loops, no orientations on the edges. We also x some origin o ∈ V .

Graph notation For x ∈ V , we write B n (x) for the ball of radius n centred at x, and we simply write B n = B n (o) for the ball centred at the origin. The boundary ∂A of a set A ⊂ V is dened as the set of edges having one endpoint in A and the other in V ∖ A. A path of length in A is a sequence γ = (γ 0 , . . . , γ ) of vertices of A such that γ i and γ i+1 are neighbours for every i.

Percolation denitions

Let ω be a percolation conguration. A path γ is said to be open if all its edges {γ i , γ i+1 } are open. For A ⊂ V , we call clusters in A the connected components of the graph with vertex set A and edge set the elements of ω with both endpoints in A. 

κ p (m, n) = min γ ∶ length(γ)≤m P p [o(γ) Bn(γ)
← → e(γ)],

where o(γ) and e(γ) denote the rst and last vertices of γ and B n (γ) = ⋃ i B n (γ i ). The quantity has two dierent interpretations, depending on whether m ≤ n (short corridor) or m ≥ n (long corridor): In the rst case, the set B n (γ) always looks roughly like a ball, and the quantity is similar to the two point-function restricted to a ball. In contrast, when m ≫ n, the set B n (γ) takes the shape of a long corridor and the parameter m becomes relevant for its geometry. This quantity will be instrumental in our paper. First, the corridor function has an important renormalisation property, presented in Section 3.

Second, it is deeply related to the local uniqueness events, dened below. Finally, it will be the central object in the proof of the main proposition of this paper, in Section 9: we strengthen some a priori bounds on the short-corridor function into strong estimates in long corridors.

Pivotal and uniqueness events For 1 ≤ m ≤ n we dene the pivotal event

Piv(m, n) = ⋃ x,y∈Bm {x ← → ∂B n , y ← → ∂B n , x Bn ←→ y}.
In other words, the event Piv(m, n) occurs if there are two disjoint clusters (for the conguration restricted to B n ) connecting B m to ∂B n . Even if the event is not formally dened in terms of the pivotality of a set for a certain event, we use the notation Piv because the event will typically occur when the ball B m is pivotal for large connection events. This is also known in the literature as the two-arm event (see [START_REF] Cerf | A lower bound on the two-arms exponent for critical percolation on the lattice[END_REF]). Similarly, for x ∈ V , we dene Piv x (m, n) as the event Piv(m, n), but centred at x instead of o. For 1 ≤ m ≤ n, we dene the uniqueness event by U (m, n) = {there exists at most one cluster in B n intersecting B m and ∂B n }.

Notice that U (m, n) ∶= Piv(m, n) c . We emphasise that the event U (m, n) does not require the existence of a cluster crossing from B m to ∂B n in B n . When the event U (m, n) occurs, there is either one or no such crossing cluster. The event U (m, n) is particularly useful, as it allows us to glue locally macroscopic clusters. ←→ p B for the complement event. When we are looking at all the p-congurations coupled together, additional interesting events appear. For instance, we can look at how p-clusters are connected at a parameter q ≥ p, and the following generalisation of the uniqueness event will be useful. For p ≤ q and n ≥ m ≥ 1, we dene the sprinkled uniqueness event by U p,q (m, n) = {All the p-clusters in B n intersecting B m and ∂B n are q-connected in B n }.

Monotone coupling

Let P = U([0, 1])
The event above has some useful monotonicity properties: For xed n ≥ m ≥ 1, the function f (p, q) = P[U p,q (m, n)] is nonincreasing in p and nondecreasing in q. In contrast, the probability of the uniqueness event P p [U (m, n)], which is equal to f (p, p), has no clear monotonicity in p.

Organisation of the paper

The main ingredient in the proof of Theorems 1.1 and 1.2 is the following proposition, which provides local existence and uniqueness of certain crossing clusters in large boxes.

From there, we apply a coarse-graining argument, presented in Section 10. In Z d , standard coarse-graining arguments use the scaling property of Z d : the set nZ d is a rescaled version of Z d . For general transitive graphs of polynomial growth, we circumvent scaling by using an n-independent percolation with suciently high marginals.

Proposition 1.3. Let G be a transitive graph of polynomial growth with d ≥ 2 and let p > p c . Then, for all n large enough, we have

P p [B n 10 ← → ∂B n , U (n 5, n 2)] ≥ 1 -e -√ n .
The main goal of the paper is the proof of the proposition above. Section 8: Uniqueness via sprinkling We consider the conguration in B n and assume that the large clusters ll suciently well the ball B n , in the sense that all the balls B k (x), x ∈ B n , are p-connected to ∂B n , for some k ≪ n. In this case, we prove that for a small sprinkling δ > 0, the sprinkled uniqueness event U p,p+δ (n 4, n) occurs with high probability: all the p-clusters crossing the annulus B n ∖ B n 4 get connected in B n at p + δ.

We use a non-trivial renement and generalisation of [START_REF] Benjamini | Homogenization via sprinkling[END_REF].

Section 9: Proof of Proposition 1.3 This section gives the proof of Proposition 1.3. It uses all the results from Sections 38.

Section 10: Proof of sharpness: coarse grains without rescaling We use Proposition 1.3 to establish Theorems 1.1 and 1.2. We perform a coarse-graining argument to reduce the study of the supercritical regime to that of a suitable perturbative regime. This is not done by rescaling the graph G but by dening a k-independent percolation process on the original graph G.

Geometric lemmas

In this section, we collect a certain number of geometric lemmas that will prove useful throughout the paper. This can be skipped in a rst reading.

Cutsets

Percolation is primarily concerned with connectivity events and existence of open paths.

The complement of a such an event is well understood in terms of closed cutsets, which

are dual to open paths. In this section, we dene and provide useful properties of cutsets.

If F and Π denote two subsets of V (G), we say that Π is a cutset between F and ∞ if Π ∩ F = ∅ and every innite self-avoiding path starting in F has to intersect Π at some point. If, furthermore, no strict subset of Π is a cutset between F and ∞, we say that Π is a minimal cutset between F and ∞.

The following well-known lemma provides some geometric control on these minimal cutsets.

Lemma 2.1 (Coarse connectedness of minimal cutsets). Let G be a transitive graph of polynomial growth with d ≥ 2. Then, there is some constant R such that the following holds.

Let o be a vertex of G. Every minimal cutset disconnecting o and ∞ is R-connected: For every minimal cutset C, the graph having C as vertex set and with edges connecting two elements of C if their distance in G is at most R is connected. Proof. By [START_REF] Tromov | Graphs with polynomial growth[END_REF], G is quasi-isometric to a Cayley graph H of some nitely generated nilpotent group Γ. As Γ is nitely generated and nilpotent, it is nitely presented (see Propositions 13.75 and 13.84 of [START_REF] Drut | Geometric group theory[END_REF]). Therefore, there is some constant R H such that every nite cycle of H is a sum modulo 2 of cycles of length at most R H . As G is quasi-isometric to H, there is some constant R G such that every nite cycle of G is a sum modulo 2 of cycles of length at most R G . To see this, x ϕ ∶ G → H and ψ ∶ H → G quasi-isometries that are quasi-inverse of each other. To every edge {u, v} of G (resp. H) correspond two vertices ϕ(u) and ϕ(v) (resp. ψ(u) and ψ(v)), which are at bounded distance of each other. For each such edge {u, v}, select once and for all some geodesic path connecting the two corresponding vertices in the other graph. This enables us to associate with each cycle in one graph a cycle in the other. The properties of this process allow us to derive from the existence of R H the existence of a constant R G as above. This condition extends to innite cycles (bi-innite paths) if one allows innite (locally nite) sums, because G is one-ended (d ≥ 2). This permits us to use Theorem 5.1 of [START_REF] Timár | Cutsets in innite graphs[END_REF] (see also [START_REF] Babson | Cut sets and normed cohomology with applications to percolation[END_REF][START_REF] Timár | Boundary-connectivity via graph theory[END_REF]), which yields the conclusion.

The goal of this paper is to reduce the study of the whole supercritical regime to some perturbative regime, where the Peierls' argument applies. Studying this perturbative regime will require some quantitative control in the usual entropy-vs-energy spirit of the Peierls' argument. The next three lemmas will help us get such a control. Lemma 2.2. Let G be a transitive graph of polynomial growth with d ≥ 2. Let R be so that the conclusion of Lemma 2.1 holds. Let Π be a cutset disconnecting o and ∞. Then, Π intersects the ball of centre o and radius R Π .

Proof. Assume that Π does not intersect B R Π . Since G is an innite transitive graph, there is a bi-innite geodesic path passing through o. The cutset Π has to intersect each of the two geodesic rays this path induces from o. As a result, one has diam(Π) > 2R Π . Since R satises the conclusion of Lemma 2.1, we also have diam(Π) ≤ R Π , which is contradictory.

The next lemma is related to Lemma 2.6 and [FGO15, Proposition 5]. The existence of a bi-innite geodesic path will once again be the key of the proof.

Lemma 2.3. Let G be an innite transitive graph. Let F be a nite subset of V (G)

containing o. Let Π be a cutset disconnecting F and ∞. Then, we have diam(Π) ≥ diam(F ) 2 .
Proof. Let F ⊂ V (G) denote the set of all vertices that can be reached from F by a path avoiding Π.

If F is connected, this is simply the connected component of F in G ∖ Π. We set m = diam(Π) and n = diam(F ). Let us prove that m ≥ n 2 .
First, assume that there is a vertex v ∈ F such that B n 4 (v) ⊂ F . As in the proof of Lemma 2.2, the existence of a bi-innite geodesic path passing through v yields m > 2n 4 = n 2, hence the desired result. Now, assume that, on the contrary, for every vertex v ∈ F , one has B n 4 (v) ⊂ F . In particular, one can take u and v two vertices of F at distance n of each other, and then nd vertices u ′ and v ′ in Π such that d(u, u ′ ) ≤ n 4 and d(v, v ′ ) ≤ n 4. Indeed, by denition of F , its external vertex-boundary is a subset of Π and it is equal to Π if Π is a minimal cutset. By considering u ′ and v ′ , one gets m ≥ n -2n 4 = n 2.

Lemma 2.4. Let G be a transitive graph of polynomial growth with d ≥ 1. There exists c > 0 such that the following holds. Let F be a nite connected subset of V (G) containing o. Let Π be a cutset disconnecting F and ∞. Then, we have

Π ≥ c F d-1 d .
Proof. Let F ⊂ V be the set of vertices that can be connected to F by a path not intersecting Π. Then F ⊂ F and every edge of ∂ F intersects Π. As B r ≍ r d and since every transitive amenable graph is unimodular [SW90], Lemma 7.2 of [START_REF] Lyons | Ends in uniform spanning forests[END_REF] yields the existence of c > 0 such that for every choice of (F, Π),

we have Π ≥ c F d-1 d ≥ c F d-1 d .

Spheres and annuli

The most basic example of a cutset is the sphere of radius r. In the hypercubic lattice of dimension d ≥ 2, spheres are coarsely connected, in the sense of Lemma 2.1 (one can take R = 2). Actually, for hypercubic lattices, spheres centred at o are minimal cutsets disconnecting o and ∞. Such statements are not true any more for general graphs not even for one-ended transitive graphs of polynomial growth.

In order to recover coarse connectedness of spheres, we use a notion of exposed sphere [START_REF] Brieussel | Connectedness of spheres in Cayley graphs[END_REF][START_REF] Gábor | A note on percolation on Z d : isoperimetric prole via exponential cluster repulsion[END_REF][START_REF] Timár | Boundary-connectivity via graph theory[END_REF], that only contains the points accessible from innity, and where the nite pockets are removed. For r ≥ 0 and x a vertex of a graph G, let S ∞ r (x) denote the set of all vertices y such that d(x, y) = r and there exists an innite selfavoiding path starting at y and intersecting B r (x) only at y. Notice that replacing the self-avoiding condition by visiting innitely many vertices in this denition yields the same set S ∞ r (x). If some vertex o is xed as a root in G, we may write S ∞ r for S ∞ r (o). Remark 2.5. For every r ≥ 1, the set S ∞ r is a minimal cutset between B r-1 and ∞. In particular, Lemma 2.1 yields coarse connectedness of these sets.

Not only does S ∞ r disconnect B r-1 and ∞ but it even disconnects it from ∂B 2r , as stated in Lemma 2.6. This lemma corresponds to Proposition 5 in [START_REF] Funar | On groups with linear sci growth[END_REF]. For the reader's convenience, we have included below its short and nice proof.

Lemma 2.6. Let G be an innite transitive graph and o a vertex of G. Let r ≥ 0 and let γ be a nite path starting in B r and that intersects ∂B 2r . Then, the path γ intersects S ∞ r .

Proof. Let us x x and y such that x is a vertex of γ at distance 2r from the origin o and y is a neighbour of x satisfying d(o, y) = 2r + 1. Since G is innite and transitive, we can

x some bi-innite geodesic path γ ′ passing through y at time 0. It is impossible for γ ′ to intersect B r in both positive and negative times. Indeed, since γ ′ is geodesic, this would imply the existence of two points in B r at distance larger than 2r + 1 away of each other. Therefore, by following γ ′ from y in the positive or the negative direction, we get an innite self-avoiding path γ ′′ that does not intersect B r . Since γ starts in B r and intersects ∂B 2r , it visits at least one vertex at distance exactly r from the origin. Take k to be the largest integer such that d(o, γ k ) = r and set v = γ k . This vertex v necessarily belongs to S ∞ r . Indeed, following the path γ started at time k, then the edge {x, y}, and then the path γ ′′ yields a path that starts at v and then leaves B r forever (and that visits innitely many vertices).

While studying percolation on Z d , it is customary to use not only spheres but also annuli. Annuli will also be useful when G is a one-ended transitive graph of polynomial growth. The next lemma provides some control on their geometry. Lemma 2.7 (Control on the intrinsic diameter of annuli). Let G be a transitive graph of polynomial growth with d ≥ 2. Let R ≥ 1 be such that the conclusion of Lemma 2.1 holds, and let n ≥ k ≥ R. Then for all x, y ∈ S ∞ n , there exists a path from x to y within the 2k-neighbourhood of S ∞ n , of length at most 3k B 3n B k .

Proof. Let x, y ∈ S ∞ n . By denition of R and S ∞ n , we can x some path (v 0 , . . . , v ) from x to y that stays in the R-neighbourhood of S ∞ n . Recursively, we dene some new nite sequence of vertices as follows. Set w 0 = v 0 = x. For every i > 0, let m i be such that v m i ∈ B 2k (w i-1 ) and none of the vertices v m i +1 , . . . , v belongs to B 2k (w i-1 ). We then set w i = v m i +1 . This process is well-dened until it reaches some w t that satises d(w t , y) ≤ 2k, and the process stops there. Notice that the sets B k (w i ) are disjoint when i ranges over {0, . . . , t} and that all these balls are subsets of B 3n . Therefore, we have t

+ 1 ≤ B 3n B k
. By means of paths of length at most 2k + 1 each, we can connect w 0 to w 1 , . . . , w t-1 to w t , and w t to y. Concatenating theses paths produces a path of length at most (2k + 1)(t + 1)

that stays within the 2k-neighbourhood of S ∞ n . As (2k + 1)(t + 1) ≤ 3k B 3n B k , the proof is complete.

Crafting many distant paths

In Section 3, we will need many paths that stay away from each other in G. The purpose of the current subsection is to explain how to get such paths. The proper (deterministic) statement is given by Lemma 2.8, which makes use of the following denition.

A path γ ∶ N → V is said to be a c-quasi-geodesic ray if for any m and n in N, we have

d(γ m , γ n ) ≥ c m -n .
Lemma 2.8. Let G be a transitive graph of polynomial growth with d ≥ 2. Then, there exist c > 0 such that for every n ≥ 1 c, for every a ∈ [1, cn], one can nd ⌈ n a ⌉ distinct cquasi-geodesic rays that intersect B n and that stay at distance at least ca from each other if x belongs to some ray and y to another one, then d(x, y) ≥ ca.

Proof. By [START_REF] Gromov | Groups of polynomial growth and expanding maps (with an appendix by Jacques Tits)[END_REF][START_REF] Tromov | Graphs with polynomial growth[END_REF], there is a nitely generated nilpotent group Γ with one end such that G is quasi-isometric to any Cayley graph of Γ. Let S be some nite generating subset of Γ. By [HT, Lemma 3.23], we can pick a surjective homomorphism π ∶ Γ → Z 2 .

Notice that the conclusion of Lemma 2.8 obviously holds for the square lattice. As this conclusion is stable under quasi-isometry, it holds for the Cayley graph of Z 2 relative to the generating subset π(S). By using π, lifting suitable paths for this Cayley graph of Z 2 yields suitable paths for the Cayley graph of Γ relative to S. As this graph is quasi-isometric to G, we have the desired result.

Renormalisation of the corridor function

Recall that we xed G = (V, E) a transitive graph of polynomial growth with one end, and that d denotes the growth exponent of G. Namely, d is an integer larger than 1 such that B n ≍ n d . We also x R ≥ 1 some constant such that the conclusion of Lemma 2.1 holds.

Proposition 3.1. Let G be a transitive graph of polynomial growth with d ≥ 2. Let p ∈ (0, 1) be such that lim sup

n κ p (n log 3d n, n) > 0.
Then, for every q ∈ (p, 1], for every n large enough, we have

P q [{B n 10 ← → ∂B n } ∩ U (n 5, n 2)] ≥ 1 -e -√ n .
(1)

In order to prove Proposition 3.1, we will mimic the orange-peeling argument developed for percolation on Z 

P[U (n, 2n)] ≥ 1 -∂B n 2 e -δn m .
However, two diculties arise when extending this argument to more general graphs.

First, the annuli given by the induced subgraph of B k+m ∖ B m may not be connected in our setting. To overcome this, we rather work with the following annuli. For n ≥ m ≥ 0,

we dene A(n, m) = ⋃ x∈S ∞ n B m (x).
If m is large enough, Lemma 2.1 implies that A(n, m) is connected and Lemma 2.7 provides us with a good control on the distances in the graph induced by A(n, m).

A second and more serious diculty is the lack of symmetry, which prevents us from using the slab technology of the Euclidean lattice, and makes the control of the twopoint functions in annuli more delicate. Instead of symmetries, our approach uses a renormalisation property of the corridor function, presented in Lemma 3.3. The latter relies on a sprinkled version of the orange-peeling argument, presented in Lemma 3.2 below.

Lemma 3.2. There exists a constant c > 0 such that the following holds. Let p ∈ (0, 1),

δ ∈ (0, 1 -p) and n ≥ m ≥ R. If κ p (3m B n B m , m) ≥ δ, (2) 
then, for every ≥ 1, we have

κ p+δ ( , n) ≥ δ 2 -B n 2 exp - cδ 3 n m . (3) 
Proof. For simplicity, we will proceed as if all the ratios (n m, n 10, c i n m...) appearing in the proof were integer-valued. The more general statement can easily be obtained by appropriate ⌈⋅⌉-and-⌊⋅⌋-management. Let c 0 > 0 be a constant as in Lemma 2.8. By possibly reducing the value of the constant c, one may assume without loss of generality that the ratio n m is large. In particular, we may assume that

3 c 0 m ≤ c 0 10 n and 11 10c 0 n ≤ m B n B m .
with high probability. To this end, apply Lemma 2.8 with a = 3 c 0 m. It guarantees that there exist c 1 n m disjoint corridors of thickness m connecting B n 10 to ∂B n and of length at most 11 10c 0 n. Each one of these corridors is crossed with probability at least δ, by the assumption (2). By independence, we have

P[B n 10 ←→ p ∂B n ] ≤ (1 -δ) c 1 n m ≤ exp - δc 1 n m . (4) 
By automorphism-invariance, any classical annulus B n (x) ∖ B n 10 (x) is crossed by at least one p-cluster with high probability. The main idea to prove (3) is to consider a chain of p-clusters and show that they all get connected at p + δ, with high probability (as illustrated in Fig. 2). To this end, we use an adapted version of the orange-peeling argument, and show that all the p-clusters in B n 2 crossing from B n 5 to ∂B n 2 are locally (p + δ)-connected to each other with high probability. More precisely, we prove that

P[U p,p+δ (n 5, n 2)] ≥ 1 -B n 2 exp - δ 3 n 140m .
(5)

To achieve this, for 0 ≤ i < n 140m , consider the connected annuli A i = A(n i , 3m), where n i = n 5 + 4m + 7im. Notice that n 5 + 4m ≤ n i ≤ n 4 -3m and the annuli A i are disjoint subsets of B n 4 ∖ B n 5 . The choice of 3m for the thickness of the annulus ensures that for any vertices x, y in S ∞ n i , one can nd a corridor from x to y of thickness m and length smaller than 3m B 3n i B m that fully lies inside A i , by Lemma 2.7. Let us dene C p (x) to be the p-cluster of x in B n 2 . For x, y ∈ B n 5 , we have

P[x ←→ p ∂B n 2 , y ←→ p ∂B n 2 , x B n 2 ← → p + δ y] (6) = C,C ′ P[C B n 2 ← → p + δ C ′ C p (x) = C, C p (y) = C ′ ] ⋅ P[C p (x) = C, C p (y) = C ′ ]
where the sum is over the pairs of disjoint clusters (C, C ′ ) joining respectively x and y to ∂B n 2 . Let us x such C and C ′ . Notice that under the conditional law

P = P[ ⋅ C p (x) = C, C p (y) = C ′ ],
the conguration ω p+δ is an independent percolation process with marginals satisfying

P[ω p+δ (e) = 1] ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ = 1 if e ∈ C ∪ C ′ , ≥ δ if e ∈ ∂C ∪ ∂C ′ , = p + δ otherwise.
By Lemma 2.6, both C and C ′ must intersect all the exposed spheres S ∞ n i (since n i ≤ n 4). Furthermore, for every i, Lemma 2.7 ensures that there exists a corridor included in A i from a point of C to a point of C ′ , of thickness m and of length smaller than 3m B 3n i B m . Using that 3n i ≤ n and the bound (2), we obtain 

P[∂C A i ←→ p ∂C ′ C p (x) = C, C p (y) = C ′ ] ≥ κ p (3m B n B m , m) ≥ δ.
P[C A i ← → p + δ C ′ C p (x) = C, C p (y) = C ′ ] ≥ δ 3 ,
where one additional δ appears in order to leave C and another δ to reach C ′ . Finally, since all A i 's are disjoint, one has, by independence:

P[C B n 2 ← → p + δ C ′ C p (x) = C, C p (y) = C ′ ] ≤ (1 -δ 3 ) n 140m .
Plugging this into (6) and then summing over all pairs x, y ∈ B n 5 , one gets

P[U p,p+δ (n 5, n 2)] ≥ 1 -B n 2 exp - δ 3 n 140m .
Now, we use the two estimates (4) and ( 5) in order to prove that (3) holds. Let γ = (v 0 , v 1 , . . . , v k ) be a path of length k ≤ connecting a vertex x = v 0 to some vertex y = v k . Let K be the corridor around γ of thickness n. Consider the following three conditions:

(i) x ← → ∂B n (x) and y ← → ∂B n (y),

(ii) for all j = 1, . . . , k, one has B n 10 (v j ) ←→ p ∂B n (v j ),

(iii) for all j = 1, . . . , k, the uniqueness event U p,p+δ (n 5, n 2) centred at v j occurs. As illustrated in Fig. 2, the simultaneous occurrence of the three events above implies that there exists a (p + δ)-open path in K between x and y. The bounds P[z ← → ∂B n (z)] ≥ κ p (n, m) for z = x, y together with the HarrisFKG Inequality imply that (i) occurs with probability at least κ p (n, m) 2 . Therefore, by the union bound and by automorphisminvariance, we obtain

P[x K ← → p + δ y] ≥ κ p (n, m) 2 -kP[B n 10 ←→ p ∂B n ] -k(1 -P[U p,p+δ (n 5, n 2)]) (4),(5) ≥ δ 2 -exp - δc 1 n m -B n 2 exp - δ 3 n 140m ,
which concludes the proof of (3).

Lemma 3.3 (Renormalisation property of the corridor function). Let p > 0 and assume that lim sup n→∞ κ p (n log 3d n, n) > 0.
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Then for all q > p and C > 2d, for all n large enough, one has

κ q (n C , n) ≥ n -1 C . (8) 
Proof. Let us x p > 0 such that (7) holds. Let η ∈ (0, 1-p 2 ) and q = p + 2η, let C > 2d. The assumptions imply that

δ ∶= min η, 1 2 lim sup n→∞ κ p (n log 3d-3 n, n log -2 n) > 0.
Consider a large n satisfying κ p (n log 3d-3 n, n log -2 n) ≥ δ and write m = n

log 2 n . As B n ≍ n d ,
we have 3 Bn Bm ≤ log 2d+1 n and therefore κ p (3m Bn Bm , m) ≥ δ. Applying Lemma 3.2 to n, m and = n C 2 , we obtain

κ p+η (n C 2 , n) ≥ κ p+δ (n C 2 , n) ≥ δ 2 -n C 2 B n 2 exp -cδ 3 log 2 n .
Since one can nd arbitrarily large n satisfying the equation above, we get

lim sup n→∞ κ p+η (n C 2 , n) > 0. (9) 
To get (8), we perform a renormalisation argument. Let c 0 be a constant as in Lemma 3.2. Equation (9) allows us to take m 0 ≥ max{ 1+η η , R} such that

κ p+η (m C 2 0 , m 0 ) ≥ 1 m 1 C 0 and, for every m ≥ m 0 , m C 3 B m 2 2 e -c 0 m 1-3 C ≤ 1 m 2 C - 1 m and 3m B m 2 B m ≤ m C 2 .
Let m i = m C i 0 and p i+1 = p i + 1 m i-1 , with p 0 = p + η. We will prove by induction that for every i ≥ 0,

κ p i (m i+2 , m i ) ≥ 1 m i-1 . ( 10 
)
Notice that the relation holds for i = 0, by denition of m 0 . Let us x some i such that (10) holds. Since 3m i

B m 2 i Bm i ≤ m C 2 i = m i+2 , one has κ p i 3m i B m 2 i B m i , m i ≥ 1 m i-1 .
Using Lemma 3.2 and observing that m i+1 ≥ m 2 i , we get

κ p i+1 (m i+3 , m i+1 ) ≥ κ p i+1 (m i+3 , m 2 i ) ≥ 1 m 2 i-1 -m i+3 B m 2 i 2 exp - c 0 m 2 i m 3 i-1 m i ≥ 1 m i ,
where the last inequality holds due to the choice of m 0 . This completes the induction. Now, for n large, consider j such that m j ≤ n < m j+1 . Using that p j ≤ p + 2η and monotonicity, we get

κ p+2η (n C , n) ≥ κ p j (m j+2 , m j ) ≥ 1 m 1 C j ≥ 1 n 1 C .
Proof of Proposition 3.1. As mentioned before, the strategy of the proof is an adaptation of the orange-peeling argument used in [Gri99, Lemma 7.89]. Fix p ∈ (0, 1) and η ∈ (0, (1 -p) 2). We will prove that the statement (1) holds for q = p + 2η. Let C = 8d.

By Lemma 3.3, we can x m 0 ≥ 1 such that for all m ≥ m 0 , we have κ q (m C , m) ≥ m -1 C . Let n be large enough, so that it is possible to choose an m satisfying m 0 ≤ m ≤ n 1 9 and m C ≥ 3m B 3n B m .

(11)

As in the proof of Lemma 3.2, we consider disjoint annuli inside B n 4 ∖B n 5 : for 0 ≤ i < n 140m , consider the connected annuli A i = A(n i , 3m), where n i = n 5 + 4m + 7im. The gist of the proof is to establish, for all i < n 140m and all x, y ∈ A i , a good lower bound for P q [x

A i ← → y]. Let i < 1 140m and x, y ∈ A i . Denote by x ′ a vertex of S ∞ n i such that d(x, x ′ ) = d(x, S ∞ n i
). Dene y ′ in the same manner, with respect to y instead of x. By Lemma 2.7, one can nd a corridor from x ′ to y ′ of thickness m and length smaller than 3m B 3n i B m that fully lies within A i . Using the HarrisFKG Inequality, we get

P q [x A i ← → y] ≥ P q [x B 2m (x ′ ) ← → x ′ ] ⋅ κ q (3m B 3n B m , m) ⋅ P q [y B 2m (y ′ ) ← → y ′ ]. (12) 
Then, we only need to nd a good lower bound for each term. Observe that (11) and Lemma 3.3 directly yield the following lower bound for the central factor of the product above:

κ q (3m B 3n B m , m) ≥ m -1 C . ( 13 
)
For the other factors of (12), by automorphism-invariance, it is enough to get a lower bound for P p [o

B 3m ← → z],
where z ∈ B 3m . In order to get this bound, we will use a chaining argument, which goes as follows. For all k, set m k = m 2 k 0 . Let j ≥ 0 be such that to connect the centre of the ball to a boundary vertex x 0 . For the corridors to be subsets of the ball, the thickness is chosen to be smaller when approaching the boundary.

m 0 + ⋯ + m j-1 ≤ d(o, z) < m 0 + ⋯ + m j .
Let γ be a geodesic path between z and o. Fix a sequence of points x 0 = z, x 1 , . . . , x j+1 = o in γ such that for all 0 ≤ i < j, d(x i , x i+1 ) = m i and d(x j , o) < m j . Notice that for every 1 ≤ i < j, the corridor around γ of thickness m i-1 between x i and x i+1 is contained in the ball B 3m . This is not the case for i = 0, but in this case we use the trivial bound

P p [x 0 B 3m ← → x 1 ] ≥ p m 0 .
Then, using the HarrisFKG Inequality, we get

P q [o B 3m ← → z] ≥ p m 0 j i=1 κ q (m i , m i-1 ) ≥ p m 0 3m . (14) 
Using (12), ( 13) and ( 14), we obtain that for all m large enough,

P q [x A i ← → y] ≥ p 2m 0 (3m) 2 1 m 1 C ≥ 1 m 3 . (15) 
Now, we describe the adaptation of the orange-peeling argument presented in [Gri99, Lemma 7.89] to our context. Let x and y denote two distinct vertices of B n 10 . We explore their clusters step by step, starting from the inside ball B n 10 . The i th step explores these clusters until they touch the annulus A i or until we are sure they will never do so. Denote by x i and y i the respective points where they touch A i for the rst time. Let x ′ i and y ′ i be the closest points in S ∞ n i to x i and y i , respectively (see Figure 4). We know by (15

) that P q [x i A i ← → y i ] ≥ 1 m 3 .
By conditional independence, we obtain that for every n large enough,

P q [U (n 5, n 2)] ≥ 1 -B n 10 2 1 - 1 m 3 n 140m ≥ 1 - e -√ n 2 ,
where we use that m ≤ n 1 9 . It remains to prove that for every n large enough, we have which can be proved as Equation (4) by using that there exist at least cn 1-1 C disjoint corridors of thickness n 1 C from B n 10 to ∂B n , and that each of these corridors is independently crossed with probability at least n -1 C .

P q [B n 10 ← → ∂B n ] ≥ 1 - e -√ n 2 ,

Probability that two clusters meet at one point

This section is devoted to the proof of the following proposition, which extends the quantitative uniqueness argument of [START_REF] Michael Aizenman | Uniqueness of the innite cluster and continuity of connectivity functions for short and long range percolation[END_REF][START_REF] Gandol | On the uniqueness of the innite cluster in the percolation model[END_REF] to graphs of polynomial growth. The proof presented below follows the more recent presentations of [START_REF] Cerf | A lower bound on the two-arms exponent for critical percolation on the lattice[END_REF] and [START_REF] Hutchcroft | Locality of the critical probability for transitive graphs of exponential growth[END_REF].

Proposition 4.1. Let G be a transitive graph of polynomial growth. Let ε > 0 and η > 0.

There is a constant c = c(G, ε, η) such that for all p ∈ [η, 1] and all n ≥ 1, we have

P p [Piv(1, n)] ≤ cn -1 2+ε .
The interest of Proposition 4.1 is twofold. On the one hand, it will be useful to bound the probability of pivotal edges when studying the derivative of crossing probabilities:

it will be important to establish the general sharp threshold result of Proposition 5.1.

On the other hand, the work [START_REF] Cerf | A lower bound on the two-arms exponent for critical percolation on the lattice[END_REF] shows that for G = Z d the bound above can be strengthened into bounds on the probability P p [Piv(m, n)] for m ≥ 1. For more general graphs, we will obtain a similar result in Proposition 6.1, but we need to combine the approach of [START_REF] Cerf | A lower bound on the two-arms exponent for critical percolation on the lattice[END_REF] with a new renormalisation argument in order to overcome the lack of symmetry of G.

In order to prove Proposition 4.1, we will make use of the following geometric observation.

Lemma 4.2. Let G be a transitive graph of polynomial growth. There is a constant c such that the following holds: for every n ≥ 1, there is an integer m such that n ≤ m < 2n and ∂B m B m ≤ c n.

Proof. Using that the sum ∑ 2n-1 m=n ∂B m is smaller than the total number of edges in B 2n , we have

min n≤m<2n ∂B m B m ≤ 1 n 2n-1 m=n ∂B m B m ≤ 1 n ⋅ E(B 2n ) B n .
Since B n ≍ n d and G has bounded degree, E(B 2n )

Bn is bounded from above by a constant, which concludes the proof.

Proof of Proposition 4.1. Let c 1 > 0 be a constant such that the conclusion of Lemma 4.2 holds, and let n be a positive integer. Then, there is an integer m such that n ≤ m < 2n

and

∂B m B m ≤ c 1 n.
Let us x such an m. Following [START_REF] Cerf | A lower bound on the two-arms exponent for critical percolation on the lattice[END_REF], let us consider the random set of edges H dened as follows: we look at the conguration restricted to B m and we say that e belongs to H if it is closed and its endpoints belong to disjoint clusters in B m that both touch ∂B m . Since 4n ≥ 2m, one can use the nite-energy property and automorphism-invariance to prove that for

every x ∈ B m-1 , p ⋅ P p [Piv(1, 4n)] ≤ 2 e∋x P p [e ∈ H].
Summing over all x ∈ B m-1 , we get Taking the expectation in ( 17) and (18), and using the computation above, we get

B m-1 ⋅ p ⋅ P p [Piv(1, 4n)] ≤ 4E p [ H ]. (16 
E p [ H ] = 1 p E p [ C∈C h(C)], (19) 
where h(C) = p closed(C) -(1 -p) open(C) . In the right-hand side above, the fact that the sum is over a random set makes it delicate to study. To overcome this diculty, we will root each cluster at some of its vertices, and sum over the possible roots. For every

x ∈ B m , let C x be the cluster of x in B m . Using that for every cluster C, there are exactly C vertices x such that C x = C, we get

E p C∈C f (C) = x∈Bm E p f (C x ) C x 1 {x← →∂Bm} , (20) 
for every function f ∶ P(B m ) → R. Applying this to f = h, and using the CauchySchwarz inequality, we get

E p C∈C h(C) ≤ x∈Bm E p h(C x ) 2 C x 1+ε 1 2 ⎛ ⎝ x∈Bm E p ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 {x← →∂Bm} C x 1-ε ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ ⎞ ⎠ 1 2 . ( 21 
)
Applying [START_REF]DGR +[END_REF] to f (S) = S ε and using Hölder's inequality with parameters 1 ε and 1 1-ε (we may and will assume that ε < 1), we obtain

x∈Bm E p ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 1 {x← →∂Bm} C x 1-ε ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ = E p C∈C C ε ≤ E p C∈C C ε C 1-ε ≤ B m ε ∂B m 1-, (22) 
where in the third step we used that every cluster in C has to touch ∂B m . By ( 16), ( 19), ( 21) and ( 22), we nd

P p [Piv(1, 4n)] ≤ c 2 1 Bm x∈Bm E p h(C x ) 2 C x 1+ε 1 2 ∂B m B m (1-ε) 2
, where c 2 is a nite constant depending only on η. To conclude the proof, it suces to show that for every xed x ∈ B m , the quantity

E p h(C x ) 2 C x 1+ε
is smaller than some constant c 3 < ∞. This will be achieved by interpreting h(C x ) as the value of a martingale at some stopping time, when we perform a certain exploration of the cluster C x . First, x an arbitrary deterministic ordering of the edges of B m . Set (O 0 , C 0 ) = (∅, ∅). Then, let e 1 be the smallest edge adjacent to x and set

(O 1 , C 1 ) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ({e 1 }, ∅) if e 1 is open (∅, {e 1 }) if e 1 is closed.
By induction, for t ≥ 2, dene e t to be the smallest edge that is adjacent to an edge of O t-1 (if it exists) and 

(O t , C t ) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ (O t-1 ∪ {e t }, C t-1 ) if e t is open (O t-1 , C t-1 ∪ {e t }) if e t is
X t = t∧T k=1 p1 {ω(e k )=0} -(1 -p)1 {ω(e k )=1}
.

Notice that X T = h(C x ) and T ≤ deg(o) C x , since any vertex is adjacent to at most deg(o) edges in B m . Thus,

E p h(C x ) 2 C x 1+ε ≤ deg(o) 1+ε E p X 2 T T 1+ε . (23) 
In order to upperbound E p [X 2 T T 1+ε ], we use that (X t ) is a martingale with respect to the ltration generated by {ω(e t )} t . By rst applying Doob's maximal inequality and then using orthogonality of the increments, we obtain

E p [max k≤t X 2 k ] ≤ 4E p [X 2 t ] = 4 t k=1 E p [(X k -X k-1 ) 2 ] ≤ t. (24) 
We conclude the proof by decomposing the expectation in the right-hand side of (23) as

E p X 2 T T 1+ε ≤ i≥0 1 2 i(1+ε) E p max 2 i ≤t≤2 i+1 X 2 t 1 {2 i ≤T ≤2 i+1 } (24) ≤ i≥0 2 2 iε ≤ 2 1 -2 -ε .

Sharp threshold results via hypercontractivity

In this section, we establish a general sharp threshold result for connection events. Its proof involves the polynomial upper bound on the probability of Piv(1, n) from Section 4, together with an abstract result from the theory of Boolean functions. Given a set A ⊂ V , we write A s for its s-thickening. Formally, A s is dened to be the set of vertices at distance at most s from A.

Proposition 5.1. Let G be a transitive graph of polynomial growth with d ≥ 1. Let η > 0.

There is a constant c = c(η, G) > 0 such that for every p ∈ (η, 1 -η) and δ ∈ (0, 1 -η -p), the following holds. For every C ⊂ V (G), A, B ⊂ C and s ≥ 1, we have

P p [A C ← → B] > 1 (cs) δ 20 ⇒ P p+δ [A s Cs ← → B s ] > 1 - 1 (cs) δ 20 .
Remark 5.2. The rst application of an abstract sharp threshold result to percolation theory dates from the 2000's, in the paper [START_REF] Bollobás | The critical probability for random Voronoi percolation in the plane is 1/2[END_REF] computing the critical value for planar Voronoi percolation. Since then, it has become a standard tool to study or prove sharpness of the phase transition for percolation processes. Standard applications involve a certain increasing event on a torus which is translation-invariant, and for which the result of [START_REF] Kahn | The inuence of variables on Boolean functions[END_REF] ensures a sharp threshold phenomenon. Proposition 5.1 above is inspired by the works [START_REF] Duminil-Copin | A new computation of the critical point for the planar random-cluster model with q ≥ 1[END_REF] and [DKT] where abstract sharp threshold results are used directly on Z d , without relying on translation-invariant events on a torus. Let us briey expose the main diculty we have to overcome in the present paper. An important idea in the two works mentioned above is that the event E = {A C ← → B} is geometrically similar to its translate τ ⋅ E by a small vector, in the sense that A, B and C are close to their translates τ ⋅A, τ ⋅B and τ ⋅C respectively. This is true for Z d (and more generally for Cayley graphs of abelian groups), but not for general transitive graphs.

Proof. In the proof below, c 1 , c 2 , . . . denote positive constants that may depend on η and G but are independent of everything else. Without loss of generality, we may (and will) assume that A, B and C are nite. By [BKK + 92] and [Tal94, Corollary 1.2], there exists c 1 = c 1 (η) > 0 such that the following inequality holds for any increasing event A depending on nitely many edges:

e∈E P p [e is pivotal for A] ≥ c 1 P p [A](1 -P p [A])f p (A), (25) 
where

f p (A) = log 1 max e∈E P p [e is pivotal for A]
.

Using Russo's formula together with (25), we obtain

d dp log P p [A] 1 -P p [A] ≥ c 1 f p (A). (26) 
To prove the desired inequality, we will dene a sequence of nested and increasing

events E i such that {A C ← → B} ⊂ E i ⊂ {A s Cs ← → B s }.
The rst step will consist in nding a uniform lower bound for f p (E i ). We will do so by proving that the probability of any edge to be pivotal is uniformly small. Set r = 2⌊ √ s 2⌋. Without loss of generality, we may assume that s ≥ 4 and look for a suitable c in (0, 1 4), so that r > 0. For i ∈ {0, . . . , r -1},

consider the set D i = (A (i+1)r ∖ A ir ) ∪ (B (i+1)r ∖ B ir ), the event E i = {A ir C (i+1)r
← → B ir }, and

m i = max e⊂D i P p [e is a closed pivotal for E i ]. (27) 
Figure 5: The red path illustrates the event F i and the blue one F ′ i .

For every i, let e i be a xed edge that maximises the probability in ( 27) and dene F i to be the event {e i is a closed pivotal for E i }. We now x i, j ∈ {0, . . . , r -1} with i < j. First, let us assume that the event F i occurs. Then the edge e i is closed and its two endpoints are connected in C (i+1)r by disjoint open paths to A ir and B ir , respectively. This implies that there is an open path connecting A jr to B jr in C (i+1)r . Thus, F i ⊂ E j . On the other hand, if F j occurs, the fact that e j is closed and pivotal implies that there is no open path connecting A jr to B jr in C jr . Thus F j ⊂ E c j . This leads us to a key observation, which is that F i ∩ F j = ∅ for i < j. Therefore, we have

r-1 i=0 m i = r-1 i=0 P p [F i ] ≤ 1. ( 28 
)
Similarly, for i ∈ {0, . . . , r -1}, we can dene the set

D ′ i = C (i+1)r ∖ C ir and m ′ i = max e ′ ⊂D ′ i P p [e ′ is an open pivotal for E i ]. (29) 
For every i, let e ′ i be a xed edge that maximises the probability in (29) and dene F ′ i to be the event {e ′ i is an open pivotal for E i }. Using the same reasoning as before, we can prove that for i < j, we have

F ′ i ⊂ E i and F ′ j ⊂ E c i . Thus, F ′ i ∩ F ′ j = ∅. This, together with (28), implies that ∑ r-1 i=0 m i + m ′ i ≤ 2.
From this, it follows that we can x a set I with I ≥ r 2 and such that, for all i ∈ I, we have max{m i , m ′ i } ≤ 4 r . Since the status of an edge is independent of the event that it is pivotal, we obtain

max e⊂D i ∪D ′ i P p [e is pivotal for E i ] ≤ max 1 p , 1 1 -p ⋅ 4 r ≤ 4 ηr . ( 30 
)
Pick any i ∈ I. Let e be an edge in C s such that e

⊂ D i ∪ D ′ i . If e ⊂ A ir ∪ B ir ∪ (C s ∖ C (i+1)r ) then P p [e is pivotal for E i ] is equal to 0.
Otherwise, the r-neighbourhood of e lies in C (i+1)r . By Proposition 4.1, we get

P p [e is closed pivotal for E i ] ≤ P p [Piv(1, r)] ≤ 1 c 2 s 1 5 .
Combined with (30), this means that for all i ∈ I,

max e⊂Cs P p [e is a pivotal for E i ] ≤ 1 c 3 s 1 5 .
Using this, we obtain the following inequality:

r i=1 f p (E i ) ≥ i∈I f p (E i ) ≥ r 2 log(c 3 s 1 5 ). (31) 
Now, we can use ( 26) for all the events E i , where i ∈ {1, . . . , r}. Integrating between p and p + δ and using (31), we get

r i=1 log P p+δ [E i ] 1 -P p+δ [E i ] ⋅ 1 -P p [E i ] P p [E i ] ≥ δr 2 log(c 3 s 1 5 ).
Therefore, there exists an index i such that

log P p+δ [E i ] 1 -P p+δ [E i ] ⋅ 1 -P p [E i ] P p [E i ] ≥ δ 2 log(c 3 s 1 5 ), which implies 1 (1 -P p+δ [E i ])P p [E i ] ≥ P p+δ [E i ] 1 -P p+δ [E i ] ⋅ 1 -P p [E i ] P p [E i ] ≥ (c 4 s) δ 10 . Since {A C ← → B} ⊂ E i ⊂ {A s Cs ← → B s }, we have P p+δ [A s Cs ← → B s ] ≥ P p+δ [E i ] ≥ 1 - 1 P p [E i ](c 4 s) δ 10 ≥ 1 - 1 P p [A C ← → B](c 4 s) δ 10
. Proposition 5.1 follows.

Corollary 5.3. Let G be a transitive graph of polynomial growth with d ≥ 2. Let p > p c .

There exist δ > 0 and c > 0 such that, for all s ≥ 1, we have

P p [B s ← → ∞] ≥ 1 - 1 (cs) δ . Proof. Let δ > 0 be such that p > p c + 20δ. We know that P p-20δ [o ← → ∞] > 0. By Proposition 5.1 applied to A = {o}, B = ∂B n and C = V (G), we have P p [B s ← → ∂B n-s ] > 1 -(cs) -δ ,
where c is a positive constant independent of s and n. The proof follows by letting n tend to innity.

6

A priori bound on the uniqueness zone

The goal of this section is to prove Proposition 6.1 below.

Proposition 6.1. Let G be a transitive graph of polynomial growth. Let p > p c . There are some χ ∈ (0, 1) and c > 0 such that the following holds: for every q ∈ [p, 1], for every n ≥ 1, we have

P q [Piv(s(n), n)] ≤ cn -1 4 , (32) 
where s(n) = exp((log n) χ ).

We say that the annulus of inner radius s(n) and outer radius n is a uniqueness zone because P q [U (s(n), n)] = 1 -P q [Piv(s(n), n)] converges to 1 actually at a controlled speed. The size of this uniqueness zone will in fact determine the region in which we are able to glue clusters. This will lead to the important notion of seeds, which will be instrumental in Section 7.2.

In order to prove Proposition 6.1, we will use a bootstrap argument, where the iterations consist in alternating uses of Lemma 6.2 and Lemma 6.3.

The rst lemma, directly adapted from [Cer15, Lemma 7.2], provides an upper bound on the probability of Piv(u, n) provided some uniform lower bound on the two-point function restricted to a ball. Conversely, the second lemma deduces some lower bound on the two-point function in a ball, provided some upper bounds on the probability of Piv(u, n).

From there, the proof goes as follows. Proposition 4.1 and Lemma 6.2 provide us with a good upper bound on the probability of Piv(u, n), for some xed and large (u, n).

Then Lemma 6.3 provides us with a good lower bound on the two-point function at the scale above. Plugging this estimate in Lemma 6.2 yields a good upper bound on the probability of Piv(u, n) at this larger scale. Repeated inductively, this procedure leads to the quantitative estimate (32). Lemma 6.2. For all p ∈ [0, 1] and 1 < u ≤ m ≤ n 2, we have m (a,b) .

P p [Piv(u, n)] ≤ P p [Piv(1, n 2)] ⋅ S u 2 B m min a,b∈Su τ p,
Proof. Let us x u, m and n as in the statement of Lemma 6.2. Given a vertex a ∈ B n , we denote by C a the cluster of a in B n . Given a second vertex b ∈ B n , dene C b a to be the family of all connected subsets of B n that contain a, do not contain b, and intersect ∂B n .

By the union bound, we have

P p [Piv(u, n)] ≤ a,b∈Su P p [a ← → ∂B n , b Bn∖Ca ← → ∂B n ] = a,b∈Su C∈C b a P p [b Bn∖C ← → ∂B n ]P p [C a = C],
where we used that the two last events are independent, since they depend on disjoint 

P p [b Bn∖C ← → ∂B n ] ≤ P p [b Bn∖C ← → ∂B n , b Bm ← → ∂ out C] P p [b Bm ← → ∂ out C] ,
where 

∂
C∈C b a P p [b Bn∖C ← → ∂B n ]P p [C a = C] ≤ 1 τ p,m (a, b) C∈C b a P p [C a = C, b Bn∖C ← → ∂B n , b Bm → ∂ out C] = 1 τ p,m (a, b) P p [a ← → ∂B n , b Bn∖Ca ← → ∂B n , b Bm ← → ∂ out C a ].
When the event in the last equation occurs, we can nd a closed edge e = {x, y} ∈ ∂C a such that x Bn∖Ca ← → ∂B n and y Ca ← → ∂B n . Hence, when this event occurs, so does Piv x (1, n -m):

see Figure 6. Therefore, by the union bound, we have

P p [a ← → ∂B n , b Bn∖Ca ← → ∂B n , b Bm ← → ∂ out C a ] ≤ B m P p [Piv(1, n 2)].
Putting all the equations together, we get

P p [Piv(u, n)] ≤ a,b∈Su P p [Piv(1, n 2)] B m τ p,m (a, b) ≤ P p [Piv(1, n 2)] ⋅ S u 2 B m min a,b∈Su τ p,m (a, b)
. Lemma 6.3. Let p > p c . There exist δ > 0 and u 0 ≥ 1 such that for every u ≥ u 0 and every m ≥ u 1+δ , we have

Figure 7: The event {a ← → ∞, b ← → ∞, B u 2 (x i ) ← → ∞
P p [Piv(u, m)] ≤ δ u δ ⇒ ∀a, b ∈ B u 1+δ τ p,2m (a, b) ≥ δ.
Proof. Take c and δ to satisfy the conclusion of Corollary 5.3. We may further assume that δ is small enough, so that the following inequality holds θ(p) 2 4 -8(2 c) δ ≥ 9δ.

(

) 33 
Let a, b ∈ B u 1+δ . We can nd vertices x 0 = a, x 1 , . . . ,

x k = b in B m such that k ≤ 2 ⌊u 1+δ ⌋ ⌊u 2⌋ ≤ 8u δ and ∀i < k, d(x i , x i+1 ) ≤ u 2. Assume that a ← → ∞, b ← → ∞, and B u 2 (x i ) ← → ∞ for all i ∈ 1, k -1 .
Then there are two possibilities: either a B 2m ← → b, or there is some i ∈ 1, k such that Piv x i (u, m) occurs. See Figure 7. Therefore, by the union bound, we get

P p [a ← → ∞, b ← → ∞, B u 2 (x i ) ← → ∞ for all i] ≤ τ p,2m (a, b) + k i=1 P p [Piv x i (u, m)].
By our choice of c and δ, for every i, 

we have P p [B u 2 (x i ) ← → ∞] ≥ 1 -1 (cu 2) δ .
τ p,2m (a, b) ≥ P p [a ← → ∞]P p [b ← → ∞](1 -(cu 2) -δ ) 8u δ -kP p [Piv(u, m)] ≥ θ(p) 2 (1 -(cu 2) -δ ) 8u δ -8u δ P p [Piv(u, m)]. Assuming that u ≥ u 0 ∶= 2 1+1 δ c and that P p [Piv(u, m)] ≤ δ u δ , we get τ p,2m (a, b) ≥ θ(p) 2 4 -8(2 c) δ -8δ.
By (33), the proof is complete.

We are now ready to prove Proposition 6.1, following the strategy described at the beginning of the section.

Proof of Proposition 6.1. Let p > p c . Let δ ∈ (0, 1 4) and u 0 ≥ 2 be as in Lemma 6.3. By Lemma 6.2, Proposition 4.1 and the polynomial growth of G, we can x c 1 = c 1 (G, p) ≥ 1 such that for every 1 < u ≤ m ≤ n 2, we have

∀q ≥ p P q [Piv(u, n)] ≤ c 1 u 2d m d n -1 3 min a,b∈Su τ p,m (a, b) . (34) 
Applying the inequality above to u = m = u 0 allows us to choose n 0 ≥ max(2(c

1 δ 2 ) 1 d , u 1+δ 0 ) such that ∀q ≥ p P q [Piv(u 0 , n 0 )] ≤ δ n 1 4 0 .
Consider the sequences (u k ) and (n k ) dened by u k+1 = u 1+δ k , n k+1 = n 50d k for every k ≥ 0. By induction, we will prove that for every k ≥ 0,

∀q ≥ p P q [Piv(u k , n k )] ≤ δ n 1 4 k . ( 35 
)
This will conclude the proof of (32) for any χ < log(1 + δ) log(50d) along the sequence (n k ). The statement for general n follows by interpolation.

Let k ≥ 0 and assume that (35) holds. Since n

1 4 k ≥ u δ k , the quantity P p [Piv(u k , n k )] is at most δ u δ k . Applying Lemma 6.3 to u = u k and m = n k ≥ u 1+δ k gives ∀a, b ∈ B u k+1 τ p,2n k (a, b) ≥ δ.
Equation (34) applied to u = u k+1 , m = 2n k and n = n k+1 nally gives

∀q ≥ p P q [Piv(u k+1 , n k+1 )] ≤ c 1 u 2d k+1 (2n k ) d n -1 3 k+1 δ ≤ δ n 1 4 k+1
, where we used

u k+1 = u 1+δ k ≤ n k and n k ≥ n 0 ≥ 2(c 1 δ 2 ) 1 d in the last inequality.
The bound on the uniqueness zone gives us the following bound on the corridor function, which will be an important ingredient in the nal proof of Proposition 1.3.

Corollary 6.4. Let G be a graph of polynomial growth, let p > p c . Let {s(n)} n≥1 be a sequence as in Proposition 6.1. Then, for every n large enough, we have

κ p (s(n), n) ≥ θ(p) 2 2.
Proof. Notice that x ∈ B s(n) is connected to the origin by an open path in B n if the following conditions hold:

both o and x are connected to ∂B n and there is a unique cluster crossing from s(n) to n.

By the HarrisFKG Inequality and the union bound, we have

∀x ∈ B s(n) P p [o Bn ←→ x] ≥ θ(p) 2 -P p [Piv(s(n), n)] > θ(p) 2 2,
where the last inequality holds if n is large enough, by Proposition 6.1. Since any corridor of length s(n) and thickness n contains the ball B n , the equation above implies κ p (s(n), n) > θ(p) 2 2 for every n large enough.

Corollary 6.5. Let G be a transitive graph of polynomial growth. For all p > p c , δ ∈ (0, 1 -p), and k ≥ 1, there exists n 0 ≥ 1 such that for every n ≥ m ≥ n 0 ,

κ p (2m, n) > 1 log k m ⇒ κ p+δ (2m log k m, 2n) ≥ θ(p) 2 3.
The proof of Corollary 6.5 is analogous to the proof of Lemma 6.3. However, here, we need to apply Proposition 6.1 to get a quantitative estimate.

Proof. Let p, δ and k be as stated in Corollary 6.5, and assume that κ p (2m, n) ≥ log -k m.

Let γ be a path of length at most 2m log k m starting at x and ending at y. Consider the sequence {s(j)}, where s(j) is dened as in Proposition 6.1 at the parameter p. If the distance between x and y is smaller than s(m), Corollary 6.4 directly concludes that x and y are connected in B n with probability at least θ(p) 2 3 (because s(m) ≤ s(n)). We can therefore focus on the case when x and y are at distance at least s(m). In that case, we

may nd M ≤ 2 log k m points x i ∈ γ such that x 1 = x, x M = y and s(m) 2 ≤ d(x i , x i+1 ) ≤ 2m.
Let C be the corridor of thickness n around γ. Set t = s(⌊s(m) 2⌋). By our assumption on κ p (2m, n) and by Proposition 5.1, we have for m large enough that s ≤ m 2 and

P p+δ B t (x i ) C ← → B t (x i+1 ) ≥ 1 - 1 (ct) δ 20 ≥ 1 - 1 log k m for every i. If we assume that x ← → ∞, y ← → ∞ and B t (x i ) C ← → B t (x i+1
) for every i, then either x C ← → y or there exists i such that Piv x i (t, s(m) 3) happens. Also, Proposition 6.1 enables us to make P p+δ [Piv x i (t, s(m) 3)] suciently small. As in the proof of Lemma 6.3, we conclude by using the HarrisFKG Inequality, the union bound, the transitivity of G and the invariance of P p+δ under graph automorphisms.

Sharp threshold results via Hamming distance

This section is devoted to the proof of the following proposition.

Proposition 7.1. Let G be a transitive graph of polynomial growth. Let p > p c . There exists n 0 such that for every n ≥ m ≥ n 0 ,

κ p (m, 2n) ≤ θ(p) 2 2 ⇒ P p [B m ← → ∂B n ] ≥ 1 -e -log 3 n .
The statement above may seem slightly counter-intuitive at a rst look: we use some negative information (the function κ p is small) to obtain a large connection probability.

Let us sketch the proof, which will be detailed in Section 7.3, and explain how this negative information can be used to our advantage.

Due to the uniqueness of the innite cluster and the HarrisFKG Inequality, the twopoint function in the whole graph is uniformly lower bounded by θ(p) 2 . Assume that when we restrict the connections to a box, we get something substantially smaller, in the sense that κ p (m, 2n) < θ(p) 2 2.

By reducing the parameter from p to p -δ > p c and using the sharp threshold results of Section 7.1 below, we strengthen this bound as follows. For k = log 10 (n), we show that two points x and y at distance ≃ m k of each other always satisfy

P p-δ [x B 2n ← → y] ≤ 1 k . (36) 
Now, consider k points in B m at distance at least m k of each other. On the one hand, a proportion at least θ(p -δ) of them are connected to the boundary of B 2n . On the other hand, the estimate (36) implies that all these points typically belong to dierent clusters of B 2n , which forces the paths that connect them to ∂B n to be disjoint. It is at this point that our negative assumption on κ p , combined with the positive assumption that p > p c , yields a positive statement regarding connectivity of our percolation process:

the expected number of disjoint paths from B m to ∂B 2n is ≳ k. From this estimate, a well-known dierential inequality involving the Hamming distance on the hypercube guarantees that, at parameter p = (p -δ) + δ, we have P p [B m ← → ∂B 2n ] ≥ 1 -e -δk . This concludes the proof.

In Section 7.1, we present this new Hamming distance argument in a more general framework, since we believe it can have further applications.

Connectivity bounds via Hamming distance

In the current Section 7.1, contrary to elsewhere in the paper, G denotes any nite connected graph with vertex set V (G) and edge set E(G). Besides, p is arbitrary in [0, 1] and P p stands for the Bernoulli bond percolation measure of parameter p on {0,

1} E(G) . Proposition 7.2. Let A, B ⊂ V (G). Let p ∈ [0, 1] and θ > 0. Assume that min x∈A P p [x ← → B] ≥ θ ≥ 2 A ⋅ max x,y∈A x≠y P p [x ← → y]. (37) 
Then, for every δ ∈ (0, 1 -p], we have

P p+δ [A ← → B] ≥ 1 -e -2δθ A .
Remark 7.3. The proposition above also applies to FK-percolation measures with cluster weight q ≥ 1, and more generally to measures for which the exponential steepness property of [Gri06, Section 2.5] holds.

Before proving Proposition 7.2, we recall a general inequality for monotone events.

The Hamming distance from a conguration ω to an event A is dened by

H A (ω) = inf{H(ω, ω ′ ) ∶ ω ′ ∈ A}, where H(ω, ω ′ ) = ∑ e∈E(G) ω e -ω ′
e is the usual Hamming distance on the hypercube {0, 1} E(G) . When A is decreasing, one can interpret H A (ω) as the minimal number of edges in ω that need to be closed for the event A to occur. Furthermore, the Hamming distance provides exponential bounds on the variation of P p [A] relative to p (see [Gri06, Theorem 2.53]): for every decreasing event A and every p ∈ (0, 1), we have

d dp -log P p [A] ≥ 4E p [H A ].
By integrating the equation above and using that H A is increasing, we get that for every p ∈ [0, 1] and every δ ∈ [0, 1 -p],

P p+δ [A] ≤ e -4δEp[H A ] P p [A] ≤ e -4δEp[H A ] . (38) 
Proof of Proposition 7.2. Let A, B ⊂ V (G), let p ∈ [0, 1] and δ ∈ [0, 1 -p]. Applying (38) to the decreasing event A = {A ←→ B}, we get

P p+δ [A ← → B] ≥ 1 -e -4δEp[H A ] . (39) 
The Hamming distance H A is clearly at least4 the maximal number of disjoint open paths from A to B. In particular, H A is larger than the number of disjoint clusters intersecting both A and B. By inclusion-exclusion, this number of crossing clusters can be lower bounded by

x∈A 1[x ← → B] - x,y∈A x≠y 1[x ← → y].
Fixing θ as in (37) and taking the expectation above, we get

E p [H A ] ≥ x∈A P p [x ← → B] - x,y∈A x≠y P p [x ← → y] ≥ θ A 2.
Plugging the estimate above in (39) completes the proof.

Seeds and two-seed function

The notation G now recovers its initial meaning and denotes once again a transitive graph of polynomial growth with d ≥ 2. In this section, we x p > p c . Let χ = χ(p) ∈ (0, 1) be as in Proposition 6.1. For every n, we dene

σ(n) = exp(log χ 3 n) and t(n) = exp(log χ 2 n).
For every positive integer n and every vertex x, set

S n = B σ(n) and S n (x) = B σ(n) (x).
Following the terminology introduced by Grimmett and Marstrand [START_REF] Grimmett | The supercritical phase of percolation is well behaved[END_REF], we call S n (x) the seed of x. An important property of seeds is that they are connected to innity with high probability. For every n ≥ 1, dene ε n = 1 log 10 n .

Since σ(n) is asymptotically larger than arbitrarily large powers of log n, Corollary 5.3 implies that, for every n large enough, we have

P p [S n ← → ∞] ≥ 1 -1 100 ε n .
Another important property of seeds is that they can be used to glue clusters. Intuitively, if two large clusters of B n touch a certain seed S n (x), then the local uniqueness around S n (x) implies that they must be connected within B n which means that the two clusters are equal. Formally, we will use the following upper bound on the probability that two distinct clusters reach a xed seed, provided by Proposition 6.1. For every n large enough we have

P p [Piv(σ(n), t(n))] ≤ 1 100 ε n . (40) 
This follows from Proposition 6.1 together with the observations that σ(n) = exp(log χ (t(n)) and c ⋅ t(n) -1 4 ≤ 1 100 ε n for n large enough. Similarly, we also have

P p [Piv(3t(n), n 2)] ≤ 1 100 ε n , (41) 
using that 3t(n) ≤ exp(log χ (n 2)) for n large.

Remark 7.4. In other works, seed may refer to other constructions that guarantee a high probability of connection to innity and that can be used to glue clusters. In [START_REF] Grimmett | The supercritical phase of percolation is well behaved[END_REF], this is done by dening a seed to be a large fully open box. In [START_REF] Martineau | Locality of percolation for Abelian Cayley graphs[END_REF], one takes advantage of the fact that if an exploration reaches some vertex, then there is a long open path leading to it in particular, see [START_REF] Martineau | Locality of percolation for Abelian Cayley graphs[END_REF]Lemma 3.6].

We dene the two-seed function by

τ p,n (x, y) = P p [S n (x) Bn ←→ S n (y)]
for every x, y ∈ B n . Notice that for n large enough, we have τ p,n (x, y) = 1 whenever x and y are neighbours in B n . As we will prove in Lemma 7.6, the two-seed function shares some features with the standard two-point function. One main advantage of replacing points by seeds is that we can make use of the following sharp threshold phenomenon.

Lemma 7.5. Let δ ∈ (0, p -p c ). For every n large enough, for every x, y ∈ B n , we have

P p-δ [x Bn ←→ y] ≥ ε 2n ⇒ τ p,2n (x, y) ≥ 1 -ε 2n .
Proof. It is a direct consequence of Proposition 5.1, together with the observation that for all δ > 0, c > 0, for every n large enough, we have (cσ(2n)) δ 20 ≥ ε 2n .

Lemma 7.6. For every n large enough, for all x, y, z ∈ B n 2 , we have τ p,n (x, z) ≥ τ p,n (x, y)τ p,n (y, z) -ε n ,

P p [x Bn ←→ y] ≥ θ(p) 2 ⋅ τ p,n (x, y) -ε n . (42) 
Proof. We begin with the proof of (42). Without loss of generality, we may and will assume that d(x, y) ≥ d(y, z). We distinguish three dierent cases. For readability, we drop the indices p and n from the notation τ p,n in this proof.

Case 1: d(x, y) ≥ d(y, z) ≥ 2t(n).

By the HarrisFKG Inequality, we have τ (x, y)τ (y, z) ≤ P p [S n (x)

Bn ←→ S n (y), S n (y)

Bn ←→ S n (z)].
When there exist a cluster connecting S n (x) to S n (y) and a cluster connecting S n (y) to S n (z), then either these two clusters are connected together within B t(n) (y), or we observe two disjoint clusters crossing from S n (y) to the boundary of B t(n) (y).

Therefore, by the union bound τ (x, y)τ (y, z) ≤ τ (x, z)

+ P p [Piv(σ(n), t(n))] (40) 
≤ τ (x, z) + ε n .

Case 2: d(x, y) ≥ 2t(n) > d(y, z).

The probability that the seeds S n (z) and S n (y) are both connected to innity is larger than 1 -1 50 ε n . Therefore, we have

τ (x, y) -1 50 ε n ≤ P p [S n (x) Bn ←→ S n (y), S n (y) ← → ∂B n , S n (z) ← → ∂B n ].
If both S n (y) and S n (z) are connected to ∂B n , then either there exists a cluster in B n that intersects S n (y), S n (z) and ∂B n , or there exist two disjoint clusters crossing from B 3t(n) (y) to ∂B n 2 (y). Therefore, using the clusters inside B t(n) (y) as in Case 1, we have

τ (x, y)-1 50 ε n ≤ τ (x, z)+P p [Piv(σ(n), t(n))]+P p [Piv(3t(n), n 2)] (40)+(41) ≤ τ (x, z)+ 1 50 ε n , which implies τ (x, z) ≥ τ (x, y) -ε n .
Case 3: 2t(n) > d(x, y) ≥ d(y, z).

In this case, we use that 1 -

1 50 ε n ≤ P p [S n (x) ← → ∂B n , S n (z) ← → ∂B n ].
Reasoning as in Case 2, we get

1 -1 50 ε n ≤ τ (x, z) + P p [Piv(3t(n), n 2)] (41) 
≤ τ (x, z) + 1 100 ε n , If the event estimated on the right-hand side occurs, then either x is connected to y or there is no local uniqueness around x or around y. Therefore,

which implies τ (x, z) ≥ 1 -ε n .
θ(p) 2 τ (x, y) ≤ P p [x Bn ←→ y] + 2P p [Piv(σ(n), t(n))] (40) 
≤ P p [x

Bn

←→ y] + ε n .

If d(x, y) < 2t(n), using the estimate (41), we directly get that P p [x

Bn ←→ y] ≥ θ(p) 2 -ε n ≥ θ(p) 2 τ (x, y) -ε n .
Lemma 7.7. For every n large enough, the following holds. For every u ∈ B n 2 satisfying τ p,n (o, u) ≤ 2 3, there exists a set A ⊂ B d(o,u) of cardinality at least log 4 n such that ∀x, y ∈ A τ p,n (x, y) ≤ 1 -ε n .

Remark 7.8. When the underlying graph G is the hypercubic lattice Z d , the lemma above can be easily proved using the symmetries of the graph.

Proof. Let n be a large integer. Let u ∈ B n 2 and x γ some geodesic path from the origin o to u. We will build the set A as a subset of the segment I = [o, u], in a way reminiscent of the construction of the triadic Cantor set. We construct two suitable subsegments I 0 = [a 0 , b 0 ] and I 1 = [a 1 , b 1 ], such that the two-seed function τ (x, y), x ∈ I 0 , y ∈ I 1 is well-controlled and both τ (a 0 , b 0 ) and τ (a 1 , b 1 ) have a nice upper bound. Then, we repeat this splitting operation in each of the two segments. After k steps, we construct 2 k intervals with a well-controlled two-seed functions between each segments. The proof is then concluded by choosing a suitable number of steps. The splitting operation of an interval at one step relies on the following claim.

For convenience, as in the proof of Lemma 7.6, we drop the indices p and n from the notation τ p,n and ε n . Proof of Claim 7.9. First, notice that if α ≥ 1, then the claim is straightforward: taking I 1 and I 2 any two (possibly equal) subsegments of I works. We therefore assume that α < 1.

Observe that, provided n is large enough, x ↦ τ (a, x) is ε-Lipschitz on B n 2 . This follows from Lemma 7.6 and the fact that for any two adjacent vertices x and y in B n 2 , we have τ (x, y) = 1. Since τ (a, a) = 1 and τ (a, b) ≤ α < α 1 3 , by the discrete Intermediate Value Theorem for Lipschitz functions, we can dene a ′ ∈ [a, b] satisfying α 1 3 ≥ τ (a, a ′ ) ≥ α 1 3 -ε. By choosing a ′ to be the closest vertex to a with this property, we additionally have Using the inequality α ≥ 1 2 and recalling that both τ (a, x) and τ (y, b) are larger than α 1 3 -ε, we obtain τ (x, y)

∀x ∈ [a, a ′ ] τ (a, x) ≥ α 1 3 -ε. Similarly, we take b ′ ∈ [a, b] such that τ (b ′ , b) ≤ α 1 3 and ∀x ∈ [b ′ , b] τ (x, b) ≥ α 1 3 -ε.
≤ α 1 3 + 2α -2 3 ε + 2ε ≤ α 1 3 + 6ε.
Let us prove by induction that for every k ≥ 0, we can nd a family of segments I 1 , . . . , I 2 k that satises the following conditions: for i ≠ j, for any x ∈ I i and any y in I j , we have τ (x, y) ≤ (2 3) 1 3 k + 6kε, for any segment [a, b] of the family, we have τ (a, b) ≤ (2 3) 1 3 k . For k = 0, taking [o, u] works, by hypothesis. Let k ≥ 0 be such that the property holds at rank k, and let us prove that the property holds at rank k + 1. Let us take I 1 , . . . , I 2 k as above. For every i, we apply Claim 7.9 to I i , which yields two subsegments I

(1) i and

I (2) i of I i . For x ∈ I (1) i and y ∈ I (2) i , we have τ (x, y) ≤ (2 3) 1 3 k + 6kε 1 3 + 6ε ≤ (2 3) 1 3 k+1 + 6(k + 1)ε. Likewise, if [a, b] denotes either I (1) i or I (2) i , we have τ (a, b) ≤ (2 3) 1 3 k+1
. It remains to check that if i ≠ j, then for every x ∈ I (0) i ∪ I

(1) i and every y ∈ I (0) j ∪ I

(1) j , we have τ (x, y) ≤ (2 3) 1 3 k+1 + 6(k + 1)ε. But this is clear: since x ∈ I i , y ∈ I j and i ≠ j, we have τ (x, y) ≤ (2 3) 1 3 k + 6kε ≤ (2 3) 1 3 k+1 + 6(k + 1)ε.

The result thus holds for all k.

Let us use this result for k = ⌈8 log log n⌉, which we will handle as 8 log log n for readability. Let I 1 , . . . , I 2 k be as above for this specic value of k. Let x 1 ∈ I 1 , . . . , x 2 k ∈ I 2 k . Given i ≠ j, we have τ (x i , x j ) ≤ (2 3) 1 3 k + 6kε n ≤ e log(2 3) log(n) 8 log 3 + 48 log log n log 10 n .

Since 8 log(3) < 10, taking n large enough guarantees that τ (x i , x j ) ≤ 1-ε n 2 . In particular, we have τ (x i , x j ) < 1, hence x i ≠ x j . We set A = {x 1 , . . . , x 2 k }. It remains to check that A contains at least log 4 n elements, which is straightforward as 2 k = (log n) 8 log 2 and 8 log 2 > 4.

Proof of Proposition 7.1

Assume that κ p+δ (m, 2n) ≤ θ(p) 2 2. We can thus take u ∈ B m such that

P p+δ [o B 2n ← → u] ≤ θ(p) 2 2.
By Lemma 7.6, this implies that τ p+δ,2n (o, u) ≤ 1 2 + ε 2n θ(p) 2 ≤ 2 3 , provided n is taken large enough. By Lemma 7.7, we can nd a set A ⊂ B m satisfying log 4 n ≤ A ≤ log 5 n such that for every x, y ∈ A, we have τ p+δ,2n (x, y) ≤ 1 -ε 2n .

In words, the inequality above states that the two-seed function is not too close to 1 for every pair of points of A. 

P p+δ [A ← → ∂B n ] ≥ 1 -e -2δθ(p) A ,
which concludes the proof since A ⊂ B m and A ≥ log 4 n.

Uniqueness via sprinkling

In this section, we establish the following proposition, which revisits the techniques of [START_REF] Benjamini | Homogenization via sprinkling[END_REF]. Recall that the coupled measure P and the sprinkled uniqueness event U p,q (m, n)

are dened in Section 1.4.

Proposition 8.1. Let G be a transitive graph of polynomial growth with d ≥ 2. Let R ≥ 1 be so that the conclusion of Lemma 2.1 holds. Let 0 ≤ p ≤ 1. Let η, δ > 0 be such that p+δ ≤ 1. Let (k, m, n) be such that R ≤ k ≤ m ≤ n and n ≥ log B 2n . We make the following two assumptions:

(a) P p [B k ← → ∂B 6n ] ≥ 1 -η B 2n , (b) ∀x, y ∈ B 3k P p [x Bm ← → y] ≥ δ.
Then,

P[U p,p+δ (n, 4n)] ≥ 1 -η -100 B 2n 2 exp - δ 3 n 8m log B 2n )
.

In this section, we consider the family of coupled conguration (ω p ) p∈[0,1] under the measure P. Our goal is to show that, with high probability, all the p-clusters crossing from B n to ∂B 4n are (p + δ)-connected to each other within the annulus A n,2n . In this section and contrary to the connected annuli of Section 3, the annulus A r,s is dened as the set of all edges e ⊂ B 4n that intersect B s but not B r . If we achieve our goal, the crossing p-clusters will a fortiori get (p + δ)-connected within the larger set B 4n .

For every r ≤ 2n, consider the percolation conguration Y r in B 4n dened as follows: for every edge e ⊂ B 4n ,

Y r (e) ∶= ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ω p (e)1 {e←→ p ∂B 4n } if e intersects B r ω p+δ (e) if e ∈ A r,4n .
The conguration Y r can be explored and understood in the following manner. First, we perform the classical exploration from ∂B 4n of all the ω p -clusters touching it by doing so, we also reveal the (closed) edges at the boundary of these clusters. Then, we further reveal the ω p+δ -status of every single edge included in A r,4n . Conditionally on Y r , the status of the edges in B r are independent. Besides, for any such e that does not already satisfy Y r (e) = 1, we have:

P[ω p+δ = 1 Y r ] ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ≥ δ if e is adjacent to some e ′ satisfying Y r (e ′ ) = 1, = p + δ otherwise.
For every conguration ω in B 4n and every r ≤ 2n, dene C r (ω) to be the set of all the clusters of ω intersecting both B r and ∂B 4n . We further set N r (ω) = C r (ω) .

We aim at proving that with high probability, we have N n (Y n ) = 1. We will do so by making use of the following event, which roughly states that large clusters grow from everywhere in B 2n : We will prove that N n (Y n ) = 1 holds with high probability by proving that E holds with high probability and that, conditionally on this event, N n (Y n ) = 1 holds with high probability.

E = {∀x ∈ B 2n B k (x) ←→ p ∂B 4n }.
This will be done by repeatedly using the following lemma. Lemma 8.2 guarantees that sprinkling a layer of thickness ≃ n log B 2n is very likely to divide the number of crossing clusters by a factor at least 2 except if this number is already 1. Iterating this process ≃ log B 2n times inwards (going from the sphere of radius 2n to that of radius n) will yield N n (Y n ) = 1 with high probability.

Lemma 8.2. For every r, s ∈ [n, 2n] such that r ≤ s, we have P

P[E ∩ N r (Y r ) > max(1, 1 2 N s (Y s )) ] ≤ 25 B 2n exp - δ 3 (s -r) 3m . ( 46 
[E ∩ N r (Y r ) > max(1, 1 2 N s (Y s )) ] = ξ admissible P ξ [N r (ξ + Z) > max(1, 1 2 N s (ξ))]P[Y s = ξ].
From now on, we x an admissible conguration ξ and the proof will be complete once we show

P ξ [N r (ξ + Z) > max(1, 1 2 N s (ξ))] ≤ 25 B 2n exp - δ 3 (s -r) 3m . (47) 
For every j ∈ J, we will use the set S ∞ j introduced on page 12. Notice that J ≥ s-r 3m -3 and that C intersects every S ∞ j , by Lemma 2.6. Dene C to be the union of all clusters of C s (ξ) ∖ {C}. We claim that for every j ∈ J, there exists x j ∈ S j such that d(x j , C) ≤ 3k and d(x j , C) ≤ 3k.

To prove this, consider a path γ from some vertex x ∈ C ∩ S j to another vertex in C ∩ S j which stays in the R-neighbourhood of S j (such path exists by Lemma 2.1). If x is at distance k or less from C, we simply choose x j = x and we are done. Otherwise, consider z ∈ γ at distance exactly k + 1 from C. Since B k (z) is connected to ∂B 4n in ξ (because ξ is admissible) and B k (z) ∩ C = ∅, we must have B k (z) ∩ C ≠ ∅. It now suces to choose x j ∈ S j ∩ B R (z), use the triangle inequality and remember that R ≤ k to get the claim.

For every j ∈ J, x some x j as above and introduce the event

E j = C Bm(x j ) ← → C in ξ + Z .
By Hypothesis (b) and the standard sprinkling argument, we have

P[E j ] ≥ δ 2 min x,y∈B 3k (x j ) P p [x Bm(x j ) ← → y] ≥ δ 3 .
As soon as one of the event E j occurs, the cluster C gets connected to another cluster of C s (ξ) in the conguration ξ + Z. Since the events E j are independent, we get P ξ [C is not merged] ≤ (1 -δ 3 ) J ≤ exp 3δ 3 -δ 3 (s -r) 3m ≤ 25 exp δ 3 (s -r) 3m .

Proof of Proposition 8.1. We wish to prove that

P[N n (Y n ) > 1] ≤ η + 100 B 2n 2 exp - δ 3 n 8m log B 2n )
.

First, we have

P[N n (Y n ) > 1] ≤ P[E c ] + P[E ∩ {N n (Y n ) > 1}]. (49) 
The rst term on the right hand side can be bounded as follows, using the union bound, automorphism-invariance and Hypothesis (a): Choosing i = ⌊n ∆⌋ and observing that B 2n ≤ 2 i , we obtain

P[E c ] ≤
P[E ∩ {N n (Y n ) > 1] ≤ 25 × 4 × B 2n log B 2n exp - δ 3 ∆ 3m . ( 51 
)
Plugging the two bounds (50) and ( 51) in (49) concludes the proof. 9

Proof of Proposition 1.3

Our goal is to prove that there exists a unique large cluster in large balls with high probability: for every n large enough, we want to show that P p [B n 10 ← → ∂B n , U (n 5, n 2)] ≥ 1 -e -√ n .

(52)

Let us start with two reductions of the problem. (53)

Second reduction: a lower bond on the two-point function in short corridors.

In Section 5, we proved that crossing probabilities always undergo a sharp threshold phenomenon: the probabilities jump rapidly from 0 to 1 as p varies. An important consequence of this phenomenon is quantied in Corollary 6.5: a lower bound on the two-point function in a corridor at parameter p implies a lower bound in a longer corridor at a slightly larger parameter p + δ. Uniqueness via sprinkling We want to apply Proposition 8.1 along a certain innite sequence of good scales, which we now dene. A scale n is said to be good if α(n) ≤ log 4 (n) ⋅ α(⌈n log 4 n⌉).

(59)

It is elementary to check that there exist innitely many good scales. Indeed, if (59) fails for every n large enough, then we have lim sup α(n) n > 0, which contradicts α(n) ≤ n log 4 n. Let n ≥ n 2 be a good scale. Set k = α(n) and m = ⌈n log 4 n⌉. By (57) and monotonicity, we have P p 0 +δ [B k ← → ∂B n 2 ] ≥ 1 -e -log 3 (n 2) .

(60) Furthermore, Equation (58) applied to m gives κ p 0 +δ (α(m) log 5 m, 2m) ≥ δ. Then, using that n is a good scale and monotonicity, we obtain κ p 0 +δ (6k, 2m) ≥ δ. It follows that lim sup n→∞ κ p 0 +2δ (n log 4 n, n) > 0, which concludes the proof.
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Proof of sharpness: coarse grains without rescaling

In this section, we prove Theorem 1.1 and Theorem 1.2. Both proofs involve the use of Proposition 1.3 as the building block of a Peierls-type argument.

On the hypercubic lattice Z d , a natural way to conclude from Proposition 1.3 is to use a standard renormalisation procedure: we look at blocks at a larger scale, and these blocks can be seen as vertices of a rescaled of Z d . This strategy relies on a self-similarity property of Z d that does not hold for general groups. In order to overcome this diculty, we will keep the denition of large blocks (sometimes called coarse grains), but we will replace the rescaling argument by the use of a k-independent 5 process with suciently 5 Recall that a site percolation process X is k-independent if for any two sets of vertices V 1 and V 2 such that ∀(v 1 , v 2 ) ∈ V 1 × V 2 , d(v 1 , v 2 ) > k, the restrictions of X V1 and X V2 are independent.

high marginals. To each vertex v of G, we attach a block made of vertices at distance k around v and dene a new process on the graph G without rescaling it. Contrary to the renormalisation approach, a given block overlaps ≃ k d other blocks, inducing some dependencies on the new process.

In order to apply this strategy, we rely on the following lemma, which ensures that a nite-range site percolation with suciently high marginals does not have large closed cutsets. Recall that a minimal cutset between o and ∞ is a subset Π ⊂ V such that the connected component of o in V ∖ Π is nite, and it is minimal for the inclusion among all sets satisfying this property. For every n ≥ 1, write P ≥n for the set of all minimal cutsets Π between o and ∞ that satisfy Π ≥ n.

Lemma 10.1. Let R be so that the conclusion of Lemma 2.1 holds. For every k ≥ R, there exists c = c(k, G) > 0 such that the following holds. Let X be a 2k-independent site percolation on G with marginals satisfying P[X(v

) = 1] ≥ 1 -1 2e B 5k
for every v ∈ V (G). Then, for every n ≥ 1, we have P[∃Π ∈ P ≥n , Π is closed in X] ≤ e -cn .

Proof. Fix k ≥ R and set D = B 5k . Let Π ∈ P ≥n . Since R satises the conclusion of Lemma 2.1, the set Π is R-connected. Besides, by Lemma 2.2, Π intersects the ball of radius R Π .

Say that a set of vertices is r-separated if any two distinct vertices u, v of it satisfy d(u, v) > r. Let Π ′ be a 2k-separated subset of Π that is maximal for inclusion among all such subsets. By maximality, any ball of radius 2k centred at a vertex of Π must contain a vertex of Π ′ . Therefore, the quantity m ∶= Π ′ is at least Π D. Furthermore, we claim that Π ′ satises the following properties:

Π ′ is 2k-separated, Π ′ = m, Π ′ is 5k-connected, Π ′ intersects B RDm+2k .
The rst two items follow from the denitions above. The third and fourth items follow from the properties of Π together with the hypothesis k ≥ R and the observation that Π ′ intersects any ball of radius 2k centred at a vertex of Π.

For every m ≥ 1, write P ′ m for the collection of all subsets of V satisfying the four properties listed above. By denition, all the elements of P ′ m intersect B RDm+2k and they are connected subsets of the graph G ′ = (V, E ′ ) with E ′ = {{x, y} ∶ d(x, y) ≤ 5k}. Since the degree of G ′ is D, standard bounds on the number of connected subsets of a graph (see e. 

  not a graph automorphism for Cayley graphs of non-Abelian groups. A second obstacle is the lack of slab-structure for general graphs of polynomial growth: the hypercubic Z d can naturally be partitioned into slabs. In contrast, the Cayley graph of the discrete Heisenberg group illustrated on Figure1has no natural notion of slab 3 . In our present proof, we replace the slab result by estimates on the two-point function inside corridor subgraphs introduced in Section 1.4. Contrary to the lattice case, our proof does not distinguish between d = 2 and d ≥ 3. In this sense, this unies the two approaches for hypercubic lattices.

  For A, B, C ⊂ V , we say that A and B are connected in C if there exists an open path in C from A to B. We denote the corresponding event by A C ← → B and its complement by A C ←→ B. In the case C = V , we simply write A ← → B and A ←→ B. Corridor function Let m, n ≥ 0 and p ∈ [0, 1]. We dene the corridor function of length m and thickness n at parameter p by

  Above, we do not directly get that the two clusters C and C ′ are connected by a (p + δ)open path, because we are conditioning on an event where the edges at the boundary of C and C ′ are p-closed. Nevertheless, using that each such edge is (p + δ)-open with probability larger than δ, independently of the event ∂C A i ←→ p ∂C ′ , one obtains the following lower bound:

Figure 2 :

 2 Figure 2: Gluing paths via local uniqueness.

Figure 3 :

 3 Figure 3: Illustration of the chaining argument: a chain of corridors is used

Figure 4 :

 4 Figure 4: Orange-peeling argument: when the explorations of two clusters from B n 10 reach the annulus A i , they get connected inside A i with probability at least 1 m 3 .

)

  Let us dene C to be the family of all the open clusters in B m that intersect ∂B m . Dene C to be the union of all these clusters. Given a subset S of B m , we write open(S) (resp. closed(S)) for the set of open (resp. closed) edges of E(B m ) adjacent to at least one vertex of S. In order to bound the size of H, we rely on the following identities, C∈C open(C) = open(C) by a counting argument. The rst sum counts all the open edges in B m connected to the boundary of B m , which also corresponds to the open edges adjacent to C. The second sum counts all the closed edges which are connected to the boundary of B m , except that the edges of H are counted twice. Furthermore, using that the event {e ← → ∂B m } is independent of the status of the edge e, we nd p ⋅ E p [ closed(C) ] = e⊂Bm p ⋅ P[e is closed, e ← → ∂B m ] = e⊂Bm p(1 -p) ⋅ P[e ← → ∂B m ] = e⊂Bm (1 -p) ⋅ P[e is open, e ← → ∂B m ] = (1 -p) ⋅ E p [ open(C) ].

  Notation. In this section, given two vertices a and b of B m , we set τ p,m (a, b) = P p a Bm ← → b .Besides, for u ≥ 0, we set S u to be the sphere of centre o and radius u, where o is the root of G that we use in the notation B m = B m (o).

Figure 6 :

 6 Figure 6: In the complement of C a , the existence of an open path inside B m joining the cluster of b with an edge {x, y} ∈ ∂C a implies that x and y are in disjoint clusters of diameter at least n 2.

  out C is the (deterministic) set of vertices adjacent to C but not belonging to it. Observe that for every C ∈ C b a , we have P p [b Bm ← → ∂ out C] ≥ τ p,m (a, b). Using the bound above and independence again, we get

For

  the proof of (43), we proceed similarly. If d(x, y) ≥ 2t(n), we rst use the Harris FKG Inequality to show θ(p) 2 τ (x, y) ≤ P p [x ← → ∂B n , y ← → ∂B n , S n (x) Bn ←→ S n (y)].

  If a and b denote two vertices belonging to this xed path, we denote by [a, b] the set of all vertices x of the path lying between a and b, i.e. satisfying d(a, b) = d(a, x) + d(x, b). Sets of this form will be called segments in this proof. By convention, we always assume that d(o, a) ≤ d(o, b) when we consider a segment [a, b].

  Claim 7.9. Let α ≥ 1 2 . Let [a, b] be a segment such that τ (a, b) ≤ α. Then, there exist two vertices a ′ , b ′ ∈ [a, b] such that ∀x ∈ [a, a ′ ] ∀y ∈ [b ′ , b] τ (x, y) ≤ α 1 3 + 6ε(44) and max(τ (a, a ′ ), τ (b, b ′ )) ≤ α 1 3 . (45)

  Equation (45) holds by denition and it remains to prove (44). Let x ∈ [a, a ′ ] and y ∈ [b, b ′ ]. Since τ (a, b) ≤ α, Lemma 7.6 implies α ≥ τ (a, x)τ (x, y)τ (y, b) -2ε.

Figure 8 :

 8 Figure 8: The conguration Y r is the union of the grey area and the red one.

P

  p [B k (x) ←→ ∂B 6n (x)] ≤ B 2n P p [B k ←→ ∂B 6n ] ≤ η.

  bound the second term, we use the property established in Lemma 8.2, namely that clusters merge with high probability in annuli of the form A r,r+∆ for ∆ ∶= ⌈ n 4 log B 2n ⌉, when sprinkling from p to p + δ. Recall that N r (Y r ) counts the number of p-clusters crossing from B r to ∂B 4n , where the clusters are identied if they are (p + δ)connected in the annulus A r,4n . We start with the trivial bound N 2n (Y 2n ) ≤ B 2n for the number of clusters in Y 2n intersecting the ball B 2n . Applying Lemma 8.2 to r = 2n -∆ and s = 2n, we obtainP[E ∩ {N 2n-∆ (Y 2n-∆ ) > max(1, 1 2 B 2n )}] ≤ 25 B 2n exp -δ 3 ∆ 3m .Then, by induction, we get for every i ≤ n ∆,P[E ∩ {N 2n-i∆ (Y 2n-i∆ ) > max(1, 2 -i B 2n )}] ≤ 25i B 2n exp -δ 3 ∆ 3m .

First

  reduction: a lower bond on the two-point function in long corridors. At several places in the paper, we saw that the desired local uniqueness is intimately related to lower bounds on the two-point function inside nite regions. In particular, Proposition 3.1 asserts that Equation (52) holds if we can prove the lower bound ∀p > p c lim sup n→∞ κ p (n log 3d n, n) > 0.

  ) and (61) enable us to use Proposition 8.1, which yields P[U p 0 +δ,p 0 +2δ (n 40, n 10)] ≥ 1 -e -log 2 n . (62) Conclusion As in the proof of Lemma 3.2, we can use the sprinkled uniqueness estimate (62) to deduce a lower bound on the two-point function. The origin o is connected to another xed vertex x ∈ B n 40 by a (p 0 + 2δ)-open path in B n as soon as both o and x are (p + δ)-connected to ∂B n and the uniqueness event U p 0 +δ,p 0 +2δ (n 40, n 10) occurs. Using the HarrisFKG Inequality and the union bound, for every good scale n ≥ n 2 , we get κ p 0 +2δ (n log 4 n, n) ≥ κ p 0 +2δ (n 40, n) ≥ min x∈B n 40 P[{o ← → p + δ ∂B n , x ← → p + δ ∂B n } ∩ U p 0 +δ,p 0 +2δ (n 40, n 10)] ≥ θ(p 0 + δ) 2 -e -log 2 n .

  g. [Bol06, Problem 45]) giveP ′ m ≤ B RDm+2k (eD) m .

  A priori bound on the uniqueness zone We consider the following problem: for n large, for which value of s(n) can we ensure that at most one cluster in B n crosses from B s(n) to ∂B n ? Ultimately, Proposition 1.3 shows that we can choose s(n) ≥ n 3. In order to prove this, we need an a priori lower bound as an intermediate step: in Section 6, we prove that for p > p c , we can choose s(n) larger than any power of log n.

	Section 6: To achieve
	this, we have to overcome diculties that are not present for the lattice Z d . In the lattice
	case, a result of Cerf [Cer15] shows directly that we can choose s(n) ≥ n c for a positive
	constant c > 0 independent of p ∈ [0, 1]. Due to the lack of symmetry, this argument does
	The proof itself is not extend to general graphs of polynomial growth. Here we combine some arguments of
	presented in Section 9. It relies on several independent arguments and intermediate results [Cer15] together with a new renormalisation method.
	established in Sections 28. Section 2 is a geometric toolbox. In each of the Sections 38,
	we isolate one important ingredient. Each section may use the results from previous ones, Section 7: Sharp threshold results via Hamming distance This section presents the main
	but can be read roughly independently. Once the central Proposition 1.3 is established, new argument, which relies on a general dierential inequality involving the Hamming
	the two theorems can be proved by using some adaptation of standard renormalisation distance on the hypercube. We prove that, in the supercritical regime, if the corridor
	arguments, which are presented in Section 10. Here is a more detailed roadmap of the function is small, then large annuli are crossed with high probability. In Section 9, this
	forthcoming sections: enables us to split the proof of Proposition 1.3 into two tractable cases: either the corridor
	function is large or large annuli are crossed with high probability.
	Section 2: Geometric lemmas This section provides several denitions and lemmas on
	the geometry of graphs of polynomial growth, in particular related to cutsets, annuli,
	spheres, and nding many innite distant paths exiting B n . The reader may want to read
	this section only when other sections require it.	
	Section 3: Renormalisation of the corridor function In this section, we reduce the proof
	of Proposition 1.3 to showing that, at innitely many scales, long corridors can be crossed
	with probability larger than some constant. This involves a renormalisation property of
	the corridor function.	
	Section 4: Probability that two clusters meet at one point We prove that the probability
	P p [Piv(1, n)] that two clusters of radius n meet at one point decays polynomially fast
	in n, uniformly in p. We use an adapted version of the beautiful exploration argument
	of Aizenman, Kesten, and Newman [AKN87] (see also [GGR88, Cer15, Hut20]), which
	relates such meeting points to the deviation of the sum of i.i.d. Bernoulli(p) random
	variables. The argument extends to amenable transitive graphs.	
	Section 5: Sharp threshold results via hypercontractivity We establish a general sharp
	threshold result for connectivity probabilities of the form P p [A	C ← → B], A, B, C ⊂ V . To
	do so, we rely on the general inequalities on inuences for Boolean functions of Talagrand
	[Tal94] and [KKL88]. In the spirit of recent applications of sharp threshold results to
	percolation [DRT18, DKT], our argument does not involve approximations by symmetric
	events on the torus. Instead, we only use the bounds on the inuences in the bulk (at
	a sucient distance from the set A and B) provided by Section 4.

  Using the slab technology[START_REF] Grimmett | The supercritical phase of percolation is well behaved[END_REF], one can show that in each of these annuli, any two vertices are connected with probability larger than some positive constant δ. Now, consider two clusters C(x) and C(y) that cross the annulus B 2n ∖ B n and start at some xed vertices x and y at the boundary of B n . Explore them in a recursive manner by revealing the conguration in the annuli B k+m ∖B k the one after the other. At each such step, conditionally on the past, there is a probability at least δ that the clusters C(x) and C(y) get connected in B k+m ∖ B k . This shows that the probability that C(x) and C(y) reach the boundary of B 2n without merging is smaller than e -δn m . Summing over all the possible x and y, we get

d [Gri99, Lemma 7.89

]. Since we will extend this argument in several ways, let us recall briey how it works to obtain some lower bound on the probability of U (n, 2n) for percolation on Z d at a parameter p > p c . First, partition B 2n ∖ B n into n m annuli of the form B k+m ∖ B k (m is a xed constant here, but its role will be important in our context so we keep it explicit).

  for all i} is depicted in blue. Notice that if there is no i such that Piv x i (u, m) holds, then we have the red dotted paths in the gure, thus creating an open path between a and b within B 2m .

  By the HarrisFKG Inequality, by transitivity of G, and because P p is invariant under graph automorphisms, we have

  By decreasing the edge density from p + δ to p, we obtain that the points of A are pairwise connected with low probability. More precisely, the equation above and the sharp-threshold result of Lemma 7.5 imply By applying Proposition 7.2 to the graph G induced by the ball B n , we nally get

	Together with min

∀x, y ∈ A P p [x Bn ←→ y] ≤ ε 2n . x∈A P p [x ← → ∂B n ] ≥ θ(p) ≥ 2 A ε 2n (which holds for n large enough), we obtain min x∈A P p [x ← → ∂B n ] ≥ θ(p) ≥ 2 A max x,y∈A P p [x Bn ←→ y].

  The conguration Y r is obtained from Y s by adding some open edges in the annulus A r,s . In particular, we have Y r ≥ Y s and our goal is to show that, with high probability, every cluster of C s (Y s ) gets merged with at least one other cluster of C s (Y s ) in the conguration Y r . To analyse this merging eect, let us introduce the conguration Z = Y r -Y s . us condition on the possible values for Y s . Say that a conguration ξ in B 4n is admissible if P[Y s = ξ] > 0 and B k (x) is connected to ∂B 4n in ξ for every x ∈ B 2n . Writing P ξ ∶= P[ ⋅ Y s = ξ] for every admissible ξ, we can rewrite the left-hand side of (46) as

	Let follows:

)

Proof of Lemma 8.2. Fix r, s ∈ [n, 2n] such that r ≤ s.

  Using this corollary, one can see that Equation (53) will be established if one can show the following weaker statement ∀p > p c lim sup

n→∞ κ p (n log 4 n, n) > 0.

Actually, if A and B are disjoint, Menger's Theorem states that this is an equality [Die17, Corollary 3.3.5] but we only need the easy inequality.
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Notice that under P ξ , the coordinates Z(e), e ⊂ B s , are independent and satisfy

,s and e is not adjacent to an edge of ξ ≥ δ if e ∈ A r,s , ξ(e) = 0 and e is adjacent to an edge of ξ, = 0 if e intersects B r .

If N r (ξ) = 1, then we also have N r (ξ + Z) = 1. Indeed, all the open edges of ξ intersecting B r are already connected to ∂B 4n in ξ, and no open edge of Z intersects B r : therefore, adding the edges of Z to ξ cannot create a new cluster crossing from B r to ∂B 4n . As a result, if N r (ξ) = 1, the left-hand side of (47) is equal to 0 and there is nothing to prove. We thus assume that N r (ξ) > 1 and we will prove that

We will say that a cluster of C s (ξ) is merged if it is connected to at least one other cluster of C s (ξ) in the conguration ξ +Z. Please note that even if the cluster under consideration is taken in C r (ξ) ⊂ C s (ξ), it is said to be merged if it is connected to at least one other cluster of C s (ξ) in the conguration ξ + Z. We will prove that typically any cluster of C s (ξ) that crosses the annulus A r,s is merged with high probability. More precisely we will prove that

The main idea behind (48) is that the cluster C crosses ≃ (s -r) m disjoint annuli of thickness m. In each annulus, the cluster C comes at distance ≤ k to another cluster of C s (ξ). Morally, Hypothesis (b) can thus be used to bound the probability that the two clusters get connected by a (ξ + Z)-open path lying inside the considered annulus. Since these events are independent (we have disjoint annuli), we obtain the bound (48). We postpone the rigorous derivation of (48) to the end of the proof, and we now explain how to deduce (47) from (48).

The key observation is that if every cluster of C r (ξ) is merged, then N r (ξ+Z) ≤ 1 2 N s (ξ). To see this, let us assume that every of C r (ξ) is merged, and let us prove that every cluster of C r (ξ + Z) contains at least two clusters of C s (ξ). Let C ∈ C r (ξ + Z). We have already seen that adding Z to ξ can create no new cluster crossing from B r to ∂B 4n . In other words, we can x some

which ends the proof of the observation. Using this observation, the union bound, (48) and r ≤ 2n yields

which is the desired inequality.

We now give the details of the proof of (48

Setup of the proof Let us x p 0 > p c . Let δ be such that 0 < δ < θ(p 0 ) 2 3 and p 0 +2δ < 1.

We will prove that lim sup n→∞ κ p 0 +2δ (n log 4 n, n) > 0.

(54)

Observe that if innitely many values of n satisfy κ p 0 (n log 4 n, n) ≥ δ, then Equation (54) holds by monotonicity. We may thus assume that we are given some n 0 ≥ 100 such that ∀n ≥ n 0 κ p 0 (n log 4 n, n) < δ.

(H)

The remaining of the section is devoted to the proof of (54) under the hypothesis (H).

High probability of connection for balls The hypothesis (H) is a negative estimate for the connection probabilities. This is useful because it allows us to apply the results of Section 7 (sharp threshold via Hamming distance), in which we showed that an upper bound on the two-point function implies a positive estimate, namely that balls are connected far away with high probability. In order to obtain the strongest estimate possible, for every n ≥ n 0 , we dene α(n) to be the smallest integer satisfying

The hypothesis (H) and Corollary 6.4 imply that there exist χ > 0 and n 1 ≥ n 0 such that

Since δ < θ(p 0 ) 2 2, the upper bound (55) together with Proposition 7.1 implies that we can choose n 2 ≥ n 1 such that

In order to conclude the proof from the strong estimate above, we will apply Proposition 8.1 (uniqueness via sprinkling). To achieve this, we need to complement Equation (57) with a lower bound on the two-point function at scale α(n), which is the object of the next paragraph.

An improved lower bound on the two-point function via sharp-threshold Since α(n) was chosen to be the smallest integer satisfying the inequality (55), this inequality is not satised for α(n) -1 and we have the lower bound

This bound will not be sucient, and we use a sharp threshold result to improve it. Using Corollary 6.5 and the lower bound (56) on α(n), we get, for every n large enough,

From this bound, we get

Since the volume of the ball B Dn grows at most polynomially in n, the proof follows from the estimate above.

Proof of Theorems 1.1 and 1.2 . Let p > p c (G) and let ω be a Bernoulli bond percolation of parameter p on G. By Proposition 1.3 and by polynomial growth of G, we can choose

.

From now on and until the end of the proof, we x k as above. For each v ∈ V (G), we will denote by

We dene the site percolation process X on G by setting

Notice that X is a 2k-independent site percolation with marginals satisfying

.

Let us consider n > B k . We denote by C o the cluster of o in ω. 

) holds for every i, we have that all the C i are forced to be connected to each other in ω. If we choose C 1 to be the

If the event on the right-hand side of (63) is satised, then, by Lemma 2.3, there exists an X-closed cutset Π disconnecting o and ∞ of diameter at least n 2. Since Π is R-connected, this yields Π ≥ n 2R . One can thus use Lemma 10.1 to upper-bound the right-hand side of (63) by exp(-cn 2R ), for some constant c > 0. This concludes the proof of Theorem 1.1.

Regarding the proof of Theorem 1.2, we have, similarly to before, that for n > B k ,

In this case, if the event on the right-hand side of (64) is satised, then Lemma 2.4 yields an X-closed cutset disconnecting o and ∞ of size larger than cn d-1 d . Hence, using Lemma 10.1, the right-hand side of (64) is upper bounded by exp(-c ′ n d-1 d ) for some positive constant c ′ . This concludes the proof of Theorem 1.2.