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Locality of percolation for graphs with polynomial

growth

Daniel Contreras* Sébastien Martineau� Vincent Tassion*

December 17, 2022

Abstract

Schramm's Locality Conjecture asserts that the value of the critical parameter

pc of a graph satisfying pc < 1 depends only on its local structure. In this note,

we prove this conjecture in the particular case of transitive graphs with polynomial

growth. Our proof relies on two recent works about such graphs, namely supercritical

sharpness of percolation by the same authors and a �nitary structure theorem by

Tessera and Tointon.

1 Introduction

Around 2008, Schramm conjectured that, under some non-degeneracy assumption, the

value of the critical probability for percolation depends only on the local structure of

the underlying graph. This means that two transitive graphs with similar local structure

should have close critical probabilities.

Let us recall a formal version of this conjecture. In this paper, graphs are taken to be

simple, non-empty, locally �nite, and connected. Given two transitive graphs G and H,
de�ne

R(G,H) ∶= max{k ∈ N ∪ {∞} ∶ BG(k) ≃ BH(k)}.

Let (Gk) be a sequence of transitive graphs and let G∞ also be some transitive graph. Say

that (Gk) converges to G∞ (for the local topology) if R(Gk,G∞) converges to in�nity.
Mathematically, we write Gk ÐÐ→

k→∞
G∞.

Schramm's Locality Conjecture is the following statement. Let (Gk) be a sequence of

transitive graphs such that pc(Gk) < 1 for every k. Assume that Gk ÐÐ→
k→∞

G∞ for some

transitive graph G∞. Then pc(Gk) ÐÐ→
k→∞

pc(G∞).
This conjecture �rst appeared in [BNP11], where the authors tackled the case of a

sequence of uniformly non-amenable graphs that converges locally to an in�nite regular
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tree. Since then, the conjecture has been established for Cayley graphs of Abelian groups

in [MT17] and for graphs with uniform exponential growth in [Hut20].

Notice that the assumption with pc < 1 cannot be removed. Indeed, for the usual

Cayley graph structures, both sequences (Z/kZ)2 and Z×(Z/kZ) converge to Z2. However,

all graphs of these sequences satisfy pc = 1 while the square lattice has pc < 1.

The conjecture was originally stated under the more stringent condition supk pc(Gk) < 1

but it results from [HT] that if (Gk) converges for the local topology and satis�es pc(Gk) < 1

for every k, then it automatically satis�es the seemingly stronger condition supk pc(Gk) < 1.

Panagiotis and Severo have proved in [PS] that, for Cayley graphs, the previous sentence

is correct even without assuming that the sequence (Gk) converges to some transitive

graph. Their result has been made quantitative and explicit in [LMTT].

Locality for graphs of polynomial growth In this paper, we establish Schramm's

Locality Conjecture under the assumption that G∞ has polynomial growth, i.e. that the

cardinality of the ball of radius n is upper-bounded by a polynomial in n. This article

can be read with pc meaning either always psitec or always pbondc , both interpretations yield

correct statements.

Theorem 1.1. Let (Gk)k∈N be a sequence of transitive graphs such that pc(Gk) < 1 for
every k ∈ N. Let G∞ be a transitive graph of polynomial growth. If Gk ÐÐ→

k→∞
G∞, then

pc(Gk) ÐÐ→
k→∞

pc(G∞).

Remark. Only the graph G∞ is assumed to have polynomial growth. Actually, it fol-

lows from [TT21] that if G∞ has polynomial growth and Gk ÐÐ→
k→∞

G∞, then Gk also has

polynomial growth for all k large enough.

Since the inequality lim inf pc(Gk) ≥ pc(G∞) is known in full generality (see [Pet, Section
14.2] or [DCT16, Section 1.2]), we only need to take p > pc(G∞) and prove that p ≥ pc(Gk)
for k large enough. To do so, we use supercritical sharpness on the limit graph G∞ to build

a �nite-size event that has good probability to occur and that, when occurring, guarantees

good connections within some box. This �rst step relies on our preprint [CMT]. Then,

we use �nitary structure theorems for the geometry of transitive graphs of polynomial

growth in order to perform a renormalisation argument. This enables us to go from local

to global: from the fact that our �nite-size event holds with good probability, we obtain

that there is an in�nite cluster in Gk at parameter p. This second step relies on [TT21]

and ��nitary� means that global geometric information can be deduced from suitable

information inside a single ball.

Uniformly controlled nets A key point in the proof is that the aforementioned renor-

malisation on Gk can be performed uniformly with respect to k: we need the scale of

renormalisation not to depend on the graph Gk. To achieve this, we use Proposition 1.2

below and rely on the standard notion of net, which we now de�ne.
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Given two numbers a, b ≥ 1, an (a, b)-net of a graph (V,E) is a subset that is a-

separated and b-dense. Namely, it is some V0 ⊂ V such that

min{d(x, y) ∶ x, y ∈ V0, x ≠ y} ≥ a and max{d(x, y) ∶ x ∈ V0, y ∈ V } ≤ b.

An (a, b)-net has a natural graph structure: two distinct elements x and y of V0 are said to

be adjacent if d(x, y) ≤ 4b. This graph structure depends on V0 but also on the particular

b we have in mind when considering V0 as an (a, b)-net. When some V0 is considered as

an (a, b)-net, we de�ne psitec (V0) as the critical parameter for Bernoulli site percolation on

V0, equipped with this graph structure.

De�nition. Let G be a collection of transitive graphs and let C ≥ 1. We say that G has

C-controlled nets if for every a ≥ 1, every graph G ∈ G admits an (a,Ca)-net V0 with

psitec (V0) ≤ 3
4 .

In the de�nition above, the value 3/4 does not play a speci�c role. Any �xed value

α < 1 would work equally well for our purpose. Our proofs actually apply for any α ∈
(psitec (Z2),1). For α ∈ (0,1), the proofs readily adjust up to adapting the values of the

constant C whenever we claim that some graph has C-controlled nets.

Proposition 1.2. Let (Gk)k∈N be a sequence of transitive graphs such that pc(Gk) < 1 for
every k ∈ N. If Gk ÐÐ→

k→∞
G∞ for some transitive graph G∞ of polynomial growth, then there

is some constant C ≥ 1 such that the collection {Gk ∶ k ≥ C} has C-controlled nets.

Organisation of the paper

The proof of Proposition 1.2 is presented in Section 2. In Section 3, we deduce The-

orem 1.1 from Proposition 1.2 by using a standard �nite-size criterion approach. Our

proof of Proposition 1.2 uses a generalisation of the monotonicity result of Benjamini and

Schramm [BS96, Theorem 1.1], which states that the critical parameter pc of a graph is

always greater than or equal to the critical parameter of any of its covering graphs. For

completeness, we present this generalised statement in Section 4.

Acknowledgments

We are grateful to Romain Tessera and Matthew Tointon for helpful comments regarding

nilpotent geometry. We thank the anonymous referee for a careful reading.

The �rst and third authors are supported by the European Research Council (ERC)

under the European Union's Horizon 2020 research and innovation program (grant agree-

ment No 851565) and by the NCCR SwissMap.

2 Uniformly controlled nets for converging sequences

We want to prove that if (Gk) is a sequence as in Proposition 1.2, then, for some C,

the collection {Gk ∶ k ≥ C} has C-controlled nets. In order to prove this statement, we
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�rst prove that the collection of all Cayley graphs of Z2 has C-controlled nets. Then, we

extend this result to all Cayley graphs of nilpotent groups satisfying pc < 1. Finally, by

using [TT21], we obtain the desired statement.

2.1 Cayley graphs of Z2 have controlled nets

Given a �nite generating subset S of Z2 and some v ∈ Z2, we write ∥v∥S for the distance

between 0 and v in the Cayley graph Cay(Z2, S).
On an Abelian Cayley graph, distances can be well analysed by elementary linear

algebra. Here, we use the following lemma, which provides a useful control on the distances

in Cayley graphs of Z2.

Lemma 2.1. For every �nite generating subset S of Z2, there are u, v ∈ S such that

∀m,n ∈ Z, ∣m∣+∣n∣
3 ≤ ∥mu + nv∥S ≤ ∣m∣ + ∣n∣.

Proof. See Z2 as a subset of R2 endowed with the usual Euclidean norm ∥ ⋅ ∥2. Pick u an

element of S with maximal Euclidean norm. Denote by p the linear orthogonal projection

on u⊥. Pick an element v of S that maximises ∥p(v)∥2.
Let m,n ∈ Z. By the triangle inequality in Cay(Z2, S), we have

∥mu + nv∥S ≤ ∣m∣ ⋅ ∥u∥S + ∣n∣ ⋅ ∥v∥S = ∣m∣ + ∣n∣,

which would hold for any choice of u and v in S. As u maximises its Euclidean norm

inside S, by the triangle inequality in (R2, ∥ ⋅ ∥2), we have

(∣m∣ − ∣n∣)∥u∥2 ≤ ∣m∣ ⋅ ∥u∥2 − ∣n∣ ⋅ ∥v∥2 ≤ ∥mu + nv∥2 ≤ ∥mu + nv∥S∥u∥2,

whence ∥mu + nv∥S ≥ ∣m∣ − ∣n∣. On the other hand, as v maximises ∥p(v)∥2 in S, the

triangle inequality in (R2, ∥ ⋅ ∥2) yields

∣n∣ ⋅ ∥p(v)∥2 = ∥p(nv)∥2 = ∥p(mu + nv)∥2 ≤ ∥mu + nv∥S ⋅ ∥p(v)∥2,

whence ∥mu + nv∥S ≥ ∣n∣. We conclude by observing that max(∣m∣ − ∣n∣, ∣n∣) ≥ ∣m∣+∣n∣3 .

Lemma 2.2. The collection of all Cayley graphs of Z2 has 1-controlled nets.

Proof. Let S be a �nite generating subset of Z2. Let u and v be such that the conclusion of

Lemma 2.1 holds. Let a ≥ 1 and m = ⌈3a⌉. Let Γ denote the subgroup of Z2 generated by

mu and mv. By the choice of u and v, this de�nes an a-separated subset of Cay(Z2, S).
Let V0 be a maximal a-separated subset of Cay(Z2, S) containing Γ, maximality being

understood relative to inclusion. By maximality, V0 is an (a, a)-net. Furthermore, via

the embedding (k, `) ↦ kmu + `mv, this net contains the square lattice as a subgraph. It

therefore satis�es psitec ≤ 3
4 .
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2.2 Nilpotent groups have controlled nets

Lemma 2.2 gives us some uniform control over all Cayley graphs of Z2. Combined with

the observation that any nilpotent group with pc < 1 admits Z2 as a quotient, this allows

us to get the following statement.

Lemma 2.3. The collection of all Cayley graphs of nilpotent groups with pc < 1 has
2-controlled nets.

Remark. If the Cayley graph G = Cay(G,S) under consideration was the product of a

Cayley graph of Z2 and another Cayley graph H, it would su�ce for our purpose to take

a good (a, a)-net V1 of Z2, an arbitrary (a, a)-net V2 of H, and to prove that V0 = V1×V2 is
a suitable net because of the choice of V1. Here, G does not necessarily split as a product

but it will still be possible to produce a suitable net, by using the fact that Z2 is a quotient

of G.

Proof. Let G = Cay(G,S) be a Cayley graph where the group G is nilpotent and assume

that pc(G) < 1. It is well-known that it is possible to �x a surjective group homomorphism

π from G to Z2 (see e.g. [HT, Lemma 3.23]). We denote by dS and dπ(S) the respective
graph distances on Cay(G,S) and Cay(Z2, π(S)).

Let a ≥ 1. By Lemma 2.2, we can pick V1 an (a, a)-net of Cay(Z2, π(S)) with psitec < 3
4 .

For each x ∈ V1, pick a maximal a-separated subset of π−1({x}) and denote it by Ux. This

means that for any two distinct points g and h in Ux, we have dS(g, h) ≥ a, and that Ux
is a maximal subset of π−1({x}) with this property. Let V0 ∶= ⋃x∈V1 Ux. We shall prove

that V0 is an (a,2a)-net of G with psitec ≤ 3
4 .

First, observe that the set V0 is a-separated in G = Cay(G,S). Indeed, let g and h be

two distinct points in V0. We have dS(g, h) ≥ dπ(S)(π(g), π(h)). Thus, if π(g) ≠ π(h), we
are done by de�nition of V1. Otherwise, g and h belong to π−1({x}) for x = π(g) = π(h),
and then it holds by de�nition of Ux.

Let us now prove that V0 is 2a-dense in Cay(G,S). Let g ∈ G and x = π(g). Since V1 is
a-dense in Cay(Z2, π(S)), we can pick y ∈ V1 such that dπ(S)(x, y) ≤ a. As π is a quotient

map, we can pick some h ∈ π−1({y}) such that dS(g, h) ≤ a. Since Uy is maximal as an

a-separated subset of π−1({y}), we have dS(h,Uy) < a. As a result, we have dS(g,Uy) < 2a.

Finally, we show that V0, considered with its graph structure of (a,2a)-net, has psitec ≤
3
4 . The map π is well-de�ned seen from V0 to V1. When V0 is viewed as an (a,2a)-net of
G and V1 as an (a, a)-net of Cay(Z2, π(S)), this map satis�es the following properties:

� π ∶ V0 → V1 is surjective,

� for every x ∈ V1, every g ∈ Ux and every V1-neighbour y of x, there is a V0-neighbour

h of g such that π(g) = y.

Indeed, the same proof as that of 2a-density yields an h such that

dS(g, h) < 4 × a + a < 4 × 2a.

By the forthcoming Proposition 4.1, the existence of such a map π ∶ V0 → V1 implies that

psitec (V0) ≤ psitec (V1) ≤ 3
4 .
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2.3 Converging sequences have controlled nets

We are now able to prove Proposition 1.2. Let us take (Gk) a sequence of transitive graphs
such ∀k, pc(Gk) < 1. Assume that Gk converges locally to some transitive graph G∞ of

polynomial growth. We prove that there exists a constant C such that {Gk, k ≥ C} has

C-controlled nets.

By [TT21, Theorem 1.3], up to forgetting �nitely many terms of the sequence (Gk),
we can do the following:

1. we assume that all Gk's have polynomial growth,

2. we �x some constant A ≥ 1, Cayley graphs of nilpotent groups Cay(Gk, Sk) and

maps ϕk ∶ Gk → V (Gk) such that every ϕk is an A-quasi-isometry.

Recall that ϕk being an A-quasi-isometry means that

∀g, h ∈ Gk,
1
Ad(g, h) −A ≤ d(ϕk(g), ϕk(h)) ≤ Ad(g, h) +A

and ϕk(Gk) is A-dense in Gk.
The fact that pc is smaller than 1 is preserved by quasi-isometries: see [LP17, Theorem

7.15] and the comment following its proof. Therefore, Lemma 2.3 applies to Cay(Gk, Sk).
Let a ≥ 1 and a′ = aA+A2. By Lemma 2.3, we can �x some (a′,2a′)-net Vk in Cay(Gk, Sk)
satisfying psitec ≤ 3

4 . Setting V ′
k = ϕk(Vk) thus de�nes an (a,2a′A + A)-net of Gk. Fur-

thermore, the map ϕk seen from Vk to V ′
k is an injective graph homomorphism, when

Vk is considered as an (a′,2a′)-net and V ′
k as an (a,2a′A + A)-net. Therefore, we have

psitec (V ′
k) ≤ psitec (Vk) ≤ 3

4 . Taking C = 5A3 completes the proof of Proposition 1.2.

Remark. Seeing why [TT21, Theorem 1.3] indeed guarantees Item 2 requires a basic tool

of geometric group theory: the Milnor�Schwarz Lemma. We only need the following

particular case: For every A ≥ 1, there is some constant B such that the following holds.
Let G be a group generated by a �nite subset S. Let H be a subgroup of G of index at most
A. Then, H admits a �nite generating subset SH such that there is a B-quasi-isometry
from Cay(H,SH) to Cay(G,S). This is proved by following the proofs of Theorem 8.37

and Corollary 8.47 in [DK18] and observing that B depends only on A. Tessera and

Tointon did not state their Theorem 1.3 as our Item 2 because they wanted a stronger

result where, up to tolerating a bounded index subgroup, the multiplicative constant of

the quasi-isometry can be taken equal to 1.

3 Proof of Theorem 1.1

In this section, we use Proposition 1.2 to perform a renormalisation argument yielding

locality for transitive graphs of polynomial growth.

We �rst recall a useful lemma about k-independent percolation processes. A site

percolation process P is called k-independent if, for any two sets of vertices U1 and U2

satisfying

min{d(x1, x2) ∶ x1 ∈ U1, x2 ∈ U2} > k,
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the restriction X∣U1
is independent of X∣U2

, where X denotes a P-distributed random

variable. Recall that P1 stochastically dominates P2 if there is a coupling (X1,X2) of
(P1,P2) such that every X2-open site is always X1-open.

Lemma 3.1. Let D and k be two positive integers. There exists q = q(k,D) < 1 such
that the following holds. For every connected graph H with maximal degree at most D,
any k-independent site percolation process on H with marginals at least q stochastically
dominates independent site percolation on H of parameter 3

4 .

Proof. By [LSS97, Theorem 1.3], for every constant D, we can �x some constant pD < 1

such that for every connected graph H with maximal degree at mostD, any 1-independent

site percolation process on H with marginals at least pD stochastically dominates inde-

pendent site percolation on H of parameter 3
4 . Notice that if H has maximal degree at

most D, then any k-independent site percolation process on H with marginals at least pDk

stochastically dominates independent site percolation on H of parameter 3
4 . Indeed, any

k-independent site percolation process on H is 1-independent when considered on H(k),
where V (H(k)) = V (H) and E(H(k)) = {{x, y} ∶ 0 < dH(x, y) ≤ k}. Setting q(k,D) = pDk

thus yields the lemma.

We also recall a classical lower bound for distances in nets, which will help us prove

that some auxiliary site percolation process is 81-independent.

Lemma 3.2. Let V0 be an (a, b)-net of some graph G. Then, for any u, v ∈ V0, we have:

dV0(u, v) ≤ 1
bdG(u, v) + 1.

Proof. Let u, v ∈ V0. Let (u0, . . . , u`) be a shortest path from u0 = u to u` = v in G.
Set B = ⌊2b⌋ ≥ b. By keeping only vertices of the form uBk and the �nal vertex u`, we

obtain a sequence of vertices (v0, . . . , vL) with L ≤ `
B + 1 and such that dG(vi, vi+1) ≤ B.

Except for v0 and vL, these vertices have no reason to belong to V0. Therefore, we de�ne

(w0, . . . ,wL) by setting w0 = u, wL = v, and wi any vertex of V0 such that dG(vi,wi) ≤ b
when i ∈ {1, . . . , L − 1}. This sequence de�nes a path from u to v in V0 and its length is

at most `
b + 1 = 1

bdG(u, v) + 1.

We are now able to prove Theorem 1.1.

Proof of Theorem 1.1. Let G∞ be a transitive graph of polynomial growth. Let (Gk)k∈N
be a sequence of transitive graphs such that pc(Gk) < 1 for every k ∈ N and Gk ÐÐ→

k→∞
G∞.

Fix p > pc(G∞). We will prove that for every k large enough, there is an in�nite cluster

for percolation of parameter p on Gk with positive probability.

We �rst work on G∞ and use that p is supercritical to build a suitable �nite-size

event for percolation on G∞. For v ∈ V (G∞) and n ≥ 1, de�ne the event En(v) by the

conjunction of the following two events for p-percolation on G∞:

� there is a cluster intersecting Bn(v) and touching the 10n-sphere centred at v,
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� any two open paths intersecting B2n(v) and touching the 5n-sphere centred at v are

connected by an open path that lies within B5n(v).

By [CMT, Proposition 1.3], for every v, the event En(v) has a probability converging to

1 when n goes to in�nity. Notice that, by transitivity, this probability depends on n but

not on v.

Let us quantify how large we need Pp(En) to be. By [Bas72, Gui73, Gro81, Tro85],

there exists an integer d ≥ 2 and a constant c ≥ 1 such that the balls of G∞ satisfy

1
cr
d ≤ ∣Br∣ ≤ crd

for every r ≥ 1. Let C be such that the conclusion of Proposition 1.2 holds. For reasons

that will make sense shortly, de�ne

D = c2 ⋅ (12C + 3)d

and �x some n ≥ 9C such that

Pp(En) ≥ q(81,D).

In this inequality, q(81,D) is de�ned so that the conclusion of Lemma 3.1 holds. Set

a = n
4C . For every k ≥ C, �x Vk an (a,Ca)-net of Gk such that psitec (Vk) ≤ 3

4 . Observe

that every Vk has maximal degree at most D. Indeed, if some vertex v has Vk-neighbours

v1, . . . , vm, then the balls Ba/3(vi) of G∞ are disjoint subsets of B(4C+1)a(v). This entails
m1

c
(a
3
)d ≤ c(4C + 1)dad, whence m ≤D.

Figure 1: An open path in η produces an open path in ω as a consequence

of the gluing e�ect of the uniqueness zones between scale 2n and 5n.

We now work on Gk and export the �nite-size criterion constructed on G∞ to Gk,
for k large. This will show that p is also supercritical on these graphs. For k ∈ N and

v ∈ V (Gk), we de�ne En,k(v) by the same conditions as above, but in Gk rather than G∞.
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Given a percolation con�guration ω on Gk, we associate a site percolation con�guration

η on Vk by declaring v ∈ Vk to be open if and only if En,k(v) holds. This process enjoys

the following two properties:

� if there is an in�nite open path for η, then there is one for ω (see Figure 1),

� Vk being endowed with its graph-structure of (a,Ca)-net, the process η is (20n
Ca +1)-

independent � see Lemma 3.2.

By de�nition of a, we have 20n
Ca +1 = 81. By taking k large enough, we may assume that

the 10n-ball of Gk is isomorphic to that of G∞. Therefore, Pp(En,k) = Pp(En) ≥ q(81,D).
By de�nition of q(81,D) and because psitec (Vk) ≤ 3

4 , the process η yields an in�nite cluster

with positive probability, hence so is the case for ω. We thus get pc(Gk) ≤ p, as desired.

4 Monotonicity of pc revisited

In this section, we revisit monotonicity of pc relative to the quotient operation, i.e. relative

to covering maps. The original result is in [BS96, Theorem 1], see also [MS19]. Our proof

below is exactly the same. However, we state the proposition in a more general way that

emphasises exactly which properties of the �covering map� π are required for the argument

to hold.

Proposition 4.1. Let G and H be two locally �nite graphs with countably many vertices.
Let π ∶ V (H) → V (G) be a surjective map. Assume that for every u ∈ V (G), for every y
neighbour of π(u), there is at least one neighbour v of u such that π(v) = y.

Then, psitec (H) ≤ psitec (G).

Remark. If G is connected and H is non-empty, then any π ∶ V (H) → V (G) satisfying

the main assumption of the lemma is automatically surjective. Also note that π is not

assumed to be a graph homomorphism.

Proof. Let p > psitec (G). We can thus pick o ∈ V (G) such that Pp(o↔∞) > 0. Since π is

onto, we can pick o′ ∈ V (H) such that π(o′) = o. It su�ces to prove that Pp(o′ ↔ ∞) ≥
Pp(o↔∞), as this implies p ≥ psitec (H).

We consider an exploration (On,Cn) of the cluster of o in G, where On and Cn represent

the open and closed vertices revealed up to step n. The exploration starts with (O0,C0) =
({o},∅) if the origin o is open, and we set (O0,C0) = (∅,{o}) if the origin is closed. At

step n, we pick (if it exists) an edge (xn, yn) where xn ∈ On is an explored open vertex and

yn ∈ V (G) ∖ (On ∪Cn) is an unexplored vertex. The exploration stops if the edge (xn, yn)
does not exist. If the exploration does not stop, we set

(On+1,Cn+1) =
⎧⎪⎪⎨⎪⎪⎩

(On ∪ {yn},Cn) if yn is open,

(On,Cn ∪ {yn}) if yn is closed,

and move to the next step.
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This exploration can be lifted to de�ne an exploration (O′
n,C

′
n) of (a subset of) the

cluster of o′ in H. To do so, we start with (O′
0,C

′
0) = ({o′},∅) if the origin o in G is open,

and we set (O′
0,C

′
0) = (∅,{o′}) otherwise. At step n, when we pick an edge (xn, yn) in

G, we can choose an edge (x′n, y′n) in H such that π(x′n) = xn, π(y′n) = yn, x′n ∈ O′
n and

y′n ∈ V (H) ∖ (O′
n ∪C ′

n). Then, we de�ne

(O′
n+1,C

′
n+1) =

⎧⎪⎪⎨⎪⎪⎩

(O′
n ∪ {y′n},C ′

n) if yn is open,

(O′
n,C

′
n ∪ {y′n}) if yn is closed.

Such a choice of (x′n, y′n) is always possible due to our assumption on π. If the exploration

in G never stops (which corresponds to the cluster of o being in�nite), then the lifted

exploration does not stop either, which implies that the cluster of o′ is also in�nite.
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