Daniel Contreras 
  
Sébastien Martineau 
  
Vincent Tassion 
  

Schramm's Locality Conjecture asserts that the value of the critical parameter p c of a graph satisfying p c < 1 depends only on its local structure. In this note, we prove this conjecture in the particular case of transitive graphs with polynomial growth. Our proof relies on two recent works about such graphs, namely supercritical sharpness of percolation by the same authors and a nitary structure theorem by Tessera and Tointon.

Locality of percolation for graphs with polynomial growth 1 Introduction

Around 2008, Schramm conjectured that, under some non-degeneracy assumption, the value of the critical probability for percolation depends only on the local structure of the underlying graph. This means that two transitive graphs with similar local structure should have close critical probabilities.

Let us recall a formal version of this conjecture. In this paper, graphs are taken to be simple, non-empty, locally nite, and connected. Given two transitive graphs G and H, dene

R(G, H) ∶= max{k ∈ N ∪ {∞} ∶ B G (k) ≃ B H (k)}.
Let (G k ) be a sequence of transitive graphs and let G ∞ also be some transitive graph. Say that (G k ) converges to G ∞ (for the local topology

) if R(G k , G ∞ ) converges to innity. Mathematically, we write G k → k→∞ G ∞ .
Schramm's Locality Conjecture is the following statement. Let (G k ) be a sequence of transitive graphs such that p c (G k ) < 1 for every k.

Assume that G k → k→∞ G ∞ for some transitive graph G ∞ . Then p c (G k ) → k→∞ p c (G ∞ ).
This conjecture rst appeared in [START_REF] Benjamini | Is the critical percolation probability local? Probability Theory and Related Fields[END_REF], where the authors tackled the case of a sequence of uniformly non-amenable graphs that converges locally to an innite regular * ETH Zürich, Rämistrasse 101, 8092 Zurich Switzerland LPSM, Sorbonne Université, 4 place Jussieu, 75005 Paris France tree. Since then, the conjecture has been established for Cayley graphs of Abelian groups in [START_REF] Martineau | Locality of percolation for Abelian Cayley graphs[END_REF] and for graphs with uniform exponential growth in [START_REF] Hutchcroft | Locality of the critical probability for transitive graphs of exponential growth[END_REF].

Notice that the assumption with p c < 1 cannot be removed. Indeed, for the usual Cayley graph structures, both sequences (Z kZ) 2 and Z×(Z kZ) converge to Z 2 . However, all graphs of these sequences satisfy p c = 1 while the square lattice has p c < 1.

The conjecture was originally stated under the more stringent condition sup k p c (G k ) < 1 but it results from [HT] that if (G k ) converges for the local topology and satises p c (G k ) < 1 for every k, then it automatically satises the seemingly stronger condition sup k p c (G k ) < 1.

Panagiotis and Severo have proved in [PS] that, for Cayley graphs, the previous sentence is correct even without assuming that the sequence (G k ) converges to some transitive graph. Their result has been made quantitative and explicit in [LMTT].

Locality for graphs of polynomial growth In this paper, we establish Schramm's Locality Conjecture under the assumption that G ∞ has polynomial growth, i.e. that the cardinality of the ball of radius n is upper-bounded by a polynomial in n. 

(G k ) < 1 for every k ∈ N. Let G ∞ be a transitive graph of polynomial growth. If G k → k→∞ G ∞ , then p c (G k ) → k→∞ p c (G ∞ ).
Remark. Only the graph G ∞ is assumed to have polynomial growth. Actually, it follows from [START_REF] Tessera | A nitary structure theorem for vertex-transitive graphs of polynomial growth[END_REF] that if G ∞ has polynomial growth and G k → k→∞ G ∞ , then G k also has polynomial growth for all k large enough.

Since the inequality lim inf p c (G k ) ≥ p c (G ∞ ) is known in full generality (see [Pet, Section 14.2] or [DCT16, Section 1.2]), we only need to take p > p c (G ∞ ) and prove that p ≥ p c (G k ) for k large enough. To do so, we use supercritical sharpness on the limit graph G ∞ to build a nite-size event that has good probability to occur and that, when occurring, guarantees good connections within some box. This rst step relies on our preprint [CMT]. Then, we use nitary structure theorems for the geometry of transitive graphs of polynomial growth in order to perform a renormalisation argument. This enables us to go from local to global: from the fact that our nite-size event holds with good probability, we obtain that there is an innite cluster in G k at parameter p. This second step relies on [START_REF] Tessera | A nitary structure theorem for vertex-transitive graphs of polynomial growth[END_REF] and nitary means that global geometric information can be deduced from suitable information inside a single ball.

Uniformly controlled nets A key point in the proof is that the aforementioned renormalisation on G k can be performed uniformly with respect to k: we need the scale of renormalisation not to depend on the graph G k . To achieve this, we use Proposition 1.2 below and rely on the standard notion of net, which we now dene.

Given two numbers a, b ≥ 1, an (a, b)-net of a graph (V, E) is a subset that is aseparated and b-dense. Namely, it is some

V 0 ⊂ V such that min{d(x, y) ∶ x, y ∈ V 0 , x ≠ y} ≥ a and max{d(x, y) ∶ x ∈ V 0 , y ∈ V } ≤ b.
An (a, b)-net has a natural graph structure: two distinct elements x and y of V 0 are said to be adjacent if d(x, y) ≤ 4b. This graph structure depends on V 0 but also on the particular b we have in mind when considering V 0 as an (a, b)-net. When some V 0 is considered as an (a, b)-net, we dene p site c (V 0 ) as the critical parameter for Bernoulli site percolation on V 0 , equipped with this graph structure.

Denition. Let G be a collection of transitive graphs and let C ≥ 1. We say that G has C-controlled nets if for every a ≥ 1, every graph G ∈ G admits an (a, Ca)-net V 0 with

p site c (V 0 ) ≤ 3 4 .
In the denition above, the value 3 4 does not play a specic role. Any xed value α < 1 would work equally well for our purpose. Our proofs actually apply for any α ∈ (p site c (Z 2 ), 1). For α ∈ (0, 1), the proofs readily adjust up to adapting the values of the constant C whenever we claim that some graph has C-controlled nets.

Proposition 1.2. Let (G k ) k∈N be a sequence of transitive graphs such that p c (G k ) < 1 for every k ∈ N. If G k → k→∞ G ∞ for some transitive graph G ∞ of polynomial growth, then there is some constant C ≥ 1 such that the collection {G k ∶ k ≥ C} has C-controlled nets.

Organisation of the paper

The proof of Proposition 1.2 is presented in Section 2. In Section 3, we deduce Theorem 1.1 from Proposition 1.2 by using a standard nite-size criterion approach. Our proof of Proposition 1.2 uses a generalisation of the monotonicity result of Benjamini and Schramm [BS96, Theorem 1.1], which states that the critical parameter p c of a graph is always greater than or equal to the critical parameter of any of its covering graphs. For completeness, we present this generalised statement in Section 4. rst prove that the collection of all Cayley graphs of Z 2 has C-controlled nets. Then, we extend this result to all Cayley graphs of nilpotent groups satisfying p c < 1. Finally, by using [START_REF] Tessera | A nitary structure theorem for vertex-transitive graphs of polynomial growth[END_REF], we obtain the desired statement.

2.1

Cayley graphs of Z 2 have controlled nets Given a nite generating subset S of Z 2 and some v ∈ Z 2 , we write v S for the distance between 0 and v in the Cayley graph Cay(Z 2 , S).

On an Abelian Cayley graph, distances can be well analysed by elementary linear algebra. Here, we use the following lemma, which provides a useful control on the distances in Cayley graphs of Z 2 . Lemma 2.1. For every nite generating subset S of Z 2 , there are u, v ∈ S such that

∀m, n ∈ Z, m + n 3 ≤ mu + nv S ≤ m + n .
Proof. See Z 2 as a subset of R 

mu + nv S ≤ m ⋅ u S + n ⋅ v S = m + n ,
which would hold for any choice of u and v in S. As u maximises its Euclidean norm inside S, by the triangle inequality in (R 2 , ⋅ 2 ), we have

( m -n ) u 2 ≤ m ⋅ u 2 -n ⋅ v 2 ≤ mu + nv 2 ≤ mu + nv S u 2 ,
whence mu + nv S ≥ mn . On the other hand, as v maximises p(v) 2 in S, the triangle inequality in (R 2 , ⋅ 2 ) yields

n ⋅ p(v) 2 = p(nv) 2 = p(mu + nv) 2 ≤ mu + nv S ⋅ p(v) 2 ,
whence mu + nv S ≥ n . We conclude by observing that max( mn , n ) ≥ m + n 3 .

Lemma 2.2. The collection of all Cayley graphs of Z 2 has 1-controlled nets.

Proof. Let S be a nite generating subset of Z 2 . Let u and v be such that the conclusion of Lemma 2.1 holds. Let a ≥ 1 and m = ⌈3a⌉. Let Γ denote the subgroup of Z 2 generated by mu and mv. By the choice of u and v, this denes an a-separated subset of Cay(Z 2 , S).

Let V 0 be a maximal a-separated subset of Cay(Z 2 , S) containing Γ, maximality being understood relative to inclusion. By maximality, V 0 is an (a, a)-net. Furthermore, via the embedding (k, ) ↦ kmu + mv, this net contains the square lattice as a subgraph. It therefore satises p site c ≤ 3 4 .

2.2

Nilpotent groups have controlled nets Lemma 2.2 gives us some uniform control over all Cayley graphs of Z 2 . Combined with the observation that any nilpotent group with p c < 1 admits Z 2 as a quotient, this allows us to get the following statement.

Lemma 2.3. The collection of all Cayley graphs of nilpotent groups with p c < 1 has 2-controlled nets.

Remark. If the Cayley graph G = Cay(G, S) under consideration was the product of a Cayley graph of Z 2 and another Cayley graph H, it would suce for our purpose to take a good (a, a)-net V 1 of Z 2 , an arbitrary (a, a)-net V 2 of H, and to prove that

V 0 = V 1 ×V 2 is a suitable net because of the choice of V 1 .
Here, G does not necessarily split as a product but it will still be possible to produce a suitable net, by using the fact that Z 2 is a quotient of G.

Proof. Let G = Cay(G, S) be a Cayley graph where the group G is nilpotent and assume that p c (G) < 1. For each x ∈ V 1 , pick a maximal a-separated subset of π -1 ({x}) and denote it by U x . This means that for any two distinct points g and h in U x , we have d S (g, h) ≥ a, and that U x is a maximal subset of π -1 ({x}) with this property. Let V 0 ∶= ⋃ x∈V 1 U x . We shall prove that V 0 is an (a, 2a)-net of G with p site c ≤ 3 4 .

First, observe that the set V 0 is a-separated in G = Cay(G, S). Indeed, let g and h be two distinct points in V 0 . We have d S (g, h) ≥ d π(S) (π(g), π(h)). Thus, if π(g) ≠ π(h), we are done by denition of V 1 . Otherwise, g and h belong to π -1 ({x}) for x = π(g) = π(h), and then it holds by denition of U x .

Let us now prove that V 0 is 2a-dense in Cay(G, S). Let g ∈ G and x = π(g). Since V 1 is a-dense in Cay(Z 2 , π(S)), we can pick y ∈ V 1 such that d π(S) (x, y) ≤ a. As π is a quotient map, we can pick some h ∈ π -1 ({y}) such that d S (g, h) ≤ a. Since U y is maximal as an a-separated subset of π -1 ({y}), we have d S (h, U y ) < a. As a result, we have d S (g, U y ) < 2a.

Finally, we show that V 0 , considered with its graph structure of (a, 2a)-net, has p site c ≤ 3 4 . The map π is well-dened seen from V 0 to V 1 . When V 0 is viewed as an (a, 2a)-net of G and V 1 as an (a, a)-net of Cay(Z 2 , π(S)), this map satises the following properties:

π ∶ V 0 → V 1 is surjective, for every x ∈ V 1 , every g ∈ U x and every V 1 -neighbour y of x, there is a V 0 -neighbour h of g such that π(g) = y.
Indeed, the same proof as that of 2a-density yields an h such that d S (g, h) < 4 × a + a < 4 × 2a.

By the forthcoming Proposition 4.1, the existence of such a map π ∶

V 0 → V 1 implies that p site c (V 0 ) ≤ p site c (V 1 ) ≤ 3 4 .

Converging sequences have controlled nets

We are now able to prove Proposition 1.2. Let us take (G k ) a sequence of transitive graphs such ∀k, p c (G k ) < 1. Assume that G k converges locally to some transitive graph G ∞ of polynomial growth. We prove that there exists a constant C such that {G k , k ≥ C} has C-controlled nets.

By [TT21, Theorem 1.3], up to forgetting nitely many terms of the sequence (G k ),

we can do the following:

1. we assume that all G k 's have polynomial growth, 2. we x some constant A ≥ 1, Cayley graphs of nilpotent groups Cay(G k , S k ) and maps

ϕ k ∶ G k → V (G k ) such that every ϕ k is an A-quasi-isometry.
Recall that ϕ k being an A-quasi-isometry means that

∀g, h ∈ G k , 1 A d(g, h) -A ≤ d(ϕ k (g), ϕ k (h)) ≤ Ad(g, h) + A and ϕ k (G k ) is A-dense in G k .
The fact that p c is smaller than 1 is preserved by quasi-isometries: see [LP17, Theorem 7.15] and the comment following its proof. Therefore, Lemma 2.3 applies to Cay(G k , S k ). Let a ≥ 1 and a ′ = aA + A 2 . By Lemma 2.3, we can x some (a

′ , 2a ′ )-net V k in Cay(G k , S k ) satisfying p site c ≤ 3 4 . Setting V ′ k = ϕ k (V k ) thus denes an (a, 2a ′ A + A)-net of G k . Fur- thermore, the map ϕ k seen from V k to V ′ k is an injective graph homomorphism, when V k is considered as an (a ′ , 2a ′ )-net and V ′ k as an (a, 2a ′ A + A)-net. Therefore, we have p site c (V ′ k ) ≤ p site c (V k ) ≤ 3 4 . Taking C = 5A 3 completes the proof of Proposition 1.2.
Remark. Seeing why [TT21, Theorem 1.3] indeed guarantees Item 2 requires a basic tool of geometric group theory: the MilnorSchwarz Lemma. We only need the following particular case: For every A ≥ 1, there is some constant B such that the following holds.

Let G be a group generated by a nite subset S. Let H be a subgroup of G of index at most A. Then, H admits a nite generating subset S H such that there is a B-quasi-isometry from Cay(H, S H ) to Cay(G, S). This is proved by following the proofs of Theorem 8.37 and Corollary 8.47 in [START_REF] Druµu | Geometric Group Theory[END_REF] and observing that B depends only on A. Tessera and Tointon did not state their Theorem 1.3 as our Item 2 because they wanted a stronger result where, up to tolerating a bounded index subgroup, the multiplicative constant of the quasi-isometry can be taken equal to 1.

3 Proof of Theorem 1.1

In this section, we use Proposition 1.2 to perform a renormalisation argument yielding locality for transitive graphs of polynomial growth.

We rst recall a useful lemma about k-independent percolation processes. A site percolation process P is called k-independent if, for any two sets of vertices U 1 and U 2

satisfying min{d(x 1 , x 2 ) ∶ x 1 ∈ U 1 , x 2 ∈ U 2 } > k,
the restriction X U 1 is independent of X U 2 , where X denotes a P-distributed random variable. Recall that P 1 stochastically dominates P 2 if there is a coupling (X 1 , X 2 ) of (P 1 , P 2 ) such that every X 2 -open site is always X 1 -open. Lemma 3.1. Let D and k be two positive integers. There exists q = q(k, D) < 1 such that the following holds. For every connected graph H with maximal degree at most D, any k-independent site percolation process on H with marginals at least q stochastically dominates independent site percolation on H of parameter 3 4 . Proof. By [LSS97, Theorem 1.3], for every constant D, we can x some constant p D < 1 such that for every connected graph H with maximal degree at most D, any 1-independent site percolation process on H with marginals at least p D stochastically dominates independent site percolation on H of parameter 3 4 . Notice that if H has maximal degree at most D, then any k-independent site percolation process on H with marginals at least p D k stochastically dominates independent site percolation on H of parameter 3 4 . Indeed, any k-independent site percolation process on H is 1-independent when considered on H

(k) , where V (H (k) ) = V (H) and E(H (k) ) = {{x, y} ∶ 0 < d H (x, y) ≤ k}. Setting q(k, D) = p D k thus yields the lemma.
We also recall a classical lower bound for distances in nets, which will help us prove that some auxiliary site percolation process is 81-independent.

Lemma 3.2. Let V 0 be an (a, b)-net of some graph G. Then, for any u, v ∈ V 0 , we have:

d V 0 (u, v) ≤ 1 b d G (u, v) + 1.
Proof. Let u, v ∈ V 0 . Let (u 0 , . . . , u ) be a shortest path from u 0 = u to u = v in G.

Set B = ⌊2b⌋ ≥ b. By keeping only vertices of the form u Bk and the nal vertex u , we obtain a sequence of vertices (v 0 , . . . , v L ) with L ≤ B + 1 and such that d G (v i , v i+1 ) ≤ B.

Except for v 0 and v L , these vertices have no reason to belong to V 0 . Therefore, we dene (w 0 , . . . , w L ) by setting w 0 = u, w L = v, and w i any vertex of V 0 such that d G (v i , w i ) ≤ b when i ∈ {1, . . . , L -1}. This sequence denes a path from u to v in V 0 and its length is

at most b + 1 = 1 b d G (u, v) + 1.
We are now able to prove Theorem 1.1.

Proof of Theorem 1.1. Let G ∞ be a transitive graph of polynomial growth. Let (G k ) k∈N be a sequence of transitive graphs such that p

c (G k ) < 1 for every k ∈ N and G k → k→∞ G ∞ .
Fix p > p c (G ∞ ). We will prove that for every k large enough, there is an innite cluster for percolation of parameter p on G k with positive probability.

any two open paths intersecting B 2n (v) and touching the 5n-sphere centred at v are connected by an open path that lies within B 5n (v).

By [CMT, Proposition 1.3], for every v, the event E n (v) has a probability converging to 1 when n goes to innity. Notice that, by transitivity, this probability depends on n but not on v.

Let us quantify how large we need P p (E n ) to be. By [Bas72, Gui73, Gro81, Tro85], there exists an integer d ≥ 2 and a constant c ≥ 1 such that the balls of G ∞ satisfy 1 c r d ≤ B r ≤ cr d for every r ≥ 1. Let C be such that the conclusion of Proposition 1.2 holds. For reasons that will make sense shortly, dene D = c 2 ⋅ (12C + 3) d and x some n ≥ 9C such that P p (E n ) ≥ q(81, D).

In this inequality, q(81, D) is dened so that the conclusion of Lemma 3.1 holds. Set a = n 4C . For every k ≥ C, x V k an (a, Ca)-net of G k such that p site c (V k ) ≤ 3 4 . Observe that every V k has maximal degree at most D. Indeed, if some vertex v has V k -neighbours v 1 , . . . , v m , then the balls B a 3 (v i ) of G ∞ are disjoint subsets of B (4C+1)a (v). This entails We now work on G k and export the nite-size criterion constructed on G ∞ to G k , for k large. This will show that p is also supercritical on these graphs. For k ∈ N and v ∈ V (G k ), we dene E n,k (v) by the same conditions as above, but in G k rather than G ∞ .

d

  ≤ c(4C + 1) d a d , whence m ≤ D.

Figure 1 :

 1 Figure 1: An open path in η produces an open path in ω as a consequence of the gluing eect of the uniqueness zones between scale 2n and 5n.

  This article can be read with p c meaning either always p site

	c	or always p bond c	, both interpretations yield
	correct statements.		

Theorem 1.1. Let (G k ) k∈N be a sequence of transitive graphs such that p c

  2 endowed with the usual Euclidean norm ⋅ 2 . Pick u an element of S with maximal Euclidean norm. Denote by p the linear orthogonal projection on u ⊥ . Pick an element v of S that maximises p(v) 2 .

Let m, n ∈ Z. By the triangle inequality in Cay(Z 2 , S), we have

Acknowledgments

We are grateful to Romain Tessera and Matthew Tointon for helpful comments regarding nilpotent geometry. We thank the anonymous referee for a careful reading. The rst and third authors are supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 851565) and by the NCCR SwissMap.

2

Uniformly controlled nets for converging sequences

We want to prove that if (G k ) is a sequence as in Proposition 1.2, then, for some C, the collection {G k ∶ k ≥ C} has C-controlled nets. In order to prove this statement, we

We rst work on G ∞ and use that p is supercritical to build a suitable nite-size event for percolation on G ∞ . For v ∈ V (G ∞ ) and n ≥ 1, dene the event E n (v) by the conjunction of the following two events for p-percolation on G ∞ : there is a cluster intersecting B n (v) and touching the 10n-sphere centred at v,

Given a percolation conguration ω on G k , we associate a site percolation conguration η on V k by declaring v ∈ V k to be open if and only if E n,k (v) holds. This process enjoys the following two properties: if there is an innite open path for η, then there is one for ω (see Figure 1), V k being endowed with its graph-structure of (a, Ca)-net, the process η is ( 20n Ca + 1)-

By denition of a, we have 20n Ca +1 = 81. By taking k large enough, we may assume that the 10n-ball of G k is isomorphic to that of G ∞ . Therefore, P p (E n,k ) = P p (E n ) ≥ q(81, D). By denition of q(81, D) and because p site c (V k ) ≤ 3 4 , the process η yields an innite cluster with positive probability, hence so is the case for ω. We thus get p c (G k ) ≤ p, as desired.

Monotonicity of p c revisited

In this section, we revisit monotonicity of p c relative to the quotient operation, i.e. relative to covering maps. The original result is in [BS96, Theorem 1], see also [START_REF] Martineau | Strict monotonicity of percolation thresholds under covering maps[END_REF]. Our proof below is exactly the same. However, we state the proposition in a more general way that emphasises exactly which properties of the covering map π are required for the argument to hold. Proposition 4.1. Let G and H be two locally nite graphs with countably many vertices.

Let π ∶ V (H) → V (G) be a surjective map. Assume that for every u ∈ V (G), for every y neighbour of π(u), there is at least one neighbour v of u such that π(v) = y.

Then, p site c (H) ≤ p site c (G).

Remark. If G is connected and H is non-empty, then any π ∶ V (H) → V (G) satisfying the main assumption of the lemma is automatically surjective. Also note that π is not assumed to be a graph homomorphism.

Proof. Let p > p site c (G). We can thus pick o ∈ V (G) 

and move to the next step.

This exploration can be lifted to dene an exploration (O ′ n , C ′ n ) of (a subset of ) the cluster of o ′ in H. 

Such a choice of (x ′ n , y ′ n ) is always possible due to our assumption on π. If the exploration in G never stops (which corresponds to the cluster of o being innite), then the lifted exploration does not stop either, which implies that the cluster of o ′ is also innite.