
HAL Id: hal-03905056
https://hal.science/hal-03905056

Submitted on 17 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity of Finding Maximum Locally Irregular
Induced Subgraphs

Foivos Fioravantes, Nikolaos Melissinos, Theofilos Triommatis

To cite this version:
Foivos Fioravantes, Nikolaos Melissinos, Theofilos Triommatis. Complexity of Finding Maximum
Locally Irregular Induced Subgraphs. Scandinavian Symposium and Workshops on Algorithm Theory
(SWAT) 2022, Jun 2022, Torshavn, Faroe Islands. �10.4230/LIPIcs.SWAT.2022.23�. �hal-03905056�

https://hal.science/hal-03905056
https://hal.archives-ouvertes.fr

Complexity of Finding Maximum Locally Irregular1

Induced Subgraphs2

Foivos Fioravantes !3

Université Côte d’Azur, Inria, CNRS, I3S, Valbonne, France4

Nikolaos Melissinos !5

Université Paris-Dauphine, Université PSL, CNRS, LAMSADE, 75016, Paris, France6

Theofilos Triommatis !7

School of Electrical Engineering, Electronics and Computer Science University of Liverpool,8

Liverpool, L69-3BX, UK9

Abstract10

If a graph G is such that no two adjacent vertices of G have the same degree, we say that G is11

locally irregular. In this work we introduce and study the problem of identifying a largest induced12

subgraph of a given graph G that is locally irregular. Equivalently, given a graph G, find a subset S13

of V (G) with minimum order, such that by deleting the vertices of S from G results in a locally14

irregular graph; we denote with I(G) the order of such a set S. We first examine some easy graph15

families, namely paths, cycles, trees, complete bipartite and complete graphs. However, we show16

that the decision version of the introduced problem is NP-Complete, even for restricted families of17

graphs, such as subcubic planar bipartite, or cubic bipartite graphs. We then show that we can not18

even approximate an optimal solution within a ratio of O(n1− 1
k), where k ≥ 1 and n is the order19

the graph, unless P=NP, even when the input graph is bipartite.20

Then, looking for more positive results, we turn our attention towards computing I(G) through21

the lens of parameterised complexity. In particular, we provide two algorithms that compute I(G),22

each one considering different parameters. The first one considers the size of the solution k and23

the maximum degree ∆ of G with running time (2∆)knO(1), while the second one considers the24

treewidth tw and ∆ of G, and has running time ∆2twnO(1). Therefore, we show that the problem25

is FPT by both k and tw if the graph has bounded maximum degree ∆. Since these algorithms26

are not FPT for graphs with unbounded maximum degree (unless we consider ∆ + k or ∆ + tw as27

the parameter), it is natural to wonder if there exists an algorithm that does not include additional28

parameters (other than k or tw) in its dependency.29

We answer negatively, to this question, by showing that our algorithms are essentially optimal.30

In particular, we prove that there is no algorithm that computes I(G) with dependence f(k)no(k) or31

f(tw)no(tw), unless the ETH fails.32

2012 ACM Subject Classification Mathematics of computing→Graph algorithms; Theory of Com-33

putation → Design and Analysis of Algorithms → Parameterized Complexity and Exact Algorithms;34

Mathematics of computing → Approximation algorithms35

Keywords and phrases Locally irregular, largest induced subgraph, FPT, treewidth, W-hardness,36

approximability37

Digital Object Identifier 10.4230/LIPIcs.SWAT.2022.2338

Related Version Full version hosted on HAL.39

: https://hal.archives-ouvertes.fr/hal-0335827340

Funding Foivos Fioravantes: Supported by the French government through the UCA JEDI (ANR-41

15-IDEX-01) and the EUR DS4H (ANR-17-EURE-004) Investments in the Future projects.42

Theofilos Triommatis: Supported by EP/S023445/1 EPSRC CDT in Distributed Algorithms, Uni-43

versity of Liverpool.44

© Foivos Fioravantes, Nikolaos Melissinos and Theofilos Triomatis;
licensed under Creative Commons License CC-BY 4.0

18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022).
Editors: Artur Czumaj and Qin Xin; Article No. 23; pp. 23:1–23:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:foivos.fioravantes@inria.fr
mailto:nikolaos.melissinos@dauphine.eu
mailto:Theofilos.Triommatis@liverpool.ac.uk
https://doi.org/10.4230/LIPIcs.SWAT.2022.23
https://hal.archives-ouvertes.fr/hal-03358273
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

1 Introduction45

A graph G is said to be locally irregular, if every two adjacent vertices of G have different46

degrees. In this paper, we introduce and study the problem of finding a largest locally47

irregular induced subgraph of a given graph. This problem is equivalent to identifying what48

is the minimum number of vertices that must be deleted from G, so that what remains is a49

locally irregular graph.50

Locally irregular graphs. The notion of locally irregular graphs was first introduced in [6].51

The most interesting aspect of locally irregular graphs, comes from their connection to the52

so-called 1-2-3 Conjecture, proposed in [22]. Formally, the 1-2-3 Conjecture states that for53

almost every graph, we should be able to place weights from {1, 2, 3} on the edges of that54

graph, so that the colouring, that assigns a colour to each vertex equal to the sum of the55

weights on its adjacent edges, is a proper vertex-colouring of the graph.56

As we said earlier, the 1-2-3 Conjecture seems to have some very interesting links to57

locally irregular graphs. An obvious connection is that this conjecture holds for locally58

irregular graphs. Indeed, placing weight equal to 1 to all the edges of a locally irregular59

graph, suffices to produce a proper vertex-colouring, as each vertex receives a colour equal to60

its degree. Furthermore, there have been some steps towards proving that conjecture, which61

involve edge-decomposing a graph into a constant number of locally irregular subgraphs,62

i.e., given G, find an edge-colouring of G using a constant number of colours, such that each63

colour induces a locally irregular subgraph of G. This is the main motivation behind [6], and64

it seems to remain interesting enough to attract more attention [8, 25, 30].65

Note that the class of locally irregular graphs can be seen as an antonym to that of regular66

graphs, i.e., graphs such that all of their vertices have the same degree. It is important to67

state here that there exist several alternative such notions. This is mainly due to the very well68

known fact that there are no non-trivial irregular graphs, i.e., graphs that do not contain two69

vertices (not necessarily adjacent) with the same degree (see [12]). Thus, the literature has70

plenty of slightly different definitions of irregularity (see for example [2, 12, 13, 20, 29]). One71

way to deal with the nonexistence of irregular graphs, is to define a notion of local irregularity.72

Intuitively, instead of demanding for all vertices of a graph to have different degrees, we are73

now considering each vertex v separately, and request that the vertices “around” v to verify74

some properties of irregularity. For example, the authors of [3] study graphs G such that for75

every vertex v of G, no two neighbours of v have the same degree. For an overview of other76

interesting notions of irregularity (local or otherwise), we refer the reader to [4].77

Largest induced subgraph verifying specific properties. The problem we introduce belongs78

in a more general and well studied family of problems, which is about identifying a largest79

induced subgraph of a given graph that verifies a specific property Π. That is, given a graph80

G = (V,E) and an integer k, is there a set V ′ ⊆ V such that |V ′| ≤ k and G[V \ V ′] has81

the specified property Π? In our case, the property Π is “the induced subgraph is locally82

irregular”. This generalised problem is indeed classic in graph theory, and it is known as the83

Induced Subgraph with Property Π (ISPΠ for short) problem in [21]. Unfortunately,84

it was shown in [24], that ISPΠ is a hard problem for any property Π that is hereditary, i.e.,85

all induced subgraphs of G verify Π if G itself verifies that property.86

However, the ISPΠ problem remains interesting (one could say that it actually becomes87

more interesting) even if the property Π is not hereditary. Recently, the authors of [7] studied88

the problem for Π being “all vertices of the induced subgraph have odd degree”, which89

Fioravantes F., Melissinos N., Triomatis T. 23:3

clearly is not a hereditary property. Nevertheless, they showed that this is an NP-hard90

problem, and they gave an FPT algorithm that solves the problem when parameterised by91

the rank-width. Also, the authors of [1, 5, 28] studied the ISPΠ problem, where Π is the92

rather natural property “the induced subgraph is d-regular”, where d is an integer given in93

the input (recall that a graph is said to be d-regular if all of its vertices have the same degree94

d). In particular, in [5] it is shown that finding a largest (connected) induced subgraph that95

is d-regular, is NP-hard to approximate, even when restricted on bipartite or planar graphs.96

The authors of [5] also provide a linear-time algorithm to solve this problem for graphs with97

bounded treewidth. In contrast, the authors of [1] take a more practical approach, as they98

focus on solving the problem for the particular values of d = 1 and d = 2, by using bounds99

from quadratic programming, Lagrangian relaxation and integer programming.100

It is quite clear that, in some sense, the property that interests us lies on the opposite101

side of the one studied in [1, 5, 28]. However, both properties, “the induced subgraph is102

regular” and “the induced subgraph is locally irregular” are not hereditary. This means that103

we do not get an NP-hardness result directly from [24]. Furthermore, the ISPΠ problem104

always admits an FPT algorithm, when parameterised by the size of the solution, if Π is105

a hereditary property (proven in [11, 23]), but for a non-hereditary one, this is not always106

true. Indeed in [28], the authors proved that when considering Π as “the induced subgraph107

is regular”, the ISPΠ problem is W[1]-hard when parameterised by the size of the solution.108

That is, there should be no f(k)nc time algorithm for this problem, where c is a constant.109

For such problems, it is also interesting to see if there exists any algorithm with running110

time no(k) or f(k)no(k). The authors of [14, 15, 16] provide techniques that can be used to111

strongly indicate the non-existence of such algorithms, by applying them on a variety of112

W[1]-hard and W[2]-hard problems, such as the Independent Set and the Dominating113

Set, parameterised by the size of their solutions. Usually these lower bounds are shown114

under the assumption of a weaker version of the Exponential Time Hypothesis, which115

states that SAT can not be solved in time 2o(n+m).116

Our contribution. We begin in Section 2 by providing the basic notations and definitions117

that are going to be used throughout this paper. In Section 3, we deal with the complexity118

of the introduced problem. In particular, we show that the problem belongs in P if the119

input graph is a path, cycle, tree, complete bipartite or complete graph. We then prove that120

finding the maximum induced locally irregular subgraph of a given graph G is NP-hard,121

even if G is restricted to being a subcubic planar bipartite, or a cubic bipartite graph.122

As the introduced problem seems to be computationally hard even for restricted families123

of graphs, we then investigate its approximability. Unfortunately, we prove in Section 4 that124

for any bipartite graph G of order n and k ≥ 1, there can be no polynomial time algorithm125

that finds an approximation of I(G) within ratio O(n1− 1
k), unless P=NP . Nevertheless, we126

do provide a (simple) d-approximation algorithm for d-regular bipartite graphs.127

We then decide to look into its parameterised complexity. In Section 5, we present two128

algorithms that compute I(G), each one considering different parameters. The first considers129

the size of the solution k and the maximum degree ∆ of G, and and has running time130

(2∆)knO(1), while the second considers the treewidth tw and ∆ of G, and has running time131

∆2twnO(1). Unfortunately, these algorithms can be considered as being FPT only if ∆ is part132

of the parameter. In Section 5.1, we present two linear fpt-reductions which prove that the133

problem is W[2]-hard when parameterised only by the size of the solution and W[1]-hard134

when parameterised only by the treewidth. These reductions also show that we can not even135

have an algorithm that computes I(G) in time f(k)no(k) or O∗(f(tw)no(tw)), unless the ETH136

SWAT 2022

23:4 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

fails. The O∗ notation is used to suppress polynomial factors in regards to n and tw.137

2 Preliminaries138

For notions and definitions on graph theory not explained here, we refer the reader to [18].139

Let G = (V,E) be a graph and G′ = (V ′, E′) be a subgraph of G (i.e., created by deleting140

vertices and/or edges of G). Recall first that the subgraph G′ is induced if it can be created141

only by deleting vertices of G. That is, for each edge uv ∈ E, if u, v ∈ V ′, then uv ∈ E′. For142

any vertex v ∈ V , let NG(v) = {u ∈ V : uv ∈ E} denote the neighbourhood of v in G, and let143

dG(v) = |NG(v)| denote the degree of v in G. We also define NG[v] = NG(v) ∪ {v}. Finally,144

for any X ⊆ V , we define NG[X] =
⋃
v∈X NG[v]. Note that, whenever the graph G is clear145

from the context, we will omit the subscript and simply write N(v), d(v), N [v] and N [X].146

One way to show that a problem can not be approximated within a certain ratio, is147

through a gap reduction. The goal of such a reduction is to show that it is NP-hard to148

differentiate between instances that have a solution of size ≤ α and those for which any149

solution has size > β. If such is the case, then we know that we cannot approximate the150

optimal solution within a ratio of βα , as otherwise we would get that P=NP.151

Finally, recall that a fixed parameter-tractable (FPT for short) algorithm, is an algorithm152

with running time f(k)nO(1), where f is a computable function and k is the considered153

parameter. We also make use of what is known as a linear fpt-reduction, a type of polynomial154

reduction such that the size of the parameter of the new problem is linear in regards to the155

size of the parameter of the original problem. Observe that if we have a linear fpt-reduction156

from a problem Q with parameter k to a problem Q′ with parameter k′ and the assumption157

that Q can not be solved in time f(k)no(k)
1 (where n1 is the size of the input of Q), then we158

can conclude that there is no f(k′)no(k
′)

2 time algorithm for Q (where n2 is the size of the159

input of Q).160

Let G = (V,E) be a graph. We say that G is locally irregular if for every edge uv ∈ E, we161

have d(u) 6= d(v). Now, let S ⊆ V be such that G[V \ S] is a locally irregular graph; any set162

S that has this property is said to be an irregulator of G. For short, we will say that S is an163

ir(G). Moreover, let I(G) be the minimum order that any ir(G) can have. We will say that164

S is a minimum irregulator of G, for short S is an ir∗(G), if S is an ir(G) and |S| = I(G).165

We also define the following notion, which generalises ir(G). Let G = (V,E) be a graph,166

S,X ⊆ V and let G′ = G[V \ S]. Now, let S ⊆ V be such that, for each two neighbouring167

vertices u, v in X \ S, we have that dG′(u) 6= dG′(v); any set S that has this property is said168

to be an irregulator of X in G, for short ir(G,X). We define the notions of ir∗(G,X) and169

I(G,X) analogously to the previous definitions.170

We will now provide some lemmas and an observation that will be useful throughout this171

paper. As the proofs of the following lemmas mainly follow from the definitions, we chose to172

only include them in the full version of this paper. In the three lemmas below, we investigate173

the relationship between I(G) and I(G,X).174

I Lemma 1. Let G = (V,E) be a graph and let X ⊆ V . Then I(G,X) ≤ I(G).175

I Lemma 2. Let G = (V,E) be a graph and S,X ⊆ V such that S is an ir∗(G,X). Then,176

S ⊆ N [X] and I(G,X) = I(G[N [X]], X).177

I Lemma 3. Let G = (V,E) be a graph, and X1, . . . , Xn ⊆ V such that N [Xi] ∩N [Xj] = ∅178

for every 1 ≤ i < j ≤ n. Then
∑n
i=1 I(G,Xi) ≤ I(G).179

I Lemma 4. Let G = (V,E) be a graph, X be a subset of V and S be an ir(G). The set180

S ∩N [X] is an ir(G,X) and an ir(G[N [X]], X).181

Fioravantes F., Melissinos N., Triomatis T. 23:5

u1
u2

u3
u4

u r

w1

w2

Figure 1 The gadget used in the proof of Theorem 7. The white and black vertices are used to
denote vertices belonging to different bipartitions.

The following, almost trivial, observation, will be useful throughout the rest of the paper.182

I Observation 5. Let G = (V,E) be a graph and S be an ir(G). Then, for each edge uv ∈ E,183

if d(u) = d(v), then S contains at least one vertex in N [{u, v}]. Additionally, for a set184

X ⊆ V , let S∗ be an ir(G[N [X]], X). Then for each edge uv ∈ E(G[X]), if d(u) = d(v),185

then S∗ contains at least one vertex in N [{u, v}].186

3 (Classic) complexity187

In this section, we deal with the complexity of the problem we introduced. In the following188

theorem, we sum up all the families of graphs for which we prove that I(G) is computed in189

polynomial time.190

I Theorem 6. Let G be a graph. If G is a path, cycle, tree, complete bipartite or a complete191

graph, then the problem of computing I(G) is in P.192

The result for the case of paths and cycles is proven through induction on the order of193

the graph. Then, complete and complete bipartite graphs have a rather trivial structure194

in regards to the problem studied here. Finally, the polynomial algorithm for trees follows195

directly from upcoming Theorem 14.196

3.1 NP-Hard Cases197

We now show that finding a minimum irregulator of a graph is NP-hard. Interestingly,198

this remains true even for quite restricted families of graphs, such as cubic (i.e., 3-regular)199

bipartite, and subcubic planar bipartite graphs, i.e., planar bipartite graphs of maximum200

degree at most 3.201

I Theorem 7. Let G be graph and k ∈ N. Deciding if I(G) ≤ k is NP-complete, even when202

G is a planar bipartite graph with maximum degree ∆ ≤ 3.203

Proof. Since the problem is clearly in NP , we will focus on proving it is also NP-hard. The204

reduction is from the Vertex Cover problem, which remains NP-complete when restricted205

to planar cubic graphs [27]. In that problem, a planar cubic graph G and an integer k ≥ 1206

are given as an input. The question is, whether there exists a vertex cover of G of order at207

most k. That is, whether there exists a set V C ⊆ V (G) such that for every edge uv ∈ E(G),208

at least one of u and v belongs in V C and |V C| ≤ k.209

Let G′ be a planar cubic graph and k ≥ 1 given as input for Vertex Cover. Let210

|E(G′)| = m. We will construct a planar bipartite graph G as follows; we start with the211

graph G′, and modify it by using multiple copies of the gadget, illustrated in Figure 1. Note212

that we will be following the naming convention illustrated in Figure 1 whenever we talk213

about the vertices of our gadgets. When we say that we attach a copy H of the gadget to214

SWAT 2022

23:6 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

v2

v1

v3

(a) G′

v3

v2

v1
r

u

(b) G

Figure 2 The construction in the proof of Theorem 7. The graph G′ is the initial planar cubic
graph, and G is the graph built during our reduction. In G, the white and black vertices are used to
denote vertices belonging to different bipartitions.

the vertices v and v′ of G′, we mean that we add H to G′, and we identify the vertices w1215

and w2 to the vertices v and v′ respectively. Now, for each edge vv′ ∈ E(G′), attach one216

copy H of the gadget to the vertices v and v′, and then delete the edge vv′ (see Figure 2).217

Clearly this construction is achieved in linear time (we have added m copies of the gadget).218

Note also that the resulting graph G has ∆(G) = 3 and that the planarity of G′ is preserved219

since G is constructed by essentially subdividing the edges of G′ and adding a tree pending220

from each new vertex. Also, G is bipartite. Indeed, observe that after removing the edges221

of E(G′), the vertices of V (G′) form an independent set of G. Furthermore, the gadget is222

bipartite, and the vertices w1, w2 (that have been identified with vertices of V (G′)) belong223

to the same bipartition (in the gadget). Finally, for any 1 ≤ i ≤ m, let Hi be the ith copy of224

the gadget attached to vertices of G′. We will also be using the vertices ri and ui to denote225

the copies of the vertices r and u (respectively) that also belong to Hi.226

We are now ready to show that the minimum vertex cover of G′ has size k′ if and only if227

I(G) = k′.228

Let V C be a minimum vertex cover of G′ and |V C| = k′. We will show that the set229

S = V C is an ir(G). Let G∗ = G[V (G) \ S]. First, note that S contains only vertices of G′.230

Thus, for each i, the vertices of Hi except from ri, which also remain in G∗, have the same231

degree in G′ and in G∗. Also note that each vertex of G′ is adjacent only to copies of r. It232

follows that it suffices to only consider the vertices ri to show that V C is an ir(G). Now,233

for any 1 ≤ i ≤ m, consider the vertex ri. Since V C is a vertex cover of G′, for each edge234

vv′ ∈ E(G′), V C contains at least one of v and v′. It follows that dG∗(ri) ≤ 2. Note also235

that NG∗(ri) contains the vertex ui ∈ V (Hi) and possibly one vertex v ∈ V (G′).236

Also, since we only delete vertices in V (Hi)∩ V (G′), we have that dG∗(ui) = 3 > dG∗(ri).237

In the case where NG∗(ri) also contains a vertex v ∈ V (G′), the vertex v is adjacent only to238

vertices which do not belong in V (G′). Thus, dG∗(v) = dG(v) = 3 > dG∗(ri). It follows that239

ri has a different degree from all of its neighbours and that V C is an ir(G).240

Now, we prove that if I(G) = k′ then there exists a vertex cover of size at most k′. Assume241

that I(G) = k′ and let S be an ir∗(G). Observe that since S is an ir∗(G), S contains at least242

one vertex of Hi (for each 1 ≤ i ≤ m). Let Xi = V (Hi)∩ V (G′). To construct a vertex cover243

Fioravantes F., Melissinos N., Triomatis T. 23:7

V C of G′ with |V C| ≤ k′, we work as follows. For each 1 ≤ i ≤ m:244

1. for each vertex v ∈ Xi, if v ∈ S then put v in V C. Then,245

2. if S ∩Xi = ∅, put any one of the two vertices of Xi in V C.246

Observe now that any vertex that is added to V C during step 1. of the above procedure,247

also belongs to S and any vertex that is added during step 2. of the above procedure248

corresponds to at least one vertex in S. It follows that |V C| ≤ k′. Also note that V C249

contains at least one vertex of Xi, for each i, and that for each uv ∈ E(G′), there exists an i250

such that V (Xi) = {u, v}. Thus V C is indeed a vertex cover of G′.251

Therefore G′ has a minimum vertex cover of size k′ if and only if I(G) = k′. To complete252

the proof note that deciding if I(G) = k′ < k for a given k, answers the question whether G′253

has a vertex cover of size less than k or not. J254

In the following theorem we show that calculating I(G) is NP-hard even if G is a cubic255

bipartite graph.256

I Theorem 8. Let G be graph and k ∈ N. Deciding if I(G) ≤ k is NP-complete even in257

cubic bipartite graphs.258

This theorem is shown through a reduction from the 2-Balanced 3-SAT, which was259

proven to be NP-complete in [9].260

4 (In)approximability261

In the previous section we showed that computing I(G) is NP-hard, even for graphs G262

belonging to quite restricted families of graphs. So the natural question to pose next, which263

we investigate in this section, is whether we can approximate I(G). Unfortunately, most of264

the results we present below are once again negative.265

We start with a corollary that follows from the proof of Theorem 7 and the inapproxim-266

ability of Vertex Cover in cubic graphs [17]:267

I Corollary 9. Given a graph G, it is NP-hard to approximate I(G) to within a ratio of 100
99 ,268

even if G is bipartite and ∆(G) = 3.269

Now, we are going to show that there can be no algorithm that approximates I(G) to270

within any decent ratio in polynomial time, unless P=NP, even if G is a bipartite graph271

(with no restriction on its maximum degree).272

I Theorem 10. Let G be a bipartite graph of order N and k ∈ N be a constant such that273

k ≥ 1. It is NP-hard to approximate I(G) to within O(N1− 1
k).274

Proof. The proof is by a gap producing reduction from 2-Balanced 3-SAT, which was275

proven to be NP-complete in [9]. In that problem, a 3CNF formula F is given as an input,276

comprised by a set C of clauses over a set of Boolean variables X. In particular, we have277

that each clause contains exactly 3 literals, and each variable x ∈ X appears in F exactly278

twice as a positive and twice as a negative literal. The question is, whether there exists a279

truth assignment to the variables of X satisfying F .280

Let F be a 3CNF formula with m clauses C1, . . . , Cm and n variables x1, . . . , xn that is281

given as input to the 2-Balanced 3-SAT problem. Let 2k = k′ + 1. Based on the instance282

F , we are going to construct a bipartite graph G = (V,E) where |V | = O(nk′+1) and283

I(G) ≤ n if F is satisfiable284

I(G) > nk
′ otherwise.285

SWAT 2022

23:8 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

u

u1

u2

w1

w2

(a) The gadget

vi

v′i

...

...

u1
i

u1
i,1

...
...

u1
i,2

uz
i,1

uz
i,2

uz
i

c1
1 s1

1

c1
m s1

m

cz
1 sz

1

cz
m sz

m

(b) The constructed graph G for nk′ = z

Figure 3 The construction in the proof of Theorem 10. In subfigure (b), we illustrate how each
pair of literal vertices is connected to the rest of the graph. Whenever there is an upper index
1 ≤ l ≤ nk′ on a vertex, it is used to denote the lth copy of that vertex. The dashed lines are used
to represent the edges between the literal and the clause vertices.

To construct G = (V,E), we start with the following graph: for each literal xi (¬xi resp.)286

in F , add a literal vertex vi (v′i resp.) in V , and for each clause Cj of F , add a clause vertex287

cj in V . Next, for each 1 ≤ j ≤ m, add the edge vicj (v′icj resp.) if the literal xi (¬xi resp.)288

appears in Cj according to F . Observe that the resulting graph is bipartite, for each clause289

vertex c we have d(c) = 3 and for each literal vertex v we have d(v) = 2 (since in F , each290

variable appears twice as a positive and twice as a negative literal). To finish the construction291

of G, we will make use of the gadget shown in Figure 3(a), as well as some copies of S5, the292

star on 5 vertices. When we say that we attach a copy H of the gadget to the vertices vi293

and v′i (for some 1 ≤ i ≤ n), we mean that we add H to G, and we identify the vertices w1294

and w2 to the vertices vi and v′i respectively. Now:295

for each 1 ≤ i ≤ n, we attach nk
′ copies of the gadget to the vertices vi and v′i of G.296

For convenience, we will give unique names to the vertices corresponding to each gadget297

added that way. So, the vertex uli (for 1 ≤ l ≤ nk
′ and 1 ≤ i ≤ n) is used to represent298

the vertex u of the lth copy of the gadget attached to vi and v′i, and uli,1 (uli,2 resp.) is299

used to denote the vertex u1 (u2 resp.) of that same gadget. Then,300

for each 1 ≤ j ≤ m, we add nk′ − 1 copies of the clause vertex cj to G, each one of these301

copies being adjacent to the same literal vertices as cj . For 1 ≤ l ≤ nk′ , the vertex clj is302

the lth copy of cj . Finally,303

for each 1 ≤ j ≤ m and 1 ≤ l ≤ nk′ , we add a copy of the star on 5 vertices S5 to G and304

identify any degree-1 vertex of S5 to clj . Let slj be the neighbour of clj that also belongs305

to a copy of S5.306

Observe that the resulting graph G (illustrated in Figure 3(b)) remains bipartite and that307

this construction is achieved in polynomial time in regards to n+m.308

Fioravantes F., Melissinos N., Triomatis T. 23:9

From the construction of G, we know that for every 1 ≤ i ≤ n, d(vi) = d(v′i) = Θ(nk′).309

So, for sufficiently large n, the only pairs of adjacent vertices of G that have the same degrees310

are either the vertices uli and uli,2, or the vertices clj and slj (for every 1 ≤ i ≤ n, 1 ≤ l ≤ nk′311

and 1 ≤ j ≤ m).312

First, let F be a satisfiable formula and let t be a satisfying assignment of F . Also, let S313

be the set of literal vertices vi (v′i resp.) such that the corresponding literals xi (¬xi resp.)314

are assigned value true by t. Clearly |S| = n. We will also show that S is an ir(G). Consider315

the graph G′ = G[V \ S]. Now, for any 1 ≤ i ≤ n, we have that either vi or v′i, say vi,316

belongs to the vertices of G′. Now for every 1 ≤ l ≤ nk, we have that dG′(uli) = 3, while317

dG′(uli,1) = 2 and dG′(uli,2) = 4 (since none of the neighbours of uli,1 and uli,2 belongs to S).318

Also, for every 1 ≤ j ≤ m and 1 ≤ l ≤ nk
′ , since t is a satisfying assignment of F , N(clj)319

contains at least one vertex in S. It follows that dG′(clj) = 3 < 4 = dG′(slj). Finally, since S320

does not contain any neighbours of vi, we have that dG′(vi) = dG(vi) = O(nk′). It follows321

that S is an ir(G) and thus that I(G) ≤ n.322

Now let F be a non-satisfiable formula and assume that there exists an S that is an ir(G)323

with |S| ≤ nk′ . As usual, let G′ = G[V \ S]. Then:324

1. For every 1 ≤ j ≤ m, there exists a literal vertex v such that v ∈ N(clj) for every325

1 ≤ l ≤ nk′ . Assume that this is not true for a specific j. Then, since dG(clj) = dG(slj) = 4,326

for every 1 ≤ l ≤ nk′ , we have that S contains at least one vertex in N [{clj , slj}], which327

does not belong to the literal vertices. That is, S contains at least one (non-literal) vertex328

for each one of the nk′ copies of cj . Observe also that even if this is the case, S would329

also have to contain at least one more vertex to, for example, stop u1
i,2 and u1

i , from330

having the same degree in G′. It follows that |S| > nk
′ , which is a contradiction.331

2. For every 1 ≤ i ≤ n, S does not contain both vi and v′i. Assume this is not true for a332

specific i. Then, for every 1 ≤ l ≤ nk
′ , we have that dG′(uli) = dG′(uli,1) = 2, unless S333

also contains an additional vertex of the gadgets attached to vi and v′i, for each one of334

the nk′ such gadgets. It follows that |S| ≥ nk
′ . Since we have also assumed that for a335

specific i, both vi and v′i belong to S, we have that |S| > nk
′ , a contradiction.336

3. For every 1 ≤ i ≤ n, S contains at least one of vi and v′i. Assume this is not true for337

a specific i. Then, for every 1 ≤ l ≤ nk
′ , we have that dG′(uli) = dG′(uli,2) = 4, unless338

S also contains an additional vertex of the gadgets attached to vi and v′i, for each one339

of the nk′ such gadgets. Even if this is the case, S would also have to contain at least340

one more vertex to, for example, stop c11 and S1
1 from having the same degree in G′. It341

follows that |S| > nk
′ , which is a contradiction.342

So from items 2. and 3. above, it follows that for each 1 ≤ i ≤ n, S contains exactly one343

of vi and v′i. Now consider the following truth assignment: we assign the value true to every344

variable xi if the corresponding literal vertex vi belongs in S, and value false to every other345

variable. Now, from item 1. above, it follows that each clause Cj contains either a positive346

literal xi which has been set to true, or a negative literal ¬xi which has been set to false.347

Thus F is satisfied, which is a contradiction.348

Up to this point, we have shown that there exists a graph G = (V,E) with |V (G)| =349

N = O(nk′+1) where350

I(G) ≤ n if F is satisfiable351

I(G) > nk
′ otherwise.352

Therefore, we have that I(G) is not O(nk′−1) approximable in polynomial time unless P=NP .353

Now, since N = |V (G)| = Θ(nk′+1) and 2k = k′ + 1 we have O(nk′−1) = O(N
k′−1
k′+1) =354

O(N1− 2
k′+1) = O(N1− 1

k). This ends the proof of this theorem. J355

SWAT 2022

23:10 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

Now, we consider the case where G is regular bipartite graph. Below we present an356

upper bound to the size of I(G). This upper bound is then used to obtain a (simple)357

∆-approximation of an optimal solution.358

I Theorem 11. For any d-regular bipartite graph G = (L,R,E) of order n we have that359

I(G) ≥ n/2d.360

Now recall that in any bipartite graph G, any bipartition of G is a vertex cover of G.361

Also observe that any vertex cover of a graph G, is also an irregulator of G. Indeed, deleting362

the vertices of any vertex cover of G, leaves us with an independent set, which is locally363

irregular. The next corollary follows from these observations and Theorem 11:364

I Corollary 12. For any d-regular bipartite graph G = (L,R,E), any of the sets L and R is365

a d-approximation of ir∗(G).366

5 Parameterised complexity367

As the problem of computing a minimal irregulator of a given graph G seems to be rather368

hard to solve, and even to approximate, we focused our efforts towards finding parameterised369

algorithms that can solve it. First we present an FPT algorithm that calculates I(G) when370

parameterised by the size of the solution and ∆, the maximum degree of the graph.371

I Theorem 13. For a given graph G = (V,E) with |V | = n and maximum degree ∆, and372

for k ∈ N, there exists an algorithm that decides if I(G) ≤ k in time (2∆)knO(1).373

The main tool we use to show Theorem 13 is Observation 5. Let G = (V,E) be a graph374

and k ∈ N. A high level description of our recursive algorithm is as follows: first find an edge375

uv ∈ E such that d(u) = d(v). Now, assume that we are making a correct guess of a vertex376

w ∈ N [{u, v}] ∩ S where S is a minimum irregulator. Then, Gw = G[V \ w] must have a377

minimum irregulator of size |S| − 1. Note that if we repeat the above process and we make378

correct guesses, we are going to stop after deleting |S| vertices or when we have deleted k379

vertices (meaning that I(G) > k). Then, by considering all the 2∆ choices for w, we have a380

running time of (2∆)k.381

We now turn our attention towards graphs that are “close to being trees”, that is graphs382

of bounded treewidth. In particular, we provide an FPT algorithm that finds a minimum383

irregulator of G, when parameterised by the treewidth of the input graph and by ∆.384

I Theorem 14. For a given a graph G = (V,E) and a nice tree decomposition of G, there385

exists an algorithm that returns I(G) in time ∆2twnO(1), where tw is the treewidth of the386

given decomposition and ∆ is the maximum degree of G.387

The idea of the proof of Theorem 14, is based on the classic dynamic programming388

technique on the given nice tree decomposition of G. Let us denote by Bc the bag of vertices389

of a node c of a nice tree decomposition of G. In essence, for each node c of the tree390

decomposition, we store the necessary information that allows us to find all the sets that391

are ir(G,B↓c \Bc), where B↓c denotes the vertices appearing in a sub-tree rooted at c. Then392

for the root r of the tree decomposition, we can check which of the stored sets that are393

ir(G,B↓r \Br), are also ir(G); the minimum such set is an ir∗(G).394

The running time of our algorithm follows from the size of the tables we keep for these395

sets. In particular, for each set stored for a node c, for each vertex v of Bc, we keep the396

degree that we want v to have in the final, locally irregular graph (i.e. the graph G after the397

Fioravantes F., Melissinos N., Triomatis T. 23:11

removal of ir(G)) and the degree that v has in G[B↓c \ S]. This gives us ∆2 choices for each398

vertex of Bc.399

It is worth noting that the algorithms of Theorem 13 and 14 can be used in order to also400

return an ir∗(G).401

5.1 W-Hardness402

Observe that both of the algorithms presented above, have to consider ∆ as part of the403

parameter if they are to be considered as FPT. The natural question to ask at this point is404

whether we can have an FPT algorithm, when parameterised only by the size of the solution,405

or the treewidth of the input graph. In this section, we give a strong indication towards406

the negative answer for both cases, proving that, in some sense, the algorithms provided in407

Section 5 are optimal.408

I Theorem 15. Let G be a graph and k ∈ N. Deciding if I(G) ≤ k is W[2]-hard, when409

parameterised by k.410

The proof of Theorem 15 is done through a linear-fpt reduction from the Dominating411

Set problem, when parameterised by the size of the solution.412

I Theorem 16. Let G be a graph with treewidth tw, and k ∈ N. Deciding if I(G) = k is413

W [1]-hard when parameterised by tw.414

Proof. We will present a reduction from the List Colouring problem: the input consists415

of a graph H = (V,E) and a list function L : V → P({1, . . . , k}) that specifies the available416

colours for each vertex u ∈ V . The goal is to find a proper colouring c : V → {1, . . . , k} such417

that c(u) ∈ L(u) for all u ∈ V . When such a colouring exists, we say that (H,L) is a yes-418

instance of List Colouring. This problem is known to be W [1]-hard when parameterised419

by the treewidth of H [19].420

Now, starting from an instance (H,L) of List Colouring, we will construct a graph421

G = (V ′, E′) (see Figure 4 (a)) such that:422

|V ′| = O(|V |6),423

tw(G) = tw(H) and424

I(G) = nk if and only if (H,L) is a yes-instance of List Colouring.425

Before we start with the construction of G, let us give the following observation.426

I Observation 17. Let (H,L) be an instance of List Colouring where H = (V,E) and427

there exists a vertex u ∈ V such that |L(u)| > d(u). Then the instance (H[V \ {u}], L′),428

where L′(v) = L(v) for all v ∈ V \ {u}, is a yes-instance of List Colouring if and only if429

(H,L) is a yes-instance of List Colouring.430

Indeed, observe that for any vertex u ∈ V , by any proper colouring c of H, c(u) only has to431

avoid d(u) colours. Since |L(u)| > d(u), we will always have a spare colour to use on u that432

belongs in L(u). From the previous observation, we can assume that in our instance, for all433

u ∈ V , we have |L(u)| ≤ d(u). Furthermore, we can deduce that k ≤ n(n− 1) as the degree434

of any vertex is at most n− 1. Finally, let us denote by L(u) the set {0, 1, . . . , k} \ L(u). It435

is important to note here that for every u ∈ V , the list L(u) contains at least one element436

belonging in {1, . . . , k}. It follows that L(u) also contains at least one element, the colour 0.437

To sum up, we have that 1 ≤ |L(u)| ≤ k.438

Now, we present the three gadgets we are going to use in the construction of G. First,439

we have the “forbidden colour gadget” Hi, which is a star with i leaves (see Figure 4(c)).440

When we say that we attach a copy of Hi on a vertex v of a graph G, we mean that we441

SWAT 2022

23:12 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

u′

Edges incident to the
vertices v′ ∈ NG(u′) ∩ U

(a) The graph G

m horn gadgets

. . .

Hk1

. . .

Hk2

. . .

Hkl

. . .

. . .

. . .

l forbidden colour gadgets

. . .

k degree gadgets

w1 v1

v2

(b) Degree gadget

w2 ...

(c) Forbidden colour gadget
Hi

i− 1 vertices

w3

(d) Horn gadget

Figure 4 In (a) we illustrate the construction of G, as it is described in the proof of Theorem 16.
The black vertex represents every vertex that belongs in U . For the specific vertex u′ shown in
the figure, we have that L(u) = {c1, . . . , cl} and ki = n3 − ci for all i = 1, . . . , l. We also have that
m = 2n3 − dG(u)− k − l.

add Hi to G and we identify the vertices v and w2 (where here and in what follows, we are442

using the naming illustrated in Figure 4 when talking about the vertices w1, w2, w3, v1 and443

v2). The second, will be the “degree gadget”, which is presented in Figure 4(b). Finally, we444

have the “horn gadget”, which is a path on three vertices (see Figure 4(d)). We define the445

operation of attaching these two gadgets on a vertex v of a graph G similarly to how we446

defined this operation for the forbidden colour gadget (each time using the appropriate w1447

or w3, according to if it is a degree or a horn gadget respectively).448

In order to construct G, we start from a copy of H. Let us use G|H to denote the copy of449

H that lies inside of G and, for each vertex u ∈ V , let u′ be its copy in V ′. We will call the450

set of these vertices U . That is, U = {v ∈ V (G|H)}. Then, we are going to attach several451

copies of each gadget to u′, for each vertex u′ ∈ U . We start by attaching k copies of the452

degree gadget to each vertex u′ ∈ U . Then, for each u ∈ V and each i ∈ L(u), we attach one453

copy of the forbidden colour gadget H2n3−i to the vertex u′. Finally, for each u′ ∈ U , we454

attach to u′ as many copies of the horn gadget as are needed, in order to have dG(u′) = 2n3.455

Before we continue, observe that, for sufficiently large n, we have attached more than n3
456

horn gadgets to each vertex of U . Indeed, before attaching the horn gadgets, each vertex457

u′ ∈ U has dG(u) ≤ n − 1 neighbours in U , k neighbours from the degree gadgets and at458

most k < n2 neighbours from the forbidden colour gadgets (recall that |L(u)| ≤ k). We will459

now show that |V ′| = O(n6). For that purpose, let us calculate the number of vertices in460

all the gadgets attached to a single vertex u′ ∈ U . First, we have 5k < 5n2 vertices in the461

degree gadgets. Then, we have less than 4n3 vertices in the horn gadgets (as we have less462

that 2n3 such gadgets). Finally, we have at most k < n2 forbidden colour gadgets, each463

one of which containing at most 2n3 vertices. So, for each vertex u′ ∈ U , we have at most464

2n5 + 4n3 + 5n2 vertices in the gadgets attached to u′. Therefore, we have |V ′| = O(n6).465

Before we prove that I(G) ≤ nk if and only if (H,L) is a yes-instance of List Colouring,466

we need to argue about two things. First, about the treewidth of the graph G and second,467

about the minimum value of I(G). Since our construction only attaches trees to each468

vertex of G|H (and recall that a tree has a treewidth of 1 by definition), we know that469

tw(G) = tw(G|H) = tw(H). As for I(G), we will show that it has to be at least equal to nk.470

Fioravantes F., Melissinos N., Triomatis T. 23:13

For that purpose we have the following two claims.471

B Claim 18. Let S be an ir(G) and S ∩ U 6= ∅. Then |S| > n3.472

B Claim 19. Let S be an ir(G) and S ∩ U = ∅. Then |S| ≥ nk. In particular, S includes at473

least one vertex from each copy of the degree gadget used in the construction of G.474

By the previous two claims, we conclude that I(G) ≥ nk. We are ready to show that, if475

(H,L) is a yes-instance of List Colouring, then there exists a set S ⊆ V ′ such that S is476

an ir(G) and |S| = nk. Let c be a proper colouring of H such that c(u) ∈ L(u) for all u ∈ V .477

We will construct an ir(G) as follows. For each u ∈ V , we partition (arbitrarily) the k degree478

gadgets attached to the vertex u′ to c(u) “good” and (k − c(u)) “bad” degree gadgets. For479

each good degree gadget, we add the copy of the vertex v1 of that gadget to S and for each480

bad degree gadget we add the copy of the vertex v2 of that gadget to S. This process creates481

a set S of size nk, as it includes k distinguished vertices for each vertex u′ ∈ U .482

Now we need to show that S is an ir(G). Let G′ = G[V ′ \ S]; observe that each vertex483

u′ ∈ U has degree dG′(u′) = 2n3 − c(u). Therefore, u′ does not have the same degree as any484

of its neighbours that do not belong in U . Indeed, for every v ∈ NG′(u′) \ U , we have that485

dG′(v) ∈ {1, 2} (if v belongs to a bad degree or a horn gadget) or dG′(v) ∈ {2n3−i : i ∈ L(u)}486

(if v belongs to a forbidden colour gadget). Furthermore, since c is a proper colouring of H,487

for all uv ∈ E, we have that c(u) 6= c(v). This gives us that for any edge u′v′ ∈ E′ with488

u′, v′ ∈ U , we have that dG′(u′) = 2n3 − c(u) 6= 2n3 − c(v) = dG′(v′).489

So, we know that for every vertex u′ ∈ U , there is no vertex w ∈ NG′(u′) such that490

dG′(u′) = dG′(w). It remains to show that, in G′, there exist no two vertices belonging to the491

same gadget, which have the same degrees. First of all, we have that S does not contain any492

vertex from any of the horn and forbidden colour gadgets, nor from U . Thus any adjacent493

vertices belonging to these gadgets have different degrees. Last, it remains to check the494

vertices of the degree gadgets. Observe that for any copy of the degree gadget, S contains495

either v1 or v2. In both cases, after the deletion of the vertices of S, any adjacent vertices496

belonging to any degree gadget have different degrees. Therefore, S is an ir(G) of order nk497

and since I(G) ≥ nk we have that I(G) = nk.498

Now, for the opposite direction, assume that there exists a set S ⊆ V ′ such that S is an499

ir∗(G) and |S| = nk. Let G′ = (V ′′, E′′) be the graph G[V ′ \ S]. It follows from Claim 18500

and Claim 19, that S ∩ U = ∅ and that S contains exactly one vertex from each copy of501

the degree gadget in G and no other vertices. Consider now the colouring c of H defined as502

c(u) = 2n3 − dG′(u′). We will show that c is a proper colouring for H and that c(u) ∈ L(u).503

First, we have that c is a proper colouring of H. Indeed, for any edge uv ∈ E, there exists an504

edge u′v′ ∈ E′′ (since S∩U = ∅). Since G′ is locally irregular we have that dG′(u′) 6= dG′(v′),505

an thus c(u) 6= c(v). It remains to show that c(u) ∈ L(u) for all u ∈ V . First observe that,506

during the construction of G, we attached exactly k degree gadgets to each u′ ∈ U . It follows507

that dG′(u′) = 2n3 − j and c(u) = j for a j ∈ {0, 1, . . . , k}. It is sufficient to show that508

j /∈ L(u). Since S contains only vertices from the copies of the degree gadgets, we have that509

each u′ ∈ U has exactly one neighbour of degree 2n3 − i for each i ∈ L(u) (this neighbour510

is a vertex of the Hi forbidden colour gadget that was attached to u′). Furthermore, for511

all u′ ∈ U , since G′ is locally irregular, we have that dG′(u′) 6= 2n3 − i for all i ∈ L(u).512

Equivalently, dG′(u′) = 2n3 − j for any j ∈ L(u). Thus, c(u) ∈ L(u) for all u ∈ V . J513

Note that the reductions presented in the proofs of Theorem 15 and Theorem 16 are514

linear fpt-reductions. Additionally we know that515

there is no algorithm that answers if a graph G of order n has a Dominating Set of size516

at most k in time f(k)no(k) unless the ETH fails [26] and517

SWAT 2022

23:14 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

there is no algorithm that answers if an instance (G,L) of the List Colouring is a518

yes-instance in time O∗(f(tw)no(tw)) unless the ETH fails [19].519

So, the following corollary holds.520

I Corollary 20. Let G be a graph of order n and assume the ETH. For k ∈ N, there is no521

algorithm that decides if I(G) ≤ k in time f(k)no(k). Furthermore, assuming that G has522

treewidth tw, there is no algorithm that computes I(G) in time O∗(f(tw)no(tw)).523

6 Conclusion524

In this work we introduce the problem of identifying the largest locally irregular induced525

subgraph of a given graph. There are many interesting directions that could be followed for526

further research. An obvious one is to investigate whether the problem of calculating I(G)527

remains NP-hard for other, restricted families of graphs. The first candidate for such a family528

would be the one of chordal graphs. On the other hand, there are some interesting families,529

for which the problem of computing an optimal irregulator could be decided in polynomial530

time, such as split graphs. Also, it could be feasible to conceive approximation algorithms for531

regular bipartite graphs, which have a better approximation ratio than the (simple) algorithm532

we present. The last aspect we find intriguing, is to study the parameterised complexity of533

calculating I(G) when considering other parameters, like the size of the minimum vertex534

cover of G, with the goal of identifying a parameter that suffices, by itself, in order to have an535

FPT algorithm. Finally, it is worth investigating whether calculating I(G) could be done in536

FPT time (parameterised by the size of the solution) in the case where G is a planar graph.537

References538

1 Agostinho Agra, Geir Dahl, Torkel Andreas Haufmann, and Sofia J. Pinheiro. The k-regular539

induced subgraph problem. Discretete Applied Mathematics, 222:14–30, 2017. doi:10.1016/j.540

dam.2017.01.029.541

2 Yousef Alavi, Alfred Boals, Gary Chartrand, Ortrud Oellermann, and Paul Erdős. K-path542

irregular graphs. Congressus Numerantium, 65, 01 1988.543

3 Yousef Alavi, Gary Chartrand, Fan R. K. Chung, Paul Erdös, Ronald L. Graham, and544

Ortrud R. Oellermann. Highly irregular graphs. Journal of Graph Theory, 11(2):235–249,545

1987. doi:10.1002/jgt.3190110214.546

4 Akhbar Ali, Gary Chartrand, and Ping Zhang. Irregularity in Graphs. Springer briefs in547

mathematics. Springer, 2021. doi:https://doi.org/10.1007/978-3-030-67993-4.548

5 Yuichi Asahiro, Hiroshi Eto, Takehiro Ito, and Eiji Miyano. Complexity of finding maximum549

regular induced subgraphs with prescribed degree. Theoretical Computer Science, 550:21–35,550

2014. doi:10.1016/j.tcs.2014.07.008.551

6 Olivier Baudon, Julien Bensmail, Jakub Przybyło, and Mariusz Wozniak. On decomposing552

regular graphs into locally irregular subgraphs. European Journal of Combinatorics, 49:90–104,553

2015. doi:10.1016/j.ejc.2015.02.031.554

7 Rémy Belmonte and Ignasi Sau. On the complexity of finding large odd induced subgraphs555

and odd colorings. Algorithmica, 83(8):2351–2373, 2021. doi:10.1007/s00453-021-00830-x.556

8 Julien Bensmail, Martin Merker, and Carsten Thomassen. Decomposing graphs into a constant557

number of locally irregular subgraphs. European Journal of Combinatorics, 60:124–134, 2017.558

doi:10.1016/j.ejc.2016.09.011.559

9 Piotr Berman, Marek Karpinski, and Alex D. Scott. Approximation hardness of short symmetric560

instances of MAX-3SAT. Electronic Colloquium on Computational Complexity, (049), 2003.561

URL: https://eccc.weizmann.ac.il/eccc-reports/2003/TR03-049/index.html.562

https://doi.org/10.1016/j.dam.2017.01.029
https://doi.org/10.1016/j.dam.2017.01.029
https://doi.org/10.1016/j.dam.2017.01.029
https://doi.org/10.1002/jgt.3190110214
https://doi.org/https://doi.org/10.1007/978-3-030-67993-4
https://doi.org/10.1016/j.tcs.2014.07.008
https://doi.org/10.1016/j.ejc.2015.02.031
https://doi.org/10.1007/s00453-021-00830-x
https://doi.org/10.1016/j.ejc.2016.09.011
https://eccc.weizmann.ac.il/eccc-reports/2003/TR03-049/index.html

Fioravantes F., Melissinos N., Triomatis T. 23:15

10 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical563

Computer Science, 209(1):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.564

11 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary565

properties. Information Processing Letters, 58(4):171–176, 1996. doi:10.1016/0020-0190(96)566

00050-6.567

12 Gary Chartrand, Paul Erdös, and Ortrud Oellermann. How to define an irregular graph. The568

College Mathematics Journal, 19, 01 1988. doi:10.2307/2686701.569

13 Gary Chartrand, Michael Jacobon, Jenö Lehel, Ortrud Oellermann, Sergio Ruiz, and Farrokh570

Saba. Irregular networks. Congressus Numerantium, 64, 01 1986.571

14 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj,572

and Ge Xia. Tight lower bounds for certain parameterized np-hard problems. Information573

and Computation, 201(2):216–231, 2005. doi:10.1109/CCC.2004.1313826.574

15 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. On the computational hardness575

based on linear FPT-reductions. Journal of Combinatorial Optimization, 11(2):231–247, 2006.576

doi:10.1007/s10878-006-7137-6.577

16 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower bounds578

via parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367,579

2006. doi:10.1016/j.jcss.2006.04.007.580

17 Miroslav Chlebík and Janka Chlebíková. Complexity of approximating bounded variants of581

optimization problems. Theor. Comput. Sci., 354(3):320–338, 2006. doi:https://doi.org/582

10.1016/j.tcs.2005.11.029.583

18 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.584

Springer, 2012. doi:10.1007/978-3-662-53622-3.585

19 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity. Texts586

in Computer Science. Springer, 2013. doi:https://doi.org/10.1007/978-1-4471-5559-1.587

20 Alan M. Frieze, Ronald J. Gould, Michal Karonski, and Florian Pfender. On graph irregularity588

strength. Journal of Graph Theory, 41(2):120–137, 2002. doi:10.1002/jgt.10056.589

21 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory of590

NP-Completeness. W. H. Freeman, 1979.591

22 Michał Karoński, Tomasz Łuczak, and Andrew Thomason. Edge weights and vertex colors.592

Journal of Combinatorial Theory, 91:151–157, 05 2004. doi:10.1016/j.jctb.2003.12.001.593

23 Subhash Khot and Venkatesh Raman. Parameterized complexity of finding subgraphs with594

hereditary properties. Theoretical Computer Science, 289(2):997–1008, 2002. doi:10.1016/595

S0304-3975(01)00414-5.596

24 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties597

is np-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:10.1016/598

0022-0000(80)90060-4.599

25 Carla Negri Lintzmayer, Guilherme Oliveira Mota, and Maycon Sambinelli. Decomposing600

split graphs into locally irregular graphs. Discrete Applied Mathematics, 292:33–44, 2021.601

doi:10.1016/j.entcs.2019.08.053.602

26 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the exponential603

time hypothesis. Bulletin of the European Association for Theoretical Computer Science,604

105:41–72, 2011. URL: http://eatcs.org/beatcs/index.php/beatcs/article/view/92.605

27 Bojan Mohar. Face covers and the genus problem for apex graphs. J. Comb. Theory, Ser. B,606

82(1):102–117, 2001. doi:https://doi.org/10.1006/jctb.2000.2026.607

28 Hannes Moser and Dimitrios M. Thilikos. Parameterized complexity of finding regular induced608

subgraphs. Journal of Discrete Algorithms, 7(2):181–190, 2009. doi:10.1016/j.jda.2008.09.609

005.610

29 Jakub Przybyło. Irregularity strength of regular graphs. Electronic Journal of Combinatorics,611

15, 06 2008. doi:10.37236/806.612

30 Jakub Przybyło. On decomposing graphs of large minimum degree into locally irregular613

subgraphs. Electronic Journal of Combinatorics, 23(2):2–31, 2016. doi:10.37236/5173.614

SWAT 2022

https://doi.org/10.1016/S0304-3975(97)00228-4
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.1016/0020-0190(96)00050-6
https://doi.org/10.2307/2686701
https://doi.org/10.1109/CCC.2004.1313826
https://doi.org/10.1007/s10878-006-7137-6
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/https://doi.org/10.1016/j.tcs.2005.11.029
https://doi.org/https://doi.org/10.1016/j.tcs.2005.11.029
https://doi.org/https://doi.org/10.1016/j.tcs.2005.11.029
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1002/jgt.10056
https://doi.org/10.1016/j.jctb.2003.12.001
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1016/S0304-3975(01)00414-5
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/j.entcs.2019.08.053
http://eatcs.org/beatcs/index.php/beatcs/article/view/92
https://doi.org/https://doi.org/10.1006/jctb.2000.2026
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.1016/j.jda.2008.09.005
https://doi.org/10.37236/806
https://doi.org/10.37236/5173

23:16 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

A Omitted proofs615

A.1 Proof of Theorem 13616

Let us first present the following lemma:617

I Lemma 21. Let G = (V,E) be a graph such that, G is not locally irregular, and S be an618

ir∗(G). Furthermore let Gv = (V ′, E′) be the graph G[V \ {v}] for a vertex v ∈ S. Then619

I(Gv) = I(G)− 1.620

Proof. First observe that S′ = S \ {v} must be an ir(Gv) as Gv[V ′ \ S′] = G[V \ S]. It621

follows that I(Gv) ≤ I(G)− 1. Assume that I(Gv) < I(G)− 1. Then these exists an S′′ such622

that |S′′| < I(G)− 1 and S′′ is an ir(Gv). Since Gv[V ′ \ S′′] = G[V \ (S′′ ∪ {v})], we have623

that S′′ ∪ {v} is an ir(G) and |S′′ ∪ {v}| = |S′′|+ 1 < I(G). This is a contradiction. J624

Now, we are ready to present the proof of the theorem.625

Proof of Theorem 13. In order to decide if I(G) ≤ k we are going to use a recursive626

algorithm. The algorithm has input (G, k), where G = (V,E) is a graph and k ≥ 0 is an627

integer. The basic idea of this algorithm, is to take advantage of Observation 5. We present628

the exact procedure in Algorithm 1.629

Algorithm 1 [IsIrregular(G, k) decision function]

Input: A graph G = (V,E) and an integer k ≥ 0.
Output: Is I(G) ≤ k or not?
1: if G is irregular then
2: return yes

3: else if k = 0 then
4: return no

5: else . k > 0 and G is not irregular
6: ans← no

7: find an edge vu ∈ E such that dG(v) = dG(u)
8: for all w ∈ NG[{u, v}] do
9: set Gw = G[V \ {w}]
10: if IsIrregular(Gw, k − 1) returns yes then
11: ans← yes

12: return ans

Now, let us argue about the correctness and the efficiency of this algorithm. We claim630

that for any graph G = (V,E) and any integer k ≥ 0, Algorithm 1 returns yes if I(G) ≤ k631

and no otherwise. Furthermore, the number of steps that the algorithm requires, is f(k, n) =632

(2∆)knO(1), where n = |V |. We will prove this by induction on k.633

Base of the induction (k = 0): Here, we only need to check if G is locally irregular.634

Algorithm 1 does this in line 1 and returns yes if it is (line 2) and no otherwise (line 4).635

Furthermore, we can check if G is locally irregular in polynomial time. So, the claim is true636

for the base.637

Induction hypothesis (k = k0 ≥ 0): We assume that we have a k0 ≥ 0 such that638

Algorithm 1 can decide if any graph G with n vertices and maximum degree ∆ has I(G) ≤ k0639

in f(k0, n) = (k0 + 1)(2∆)k0nO(1) steps.640

Induction step (k = k0 + 1): Let G = (V,E) be a graph. If G is locally irregular641

then I(G) = 0 and Algorithm 1 answers correctly (in line 2). Assume that G is not locally642

Fioravantes F., Melissinos N., Triomatis T. 23:17

irregular; then there exist an edge vu ∈ E such that dG(v) = dG(v). Now, let S be an643

ir∗(G). It follows from Observation 5 that S must include at least one vertex w ∈ NG[{v, u}].644

Since Algorithm 1 considers all the vertices in NG[{v, u}], at some point it also considers645

the vertex w ∈ S ∩NG[{v, u}]. Now, observe that for any x ∈ S, the set Sx = S \ {x} is an646

ir∗(Gx), where Gx = G[V \ {x}]. Furthermore, by Lemma 21, we have I(Gx) ≤ k − 1 = k0647

iff I(G) ≤ k. By the induction hypothesis, we know that the algorithm answers correctly for648

all the instances (Gx, k0). Thus, if I(G) ≤ k = k0 + 1, there must exist one instance (Gw, k0),649

where w ∈ S ∩NG[{v, u}], for which the Algorithm 1 returns yes. Therefore the algorithm650

answers for (G, k0 + 1) correctly. Finally, this process request nO(1) steps in order to check651

if the graph is locally irregular and 2∆f(k − 1, n − 1) steps (by induction hypothesis) in652

order to check if for any graph Gx we have I(Gx) ≤ k − 1 = k0 (where x ∈ N [{u, v}]). So,653

the algorithm decides in nO(1) + 2∆f(k − 1, n − 1) ≤ nO(1) + 2∆k(2∆)k−1(n − 1)O(1) ≤654

nO(1) + k(2∆)knO(1) ≤ (k + 1)(2∆)knO(1) steps. Finally, note that k ≤ n− 1, and the result655

follows. J656

A.2 Proof of Theorem 14657

Proof. As the techniques we are going to use are standard, we are sketching some of the658

introductory details. For more details on tree decompositions (definition and terminology)659

see [19]. We are going to perform dynamic programming on the nodes of the given nice tree660

decomposition (see [10] for the definition of a nice tree decomposition). For a node t of the661

given tree decomposition of G, we denote by Bt the bag of this node and by B↓t the set of662

vertices of the graph that appears in the bags of the nodes of the subtree with t as a root.663

Observe that Bt ⊆ B↓t .664

The idea behind our algorithm, is that for each node t we store all the sets S ⊆ B↓t such665

that S is an ir(G,B↓t \Bt). We will also store the necessary “conditions” (explained more666

in what follows) such that if there exists a set S′, where S′ \ S ⊆ V \B↓t , that meets these667

conditions, then S′ is an ir(G,B↓t). Observe that if we manage to do such a thing for every668

node of the tree decomposition, then we can find I(G). To do so, it suffices to check the669

size of all the irregulators we stored for the root r of the tree decomposition, which also670

meet the conditions we have set. In that way, we can find a set S that is an ir(G,B↓r \Br),671

satisfies our conditions and is of minimum order, and since B↓r = V , this set S is a minimum672

irregulator of G and I(G) = |S|.673

Let us now present the actual information we are keeping for each node. Assume that t674

is a node of the tree decomposition and S ⊆ B↓t is an irregulator of B↓t \Bt in G, i.e., S is675

an ir(G,B↓t \Bt). For this S we want to remember which vertices of Bt belong to S as well676

as the degrees of the vertices v ∈ Bt \ S in G[B↓t \Bt]. This can be done by keeping a table677

D of size tw + 1 where, if v ∈ Bt \ S we set D(v) = dG[B↓t \Bt](v) and if v ∈ Bt ∩ S we set678

D(v) = ∅ (slightly abusing the notation, by D(v) we mean the position in the table D that679

corresponds to the vertex v). Like we have already said, we are going to keep some additional680

information about the conditions that could allow these sets to be extended to irregulators681

of B↓t in G if we add vertices of V \B↓t . For that reason, we are also going to keep a table682

with the “target degree” of each vertex; in this table we assign to each vertex v ∈ Bt \ S683

a degree dv such that, if there exists S′ where S′ \ S ⊆ V \ B↓t and for all v ∈ Bt \ S we684

have dG[V \S′](v) = dv, then S is an ir(G,B↓t). This can be done by keeping a table T of size685

tw + 1 where for each v ∈ Bt \ S we set T (v) = i, where i is the target degree, and for each686

v ∈ Bt ∩ S we set T (v) = ∅. Such tables T will be called valid for S in Bt. Finally, we are687

going to keep the set X = S ∩ Bt and the value min = |S|. Note that the set X does not688

gives us any extra information, but we keep it as it will be useful to refer to it directly.689

SWAT 2022

23:18 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

To sum up, for each node t of the tree decomposition of G, we keep a set of quadruples690

(X,D, T,min), each quadruple corresponding to a valid combination of a set S that is691

an ir(G,B↓t \ Bt) and the target degrees for the vertices of Bt \ S. Here it is important692

to say that when treating the node Bt, for every two quadruples (X1, D1, T1,min1) and693

(X2, D2, T2,min2) such that for all v ∈ Bt we have that D1(v) = D2(v) and T1(v) = T2(v)694

(this indicates that X1 = X2 as well), then we are only going to keep the quadruple with the695

minimum value between min1 and min2 as we will prove that this is enough in order to find696

I(G).697

B Claim 22. Assume that for a node t, we have two sets S1 and S2 that are both698

ir(G,B↓t \Bt), and that T is a target table that is common to both of them. Furthermore,699

assume that (X1, D1, T, |S1|) and (X2, D2, T, |S2|) are the quadruples we have to store for700

S1 and S2 respectively (both respecting T), with D1(v) = D2(v) for every v ∈ Bt. Then701

for any set S ⊆ V \ B↓t such that dG[V \(S1∪S)](v) = T (v) for all v ∈ Bt, we also have that702

dG[V \(S2∪S)](v) = T (v) for all v ∈ Bt.703

Proof. Assume that we have such an S for S1, let v be a vertex in Bt and H = G[v ∪
(
(V \704

B↓t) \ S
)
] (observe that H does not depend on S1 or S2). Since dG[V \(S1∪S)](v) = T (v), we705

know that in the graph H, v has exactly T (v)−D1(v) neighbours (as D1(v) = dG[B↓t \S1)](v)).706

Now, since D1(v) = D2(v) = dG[B↓t \S2](v) we have that dG[V \S2∪S](v) = T (v). Therefore,707

the claim holds. C708

Simply put, Claim 22 states that for any two quadruples Q1 = (X,D, T,min1) and709

Q2 = (X,D, T,min2), any extension S of S1 is also an extension of S2 (where S1 and S2 are710

the two sets that correspond to Q1 and Q2 respectively). Therefore, in order to find the711

minimum solution, it is sufficient to keep the quadruple that has the minimum value between712

min1 and min2.713

Now we are going to explain how we create all the quadruples (X,D, T,min) for each714

type of node in the tree decomposition. First we have to deal with the Leaf Nodes. For a Leaf715

node t we know that Bt = B↓t = ∅. Therefore, we have only one quadruple (X,D, T,min),716

where the size of both D and T is zero (so we do not need to keep any information in them),717

S = ∅ and min = |S| = 0.718

Now let t be an Introduce node; assume that we have all the quadruples (X,D, T,min) for719

its child c and let v be the introduced vertex. By construction, we know that v is introduced720

in Bt and thus it has no neighbours in B↓t \Bt. It follows that if S ⊆ B↓c is an irregulator721

for B↓c \Bc, then both S and S ∪ {v} are irregulators for B↓t \Bt in G. Furthermore, there722

is no set S ⊆ B↓t \ {v} that is an irregulator of B↓t \Bt and is not an irregulator of B↓c \Bc.723

So, we only need to consider two cases for the quadruples we have to store for c; if v belongs724

in the under-construction irregulator of B↓t \Bt in G or not.725

Case 1. (v is in the irregulator): Observe that for any S that is an ir(G,B↓c \ Bc),726

which is stored in the quadruples of Bc, for every u ∈ Bc \ S, we have that dG[B↓c \S](u) =727

dG[B↓t \(S∪{v})]
(u). Moreover, for any target table T which is valid for S in c, the target table728

T ′ is valid for S∪{v} in t, where T ′ is almost the same as T , the only difference being that T ′729

also contains the information about v, i.e, T ′(v) = ∅. So, for each quadruple (X,D, T,min)730

in c, we need to create one quadruple (X ∪ {v}, D′, T ′,min+ 1) for t, where D′ is the almost731

the same as D, except that it also contains the information about v, i.e., D′(v) = ∅.732

Case 2. (v is not in the irregulator): Let q = (X,D, T,min) be a stored quadruple of733

c and S be the corresponding ir(G,B↓c \Bc). We will first explain how to construct D′ of734

t, based on q. Observe that the only change between G[B↓c \ S] and G[B↓t \ S], is that in735

the latter there exist some new edges from v to some of the vertices of Bc. Therefore, for736

Fioravantes F., Melissinos N., Triomatis T. 23:19

each vertex u ∈ Bc \X we set D′(u) = D(u) + 1 if u ∈ N [v] and D′(u) = D(u) otherwise.737

Finally, for the introduced vertex v, we set D′(v) = |N(v) ∩ (Bc \X)|. We will now treat738

the target degrees for t. Observe that the target degrees for each vertex in Bt \ {v} are the739

same as in T , since v only has edges incident to vertices in Bt. Now, we only need to decide740

which are the valid targets for v. Since dG[B↓t \S](v) = D′(v), we know that for every target741

t′, we have that D′(v) ≤ t′ ≤ ∆. Furthermore, we can not have the target degrees of v to742

be the same as the targets of one of its neighbours in Bc (these values are stored in T), as,743

otherwise, any valid target table T ′ of t would lead to adjacent vertices in Bt having the744

same degree. Let {t1, . . . , tk} ⊂ {D(v), . . . ,∆} be an enumeration of all the valid targets745

for v (i.e. ti 6= T (u) for all u ∈ N [v] ∩ Bc \ X). Then, for each quadruple (X,D, T,min)746

in c, and for each i = 1, . . . , k, we need to create the quadruple (X,D′, Ti,min), such that747

Ti(u) = T (u) for all u ∈ Bc and Ti(v) = ti. In total, we have k ≤ ∆ such quadruples.748

Now, let us explain how we deal with the Join nodes. Assume that t is a Join Node with749

c1 and c2 as its two children in the tree decomposition. Here, it is important to mention that750

Bc1 = Bc2 and (B↓c1
\Bc1) ∩ (B↓c2

\Bc2) = ∅. Assume that there exists an irregulator S of751

B↓t \Bt in G, a valid target table T of S, and let (X,D, T,min) be the quadruple we need to752

store in t for this pair (S, T). Observe that this pair (S, T) is valid for both c1 and c2, so we753

must already have stored at least one quadruple in each node. Let X ⊆ Bt and a target table754

T such that (X,D1, T,min1) and (X,D2, T,min2) are stored for c1 and c2 respectively. We755

create the quadruple (X,D, T,min) for t by setting D(u) = D1(u) +D2(u)− dG[Bt\X](u) for756

all u ∈ Bt \X, D(u) = ∅ for all u ∈ X and min = min1 +min2−|X|. Observe that these are757

the correct values for the D(u) and min, as otherwise we would count dG[Bt\X](u) and |X|758

twice. Finally, we need to note that we do not store any quadruple (X,D, T,min) we create759

for the Join Note such that D(u) > T (u) for a vertex u ∈ Bt \X. This is because for such760

quadruples, the degree of vertex u will never be equal to any of the target degrees we have761

set, as it can only increase when we consider any of the ancestor (i.e. parent, grantparent762

etc.) nodes of t.763

Finally, we need to treat the Forget nodes. Let t be a Forget node, c be the its child and764

v be the forgotten vertex. Assume that we have to store in t a quadruple (X,D, T,min).765

Then, since X = Bt ∩ S for an irregulator S of Bt in G, we know that in c we must have766

already stored a quadruple (X ′, D′, T ′,min′) such that, X ′ = S ∩Bc, D′(u) = D(u) for all767

u ∈ Bc, T ′(u) = T (u) for all u ∈ Bc and min′ = min. Therefore, starting from the stored768

quadruples in c, we can create all the quadruples of t. For each quadruple (X ′, D′, T ′,min′)769

in c, we create at most one quadruple (X,D, T,min) for t by considering two cases; the770

forgotten vertex vf belongs to X ′ or not.771

Case 1. (v belongs to X ′): then the quadruple (X,D, T,min) is almost the same as772

(X ′, D′, T ′,min′), with the following differences: X = X ′ \ {v}, min = min′, D(u) = D′(u)773

and T (u) = T ′(u) for all u ∈ Bt and the tables D and T do not include any information for774

v as this vertex does not belong to Bt anymore.775

Case 2. (v does not belong to X ′): we will first check if D′(vf) = T ′(vf) or not. This776

is important because the degree of the v will never again be considered by our algorithm,777

and thus its degree will remain unchanged. So, if D′(vf) = T ′(vf), we create the quadruple778

(X,D, T,min) where X = X ′, min = min′, D(u) = D′(u) and T (u) = T ′(u) for all u ∈ Bt779

and the tables D and T do not include any information for v.780

For the running time, observe that the number of nodes of a nice tree decomposition is781

O(tw ·n) and all the other calculations are polynomial in n+m. Thus we only need to count782

the different quadruples in each node. Now, for each vertex v, we either include it in X or783

we have ∆ + 1 options for the value D(u) and ∆ + 1− i for the value T (u) if D(u) = i. Also,784

SWAT 2022

23:20 Complexity of Finding Maximum Locally Irregular Induced Subgraphs

for sufficiently large ∆, we have that 1 +
∑∆
i=0(∆ + 1− i) < ∆2. Furthermore, the set X785

and the value min do not increase the number of quadruples because X = {u | D(u) = ∅}786

and from all quadruples (X,D1, T1,min1), (X,D2, T2,min2) such that D1(u) = D2(u) and787

T1(u) = T2(u) for all u ∈ Bt, we only keep one of them (by Claim 22).788

In total, the number of different quadruples in each node is ∆2tw, and therefore the789

algorithm decides in ∆2twnO(1) time. J790

	1 Introduction
	2 Preliminaries
	3 (Classic) complexity
	3.1 NP-Hard Cases

	4 (In)approximability
	5 Parameterised complexity
	5.1 W-Hardness

	6 Conclusion
	A Omitted proofs
	A.1 Proof of Theorem 13
	A.2 Proof of Theorem 14

