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Abstract

We prove approximate Lipschitz stability for monochromatic phaseless inverse scattering with background in-
formation in dimension d ≥ 2. Moreover, these stability estimates are given in terms of non-overdetermined and
incomplete data. Related results for reconstruction from phaseless Fourier transforms are also given. Prototypes of
these estimates for the phased case were given in Novikov (2013 J. Inverse Ill-Posed Problems, 21, 813-823).
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1 Introduction

In this work we continue studies on phaseless inverse scattering for the stationary Schrödinger equation:

−∆ψ + V (x)ψ = Eψ, x ∈ Rd, d ≥ 2, E > 0, (1.1)

where
V ∈ L∞(Rd), and is compactly supported. (1.2)

For equation (1.1), under conditions (1.2), we consider the scattering solutions ψ+ = ψ+(x, k), k ∈ Rd, k2 = E,
such that

ψ+(x, k) = eikx + ψsc(x, k); (1.3)

|x|(d−1)/2

(
∂

∂|x|
− i|k|

)
ψsc(x, k) → 0 as |x| → +∞, (1.4)

uniformly in x/|x|. In particular, we have that

ψsc(x, k) =
ei|k||x|

|x|(d−1)/2
c(d, |k|)f

(
k, |k| x

|x|

)
+O

(
1

|x|(d+1)/2

)
as |x| → +∞, (1.5)

c(d, |k|) := −πi(−2πi)(d−1)/2|k|(d−3)/2, for
√
−2πi =

√
2πe−iπ/4. (1.6)

The coefficient f = f [V ] arising in (1.5) is known as the scattering amplitude for equation (1.1). In turn, |f |2 is known
as the differential scattering cross section for equation (1.1).

Note that f is defined on
ME = {k, l ∈ Rd : k2 = l2 = E} = Sd−1√

E
× Sd−1√

E
. (1.7)

We recall that in quantum mechanics complex values of ψ+ and f have no direct physical sense, whereas |ψ+|2 and
|f |2 admit probabilistic intepritations and can be measured (Born principle going back to [5]). In particular, |f(k, l)|2
describes the probability density of scattering of the quantum mechanical particle with initial impulse k into direction
l/|l| ≠ k/|k|.

We consider the following monochromatic phaseless inverse scattering problem for equation (1.1) under assumptions
(1.2):

Problem 1. (A) Reconstruct a compactly supported potential v from the differential scattering cross section |f [v+w]|2
given on some appropriate M′ ⊆ ME for some known compactly supported background potential w sufficiently
separated from v.

1



(B) Reconstruct a compactly supported potential v from the differential scattering cross sections |f [v]|2, |f [v + w1]|2,
..., |f [v+wn]|2 given on some appropriate M′ ⊆ ME for some known compactly supported background potentials
w1, ..., wn sufficiently separated from v.

Actually, in Problem 1(A) we consinder the Schrödinger equation (1.1) with V = v +w, while in Problem 1(B) we
consider n+ 1 Schrödinger equations (1.1) for V = v + wj , j = 1, ..., n, and V = v.

Approximate reconstruction for Problem 1(A) in dimension d ≥ 2 was developed in [20], [9].
Approximate reconstruction for Problem 1(B) in dimension d ≥ 2 was developed, in particular, in [1], [2], [9],

[18, 19], [20].
We also consider Problems 1(A), 1(B) in the Born approximation, when the phaseless scattering data are reduced

to the phaseless Fourier transforms. In this respect, we continue, in particular, studies of [20, 9].
In the present work, we give the first approximate stability results for Problem 1(A) and Problem 1(B) for n = 1.

Related results for reconstruction from phaseless Fourier transforms are also given. Prototypes of these estimates for
the phased case were given in [16].

In addition to Problem 1, there are also other phaseless inverse problems for equation (1.1) and for related equations;
see, for example, [3], [4], [7], [8], [10], [11], [12], [13], [14], [15], [21], [22], [23], [24], and references therein.

In particular, in connection with phaseless inverse scattering with background information for equation (1.1) at
positive energies E for d = 1, we refer to [3] and references therein.

The main results of the present work are formulated in Section 2; see Theorems 2.1 and 2.2, Propositions 2.5 and
2.6. Preliminary results required for the proof of these theorems are given in Section 3. Theorems 2.1 and 2.2 are
proved in Section 4. Propositions 2.5 and 2.6 are proved in Section 5.

2 Main results

We assume that:

v1, v2 ∈ L∞(Rd), d ≥ 2, (2.1a)

supp v1, supp v2 ⊆ D, suppw ⊆ Ω, (2.1b)

D, Ω are open convex bounded domains,D ∩ Ω = ∅. (2.1c)

We also assume that:

v1 − v2 ∈Wm,1(Rd) for some m > d, (2.2)

∥vj∥∞ ≤ N1, j = 1, 2; ∥v1 − v2∥m,1 ≤ N2, (2.3)

where

Wm,1(Rd) = {u : ∂Ju ∈ L1(Rd), |J | ≤ m},
∥u∥m,1 = max

|J|≤m
∥∂Ju∥L1(Rd),

(2.4)

∥u∥∞ = ∥u∥L∞(Rd). (2.5)

Finally, we assume that:

∥w∥∞ ≤ N1, ŵ(p) ≥ c1(1 + |p|)−β , p ∈ Rd, (2.6)

for some c1 > 0 and β > d. Here ŵ is Fourier transform of w, defined by

û(p) = Fu(p) = 1

(2π)d

∫
Rd

eip·xu(x)dx. (2.7)

For examples of w satisfying (2.6), see [2], [25].
In addition to ME defined by (1.7), we also consider its subsets Γτ

E ⊂ ME , for τ ∈ (0, 1):

Γτ
E =

{
k = kE(p), l = lE(p) : p ∈ B2τ

√
E

}
,

kE(p) = p/2 + (E − p2/4)1/2γ(p), lE(p) = −p/2 + (E − p2/4)1/2γ(p),
(2.8)

where γ is a piecewise continuous vector–function on Rd, d ≥ 2, such that

|γ(p)| = 1, γ(p)p = 0, p ∈ Rd. (2.9)

Let C(ME) denote continuous functions on ME , and C(Γ
τ
E) denotes their restrictions on Γτ

E .
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Theorem 2.1. Let functions v1, v2 satisfy assumptions (2.1)–(2.6), and dist(D,Ω) > diam D. Then, for any ε ∈
(0, 1/2),

∥v1 − v2∥L∞(D) ≤ C1E
1
2−ε∥|f [v1 + w]|2 − |f [v2 + w]|2∥C(Γτ

E) + C2E
−( 1

2−ε)m−d
β+d , (2.10)

for E ≥ E1 = E1(D,N1,Ω, β, c1, τ, ε), where τ ∈ (0, 1), E1 is defined in (4.29), C1 = 2K2K3, C2 = 2K1, and constants

K1 = K̃1(d,m)N2, K2 = c−1
1 K̃2(d, β, ε), K3 = K3(d, β) are defined in (4.25), (4.26).

Theorem 2.2. Let functions v1, v2 satisfy assumptions (2.1)–(2.6). Then, for any ε ∈ (0, 1/2),

∥v1 − v2∥L∞(D) ≤ C1E
1
2−ε∥(|f [v1 + w]|2 − |f [v2 + w]|2)− (|f [v1]|2 − |f [v2]|2)∥C(Γτ

E) + C2E
−( 1

2−ε)m−d
β+d , (2.11)

for E ≥ E2 = E2(D,N1,Ω, β, c1, τ, ε), where τ ∈ (0, 1), E2 is defined in (4.39), C1 = 2K2K3, C2 = 2K1, and constants

K1 = K̃1(d,m)N2, K2 = c−1
1 K̃2(d, β, ε), K3 = (d, β, α) are defined in (4.25), (4.26).

Theorems 2.1 and 2.2 are proved in Section 4.
One can see that Theorem 2.1 is a stability result to Problem 1(A), while Theorem 2.2 is a stability result to

Problem 1(B) for n = 1.

Remark 2.3. For the phased case, the prototype of (2.10), (2.11) is as follows:

∥v1 − v2∥L∞(D) ≤ A1E
1
2 ∥f1 − f2∥C(Γτ

E) +A2E
− 1

2
m−d

d , (2.12)

where τ
√
E = τ(E)

√
E = E1/(2d), A1 = A1(N1, D), A2 = A2(N1, N2, D,m); see [16].

Following [16], we say that (2.10), (2.11), (2.12) are approximate Lipschitz stability esimates.
One can see that the right hand sides of (2.10), (2.11), (2.12) are sums of two terms. The first one is Lipschitz

term with respect to data difference, and the second one is approximate but decaying for high energies. In addition,
its decay is very fast for large m, that is for smooth v1 − v2.

Remark 2.4. The second (approximate) terms in estimates (2.10), (2.11) are similar to the error estimates in formula
(3.12) in [9] for iterative reconstructions ujE , when j → ∞.

Note that in formulas (2.10), (2.11) the norm of difference is taken on Γτ
E , where τ could be very small. In fact, τ

can even decrease as E → +∞, but not very fast, that is τ(E)E1/2 ≥ Eγ , for γ =
(
1
2 − ε

)
1

β+d . Therefore, Theorems
2.1, 2.2 can be considered as stability results for non-overdetermined and non-complete data.

We recall that, for the case of Born approximation for small V , scattering amplitude reduces to the Fourier transform:

f [V ](k, l) ≈ V̂ (k − l), (k, l) ∈ ME . (2.13)

Therefore, Fourier analogs of Theorems 2.1, 2.2 can be summarized as the following result:

Proposition 2.5. Let functions v1, v2, w satisfy assumptions (2.1)–(2.6), and dist(D, Ω) > diam D. Then, for any
ε ∈ (0, 1/2),

∥v1 − v2∥L∞(D) ≤ C1E
1
2−ε∥|F(v1 + w)|2 − |F(v2 + w)|2∥C(B2τ

√
E) + C2E

−( 1
2−ε)m−d

β+d , (2.14)

for E ≥ E3 = E3(D,N1,Ω, β, c1, τ, ε). In addition, if the condition on supports is relaxed to dist(D, Ω) > 0, then

∥v1 − v2∥L∞(D) ≤ C1E
1
2−ε∥(|F(v1 + w)|2 − |F(v2 + w)|2)− (|Fv1|2 − |Fv2|2)∥C(B2τ

√
E) + C2E

−( 1
2−ε)m−d

β+d (2.15)

for E ≥ E4 = E4(D,N1,Ω, β, c1, τ, ε). Here C1, C2 are the same as in (2.10), (2.11), and E3, E4 are defined in (5.3).

The estimates (2.14), (2.15) follow from (2.10), (2.11) up to values of E3 and E4.
Note that estimates (2.14), (2.15) have considerable similarity with some of results of [9] and, in particular, with

estimate (1.11). These results of [9] can be specified also as the following approximate Lipschitz stability estimates:

Proposition 2.6. Let functions v1, v2, w satisfy assumptions (2.1)–(2.6), and dist(D, Ω) > diam D. Then

∥v1 − v2∥L∞(D) ≤ C1τ
β+dE

β+d
2 ∥|F(v1 + w)|2 − |F(v2 + w)|2∥C(B2τ

√
E) + C2τ

−(m−d)E−m−d
2 , (2.16)

for E ≥ E5. In addition, if the condition on supports is relaxed to dist(D, Ω) > 0, then

∥v1 − v2∥L∞(D) ≤ C1τ
β+dE

β+d
2 ∥(|F(v1 + w)|2 − |F(v2 + w)|2)− (|Fv1|2 − |Fv2|2)∥C(B2τ

√
E) + C2τ

−(m−d)E−m−d
2 ,

(2.17)

for E ≥ E5, where E5 = E5(τ) is defined in (5.10); C1 = C1(d, β, c1) is defined in (5.8), C2 = C2(d,m,N1, N2, D,Ω, β, c1)
is defined by (5.9) for (2.16), and by (5.11) for (2.17).

Propositions 2.5 and 2.6 are proved in Section 5. These proofs are based on the explicit reconstruction formulas
of [20]. The proof of Proposition 2.5 follows the scheme of proofs of Theorems 2.1, 2.2. The proof of Proposition 2.6
is more straightforward. This straightforward scheme can be also used for the case of Proposition 2.5. This approach
leads to somewhat different constants C1, C2, E4, E5 in formulas (2.14), (2.15).
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3 Preliminaries

3.1 Direct scattering

Starting from v, in order to find ψ+ and f, one can use, in particular, the Lippmann-Schwinger integral equation

ψ+(x, k) = eikx +

∫
Rd

G+(x− y, k)V (y)ψ+(y, k)dy, (3.1)

G+(x, k) = − 1

(2π)d

∫
Rd

eiξxdξ

ξ2 − k2 − i0
, (3.2)

and the relation

f [V ](k, l) =
1

(2π)d

∫
Rd

e−ilyV (y)ψ+(y, k)dy, (3.3)

where x, k, l ∈ Rd, k2 = l2 = E; see, for example, [6].
To deal with equation (3.1) and formula (3.3), it is convenient to use the following Agmon estimate:

∥Λ−sG+(k)Λ−s∥L2(Rd)→L2(Rd) ≤ a0(d, s)|k|−1, |k| → ∞, s > 1/2, (3.4)

where Λ is the multiplication operator by the function (1 + |x|2)1/2, G+(k) denotes integral operator with Schwartz
kernel G+(x− y, k).

In particular, it follows from (3.4) that (3.1) is uniquely solvable in L∞(Rd) for fixed k, for |k| = E1/2 ≥
ρ1(d, s, ∥V ∥∞,s), where

ρ1(d, s,N) = max(2a0(d, s/2)N, 1), (3.5)

and the following estimate holds:

∥Λ−s/2ψ+(x, k)− Λ−s/2eikx∥L2(Rd) ≤ b1(d, s)∥V ∥∞,s|k|−1, (3.6)

for |k| ≥ ρ1(d, s, ∥V ∥∞,s), k ∈ Rd. Here

∥u∥∞,s = ess sup
x∈Rd

(1 + |x|)s|u(x)|, s > 0. (3.7)

We also have that

f [V ](k, l) = V̂ (k − l) + δf [V ](k, l),

|δf [V ](k, l)| ≤ b2(d, s)(∥V ∥∞,s)
2E−1/2,

(3.8)

for k, l ∈ Rd, |k| = |l| ≥ ρ1(d, s, ∥V ∥∞,s).
In connection with (3.4), (3.6), (3.8), see [17].

3.2 Estimates for direct scattering

We consider scattering potentials Vj of the form

Vj = vj + w, j = 1, 2, (3.9)

where v1, v2, w satisfy the assumptions of Section 2. Note that the following properties hold:

∥Vj∥∞ = ∥vj + w∥∞ ≤ N1, ∥V2 − V1∥∞ = ∥v2 − v1∥∞,
supp Vj ⊆ (D ∪ Ω), supp(V1 − V2) ⊆ D,

(3.10)

for j = 1, 2; see (2.1)-(2.6). Note also that:

|V2 − V1| = |v2 − v1| are bounded on D,

V2 = V1 = w on Rd \D.
(3.11)

We also consider

fj := f [Vj ] = f [vj + w], j = 1, 2. (3.12)

4



In view of (2.1), (2.3), (2.6), (3.8), (3.9), we have that

fj(k, l) = f [Vj ](k, l) = V̂j(k − l) + δfj(k, l),

|δfj | ≤ a1(D ∪ Ω)N2
1E

−1/2, j = 1, 2,
(3.13)

for (k, l) ∈ ME , E ≥ (ρ1(d, s, λs(D ∪Ω)N1))
2, where ρ1 is defined in (3.5), a1(D ∪Ω) = b2(d, s)λ

2
s(D ∪Ω), s > d, and

λs(U) := (1 + max
x∈U

|x|)s. (3.14)

We also have the following Lemma (see [16]):

Lemma 3.1. Let vj , Vj , and fj = f [Vj ], j = 1, 2, be as in (2.1), (3.9), (3.12). Then the following estimate holds:

f2(k, l)− f1(k, l) = v̂2(k − l)− v̂1(k − l) + ∆(k, l),

|∆(k, l)| ≤ a2(D ∪ Ω)N1∥v2 − v1∥∞E−1/2,
(3.15)

for k, l ∈ Rd,
√
E = |k| = |l| ≥ ρ1(d, s, λs(D ∪ Ω)N1) and some positive a2(D ∪ Ω). Here N1, D, Ω are as in (3.10),

(3.11).

Let µ(U) be Lebesgue measure of a domain U ⊂ Rd.
We also have the following Lemma, which will be used in Section 4.

Lemma 3.2. Let Vj = vj + w, j = 1, 2, be as in Lemma 3.1. Then∣∣|f [v2 + w](k, l)|2 − |f [v1 + w](k, l)|2 + |(v̂1 + ŵ)(k − l)|2 − |(v̂2 + ŵ)(k − l)|2
∣∣ ≤

≤ 2
(
(2π)−d(a1µ(D) + a2µ(D ∪ Ω)) + a1a2N1E

−1/2
)
N2

1E
−1/2∥v2 − v1∥∞,

(3.16)

(k, l) ∈ ME , E1/2 ≥ ρ1(d, s, λs(D ∪ Ω)N1), (3.17)

and ∣∣|v̂2 + ŵ|2 − |v̂1 + ŵ|2
∣∣ (p) ≤ 2(2π)−2dµ(D ∪ Ω)µ(D)N1∥v2 − v1∥∞, ∀p ∈ Rd, (3.18)∣∣|v̂2 + ŵ|2 − |v̂1 + ŵ|2
∣∣ (p) ≤ 2(2π)−dµ(D ∪ Ω)N1|v̂2 − v̂1|(p), ∀p ∈ Rd, (3.19)∣∣|v̂2 + ŵ|2 − |v̂2|2 − |v̂1 + ŵ|2 + |v̂1|2

∣∣ (p) ≤ 2(2π)−2dµ(D)µ(Ω)N1∥v2 − v1∥∞, ∀p ∈ Rd, (3.20)∣∣|v̂2 + ŵ|2 − |v̂2|2 − |v̂1 + ŵ|2 + |v̂1|2
∣∣ (p) ≤ 2(2π)−dµ(Ω)N1|v̂2 − v̂1|(p), ∀p ∈ Rd, (3.21)

where a1, a2 are as in (3.13), (3.15), D, Ω, N1 are as in (3.10), ρ1 is as in (3.5), λs is as in (3.14), s > d.

This Lemma is a variation of Lemma 3.6 in [9].
Proof of Lemma 3.2. Note that, for z1, z2 ∈ C,

|z2|2 − |z1|2 = z2(z2 − z1) + z1(z2 − z1). (3.22)

Using (3.22) for fj in place of zj , and (3.13), (3.15), we obtain

|f2|2 − |f1|2 = f2(f2 − f1) + f1(f2 − f1) = (V̂2 + δf2)(V̂2 − V̂1 +∆) + (V̂1 + δf1)(V̂2 − V̂1 +∆) =

= |V̂2|2 − |V̂1|2 + δf1(V̂2 − V̂1) + δf2(V̂2 − V̂1) + δf1∆+ δf2∆+ V̂1∆+ V̂2∆.
(3.23)

From (3.23), using (3.10), (3.13), (3.15), (3.11), we conclude

||f2|2 − |f1|2 − (|V̂2|2 − |V̂1|2)| ≤ 2a1N
2
1E

−1/2|V̂2 − V̂1|+ (|V̂1|+ |V̂2|)a2N1∥V2 − V1∥∞E−1/2+

+ 2a1N
2
1E

−1/2a2N1∥V2 − V2∥∞E−1/2 ≤ 2
(
(2π)−d (a1µ(D) + a2µ(D ∪ Ω)) + a1a2N1E

−1/2
)
N2

1E
−1/2∥V2 − V1∥∞.

(3.24)

Formula (3.16) follows from (3.9), (3.24).
Using (2.1), (2.7), (3.11), (3.22), we obtain∣∣|v̂2 + ŵ|2 − |v̂1 + ŵ|2

∣∣ = ∣∣∣(v̂2 + ŵ)(v̂2 − v̂1) + (v̂1 + ŵ)(v̂2 − v̂1)
∣∣∣ ≤

≤ 2(2π)−dµ(D ∪ Ω)N1|v̂2 − v̂1|(p) ≤ 2(2π)−2dµ(D ∪ Ω)N1µ(D)∥v2 − v1∥∞.
(3.25)

Analogously to (3.25), we obtain∣∣|v̂2 + ŵ|2 − |v̂2|2 − |v̂1 + ŵ|2 + |v̂1|2
∣∣ ≤ ∣∣∣(v̂2 + ŵ)ŵ + v̂2ŵ − (v̂1 + ŵ)ŵ − v̂1ŵ

∣∣∣ ≤
≤
∣∣∣(v̂2 − v̂1)ŵ + (v̂2 − v̂1)ŵ

∣∣∣ ≤ 2(2π)−dµ(Ω)N1|v̂2 − v̂1| ≤ 2(2π)−2dµ(D)µ(Ω)N1∥v2 − v1∥∞.
(3.26)

Thus, (3.18)–(3.21) are also proved.
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3.3 Phase retrieval formulas of [20]

Let v = v1 and w be as in (2.1). Then

v̂(p) = (ŵ(p))−1F
(
χD−Ω ·

(
F−1(|F(v + w)|2 − |F(v)|2)−W

))
, p ∈ Rd, (3.27)

and if dist(D,Ω) > diam D, then

v̂(p) = (ŵ(p))−1F
(
χD−Ω ·

(
F−1(|F(v + w)|2)−W

))
, p ∈ Rd, (3.28)

where

W (x) := (2π)−d

∫
Rd

w(x+ y)w(y)dy. (3.29)

Formulas (3.27), (3.28) were given in Section 3 of [20].
In formulas (3.27), (3.28), D − Ω is defined by

D − Ω = {x− y, x ∈ D, y ∈ Ω} ⊂ Rd, (3.30)

and χD−Ω is a function such that 
χD−Ω(x) = 1, x ∈ D − Ω,

χD−Ω(x) = 0, dist(x,D − Ω) > ε,

χD−Ω(x) ∈ [0, 1], 0 < dist(x,D − Ω) < ε,

χD−Ω(x) ∈ C∞(Rd),

(3.31)

for some

ε ∈

{
(0,dist(D − Ω, BdiamD)), for Theorem 2.1,

(0,dist(D − Ω,Ω−D)), for Theorem 2.2.
(3.32)

In particular, we have that

|χ̂D−Ω(p)| ≤
C(σ)

(1 + |p|)σ
, ∀p ∈ Rd, (3.33)

for any σ ≥ 0, and some C(σ) = C(χD−Ω, σ) > 0; see formula (82) of [20].

4 Proof of Theorems 2.1 and 2.2

4.1 Proof of Theorem 2.1

We start with the following inequalities:

|v1 − v2|(x) ≤
∣∣∣∣∫

Rd

e−ipx(v̂1(p)− v̂2(p))dp

∣∣∣∣ ≤ I1(κ) + I2(κ), (4.1)

I1(κ) :=

∫
|p|≥κ

|v̂1(p)− v̂2(p)|dp, I2(κ) :=
∫
|p|≤κ

|v̂1(p)− v̂2(p)|dp, (4.2)

where x ∈ D, κ ∈ (0, τ
√
E), τ ∈ (0, 1). Here and below τ is the parameter of Theorem 2.1.

Estimating I1 is as in [16]. Due to (2.2), (2.3), we have that

|v̂1(p)− v̂2(p)| ≤ a3(m, d)N2(1 + |p|)−m, (4.3)

and, therefore,

I1(κ) ≤
c(d)a3(m, d)N2

m− d

1

κm−d
, (4.4)

where c(d) = |Sd|.

6



Estimating I2 is as follows. Due to (3.28), we have that

|v̂1(p)− v̂2(p)| = |(ŵ(p))−1F
(
χD−Ω(x) · F−1(|F(v1 + w)|2 − |F(v2 + w)|2)

)
| ≤

≤ |(ŵ(p))−1|
(
|FχD−Ω| ∗ ||F(v1 + w)|2 − |F(v2 + w)|2|

)
,

(4.5)

where ∗ denotes the convolution

ν1 ∗ ν2(x) :=
∫
Rd

ν1(x− y)ν2(y)dy, (4.6)

for test-functions ν1, ν2. In (4.5) we also used the following property of the Fourier transform:

F(φ1φ2) = (Fφ1) ∗ (Fφ2), (4.7)

for test-functions φ1, φ2.
Using formulas (2.6), (3.33), (4.5), we obtain that:

I2(κ) ≤
∫
|p|≤κ

c−1
1 (1 + |p|)β

(
|FχD−Ω| ∗ ||F(v1 + w)|2 − |F(v2 + w)|2|

)
dp ≤ c−1

1 C(σ)(I3(κ, δ) + I4(κ, δ)); (4.8)

I3(κ, δ) =

∫
|p|≤κ

(1 + |p|)βdp
∫
|p′|≤δ

√
E+κ

g(p′)

(1 + |p− p′|)σ
dp′, (4.9)

I4(κ, δ) =

∫
|p|≤κ

(1 + |p|)βdp
∫
|p′|≥δ

√
E+κ

g(p′)

(1 + |p− p′|)σ
dp′, (4.10)

where

g(p′) := ||F(v1 + w)(p′)|2 − |F(v2 + w)(p′)|2|, (4.11)

and δ
√
E ∈ (κ, 2τ

√
E − κ).

Applying formula (3.16) for |p′| ≤ Bδ
√
E+κ and formula (3.18) for |p′| ≥ Bδ

√
E+κ, we obtain that

g(p′) ≤

{
G1, for |p′| ≤ δE1/2 + κ,

G2, for |p′| ≥ δE1/2 + κ,
(4.12)

where

G1 := ∥|f [v1 + w]|2 − |f [v2 + w]|2∥C + 2
(
(2π)−d(a1µ(D) + a2µ(D ∪ Ω)) + a1a2N1E

−1/2
)
N2

1E
−1/2∥v1 − v2∥∞,

(4.13)

G2 := 2(2π)−2dµ(D)µ(D ∪ Ω)N1∥v1 − v2∥∞. (4.14)

Here and further ∥ · ∥C denotes the uniform norm for functions on C(Γ
(δ+κE−1/2)/2
E ), and ∥ · ∥∞ is defined by (2.5).

Estimating I3 and I4. To estimate I3 defined by (4.9), we use that

I3 ≤ G1(A1 +A2), (4.15)

where

A1 :=

∫
|p|≤κ

(1 + |p|)βdp
∫
|p−p′|≤κ

dp′

(1 + |p− p′|)σ
, (4.16)

A2 :=

∫
|p|≤κ

(1 + |p|)βdp
∫
|p−p′|≥κ, |p′|≤δE1/2+κ

dp′

(1 + |p− p′|)σ
. (4.17)

Note that in (4.16) the condition |p′| ≤ δE1/2 + κ is fulfilled automatically, due to the choice of κ and δ.
We have that ∫

|p−p′|≤κ

dp′

(1 + |p− p′|)σ
≤
∫
0<r≤∞

c(d)rd−1dr

(1 + r)σ
= c(d)B(d, σ − d), (4.18)

where c(d) = |Sd|, B is the beta-function.
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Therefore,

A1 ≤
∫
0<r1≤κ

c(d)rd−1
1 (1 + r1)

βdr1

∫
0<r≤∞

c(d)rd−1dr

(1 + r)σ
≤ c2(d)B(d, σ − d)

β + d
(1 + κ)β+d. (4.19)

In addition, for arbitrary α > 0, such that σ − d− α ≥ 1, we have that,

A2 ≤
∫
|p|≤κ

(1 + |p|)βdp
∫
|p−p′|≥κ

dp′

(1 + |p− p′|)σ
≤

≤
∫
|p|≤κ

(1 + |p|)βdp
∫
|p−p′|≥κ

dp′

(1 + κ)σ−d−α(1 + |p− p′|)d+α
≤

≤ 1

(1 + κ)σ−d−α

∫
|p|≤κ

(1 + |p|)βdp
∫
Rd

dp′

(1 + |p− p′|)d+α
≤

≤ 1

(1 + κ)σ−d−α

∫
|p|≤κ

(1 + |p|)βdp
∫
r∈(0,∞)

c(d)rd−1dr

(1 + r)d+α
≤

≤ 1

(1 + κ)σ−d−α

∫
0<r≤κ

c(d)rd−1(1 + r)βdr c(d)B(d, α) ≤ c2(d)B(d, α)

β + d

(1 + κ)β+d

(1 + κ)σ−d−α
.

(4.20)

Therefore, we estimate A1 +A2 of (4.15) as

A1 +A2 ≤ c2(d)(1 + κ)β+d

β + d

(
B(d, σ − d) +

B(d, α)

(1 + κ)σ−d−α

)
. (4.21)

In order to estimate I4 defined by (4.10), we use (4.14) and obtain

I4 ≤ G2

∫
|p|≤κ

(1 + |p|)βdp
∫
|p′|≥δE1/2+κ

dp′

(1 + |p− p′|)σ
≤ G2

∫
|p|≤κ

(1 + |p|)βdp
∫
r∈(0,∞)

c(d)rd−1dr

(1 + r)σ
≤

≤ G2

∫
|p|≤κ

(1 + |p|)βdp c(d)B(d, α)

(1 + δE1/2)σ−d−α
≤ G2

c2(d)B(d, α)

β + d

(1 + κ)β+d

(1 + δE1/2)σ−d−α
.

(4.22)

Final part of the proof. Let

κ = Eγ , γ =

(
1

2
− ε

)
1

β + d
, σ =

(
1

2
− ε

)−1

(β + d)(d+ 1), α = d, s = s(d) = d+ 1/2, δ = τ. (4.23)

Then, for E ≥ τ−
1

1/2−γ , we have that κ ∈ (0, τ
√
E) and δ

√
E ∈ (κ, 2τ

√
E − κ).

Using formulas (4.1), (4.4), (4.8)–(4.10), (4.13), (4.14), (4.21), (4.22), and (4.23), we obtain that

∥v1 − v2∥∞ ≤ K1E
−( 1

2−ε)m−d
β+d +

+K2

(
K3E

1
2−ε

(
∥|f [v1 + w]|2 − |f [v2 + w]|2∥C +K4E

−1/2∥v1 − v2∥∞
)
+
K5E

1
2−ε∥v1 − v2∥∞

(1 + τE1/2)σ−d−α

)
,

(4.24)

K1 := K1(d,m,N2) =
c(d)a3(m, d)N2

m− d
, K2 := K2(w, σ) = c−1

1 C(σ), (4.25)

K3 := K3(d, β) ≤ 2
c2(d)

β + d
(B(d, σ − d) +B(d, d)) , (4.26)

K4 := K4(D,Ω, d,N1) ≤ 2

(
(2π)−d(a1(d,D ∪ Ω)µ(D) + a2(D ∪ Ω)µ(D ∪ Ω)) +

a1(d,D ∪ Ω)a2(D ∪ Ω)

2a0(d, s(d)λs(d)(D ∪ Ω))

)
N2

1 ,

(4.27)

K5 := K5(D,Ω, N1, d, β) = 2(2π)−2dµ(D)µ(D ∪ Ω)N1
c2(d)B(d, d)

β + d
. (4.28)

Let

E1 = max(Eroot, τ
− 1

1/2−γ , ρ21(d, s, λs(D ∪ Ω)N1)), (4.29)

where Eroot is the maximal root of equation for E

K2K3K4E
−ε +K2K5E

1
2−ε(1 + τE1/2)−σ+d+α = 1/2, (4.30)
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ρ1 is defined in (3.5), λs is defined in (3.14). Note that Eroot exists, since

1

2
− ε− (σ − d− α)/2 < 0. (4.31)

Therefore, for E ≥ E1,

K2K3K4E
−ε +K2K5E

1
2−ε(1 + τE1/2)−σ+d+α ≤ 1/2. (4.32)

In view of (4.32), the coefficient with ∥v2 − v1∥∞ in the right-hand side of (4.24) is less than 1/2. Therefore,

∥v2 − v1∥∞ ≤ 2K1E
−( 1

2−ε)m−d
β+d + 2K2K3E

1
2−ε∥|f2|2 − |f1|2∥C , (4.33)

for E ≥ E1.

Note that τ
√
E ≥ κ, for E ≥ E1, see (4.23), (4.29). Therefore, Γ

(τ+κE−1/2)/2
E ⊆ Γτ

E , and ∥·∥C = ∥·∥
C(Γ

(τ+κE−1/2)/2
E ))

≤
∥ · ∥C(Γτ

E). This completes the proof.

4.2 Proof of Theorem 2.2

Proof of Theorem 2.2 is similar to the Proof of Theorem 2.1 up to the following changes:

• For estimate of I2 we use formula (3.27) in place of (3.28).

• Formulas (4.5) and (4.11) are replaced by

|v̂1(p)− v̂2(p)| ≤
≤ |(ŵ(p))−1|

(
|FχD−Ω| ∗

(
|(|F(v1 + w)|2 − |F(v2 + w)|2)− (|Fv1|2 − |Fv2|2)|

))
,

(4.34)

g(p′) := |(|F(v1 + w)(p′)|2 − |F(v2 + w)(p′)|2)− (|Fv1(p′)|2 − |Fv2(p′)|2)|. (4.35)

• Taking into account (3.20), formulas (4.13), (4.14) are replaced by

G1 := ∥(|f [v1 + w]|2 − |f [v2 + w]|2)− (|f [v1]|2 − |f [v2]|2)∥C+

+ 4
(
(2π)−d(a1µ(D) + a2µ(D ∪ Ω)) + a1a2N1E

−1/2
)
N2

1E
−1/2∥v1 − v2∥∞,

(4.36)

G2 := 2(2π)−2dµ(D)µ(Ω)N1∥v1 − v2∥∞. (4.37)

• In formula (4.24), the term ∥|f [v1 + w]|2 − |f [v2 + w]|2∥C should be replaced by ∥(|f [v1 + w]|2 − |f [v2 + w]|2)−
(|f [v1]|2 − |f [v2]|2)∥C .

• In formula (4.27) constant K4 should be replaced by 2K4.

• Due to (4.37), in formula (4.28) constant K5 should be replaced by

K5 = 2(2π)−2dµ(D)µ(Ω)N1
c2(d)B(d, d)

β + d
. (4.38)

• We define

E2 := max(Eroot, τ
− 1

1/2−γ , ρ21(d, s, λs(D ∪ Ω)N1)), (4.39)

where Eroot is the maximal root of equation for E

2K2K3K4E
−ε +K2K5E

1
2−ε(1 + δE1/2)−σ+d+α = 1/2, (4.40)

for K2, K3, K4 defined by (4.25)-(4.27), and K5 defined by (4.38).

• For E ≥ E2 we have the following formula in place of (4.32)

2K2K3K4E
−ε +K2K5E

1
2−ε(1 + τE1/2)−σ+d+α ≤ 1/2, (4.41)

for K2, K3, K4 defined by (4.25)-(4.27), and K5 defined by (4.38).
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5 Proof of Propositions 2.5 and 2.6

5.1 Proof of Proposition 2.5

We repeat the proofs of Theorems 2.1, 2.2 up to the following changes:

• In formulas (4.13), (4.36), G1 should be replaced by

G1 := ∥|F(v1 + w)|2 − |F(v2 + w)|2∥C(Bτ
√

E+Eγ ), (5.1)

G1 := ∥(|F(v1 + w)|2 − |F(v2 + w)|2)− (|Fv1|2 − |Fv2|2)∥C(Bτ
√

E+Eγ ), (5.2)

respectively.

• Consequently, formula (4.27) should be replaced by K4 = 0.

• We define E3, E4 as

E3 = max(Eroot, 3, τ
− 1

1/2−γ , 1),

E4 = max(Eroot, 4, τ
− 1

1/2−γ , 1),
(5.3)

where Eroot, 3, Eroot, 4, are the maximal roots of the equations for E :

K2K6E
1
2−ε(1 + τE1/2)−σ+d+α = 1/2,

K2K7E
1
2−ε(1 + τE1/2)−σ+d+α = 1/2,

(5.4)

respectively; if there are no roots, we take Eroot,j = 0, for j = 3 or 4. Here, K2 is as in (4.25), K6 = K5 defined
in (4.28), and K7 = K5 defined in (4.38).

5.2 Proof of Proposition 2.6

We repeat the proof of Section 4.1, till to formula (4.21), where we use change (5.1). We estimate I4 of (4.10) via
formula (3.19) and formula (4.3) as follows:

I4(κ, δ) ≤
∫
|p|≤κ

(1 + |p|)βdp
∫
|p′|≥δ

√
E+κ

2(2π)−dµ(D ∪ Ω)N1|v̂2(p)− v̂1(p)|
(1 + |p− p′|)σ

dp′ ≤

≤ 2(2π)−dµ(D ∪ Ω)N1

∫
|p|≤κ

(1 + |p|)βdp
∫
|p′|≥δ

√
E+κ

a3(m, d)N2

(1 + |p− p′|)σ(1 + |p′|)m
dp′ ≤

≤ 2(2π)−dµ(D ∪ Ω)N1

(1 + τ
√
E)σ

∫
|p|≤κ

(1 + |p|)βdp
∫
|p′|≥δ

√
E+κ

a3(m, d)N2

(1 + |p′|)m
dp′ ≤

≤ 2(2π)−dµ(D ∪ Ω)a3(m, d)N1N2c
2(d)

(1 + τ
√
E)σ−β−d(β + d)

1

(1 + 3
2τ

√
E)m−d(m− d)

.

(5.5)

We fix our parameters as follows:

κ = (τ/2)E1/2, σ = β + d+ 1, α = d, δ = τ. (5.6)

Using formulas (4.1), (4.4), (4.8)–(4.10), (4.21), (5.1), (5.5) and (5.6), we obtain that

∥v1 − v2∥∞ ≤ C1τ
β+dE

β+d
2 ∥|F(v1 + w)|2 −F(v2 + w)|2∥C(B2τ

√
E) + C2τ

−(m−d)E−m−d
2 , (5.7)

C1 := C1(d, β, c1) ≤ c−1
1 C(β + d+ 1)

c2(d)

β + d

(
B(d, β + 1) +

B(d, d)

2β−d+1

)
, (5.8)

C2 := C2(d,m,N1, N2, D,Ω, β, c1) ≤
2m−dc(d)a3(m, d)N2

m− d

(
1 +

2(2π)−dc−1
1 c(d)C(β + d+ 1)µ(D ∪ Ω)N1

3m−d+1(β + d)

)
, (5.9)

for

E ≥ E5 := E5(τ) = 4/τ2. (5.10)

Formula (2.16) is proved.
Note that, increasing E5, we can down constant C2.
In order to prove formula (2.17), it is sufficient to replace (3.19) by (3.21) in (5.5), and (5.1) by (5.2) in (5.7). In

this case C2 should be defined as

C2 := C2(d,m,N1, N2,Ω, β, c1) ≤
2m−dc(d)a3(m, d)N2

m− d

(
1 +

2(2π)−dc−1
1 c(d)C(β + d+ 1)µ(Ω)N1

3m−d+1(β + d)

)
. (5.11)
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