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PROPAGATION OF CHAOS FOR TOPOLOGICAL

INTERACTIONS BY A COUPLING TECHNIQUE

PIERRE DEGOND, MARIO PULVIRENTI, AND STEFANO ROSSI

Abstract. We consider a system of particles which interact through a
jump process. The jump intensities are functions of the proximity rank of
the particles, a type of interaction referred to as topological in the litera-
ture. Such interactions have been shown relevant for the modelling of bird
�ocks. We show that, in the large number of particles limit and under min-
imal smoothness assumptions on the data, the model converges to a kinetic
equation which was derived in earlier works both formally and rigorously
under more stringent regularity assumptions. The proof relies on the cou-
pling method which assigns to the particle and limiting processes a joint
process posed on the cartesian product of the two con�guration spaces of
the former processes. By appropriate estimates in a suitable Wasserstein
metric, we show that the distance between the two processes tends to zero
as the number of particles tends to in�nity, with an error typical of the law
of large numbers.

1. Introduction

Systems of self-propelled agents undergoing local interactions are ubiquitous
in nature, from migrating cells [16] to locust swarms [2] and �sh schools [18].
They form intriguing patterns such as coherent motion, travelling bands, os-
cillations etc. encompassed in the generic term of collective dynamics (see a
review in [24]). Most models of collective dynamics are based on mean-�eld
interactions (such as the Cucker-Smale [12] or Vicsek [23] models) or binary
contact interactions [4]. However, a third type of interaction has been sug-
gested following observations of bird �ocks [1, 9] and referred to as �topological
interaction�. In this kind of interaction, the strength of the interaction of an
agent with another one is a function of the proximity rank of the latter with
respect to the former. The seminal paper [1] has been followed by a number of
papers studying various aspects of this phenomenon see e.g. [7, 8, 15, 20, 21].

Mathematically, �ocking of systems of topologically interacting particles
have been investigated in [19, 22, 26]. In [17], in addition to studying �ocking,
the author proposes kinetic and �uid models derived from mean-�eld topolog-
ical interactions. The present work is strongly aligned with [5, 6, 13] where
kinetic models are derived for topological interaction models based on jump
processes. More precisely, [13] proves propagation of chaos and provides a
rigorous proof of the model formally derived in [5]. The proof of [13] makes
the limiting assumption that the interaction strength is an analytic function
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of the normalized rank (a concept precisely de�ned below) and is based on the
BBGKY hierarchy. In the present work, we propose an alternative proof of
the result of [13] based on the coupling method. The advantage of the cou-
pling method over the BBGKY hierarchy is that it only requires the interaction
strength to be Lipschitz continuous, a much more general and natural assump-
tion than that of [13]. On the other hand, [6] formally derives a kinetic model
for a more singular interaction. The mathematical validity of this formal result
is still open. The literature on propagation of chaos and derivation of kinetic
models from particle ones is huge and it is di�cult to provide a fair account
of all relevant contributions in a short introduction. We refer the interested
reader to the reviews [10, 11] which provide a fairly detailed description of the
subject.

The outline of this paper is as follows. In Section 2, we present the model
and provide a formal derivation of the macroscopic model. We then state the
theorem and comment it in view of the previous results. Section 3 is devoted
to the proof.

2. Presentation of the model and main results

We recall the model and notations introduced in [5, 13] and state our result.
We study a N -particle system in Rd, d � 1, 2, 3 . . . ( or in Td the d-dimensional
torus). Each particle, say particle i, has a position xi and velocity vi. The
con�guration of the system is denoted by

ZN � tziuNi�1 � tpxi, viquNi�1 � pXN , VNq.
Given the particle i, we order the remaining particles j1, j2, � � � jN�1 accord-

ing to their distance from i, namely by the following relation

|xi � xjh | ¤ |xi � xjh�1
|, h � 1, 2 � � �N � 1.

The rank Rpi, kq of particle k � jh (with respect to i) is h. Note that, if
Brpxq denotes the closed ball of center x P Rd and radius r ¡ 0, we have

Rpi, kq �
¸

1¤h¤N
h�i

XB|xi�xk|
pxiqpxhq,

where XA is the characteristic function of the set A.

Given a non-increasing Lipschitz continuous function

K : r0, 1s Ñ R� s.t.

» 1

0

Kprq dr � 1,

we introduce the transition probabilities

πN
i,j �

Kprpi, jqq°
sKp s

N�1
q , (2.1)

where rpi, jq is the normalized rank:

rpi, jq � Rpi, jq
N � 1

P
! 1

N � 1
,

2

N � 1
, . . .

)
.
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Thanks to the normalization in (2.1), we have that
°

j π
N
i,j � 1. We can also

rewrite πN
i,j as

πN
i,j � αNK

�
rpi, jq

	
, (2.2)

where

αN � 1

pN � 1qp1� eKpNqq (2.3)

and eKpNq is the error given by the Riemann sums

eKpNq �
» 1

0

Kpxq dx� 1

N � 1

¸
s

K
� s

N � 1

	
. (2.4)

We are now in position to introduce a stochastic process describing alignment
via a topological interaction. The particles go freely: xi�vit. At some random
time dictated by a Poisson process of intensity N , choose a particle (say i) with
probability 1

N
and a partner particle, say j, with probability πi,j. Then perform

the transition
pvi, vjq Ñ pvj, vjq.

After that the system goes freely with the new velocities and so on.

The process is described by the following Markov generator given, for any
Φ P C1

b pR2dNq, by

LNΦpXN , VNq �
Ņ

i�1

vi �∇xi
ΦpXN , VNq (2.5)

�
Ņ

i�1

¸
1¤j¤N
i�j

πN
i,j

�
ΦpXN , V

i
Npvjqq � ΦpXN , VNq

�
,

where V i
Npvjq � pv1 . . . vi�1, vj, vi�1 . . . vNq if VN � pv1 . . . vi�1, vi, vi�1 . . . vNq.

Note that πN
i,j depends not only on N but also on the whole spatial con�gu-

ration XN . Therefore the law of the process WNptq � WNpZN ; tq is driven by
the following evolution equation

Bt
»
WNptqΦ �

»
WNptq

Ņ

i�1

vi �∇xi
Φ (2.6)

�
»
WNpZN ; tq

Ņ

i�1

¸
1¤j¤N
i�j

πN
i,j

�
ΦpXN , V

i
Npvjqq � ΦpXN , VNq

�
,

for any test function Φ.

We assume that the initial measureWNp0q factorizes, namelyWNp0q � fbN
0

where f0 is the initial datum for the limiting kinetic equation we are going to
establish. Note also that WNpZN ; tq, for t ¥ 0, is symmetric in the exchange
of particles.

The strong form of equation (2.6) is�
Bt �

Ņ

i�1

vi �∇xi

	
WNptq � �NWNptq � LNW

Nptq
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where

LNW
NpXN , VN ; tq �

Ņ

i�1

¸
1¤j¤N
i�j

»
du πN

i,j W
NpXN , V

piq
N puq; tqδpvi � vjq.

2.1. Heuristic derivation. We now want to derive the kinetic equation we
expect to be valid in the limit N Ñ 8. Setting ΦpZNq � φpz1q in (2.6), we
obtain

Bt
»
fN
1 φ �

»
fN
1 v �∇xφ�

»
fN
1 φ�

»
WN

¸
j�1

πN
i,jφpx1, vjq. (2.7)

Here fN
1 denotes the one-particle marginal of the measure WN . We recall that

the s-particle marginals are de�ned by

fN
s pZsq �

»
WNpZs, zs�1 � � � zNqdzs�1 � � � dzN , s � 1, 2 � � �N (2.8)

and are the distribution of the �rst s particles (or of any group of s tagged
particles).

In order to describe the system in terms of a single kinetic equation, we
expect that chaos propagates. Actually since WN is initially factorizing, al-
though the dynamics creates correlations, we hope that, due to the weakness
of the interaction, factorization still holds approximately also at any positive
time t, namely

fN
s � fbs

1 .

In this case the law of large numbers does hold, that is

1

N

¸
j

δpz � zjq � fN
1 pz, tq

for WN - almost all ZN � tz1 � � � zNu. Then

πN
i,j �

1

N � 1
K
� 1

N � 1

¸
k

XB|xi�xj |
pxiqpxkq

	

� 1

N � 1
K
�
MρpB|x1�x2|px1qq

	
where

MρpBRpxqq �
»
BRpxq

ρpyq dy, (2.9)

and ρpxq � ³
dvfN

1 px, vq is the spatial density. Motivated by this remark, from
now on we use the following notation

MXN
pB|xi�xj |pxiqq � rpi, jq � 1

N � 1

¸
k

XB|xi�xj |
pxiqpxkq.

Here M stands for `mass' and the notation introduced is justi�ed by the law
of large numbers.
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In conclusion we expect that, by (2.7), in the limit N Ñ 8, fN
1 Ñ f and

fN
2 Ñ fb2, where f solves

Bt
»
fφ �

»
fv �∇xφ�

»
fφ�

»
fpz1qfpz2qφpx1, v2qK

�
MρpB|x1�x2|px1qq

	
which is the weak form of the equation�
Bt � v �∇x

	
fpx, v, tq � �fpx, v, tq � ρpx, tq

»
K
�
MρpB|x�y|pxqq

	
fpy, v, tq dy.

(2.10)
We remark that existence and uniqueness of global solutions in L1pR2dq for the
kinetic equation (2.10) can be proved by using a standard Banach �xed-point
argument.

Once known f , we can construct the one-particle nonlinear process given by
the generator

L
p1q
1 ϕpx, vq � pv �∇x � 1qϕpx, vq �

»
fpy, wqϕpx,wqK

�
MρpB|x�y|pxqq

	
dy dw.

We also introduce the N -particle process given by N independent copies of the
above process. Its generator is

L
p1q
N ΦpZNq � VN �∇XN

ΦpZNq
�
¸
i

� »
ΦpXN , V

i
NpwiqqK

�
MρpB|xi�yi|pxiqq

	
fpyi, wiq dyi dwi�ΦpXN , VNq

�
.

(2.11)

2.2. Motivations and main result. This work aims to prove propagation
of chaos for the N -particle process described by (2.5). Propagation of chaos
consists in preparing a system of N particles with initial con�gurations i.i.d
with a given law f0 and show that, considering any group of �xed s particles
between the N ones, this independence (chaos) is also recovered for future
times for the �xed s-group when N Ñ 8. This is expressed mathematically
by saying that the s-particle marginal fN

s ptq introduced in (2.8) approximates
fbsptq for positive times, where fptq is the solution with initial datum f0 of
the limit equation (2.10).

As mentioned in the introduction, the propagation of chaos result for (2.5)
was already obtained in [13] using hierarchical techniques. Indeed, the BBGKY
hierarchies are a powerful approach but their structure is such that the equa-
tion for the s-marginal depends only on the ps� 1q-marginal. In this case the
non-binary nature of the topological interaction does not allow to derive this
hierarchical structure, unless the interaction function K is real analytic and
therefore expandable in series, which is exactly the assumption made in [13].

The reason for this work is to provide a di�erent derivation of the limit
kinetic equation, using the classic probabilistic coupling technique. In general,
given two stochastic processes X and Y , a coupling is a realization of a new
process on a product probability space that has as marginal distributions those
of X and Y . This approach brings a more natural and general proof, avoiding
the analyticity assumption on K.
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Theorem 1. Let f P Cpr0, T s;L1pR2dqq solution of the limit equation (2.10)
with initial datum f0 P L1pR2dq. Assume that the interaction function K is

Lipschitz-continuous and consider the N-particle dynamics such that WNp0q �
fbN
0 .

If fN
s denotes the s-marginal as de�ned in (2.8), for t P r0, T s and s P

t1, . . . , Nu, it holds that

}fN
s ptq � fbsptq}L1pR2dsq ¤ s

eCKT

?
N � 1

, (2.12)

where CK is a constant depending only on the Lipschitz constant of K.

The topological character of the interaction bring us naturally to work with
norms of strong type and in particular with the L1/Total variation distance
(see also [3] where a distance similar to the Total Variation has been used
to prove the validity of the mean-�eld limit for a deterministic Cucker-Smale
model with topological interactions introduced in [17]).

Indeed, given two measures ρ1 and ρ2, from (2.9) we have

|Mρ1pBrpxqq �Mρ2pBrpxqq| ¤ }ρ1 � ρ2}TV

where, given pX,Aq a measurable space and two measures µ and ν over X,
the total variation distance is de�ned as

}µ� ν}TV � sup
APA

|µpAq � νpAq|.

In the present work, we use the equivalence between the L1 distance and
the Total variation for regular measures and the characterization of the TV
distance given by the Wasserstein distance

}µ� ν}TV � inf
πPCpµ,νq

»
X�X

dpx, yq dπpx, yq,

where Cpµ, νq is the set of all couplings, i.e. measures on the product space
with marginals respectively µ and ν in the �rst and second variables, and
dpa, bq � 1� δa,b is the discrete distance (see [25]).

3. Proof of the result

3.1. Coupling and strategy of the proof. We introduce, as a coupling
between (2.5) and (2.11), the process t Ñ pZNptq; ΣNptqq on the product space
R2dN�R2dN , where ΣNptq � pYNptq,WNptqq. The generator of the new process
is

QN � Q0 � rQN ,

where

Q0ΦpZN ; ΣNq � pVN �∇XN
�WN �∇YN

qΦpZN ; ΣNq (3.1)
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is the free-stream operator, while

rQNΦpZN ; ΣNq �
Ņ

i�1

¸
j�i

λi,jrΦpXN , V
i
Npvjq;YN ,W

piq
N pwjqq � ΦpZN ; ΣNqs

(3.2a)

�
Ņ

i�1

¸
j�i

rπN
i,jpXNq � λi,jsrΦpXN , V

i
Npvjq; ΣNq � ΦpZN ; ΣNqs (3.2b)

�
Ņ

i�1

¸
j�i

rπρpyi, yjq � λi,jsrΦpZN ;YN ,W
piq
N pwjqq � ΦpZN ; ΣNqs (3.2c)

�
Ņ

i�1

»
du EN

i puqrΦpZN ;YN ,W
piq
N puqq � ΦpZN ; ΣNqs (3.2d)

tends to penalize the discrepancies that can occur over time between ZN and
ΣN .

Indeed, in (3.2a) the process jumps jointly on both variables with a rate
given by

λi,jpXN ; yi, yjq� mintπN
i,jpXNq, πρpyi, yjqu, (3.3)

where

πρpyi, yjq� αNK
�
MρpB|yi�yj |pyiqq

	
. (3.4)

In (3.2b) and (3.2c) the jumps occur only for one of the pair, with a transition
probability given by the error between λi,j and πN or πρ. Finally, in (3.2d),

EN
i puq �

»
K
�
MρpB|yi�y|pyiqq

	
fpy, uq dy �

¸
j�i

πρpyi, yjqδpu� wjq

is the last error due to the approximation of the limit kinetic equation by
the N -particle dynamics with transition probabilities given by πρ and will be
treated using the law of large numbers.

We remark that, since
³
Kpxq dx � 1, formally we have1,»

K
�
MρpB|x�y|pxqq

	
ρpyq dy �

» �8

0

drKpMρpBrpxqq
»
|x�y|�r

ρpyq dHn�1pdyq

�
» �8

0

drKpMρpBrpxqq d
dr
rMρpBrpxqqs �

»
Kpxq dx � 1.

From this fact, it follows that QN is a coupling of the two previously described
processes, i.e. we recover, considering test functions depending only ZN and
ΣN respectively, the two processes as the two marginals.

We want to prove that f and fN
1 (de�ned as in (2.8)) agree asymptotically

in the limit N Ñ �8. To do this we consider RNptq � RNpZN ,ΣN ; tq the law
at time t for the coupled process. As initial distribution at time 0 we assume

RNp0q � fbN
0 pZNqδpZN � ΣNq. (3.5)

1In general, the formula is true for ρ P L1pRdq and it is a consequence of the coarea
formula (see [14, Thm 3.12, p. 140]).
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Let DNptq be the average fraction of particles having di�erent positions or
velocities, i.e. using the symmetry of the law,

DNptq �
»
dRNptq 1

N

Ņ

i�1

dpzi, σiq �
»
dRNptqdpz1, σ1q, (3.6)

where zi � pxi, viq, σi � pyi, wiq and dpa, bq � 1� δa,b is the discrete distance.

The aim is to show that DNptq Ñ 0. This means the following: initially
the coupled system has all the pairs of particles overlapping. The dynamics
creates discrepancies and the average number of separated pairs is exactly DN

which is also the Total Variation distance (L1px, vq in our case) between fN
1

and f .

Notice that the convergence of the s-marginals fN
s towards fbs claimed in

(2.12) is easily recovered by the fact that

}fN
s ptq � fbsptq}TV ¤

»
δpZs,Σsq dRNpZN ,ΣN ; tq

¤
ş

i�1

»
dpzi, σiq dRNpZN ,ΣN ; tq � sDNptq

where δpa, bq denotes the discrete distance on the space R2ds � R2ds.

3.2. Convergence estimates. Let SN
t be the semigroup de�ned by the free-

stream generator Q0 in (3.1). To estimate DNptq we apply the Duhamel for-
mula in (3.6) and we get»

dRNptqdpz1, σ1q �
»
dRNp0qd

�
SN
t pz1, σ1q

	

�
» t

0

dτ

»
dRNpτq rQNd

�
SN
t�τ pz1, σ1q

	
, (3.7)

where rQN is de�ned in (3.2).

The �rst term in (3.7) is negligible: indeed, from (3.5), we have»
dRNp0qd

�
SN
t pz1, σ1q

	
�
»
dfbN

0 pZNqd
�
SN
t pz1, z1q

	
� 0.

Concerning the second term in (3.7), we de�ne

sz1 � px1 � v1pt� τq, v1q, szpjq1 � px1 � v1pt� τq, vjq
and sXN � px1 � v1pt� τq, . . . , xN � vNpt� τqq; similarly for sσ, sσpjq and sYN .

By (3.2) we get»
dRNpτq rQNd

�
SN
t�τ pz1, σ1q

	
� A1pτq � A2pτq � A3pτq,

where

A1pτq �
¸
j�1

»
dRNpτqλ1,jp sXN ; sy1, syjqrdpszpjq1 ; sσpjq1 q � dpsz1; sσ1qs
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is due to the term of the generator rQN where the velocities of the particles
jump simultaneously;

A2pτq �
¸
j�1

»
dRNpτqpπN

1,jp sXNq � λ1,jqrdpszpjq1 ; sσ1q � dpsz1; sσ1qs

�
¸
j�1

»
dRNpτqpπρpsy1, syjq � λ1,jqrdpsz1; sσpjq1 q � dpsz1; sσ1qs

is due to the terms of the generator where only one of the two coupled processes
jump and

A3pτq �
»
dRNpτq

»
du sEN

1 puqrdpsz1; sσpuq1 q � dpsz1; sσ1qs

is due to the remainder term. Here sEN
1 puq is EN

1 puq evaluated along the moving
frame of the free transport.

Here, we have used that dpz1, σ1q depends only on the con�gurations of the
�rst particle; hence, the only non-zero contribution in the sum over i is given
for i � 1.

Concerning A1pτq, it follows from (2.3) and (2.4) that

|eKpNq| ¤ LippKq
N � 1

and that, for N ¡ 2Lip(K)� 1,

αN ¤ 4e
LippKq
N�1

N � 1
,

using the inequality 1{p1� xq ¤ 4ex for x P p0, 1{2q. Therefore, from (3.3) we
get

λ1,j ¤ αN}K}8 ¤ 4
?
eLippKq
N � 1

.

By the symmetry of RN and denoting CK � 8
?
eLippKq,

A1pτq ¤ CK

2pN � 1q
¸
j�1

»
dRNpτqrdpzj, σjq � dpz1, σ1qs ¤ CKDNpτq, (3.8)

since dpszpjq1 ; sσpjq1 q ¤ dpzj, σjq�dpz1;σ1q. Indeed the right-hand side is vanishing
i� z1 � σ1 and zj � σj and, in this case, also the left-hand side is clearly
vanishing.

We now give a bound on A2pτq. Since λ1,j is the minimum between πN
1,j and

πρ
i,j, we have

|A2pτq| ¤
¸
j�1

»
dRNpτq|πN

1,jp sXNq � πρ
1,jpsy1, syjq|. (3.9)

From (2.2) and (3.4),

|πN
1,jp sXNq � πρ

1,jpsy1, syjq| ¤ αNLippKq|M
sXN
p sBx

1,jq �Mρp sBy
1,jq|,

where we are using the shorthand notationsBx
1,j � B|sx1�sxj |psx1q and sBy

1,j � B|sy1�syj |psy1q.
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By the triangular inequality

|M
sXN
p sBx

1,jq �Mρp sBy
1,jq| ¤ |M

sXN
p sBx

1,jq �M
sXN
p sBy

1,jq|
� |M

sXN
p sBy

1,jq �M
sYN
p sBy

1,jq| � |M
sYN
p sBy

1,jq �Mρp sBy
1,jq|.

Hence we divide the estimate (3.9) respectively in three terms:

|A2pτq| ¤ T1pτq � T2pτq � T3pτq.
In T1pτq we are considering particles with spatial con�guration given by

XN and we want to estimate the discrepancy of the con�guration over two
di�erent balls sBx

1,j and sBy
1,j. Since sBx

1,j � sBy
1,j i� z1 � σ1 and zj � σj, using

that M
sXN

P r0, 1s, we have
|M

sXN
p sBx

1,jq �M
sXN
p sBy

1,jq| ¤ dpz1, σ1q � dpzj, σjq.
Therefore, by the symmetry of RN ,

T1pτq ¤ αNLippKq
¸
j�1

»
dRNpτqrdpz1, σ1q � dpzj, σjqs

¤ CKDNpτq.
Regarding T2pτq, we are considering the discrepancy of two di�erent con�g-

urations over the same ball sBy
1,j. Since

|M
sXN
p sBy

1,jq �M
sYN
p sBy

1,jq| ¤
1

N

Ņ

i�1

dpzi, σiq,

using again the symmetry of the law, we get

T2pτq ¤ αNLippKq
¸
j�1

»
dRNpτqdpz1, σ1q ¤ CKDNpτq.

The last estimate on T3pτq is a consequence of the law of large numbers.
After a change of variable, using the symmetry of the law RN and the fact
that this last term depends only on the YN con�guration, we have that

T3pτq � αNLippKq
¸
j�1

»
dρbNpτq|MYN

pBy
1,jq �MρpBy

1,jq|,

where By
1,j � B|y1�yj |py1q. By Cauchy-Schwartz,��� » dρbNpτq|MYN

pBy
1,jq �MρpBy

1,jq|
���2

¤
»
dρbNpτq

��� 1

N � 1

¸
h�1

�
XBy

1,j
pyhq �MρpBy

1,jq
����2

¤
¸

h1,h2�1

»
dρbNpτq
pN � 1q2

�
XBy

1,j
pyh1q �MρpBy

1,jq
��
XBy

1,j
pyh2q �MρpBy

1,jq
�
.

Thanks to the independence of the limit process, we get that the only non-zero
contributions are given when h1 � h2 and this happens only for N � 1 terms.
Hence

T3pτq ¤ CK?
N � 1

.
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Collecting the estimates on T1, T2 and T3, we obtain that

A2pτq ¤ CK

�
DNpτq � 1?

N � 1

	
. (3.10)

We conclude the proof estimating A3pτq. Since this term depends only on
the independent YN con�guration

|A3pτq| ¤
»

dfbNpτq
N � 1

¸
j�1

�����
»
K
�
MρpB|sy1�y|psy1qq	 dρpyq �KpMρp sBy

1,jqq
�����

� 1

N � 1

»
dfbNpτq eKpNq

1� eKpNq
¸
j�1

KpMρp sBy
1,jqq,

where we added and subtracted the term
°

j KpMρp sBy
1,jqq{pN � 1q.

Applying again the law of large numbers on the �rst term and estimating
the second term thanks to

eKpNq
1� eKpNq ¤

CK

N � 1
,

we arrive at

|A3pτq| ¤ CK?
N � 1

. (3.11)

Collecting the estimates in (3.8), (3.10) and (3.11) and using Gronwall's lemma,
we conclude the proof of the theorem.
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