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Abstract

The development of intelligent techniques based on real-time monitor-
ing for machining applications is one of the challenges of Industry 4.0,
as in the Aerospace Industry. Drilling is the most used process before
the assembly of airplane sheets, that nowadays are composed of different
layers of materials with different optimized cutting conditions. The fault
diagnosis during drilling stack materials is important to reduce cost and
improve the process quality. Using a machine-tool, it is important that
the fault diagnoser does not use a large amount of memory and be ca-
pable of detecting faults in a fast manner. In this paper, we propose a
timed automaton model representing the drilling process of a Titanium
plate on a CNC machine, which is suitable for fault diagnosis without any
additional sensors. The diagnoser uses only the spindle power and Z axis
displacement read directly from the system controller. The target faults
in this case are: (i) excessive tool-wear or tool breakage; (ii) the tool finds
an off-centered hole while producing a blind-hole; (iii) the tool finds an
under layer of a different material, as it occurs in a bi-layer material; and
(iv) the plate thickness is below the desired one and a though hole is pro-
duced. The results show that the model is capable of identifying all faults
and it could be used to alert a problem on the sequence of machining holes
in the industry.

Keywords: Smart manufacturing, Discrete event systems, Industrial Inter-
net of Things, Fault diagnosis, Aerospace materials.
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1 Introduction

With the advances of the Industry 4.0, it is expected a more integrated operation
between humans and machines. In order to do so, it is necessary to provide a
safe environment where humans can better visualize the operations that the
machines are performing, and the system must report alarms when there is
some kind of fault in the system in order to the operator to actuate the system
with a view to mitigating possible damages. Thus, an automatic fault diagnosis
system is crucial to guarantee reliability, and reduce losses and production cost
in smart machining. It is very important that any abnormal condition on a CNC
machine-tool be rapidly identified by the operator in order not to waste the
workpiece or cause an excessive wear of the cutting tool and help the operator
in his decision to recover the system. This is the first level for developing smart
manufacturing systems [Chen et al., 2019].

Indeed, smart machining refers to real time diagnosis, alert to the operator
and adaptation of cutting parameters for process optimization based on a data
base [Araujo et al., 2021]. For example, thousands of holes has to be drilled
for assembling stack layers in an aircraft, so smart drilling is a key point for
performance maximization because each layer should be machined with different
parameters to have a proper tool life [Geier et al., 2019] or identify the material
for adapting the proper cutting parameters, as feed rate and cutting speed, in
real time for process optimization [Gonçalves et al., 2021, Deshpande et al.,
2022a].

Several works in the literature address the problem of fault diagnosis of
CNC machines using different strategies and objectives. Drake and Pant [1996]
present a method of diagnosis of multiple faults in the flood coolant system of a
CNC vertical milling machine tool. In order to do so, a neural network is used to
perform pattern recognition with features extracted from the transient response
of the coolant pressure on shut-down. Hu et al. [2001] propose an intelligent
integrated diagnosis system based on neural networks and expert systems, and
Lee and Yang [2001] present a method for fault diagnosis of temperature sensors
along with the recovery for faulty data.

Wang et al. [2016] propose a method for data acquisition of CNC machine
tools based on OPC specification, the communication framework of state data,
and application of data mining is presented. Using the method, the user is
able to build a monitoring platform which can provide fault warnings. More
recently, the use of expert knowledge-based systems is proposed for identifying
machine tool failures caused by accidental events such as cable disconnection
or impact events [Colasante et al., 2019]. Zhang et al. [2019] propose a fault
diagnosis strategy based on cascading failures. The fault propagation model,
which models the process of fault propagation, is constructed, and can be used
to locate the source of the fault.

A different approach for fault diagnosis has been presented in the seminal
work by Sampath et al. [1995] in which the system is abstracted as a Discrete-
Event System (DES), i.e., a system with a discrete set of states and whose
state evolution depends entirely on the occurrence of discrete events over time

2



[Cassandras and Lafortune, 2008], and the fault is said to be diagnosable when
it can be detected and isolated within a bounded number of event occurrences.
Thus, the fault diagnoser must observe the sequence of events generated by the
system and compare it with the sequences which have the same observation
generated by the corresponding model. If the observed sequence corresponds
only to sequences containing a specific fault type, then this fault is diagnosed.
Since then, several strategies for fault diagnosis of DES have been presented in
the literature for untimed and timed system models [Santoro et al., 2017, Cabral
and Moreira, 2020, Qiu and Kumar, 2006, Contant et al., 2006, Debouk et al.,
2000, Tomola et al., 2017, Tripakis, 2002, Zad et al., 2005].

In some cases, however, obtaining the DES model using only the knowledge
of its behavior may be a difficult or even impossible task, since the number
of states of the system grows with its complexity. In order to overcome this
problem, several works in the literature present methods of identification of DES
with the aim of fault diagnosis [Roth et al., 2011, Klein et al., 2005, Moreira
and Lesage, 2019a,b]. Since some faults cannot be detected by only observing
the sequence of events executed by the system, in de Souza et al. [2020] the
time information of the occurrence of events is added to the model, increasing
therefore the number of faults that can be diagnosed. The main advantage
of the DES approach for fault diagnosis is that the diagnoser can be easily
implemented on a computer or a programmable logic controller (PLC), and the
fault can be detected as soon as an unexpected event occurs in the system or if
it occurs in a time instant different from the expected.

In this paper, a timed automaton model suitable for fault diagnosis, which
represents the drilling operation on Titanium alloy, is proposed. The model is
an improvement of the one proposed by de Souza et al. [2020] using continuous
signals (spindle power and Z position) read directly from the system controller.
The following sections briefly describe the automaton model and its application
to four faults.

2 Cutting power in drilling

Mechanistic force models can provide quantitative cutting force predictions
based on the uncut chip thickness principle. Once a basic data set of experi-
mental tests are made, the cutting power and machining forces are estimated
based on the specific cutting coefficients of the specific material in the range of
cutting conditions, as described by several papers [Armarego and Deshpande,
1989, Altintas, 2001].

In drilling, as cutting speed varies from zero to the maximum cutting speed
Vc (m/min) on the external diameterD (mm), the local specific force coefficients
are different along the cutting edge. Although, for a fixed tool geometry, it is
quite used to choose the average specific cutting force Kc (N/mm2) to calculate
the cutting power [Deshpande et al., 2022b].

The required power Pc (W) of a drilling tool is calculated taking into account
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the contribution of both cutting edges:

Pc =
Vc fz DKc

120
(1)

where fz is the feed per tooth, half of the feed per revolution using a conventional
two flutes tool (f = 2 fz).

3 Timed automaton model

A timed automaton model is a formalism that is capable of describing the dy-
namics of a Discrete Event System, including timing information about the
occurrence of system events.

The timed automaton model used in this paper, called Timed Automaton
with Outputs (TAO), is inspired on the Timed Automaton with Outputs and
Conditional Transitions (TAOCT) presented in de Souza et al. [2020]. As in
de Souza et al. [2020], the timed model has conditions related with the time
that the events must be observed to allow the transitions to occur. The set
of possible times is obtained by identification after observing the system for
a sufficient long time at different conditions. Differently from de Souza et al.
[2020], the sequences of events are already known, since it is assumed that the
programming code that must be inserted in the machine is known, as long as
the faulty scenarios that are executed in the system in order to obtain the
model that represents the fault-free and the post-fault system behavior. Thus,
the number of different sequences that are considered for obtaining the models
depends on the number of faults that are considered and generated in the plant.
In this case, the outputs associated with the states of the automaton model are
used to indicate to the operator if a fault has been detected or if the system is
operating as expected. Consider that the number of faults to be diagnosed is
η ∈ N, and let Fi, i = 1, . . . , η, denote the output label associated with each
kind of fault. Then, each state of the automaton model can be associated with a
symbol N indicating that the fault has not been detected, or Fi. It is important
to remark that the diagnoser is capable of diagnosing faults online using the
identified model, since it is played in real-time in parallel with the execution of
the machine. The timed automaton with outputs (TAO) is defined as follows.

Definition 1 The Timed Automaton with Outputs is an eight-tuple:

TAO = (X,Σ, f, cg, λ,R, g, x0),

where X is the finite set of states, Σ is the finite set of events, f : X ×Σ → 2X

is the nondeterministic transition function, cg is the global clock, with value
cg(t) ∈ R+, t ∈ R+, λ : X → {N,F1, . . . , Fη} is the state output function,
R = {1, 2, . . . , r} is the set of indexes associated with the different conditions of
the experiments for identification, where r = η + 1, g : X × Σ × R → C is the
guard function, and x0 ∈ X is the initial state. □
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The set of admissible constraints C is formed of all sets I ⊂ R+, that repre-
sent time intervals. As in the TAOCT, presented in de Souza et al. [2020], in
the TAO a unique global clock cg is used. Function g(x, σ, k) specifies a subset
of R+ to which the clock value cg(t) must belong so that transition from state
x labeled with σ can occur. The output function λ associates each state of the
model with a faulty or fault-free behavior of the system. It is important to
remark that differently from the TAOCT model, the TAO is nondeterministic
since the transition function f is nondeterministic, i.e., after the occurrence of
an event σ ∈ Σ in state x ∈ X, more than one state of X can be defined in
f(x, σ). However, the time constraints given by the guard g determinizes the
behavior of the system in the sense that if two transitions departing from the
same state and arriving at different states have the same event label, then the
guards associated with these transitions are disjoint time intervals.

4 Experimental inputs for fault diagnosis

In this section, drilling experiments are presented. All experiments were carried
out on a CNC milling center DMU85-DMG mono block machine and flood
water-based through coolant was used. Titanium alloy (Ti6Al4V) workpieces
are machined using carbide drills from Seco. The tools have 11 mm diameter,
2 flutes and 2mm point (code: SD203A-11.0-33012R10-M). The cutting power
and vertical tool position was measured by the machine-tool. The continuous
signal is converted by the PLC internal IO loop (with acquisition rate of 250
Hz) and collected by a computer using a software (SinuCom NC from Siemens).
The standard machining condition, so called scenario (1), uses Vc = 100m/min,
fz = 0.1mm/th) and drill length 32mm. Four different fault scenarios (2), (3),
(4) and (5) have been imposed to the system. The faults are not superposed,
i.e., only one fault proposition at a time is tested. The experimental situations
are:

(1) The system is operating without faults: a sharp tool drills a 32 mm blind-
hole. This corresponds to the normal operation of the system;

(2) A sharp tool finds an off-centered pre-drilled hole while producing a blind-
hole of 32 mm length. This is considered the fault of type F1;

(3) During its cutting trajectory, the tool finds an under-layer on 18 mm
depth of a different material. In this case, a carbon-fiber plate as it is
common the use of Ti-CFRP stack materials in actual design of airplanes.
This corresponds to the fault of type F2;

(4) Similar situation comparing to scenario (3) with a hollow workpiece, the
drilled thickness is 18 mm and a though hole is produced. This is consid-
ered the fault of type F3;

(5) The tool is worn (or broken) but it is still able to drill completely the hole
having 32 mm length. This is considered the fault of type F4.
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4.1 Experimental power curves on situations 1-4

Several experimental power curves were taken for each scenario and one typical
curve for each case is presented in Fig. 1. The blue curves represent the cutting
power acquired from the PLC along the operation time and the orange inclined
line presents the relative position of the tool tip to the workpiece surface. This
value is positive, so the reader can identify the moment that the tool achieves
the lower point, 32 mm, and then, when it comes back to the surface. The
dashed line represents the 18 mm, significant on faults F2 and F3.

As expected for Titanium, Fig. 1a presents a increase related to the tool
point, followed by a first plateau until 32mm and a smaller one when the tool
is going up that corresponds to the cutting of the elastic recover.

Fig. 1b shows the power during the drilling of a misplaced hole with an
overlap of 1.5 mm on the radius (schema presented inside the graph). The
unbalanced material generates a vibration that disturbs the signal.

Fig. 1c shows the cutting power of the machining of a 32 mm hole composed
of Titanium in the top and CFRP in the lower part. It can be seen a drop after
18 mm, the Ti thickness and transition to CFRP. As expected, this region has
higher forces compared to Fig. 1d, without any material below. As this event
is not known a priori, it would be difficult to identify due to the low S/N. The
dissociation of a hollow piece to a stack using curve signatures and data filters
is not an easy task.

(a) Cutting power in Scenario
(1)

(b) Cutting power in Scenario
(2)

(c) Cutting power in Scenario
(3)

(d) Cutting power in Scenario
(4)

Figure 1: Cutting power and drilling depth along processing time in different
scenarios
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4.2 Scenario 5: Worn tool scenario

In order to compare the curves of a worn tool drilling process and the standard
one, a wear protocol of experiments was done. Tool wear was analysed using a
Infinite focus measurement (Alicona).3D images were taken and flank wear is
measured using the local reference frame on the software.

Several holes were drilled in order to have a controlled wear zone with fixed
feed per tooth. The tool machined 3192 mm using fz = 0.1 mm/th and Vc = 50
mm/min, precisely 114 blind holes with 28 mm length before the presented
results. After this low initial wear (Fig. 2a), 30 cutting tests were performed
with Vc = 100 mm/min to compare the power curves and to identify when the
tool became damaged using the power signals. The tool wear was measured
every 4 holes. Fig. 2b presents the flank wear after 21 holes and and Fig. 2c
in the end of the tests when the tool was damaged. The power curve during
the 3 last holes (28, 29 ans 30) presented similar curve to the one presented on
Fig. 2d (hole 29), which is different from all the previous ones and similar to
the ones on scenario (1).

All the holes were measured in the surface and presented the diameter inside
the expected precision, even the last holes.

(a) Wear after 3192mm (b) Wear after 3834mm (c) Worn tool
(4152mm)

(d) Cutting power in Scenario
(5)

Figure 2: Tool wear measurements and cutting power with worn tool

Figure 3 presents the evolution of maximum flank wear VBmax along the
cutting edge (corner wear was higher and not considered). The last measurement
presented VB = 800µm and the cutting edge was not anymore continue.
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Figure 3: Tool wear evolution

5 Timed Automaton with Outputs

From the power curves of Fig. 1 and 2e, it can be seen the difficulty of iden-
tifying faults using only the raw data, or the filtered data, since it is needed
to obtain a good filter, the correct experimental noise amplitude, and identify
fault signatures. In addition, it cannot be done in a fast manner by the machine.
Thus, in this paper, we propose the identification of a timed automaton that
models the fault-free system behavior and also the behavior after the four types
of faults Fi, i = 1, 2, 3, 4, described in Section 4. The main advantages of the
proposed fault diagnosis strategy are that the diagnoser can be easily imple-
mented on a computer, and the fault can be detected as soon as the observed
system dynamics has a behavior that corresponds to a faulty behavior.

Differently from de Souza et al. [2020], the signals that are observed for
identification of the time intervals for the occurrence of the events are not binary
signals. In the case of the CNC machine, the spindle power, p(k), and the Z
displacement, z(k), of the machine tool are recorded. Thus, only continuous
variables are read from the PLC, and these variables must be used to observe
the occurrence of the system events.

The events are associated with the consumed energy in the drilling process.
Thus, the spindle power starts to be integrated when the tool arrives at the
surface of the material to be drilled, and the integration is stopped when the
drilling process is finished. In order to obtain the two events associated with
the position of the tool to start and stop the integration of the spindle power,
the Z displacement curve is used. At the top of Figure 4, we present the Z
displacement curve z(k) obtained using the Siemens software SinuCom NC for
drilling titanium with Vc = 100 m/min. Note that each change in the slope of
the curve represents a command to the CNC machine. Thus, if we compute the
approximate second order derivative of z(k), we obtain, the time instant where
the command has been sent to the machine. The curve of the approximate
second order derivative of z(k), z′′(k), is depicted at the bottom of Figure 4.
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Figure 4: Z displacement of the tool at the top, and second derivative of Z at
the bottom.

The finite-difference approximation used to compute z′′(k) is given by

z′′(k) =
z(k + 1)− 2z(k) + z(k − 1)

h2
, (2)

where h = 4 ms is the sample time of the data recorded by the software Sinu-
Com NC. Thus, the second positive peak of z′′ corresponds to the event Zstart

associated with the arrival of the tool at the position to start the drilling oper-
ation, and the time instant that this event occurs is the time that the spindle
power must start to be integrated. Then, the fourth negative peak corresponds
to the end of the drilling operation, modeled by event Zstop, which is associated
with the time to stop the integration of the spindle power. Thus, the events
Zstart and Zstop, to start and stop the integration of the spindle power, respec-
tively, are obtained from the approximate second derivative of the measured Z
displacement.

In order to obtain the TAO model to diagnose faults in the system, several
curves have been obtained for each one of the experimental scenarios imposed
to the system. In Figure 5, the minimum and maximum energies for the five
scenarios presented in Section 4 are shown with an added uncertainty δ in the
time to represent possible measurements errors. In this work, δ has been chosen
equal to 40 ms, which is equivalent to 10 sample times of the PLC. As it can
be seen from Figure 5, each scenario can be distinguished from all the other
scenarios in a different time instant. It is important to remark that it has
been considered that the distance between two disjoint time intervals must be
approximately 40 ms to distinguish the behaviors of the system considering
different experimental scenarios. Thus, it is possible to diagnose all four faults

9



Figure 5: Energies for the different conditions of the experiments carried out in
the plant (5 scenarios described in section 4).

using the time observed for reaching a specific level of energy. Thus, the reach
of the levels that can be used to diagnose faults are also defined as events in the
TAO model. From the curves in Figure 5, it can be verified that scenario (2)
can be distinguished from all other scenarios when the energy level reaches 2550
J , generating event e2550. The experimental scenario (5) can be distinguished
from all other conditions when the energy level reaches 4100 J , generating event
e4100. Scenario (4) can be distinguished from the other experimental conditions
when the energy reaches 7200 J , generating event e7200, and scenario (3) can be
distinguished when the energy level reaches 10100 J , generating event e10100.

From the observation of the energy curves, time-interval sequences of events
sk = (σk

1 , I
k
1 )(σ

k
2 , I

k
2 ) . . . (σ

k
lk
, Iklk), for k = 1, 2, . . . , 5, with different lengths can

be obtained for each one of the five experimental conditions for fault diagnosis.
The time intervals Ikj are defined as Ikj = [mink

j − δ,maxk
j + δ], where mink

j

and maxk
j are the minimum and maximum times, respectively, observed at the

occurrence of event σk
j among all experiments carried out under the experimental

scenario (k).
According to Figure 5, the following five time-interval sequences can be

obtained:

s1 = (Zstart, I
1
1 )(e2550, I

1
2 )(e4100, I

1
3 )(e7200, I

1
4 )(e10100, I

1
5 )(Zstop, I

1
6 )

s2 = (Zstart, I
2
1 )(e2550, I

2
2 )(Zstop, I

2
3 )

s3 = (Zstart, I
3
1 )(e2550, I

3
2 )(e4100, I

3
3 )(e7200, I

3
4 )(e10100, I

3
5 )(Zstop, I

3
6 )

s4 = (Zstart, I
4
1 )(e2550, I

4
2 )(e4100, I

4
3 )(e7200, I

4
4 )(Zstop, I

4
5 )

s5 = (Zstart, I
5
1 )(e2550, I

5
2 )(e4100, I

5
3 )(Zstop, I

5
4 ),
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Figure 6: TAO of the plant modeling the four types of faults and the fault-free
plant behavior.

and from the five time-interval sequences, the TAO model depicted in Figure
6 can be obtained. In Figure 6, the guard g(x, σk

j , k) is represented as the

time interval Ikj and the output function λ associates N to the states when
the observation is not sufficient to guarantee that a fault has occurred or the
system is in its normal operation, or associates Fi to the states indicating that
the experimental condition associated with a fault has been detected. The first
time interval Ik1 is defined as [0, 0] for k = 1, 2, . . . , 5, since Zstart is the first
observed event that initiates the integration of the spindle power, and the last
time interval of all time-interval sequences is equal to [0,∞] since the time in
which Zstop is observed is not important for fault diagnosis. The clock cg(t)
is reset all the time that the system is in its initial state and event Zstart is
observed.

In order to illustrate how the TAO model can be used for fault diagnosis, con-
sider that the observed timed sequence is equal to s = (Zstart, 0)(e2550, 2.63)(e4100, 3.32).
In this case, since event e2550 is observed at time 2.63 seconds, which belongs to
the intervals I12 and I42 , then the transition from state 1 to state 2 is executed in
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the model. Then, after observing event e4100 at time 3.32, the model is played
and the transition from state 2 to state 7 occurs, since 3.32 ∈ I53 . Thus, since
λ(7) = F4, the fault of type F4 is diagnosed, indicating that the tool is damaged.

6 Conclusions

In this paper, a timed automaton model for the drilling process of Titanium
alloys, which is suitable for fault diagnosis, is proposed. Four fault scenarios have
been considered, and all faults can be diagnosed using the proposed diagnosis
scheme. The main advantages of using the proposed scheme are the simple
implementation of the diagnoser on a computer and the fast fault detection.
We are currently investigating the use of a similar diagnosis architecture to
automatically identify different materials in a stack for adapting the proper
cutting parameters, as feed rate and cutting speed, in real time, for process
optimization. In the future, this process will be implemented also in orbital
drilling.
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