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Abstract: In this paper, we introduce an agent-based model together with a particle filter approach
to study the spread of COVID-19. Investigations are mainly performed on the metropolis of Tokyo,
but other prefectures of Japan are also briefly surveyed. A novel method for evaluating the effective
reproduction number is one of the main outcomes of our approach. Other unknown parameters
are also evaluated. Uncertain quantities, such as, for example, the probability that an infected agent
develops symptoms, are tested and discussed, and the stability of our computations is examined.
Detailed explanations are provided for the model and for the assimilation process.
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1. Introduction

The outbreak of COVID-19 had a huge impact on human society, and has also triggered
an enormous scientific response. In this paper, we provide a rather detailed account of
an agent-based model for the estimation of the effective reproduction number Rt. Our ap-
proach is based on data assimilation and on a particle filter scheme.

The effective reproduction number is one quantity of major importance for any epi-
demiological studies, as indicated in the studies [1–5] and references therein. Since it works
as an estimator of the number of secondary cases produced by a primary case at time t,
it provides crucial information about the spread of the disease, allowing health services to
evaluate previous interventions and forecast the evolution of the epidemic. However, its
precise evaluation is very challenging, and several independent approaches exist or have
been recently developed. As thoroughly investigated in [6,7], all these techniques present
advantages and flaws, but nevertheless each of them brings some information.

One of the earliest attempts to implement epidemiological observations with epidemic
models through a variational data assimilation approach was published in [8]. In relation to
COVID-19, by March 2020, some investigations using a method called Ensemble Smoother
with Multiple Data Assimilation (ES-MDA) appeared in a preprint format [9], quickly
followed by [10], which forecasts the evolution of the epidemic in Pakistan with a Kalman
filter coupled with the Arima model. Still, in the early responses, let us mention the im-
plementation of a switching Kalman filter [11] to overtake the Gaussian and linearity
assumptions, while an extended Kalman filter is used in [12] for an evaluation of the effec-
tive reproduction number. However, as acknowledged by the authors in [12] “the presented
approach can only be used for countries/regions/areas that have performed mass testing
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with laboratory confirmation”, which drastically reduces its applicability. In another direc-
tion, let us mention [13] where a Kalman filter and random forest algorithms are applied to
make short-term predictions in India.

Another important work in this framework is the international collaboration [14],
in which it clearly presents that the regional characters of some parameters are important.
More recently, let us mention [15] in which a model with vaccination and using an Ensem-
ble Kalman Filter is implemented for Saudi Arabia, and [16], which discusses vaccination
strategies by using data assimilation techniques. Reference [17] tracks the effective repro-
duction number with the Kalman Filter, and provides estimates for the effectiveness of
non-pharmaceutical interventions, while [18] uses Bayesian sequential data assimilation
for forecasting the evolution of COVID-19 in several Mexican localities. Additional recent
investigations mixing data assimilation techniques and epidemic models can be found
in [19–25].

In contrast to the references mentioned above, contact-based (or agent-based) models
provide a more microscopic approach for the spread of diseases; see, for example, [26]. Up
to the best of our knowledge, very few works have investigated the COVID-19 outbreak
with such models coupled with epidemiological data. As a rare example, let us mention [27]
which uses an ensemble Kalman filter and a undirected graph of 200 nodes with a small-
world topology for estimating the evolution of the epidemic.

In the present study, we further develop the agent-based model and the assimilation
of data, but simplify the graph structure. More precisely, we propose a method coupling
a particle filter with an agent-based model for the evaluation of the effective reproduction
number Rt. It consists of two main steps, which are repeated on a regular basis: (1) Generate
a prediction for the model’s state on the next time step based on the current model’s state,
and move the time step forward; (2) update the model’s state based on observations
on the current time step. Since new data about COVID-19 are available on a daily basis, we
regard one day as one time step in our model. In one experiment, numerous independent
simulations are considered simultaneously, and consequently some quantities of interest
can be estimated with a probability distribution.

We also aim to make our approach and results easily reproducible. Since some pa-
rameters in the model are location-dependent, and in order to rely on a constant source of
observations, our investigations are mainly focusing on the metropolis of Tokyo. We also
provide results for two other Japanese prefectures and the entire country, and these investi-
gations are briefly discussed. The selection of these prefectures is motivated by the diversity
of their size, and by the respective impact of the epidemic. This illustrates that our approach
can be adapted to different cities, regions, or countries, with little effort.

In Figure 1 we present our main result about the evaluation of the effective reproduc-
tion number Rt for Tokyo, from 6 March 2020 to 14 August 2021. Our approach provides
a daily mean value and confidence intervals based on the distribution of parameters from
numerous independent simulations.

Before moving to a more precise description of the content of this paper, let us em-
phasize a few key points of our investigations. First of all, our approach does not rely
on a knowledge of the size of the underlying population. This is in contrast with the stan-
dard SIR compartmental model involving differential equations, for which the size of
the susceptible population is part of the initial condition. The proportion of fully (or par-
tially) vaccinated persons inside the population is also not a necessary information for our
investigations. Accordingly, acquiring a immunity (or not) after recovering from the disease
does not play any role in our approach. In fact, these non-dependencies are a special feature
of the phenomenological character of our method for the computation of the effective
reproduction number. Relatedly, note that our computations does not involve an inverse
problem, nor rely on Bayesian estimation, or on any assumption of Poisson distributions.
For comparison, let us mention for example [28] which presents an “inverse method for
extracting the full transfer function of infection, of which the reproduction number is the in-
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tegral”, or [29] for a statistical approach for the estimation of the instantaneous reproduction
number, involving Bayesian estimation and the assumption of some Poisson distributions.

Figure 1. Effective reproduction number. The black curve indicates the mean value obtained from
numerous independent simulations; the dark and light colored regions refer to the 68% and 90%
confidence intervals, respectively. States of emergency correspond to grey regions.

Let us now describe the content of our paper. In Section 2 we precisely introduce
our agent-based compartmental model (an extended version of the SEIR model): its com-
partments, the flows between these compartments, the probability of agents entering each
compartment, and the time agents spend in each compartment. Some of these values are
fixed, in which case we provide a reference; other values are random variables, whose distri-
butions are either provided by some references or will be evaluated during the experiments.
The procedure for producing secondary cases is also described, and the computation of
the effective reproduction number Rt is explained.

In Section 3, the evolution process and the data assimilation technique are introduced.
The leading idea is to consider simultaneously numerous independent epidemics (called
particles), and to associate to each of them a weight on a daily basis. The weights are
assigned based on the proximity of the simulated epidemics to the observations. More pre-
cisely, since direct observations are only possible for three compartments of the model (the
agents under medical treatment, the agents who have recovered after medical treatment,
and the deceased agents), we compare the number of agents in these three compartments
to the corresponding observations, and compute the weights accordingly. Various plots
illustrate the outcomes of our experiments, such as, for example, the total number of asymp-
tomatic agents. A resampling process necessary for our experiments is also introduced
and discussed. In the final part of this section, we provide some estimations about two
parameters evaluated during the experiments.

A discussion about the probability than an infected agent develop symptoms is pre-
sented in Section 4. Indeed, for COVID-19 this probability is still not precisely known,
and contradictory values can be found in the literature; see, for example, [30,31]. Similarly,
it is not certain by how much asymptomatic agents are less infectious than symptomatic
agents, and various numbers can be found in the literature [32]. For this reason, we per-
formed stability tests on our model with different probabilities of developing symptoms,
and different relative infectivities, and compared the resulting effective reproduction num-
bers. At a more technical level, we also discuss in this section the relationship between
the stability of the computations and the frequency of resamplings introduced in Section 3.
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In Section 5, the last section of this paper, we compare our results for the effective
reproduction number with similar estimations from independent sources. In particular, one
of these estimations is based on a simplified version of a maximum likelihood estimation
for the effective reproduction number provided by H. Nishiura [33]. Additional results for
other prefectures and for Japan are provided and discussed. We also expose the strength
and the weakness of our approach. Some possible improvements are presented, and future
extensions are finally discussed.

2. Description of the Model

The model consists of an extension of the well-known SEIR model, but is adapted
in the context of an agent-based model. It is based on seven compartments, as shown
in Figure 2, which can be described as follows:

S The compartment of all susceptible agents.
E The exposed agents: right after infections, agents move from S to E, and they are not

infectious in this compartment. They are not recorded by health authorities.
Ia The asymptomatic infectious compartment: one part of these agents are asymp-

tomatic (will never develop any symptom), while the other part of these agents
are pre-symptomatic. The asymptomatic agents are leaving Ia after recovery. Pre-
symptomatic agents will move to Is as symptoms develop. They are not recorded
by health authorities yet. Note that the labels and the definitions used for Ia and
Is (introduced below) coincide with the ones used in [34], but Ia corresponds to
the compartment P in the SEPIA model, see [35].

Is The symptomatic infectious compartment: agents are showing mild or severe symptoms.
Most of these agents will look for medical support, but others will self-quarantine
without contacting any health authority. The first cohort will move to T once supervised
by health authorities, while the latter cohort will leave Is after recovery.

T The agents undergoing treatment. These agents are treated in hospitals, at home, or in
other facilities. They are recorded by health authorities.

D The deceased agents coming from T. They are recorded by health authorities.
R The recovered agents: The agents coming from T are recorded by health authorities,

while the ones coming from Ia or from Is are not recorded by any health authority.

Figure 2. The compartments and the probabilities of each path. Data provided by health authorities
are available for the compartments colored in yellow.

As shown in Figure 2, should a compartment have multiple outflowing paths, its agent
will enter different paths following certain probabilities. We provide in Table 1 the different
values and the sources. Note that these values will be discussed again with additional
experiments in Section 4. Note also that the probabilities Pd and Pr will be evaluated
during the experiments, and therefore are time (≡day) dependent. For the probability
Pq of self-quarantining without contacting any health authority, since no information is
available for Tokyo, we use the result of the survey [36] conducted in Osaka. As emphasized
in this survey, it is mainly because of social pressure that some symptomatic persons prefer
self-quarantining without contacting any health service.
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Table 1. Probabilities between compartments.

Name Path Probability of Value (%) Source

Ps Ia → Is being symptomatic 83 [32]

Pa Ia → R being asymptomatic 17 [32]

Pt Is → T contacting health authorities 78 [36]

Pq Is → R self-quarantining 22 [36]

Pd T → D dying Evaluated with
observations

Pr T → R recovering after treatment Evaluated with
observations

In some of these compartments (Cpt), the number of days spent by agents is important.
We list in Table 2 the necessary information about these durations and provide the sources.
Some given distributions are provided in Figure 3. Note also that the time duration τT
(time in compartment T) will be evaluated during the experiments, and therefore is time
dependent. Note that if any of the parameters are time dependent, the behavior of agents
are determined by the parameters on the day they enter their current compartments.

Table 2. Time spent in compartments (Cpt).

Cpt Name Description Value Source

E τE Latency period 3 days [37]

Ia
τIa ,Is Infectious period for pre-symptomatic Given in Figure 3 [38]τIa ,R Infectious period for asymptomatic Given in Figure 3

Is
τIs ,T Time before treatment for symptomatic Given in Figure 3 [39]τIs ,R Time before recovery for asymptomatic Irrelevant for the model

T τT Time spent undergoing treatment Evaluated with
observations
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Figure 3. Distributions and mean values for: (a) infectious period τIa ,R for asymptomatic in compart-
ment Ia; (b) infectious period τIa ,Is for pre-symptomatic in compartment Ia; and (c) time τIs ,T spent
by symptomatic in compartment Is before undergoing treatment.

Let us now emphasize some assumptions made in our model:

(1) Only agents in Ia are going to spread the disease. Indeed, asymptomatic agents or pre-
symptomatic agents in Ia are not aware of their condition but are already infectious.
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On the other hand, agents in Is are aware of their condition and are supposed to take
all precautionary actions for not spreading the disease. Clearly, this is a simplifying
assumption, but it is known that the transmission of the virus is mostly taking place before
the appearance of the symptoms, with a gradual decline of virus load after the appearance
of symptoms [40]. Also, without this assumption one should introduce an additional
coefficient reflecting the fraction of symptomatic agents (aware of their status) spreading
the disease. Clearly, very little information is available about such a parameter.

(2) Births and natural deaths are not included in the diagram flow of Figure 2. As dis-
cussed in Section 5, these agents would not play any role.

(3) The immunization status of agents in the compartment R is not specified and does
not play any role in our model. This is also discussed in Section 5.

Thus, for agents in Ia, a simplified daily offspring distribution Od is provided in Figure 4,
and we refer for example to [41] for more details. The implementation of this distribution
is explained in the next section.

0 1 2 3 4 5
number of secondary cases

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ili

ty

= 0.71

Figure 4. Distribution and mean value of the daily offspring distribution Od.

One important question concerns the relation between the transmission coefficient
for asymptomatic agents and the transmission coefficient for pre-symptomatic and symp-
tomatic agents. For our investigations, we shall rely on the result of the systematic re-
view [32]. Consequently, we shall fix this relative infectivity coefficient k to 0.58. This factor
is slightly smaller but of a comparable scale compared to earlier investigations; see, for
example, [30]. This factor will be discussed again with additional experiments in Section 4.

Let us set rt ∈ [0, 1] as a time-dependent multiplicative factor which takes into account
the real interaction between agents. This factor (updated on a daily basis) depends on
individual behavior but also on non-pharmaceutical interventions. As a consequence,
for asymptomatic agents in Ia, the daily production of second-generation infections is
given by the daily offspring production with all # secondary cases ≥1 entries’ probabilities
multiplied by the factor k · rt. For pre-symptomatic agents in Ia, the daily production of
second-generation infections is given by the same rule, but only with multiplicative factor
rt instead of k · rt. Therefore, the effective reproduction number Rt is given by the formula

Rt =
(
k · Pa ·E

(
τIa ,R

)
+ Ps ·E

(
τIa ,Is

))
·E(s.c.) · rt

= (0.58 · 0.17 · 7 + 0.83 · 2.85) · 0.71 · rt

= 2.17 · rt.

(1)

where E(s.c.) stands for the mean value of the secondary cases provided by the offsping
distribution. Note that no special interpretation is given for the factor rt or the scaling
factor 2.17.
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3. Evolution Process, Particle Filter, and Main Results

The observation data for compartments T, R, and D (colored in yellow in Figure 2)
provided by health authorities for Tokyo start on 6 March 2020. However, the epidemic had
already started in January at the latest, since the departure of the Diamond Princess from
Yokohama took place on 20 January 2020. For this reason, and after several trials, we fixed
the following initial conditions for our experiment: 17 January 2020 (long after having chosen
this date as the most suitable one for the start of our simulations, we were informed that
the first case of COVID-19 detected in Japan was on 16 January 2020). This date corresponds
to 49 days before the start of the observations available for Tokyo.

On a daily basis, some parameters have a certain freedom to change their values.
In order to describe their evolutions, let us use the notation TN(µ, σ; a, b) for the truncated
normal distribution of mean µ, variance σ2, minimum value a and maximal value b.
For the minimum value a and the maximum value b of this distribution, we use some
prior information from the literature, or the normalized interval [0, 1]. For the standard
deviation σ, we chose a value corresponding to (b− a)/20. Indeed, it was observed that this
value provides enough freedom to the system for its daily evolution, while a larger value
generates a spurious self-averaging effect. For the evolution of rt with t ≥ 1, we randomly
chose its value according to the distribution TN(rt−1, 0.05; 0, 1). The evolution of Pd is
also given by using a truncated normal distribution, namely, for t ≥ 1 the value Pd(t) was
chosen randomly according to the distribution TN(Pd(t− 1), 0.0025; 0, 0.05).

Since the time spent undergoing treatment, τT , is integer valued, its evolution is
slightly more complicated, but nevertheless follows a scheme similar to the previous two
parameters. The mean value E(τT(t)) of τT(t) was chosen randomly according to the dis-
tribution TN(E(τT(t− 1)), 0.75; 4, 19), where the minimum and maximum values were
fixed according to information provided by health authorities [39]. Then, one constructs
a distribution supported on the greatest integer less than or equal to E(τT(t)) and the least
integer greater than or equal to E(τT(t)), and such that its expectation is equal to E(τT(t)).
The agents entering the compartment T on that day are then assigned a time in T chosen at
random according to this distribution.

Each agent in the compartment Ia will infect susceptible agents belonging to the com-
partment S on a daily basis. We now describe this process. Let us denote by

MN(xj, n; pj) ≡ MN(0, 1, 2, 3, 4, 5, n; p0, p1, p2, p3, p4, p5),

the multinomial distribution for n trials in the set of values xj ∈ {0, 1, 2, 3, 4, 5} with
the probability of xj given by pj. We also denote by the vector X = (X0, X1, X2, X3, X4, X5)
one realization of this distribution. For example, if pj is the the probability of having j
offsprings as given in Figure 4, then one has ∑5

j=0 Xj = n, and the expectation value for Xj

is n · pj for any j ∈ {0, 1, 2, 3, 4, 5}.
On a given day t, assume that the compartment Ia contains n asymptomatic agents

and m pre-symptomatic agents. Then, the n agents will infect ∑n
j=1 j · Xj susceptible agents,

where X is one realization of the multinomial distribution MN(xj, n; pa
j ), with pa

j = k · rt · pj

for j ∈ {1, 2, 3, 4, 5} and pa
0 = (1− k · rt) + k · rt · p0. Similarly, the m agents will infect

∑n
j=1 j · Yj susceptible agents, where Y is one realization of the multinomial distribution

MN(xj, m; ps
j ), with ps

j = rt · pj for j ∈ {1, 2, 3, 4, 5} and ps
0 = (1− rt) + rt · p0.

As highlighted in Figure 2, three compartments, T, D, and R, are associated with
observations (collected from [42]) and their values on day t are denoted by T(t), D(t) and
R(t), respectively. Some uncertainties surround these observations, and these uncertainties
are commonly called observation error and will be denoted by σ. For our experiments,
we consider two of these observation errors constant over time, while one will be time
dependent. In fact, since the daily variations of T are quite important, the corresponding
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uncertainties will take them into account. More precisely, if we write T(t) for the number
of agents undergoing treatment at time t, we set

σT(t) =
√(

0.3T(t) + 4|T(t)− T(t− 1)|
)2

+ 400,

σR = 2000,

σD = 100.

These expressions for the errors have been chosen after several trials; see the remark
below. As shown later, even if these values look very large, they lead to a successful
selection process.

Let us now describe more precisely the experimental setup. We used a particle filter
approach; namely we created a large number N of independent simulations (=particles) of
the propagation of the epidemic in Tokyo in one experiment. Each of the simulations is
a realization of the model, and involves all the daily random processes described above.
Typically, we chose N = 50 000 or N = 100 000, and kept this number constant during
each experiment. The initial conditions we used are gathered in Table 3. On a daily basis,
a weight w was assigned to each particle. Let i denote the index of the particle, and let
Ti(t), Ri(t), and Di(t) denote the number of agents in the three colored compartments of
Figure 2 for this particle at time t. At each time t ≥ 1 one first computes the not normalized
weight Wi(t) by the formula

Wi(t) := wi(t− 1)· exp
(
− (Ti(t)− T(t))2

2σT(t)2 − (Ri(t)− R(t))2

2σ2
R

− (Di(t)− D(t))2

2σ2
D

)
, (2)

with the convention that wi(0) = 1
N . Then, the normalized weight for the particle i is given by

wi(t) :=
Wi(t)

∑N
j=1 Wj(t)

.

With these weights, one obtains three distributions for the analyzed values of T, R,
and D at time t, respectively.

Table 3. Initial conditions.

Description Initial Values

Initial date 17 January 2020

Initial number of infected agents Uniformly at random in {3, 4, 5, 6, 7}

r0 Uniformly at random in [0, 1]

τT(0) 15 days, initial guess motivated by [43]

Pd(0) Uniformly at random in [0, 0.05]

Remark 1. As already mentioned, the expressions for σX with X ∈ {T, R, D} were chosen after
several trials. Based on the expression (2) for the weight, let us provide more information about

these observation errors. Clearly, if σX is too big, the factor exp{− (Xi(r)−X(t))2

2σ2
X

} will be close to 1

for all particles, and this factor will not play any role. On the other hand, if σX is too small, then
only the particles having |Xi(t)− X(t)| ∼= σX will keep this factor in (0.1, 1), while those having
a difference |Xi(t)− X(t)| much bigger than σX will be assigned an extremely small weight. In
addition, since the non-normalized weight (2) is defined by the product of three factors, their relative
importance is also encoded in the values given to σT , σR and σD. During the experiments, we
observed that the data about the treated agents are clearly more important than the data related to
the recovered agents and to the deceased agents for the computation of the effective reproduction
number. The choice of two large and constant values for σR and σD reflects this observation.
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On a daily basis, the exact number of agents who recover, or the exact number of deceased agents, did
not match too closely with the real data. However, we kept a weight related to these two quantities
because the simulations can also not show arbitrary numbers of recovered agents or of deceased
agents. The expression for σT takes into accounted the current number of agents in the compartment
T and the daily variation, together with a regularization factor 202. In this expression, note that
none of the numerical values has a very meaningful interpretation, but it is important that the same
values are kept for the computation of the weight of all particles.

Now, if we keep computing weights with the formula described above, it will soon
turn out that very few particles will concentrate almost all weights, and that nearly all
other particles would end up with negligible weights. For dealing with this problem,
a process called resampling was implemented: For a given time t, we took one realization
X of the multinomial distribution MN(i, N; wi(t − 1)) with i ∈ {1, . . . , N}. Then, for a
particle indexed i, we created Xi copies of the particle and removed the original one. Finally,
we assigned a weight 1/N to all new particles. Clearly, some particles will appear several
times, but their trajectories will diverge due to the randomness involved on a daily basis.

One still has to decide when resamplings are organized. For this purpose, let us define
the effective number of particles as

Ne f f (t) :=
1

∑N
i=1 wi(t)2

, (3)

and observe that if wi = 1
N for i ∈ {1, . . . , N}, then Ne f f = N, while if wi ≈ 1 for

one i, and wj ≈ 0 for all j 6= i, then Ne f f ≈ 1. For this reason, Ne f f is often used as
an indicator of the number of particles still playing a role in the process. As a consequence,
we shall use the following rule: If Ne f f < N

10 , then a resampling has to take place. As
a practice to stabilize the experiments, a resampling is also performed if the most recent
resampling took place 15 days ago. In Figure 5a, we present a typical graph for Ne f f for
a number of particles N = 100 000, while in Figure 5b we provide an indication about
the time between the resamplings, namely whenever a resampling took place, we set
y = 1/(number of days since the last resampling). We shall soon see that this information
plays a role in the stability of the predictions.

(a) (b)

Figure 5. (a) The effective number Ne f f of particles computed with Formula (3). (b) The inverse of
time between two consecutive resamplings.

Let us stress that the computation of the weights and the implementation of the re-
sampling start only on day 50 of the simulation, namely on March 6. Indeed, as there is no
observation available before this date, the particles evolve freely and independently.

After running the experiment with observation data up to day t, we ran the experiment
for one more day without observation data. With the weight computed on day t still assigned
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to each particle, one obtains the so-called forecast (or prior) values for Ti, Ri, and Di, on day
t + 1. These values generate the corresponding forecast distributions for T, R, and D. Then,
by computing the weights wi(t + 1), as explained above, one obtains the analyzed values for
the compartments, also called posterior values, and the corresponding analyzed distributions.
Clearly, the forecast distributions and the analyzed distributions do not match in general. The
relative difference between the mean values of the forecast and the analyzed distributions
for T can be visualized in Figure 6 (lower part). Let us just emphasize that the weights b
computed with three compartments, not only with T.

Figure 6. Upper part: Treated agents T, with the observation values in red and the analyzed mean
values in black. 68%, resp. 90%, confidence interval are indicated in green. Lower part: Relative
difference for the mean values of 1-day forecast and analyzed T.

A representation of the three compartments with observations is also presented
in Figure 6 (upper part) and in Figure 7. In these plots, the observations are represented
in red, and the analyzed distributions are represented in green (confidence intervals)
and in black (means). Similarly, we provide in Figure 8 the plot of the total number of
asymptomatic agents in Ia following the estimate provided in [32]. By the definition of
asymptomatic agents, there is no observation corroborating these values.

(a) (b)

Figure 7. Observation values (in red) and analyzed values with mean value (in black) and 68%,
resp. 90%, confidence interval: (a) compartment R of recovered after treatment and (b) compartment
D of deaths.
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Figure 8. Estimated number of asymptomatic agents in Ia, with 68% and 90% confidence intervals.

As mentioned in Section 2, Pd, Pr, and E(τT) were evaluated during the experiments,
which are the probability of dying, the probability of recovering from T, and the average
time agents spend in T, respectively. With our approach, these quantities are provided with
their distributions created by their values taken by the N particles. Clearly, if more accurate
medical information was available, these parameters could be directly implemented in our
model, but in their absence, we have to evaluate them from the observations. For the ex-
pected value of Pd shown in Figure 9a, observe that the sudden increase visible between
mid-February and mid-March 2021 is due to a conjunction of two factors: (1) a large
number of death, see Figure 7b, due to the large number of treated agents in January
2021 (as visible in Figure 6) and (2) the relatively small daily number of agents recovering
between mid-February and mid-March 2021, as visible in Figure 7a with the small slope of
the curve during this period. In other words, this increase in Pd is due to the longer stay
in compartment T of agents who will ultimately die compared to agents who will recover
after treatment.

(a) (b)

Figure 9. Mean value and 68%, resp. 90%, confidence interval for: (a) the probability Pd of dying,
while in T and (b) the expected time E(τT) spent in compartment T.

For the expected time E(τT) spent in T, we provide in Figure 9b the distributions
E(τT) deduced from our investigations. The observed long-term trend of decay is expected
to be due to the improvement of the medication and treatment for infected patients. Unfor-
tunately, we cannot deduce the difference of time spent in T between patients with mild
symptoms and patients with serious symptoms from our model.

4. Parameters’ Dependence and Stability

As mentioned in Section 2, the relative infectivity k of asymptomatic agents compared
to pre-symptomatic and symptomatic agents is a very uncertain parameter. For most of



J. Clin. Med. 2022, 11, 2401 12 of 17

our simulations, we used k = 0.58 based on the information provided by the literature [32].
Since this value is quite uncertain, we compared the outcomes of simulations with all
conditions the same but with k = 0.2, 0.58, and 1.0. The corresponding mean values for
the effective reproduction number Rt are shown in Figure 10a. The patterns are similar,
but a larger k corresponds to a slightly larger value of Rt, most of the time. This is not
surprising since the factor k plays a role in the computation of the effective reproduction
number, as shown in (1). On the other hand, with one noticeable exception around late
August to early September 2020, the three curves cross the critical value Rt = 1 more or
less simultaneously.

(a) (b)

Figure 10. Mean values of Rt for: (a) different values of the relative infectivity k and (b) different
probability Ps of developing symptoms.

Similarly, the probability Ps that an infected agent develops symptoms is also a some-
what controversial parameter. For our simulations, we used the proportion of 83% of
symptomatic agents and 17% of asymptomatic agents from [32], but other sources men-
tioned a very different numbers [31]. Since asymptomatic cases are very difficult to detect,
and since we cannot be fully confident in these probabilities, a sensitivity test was per-
formed. To do this, we decreased the probability Ps to 50% and to 20% and performed
the whole experiment while keeping all other parameters the same as the original ones.
Compared to the original setting, more agents are asymptomatic and recover without
showing any symptoms in these two new scenarios. On the other hand, the number of
symptomatic agents is more or less constant since they are dominated by the number of
agents undergoing treatment, which is compared and adjusted according to the observa-
tions on a daily basis. In Figure 10b, the different curves for the mean Rt have similar
patterns. However, we observed that a bigger proportion of asymptomatic agents leads to
a slightly bigger Rt. Indeed, more total infected agents have to be created in this scheme,
which means that a larger Rt is necessary.

Let us mention one observation linking the stability of the computation of Rt with
the frequency of resamplings. In Figure 11, we provide the mean value of Rt for two
independent experiments under exactly the same setting, and each of them involves
100 000 particles. Clearly, these two curves are very similar, but at a few places, small
differences are visible, such as, for example, in September 2020, in February and first half
of March 2021, and in August 2021. Note that the same kind of discrepancies can also
be observed in Figure 10 (around the first two mentioned periods). Now, if we look back
to Figure 5b, it can be seen that these three periods follow or coincide with periods of
time when resamplings took place more frequently (local maxima of the curve presented
in Figure 5b). Our understanding is the following: when abrupt changes in the observations
are taking place, and/or when the model is not accurate enough, more resamplings are
necessary to keep the experiment following the observation data since only a small portion
of particles will have the correct behavior. As the weights concentrate on those particles,
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Ne f f drops rapidly, and more resamplings are triggered as a consequence. This process
also quickly eliminates the short-term diversity of particles: since most of the particles are
sampled from that small portion of particles, they will share similar behavior for a few
days. This could lead to the following two consequences in the short term: (1) the system
is less capable of adapting to further rapid changes and (2) the randomness plays a more
important role.

Figure 11. The mean values of the effective reproduction number obtained with two independent
experiments, each involving 100 000 particles and the same setting.

5. Discussion and Conclusions

The effective reproduction number Rt is certainly one of the most important param-
eters for the study of an epidemic, but it is also one of the most difficult parameters to
estimate. Indeed, because of the delay between the infection of an agent and the appearance
of symptoms, the effect of the current Rt will only be visible in a few days. Accordingly,
the current situation (number of agents in Ia, Is, or in T) is related to some effective reproduc-
tion numbers which took place over the preceding days. Additionally, since the infectious
period lasts for several days, it is not possible (as for example mentioned in [6]) to shift
Rt by some days to obtain a better picture. These drawbacks are well-known, and are
taken into account by medical institutions. Our approach does not solve these problems,
but it provides an alternative way of estimating Rt, and makes it clear that Rt is really
the reproduction number taking place on day t. As emphasized in [6], this synchronicity is
not shared by all methods estimating Rt.

In Figure 12, we compare our evaluation for Rt with two other resources. One of them
is provided by Toyo Keizai, a book and magazine publisher based in Tokyo [42]. Their
approach for the computation of Rt is completely different from ours, and is based on
a simplified version of a formula proposed by H. Nishiura [33]. The second resource is
a companion paper [44] in which similar investigations were performed with a different
approach: a continuous model (with differential equations) is used for the simulation,
and the data assimilation part is based on the ensemble Kalman filter. Clearly, in the first
several months of the epidemic, these different methods led to rather diverse values of
Rt. This phenomenon is expected to be due to inaccurate data, irregular release from T,
and small numbers of agents. On the other hand, since mid-July 2020, the two curves from
other studies and our mean Rt share very similar patterns. From the figure, one can notice
that our approach and the approach of [44] both provide a more stable Rt estimation than
the approach of [42]. Indeed, Ref. [42] uses the observations for the computation of Rt
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directly, while our approach and the approach of [44] model that pandemic and use data
assimilation to produce Rt estimations. As a result, the rapid variations in Rt estimations
do not appear anymore.

Figure 12. The effective reproduction number for Tokyo computed with different approaches:
the black curve and the green confidence intervals are from our approach, the blue curve is provided
by [44], and the red curve is borrowed from [42].

In Figures 13 and 14a, we present the effective reproduction numbers evaluated for
Japan, Osaka, and Aichi. As of September 2021, Japan has about four times more accumu-
lated infected agents than Tokyo, while Osaka has about half of Tokyo, and Aichi about one
quarter of Tokyo. Our evaluations are compared once again with the Rt provided by [42]
and based on a maximum likelihood estimation. It clearly appears on these figures that
the methods lead to similar trends and values for Rt, especially after July 2020, and inde-
pendently of the size of the epidemic. As for Tokyo, our curves do not present the rapid
oscillations, and look more stable.

(a) (b)

Figure 13. The effective reproduction number for Japan (a) and for Osaka (b): The black curve and
the green confidence intervals are from our approach, and the red curve is borrowed from [42].
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(a) (b)

Figure 14. (a) Effective reproduction number for Aichi (a): The black curve and the green confidence
intervals are from our approach, and the red curve is borrowed from [42]. (b) Observation value of
T (in red) and analyzed values with mean value (in black) and 68%, resp. 90%, confidence interval
for Aichi.

The previous comparisons with populations of different sizes allows us to emphasize
a specific aspect of our approach: the size of the population in S does not play any role.
In fact, we never introduced the sizes of Tokyo, Osaka, Aichi, or Japan in our settings.
The only ingredients which matter for the computation of the effective reproduction num-
ber Rt are the data corresponding to the three yellow compartments of Figure 2. As a result
of this independence of the size of the underlying population, births and deaths (not due
to COVID-19) do not play any role. Accordingly, the immunization status of agents in R
and the vaccination status of the population in S are not relevant for our investigations.
On the other hand, it is clear that an efficient vaccination campaign, or a change in the vari-
ant of the virus, will have an impact in the effective reproduction number, but our approach
based on real data automatically takes these parameters into account. In this sense, our
model really computes the effective or phenomenological reproduction number.

We believe that our agent-based model, together with the particle filter approach,
constitutes a rather simple method for studying the evolution of epidemics. Based on
a model for the propagation of the disease, it allows us to perform several tests about
uncertain parameters, as shown in Section 4. Note, however, that it implicitly takes some
assumptions into account, such as, for example, that only agents in Ia can infect new agents.
The complexity of the model could also be enlarged, for example, by increasing the number
of compartments and flows between them. Another simplification in our agent-based
model is the absence of graph structure. Indeed, we could have considered each agent
located on a node of a large graph (for example, homogeneous, random, or temporal) and
implemented the interactions between agents by the edges of the graph. Such additional
structures would have increased the complexity of the model, but the approach with a
particle filter could still be implemented. Interacting populations could also be considered:
In Figure 14b, we suspect that the sudden increase in infected agents and then agents
undergoing treatment, visible around August 2020 in Aichi prefecture, could have been
triggered by an influx of infected agents coming from other prefectures. Our model could
then be elaborated on a modular network, such as, for example, the one developed in [45].
We plan to work on these issues in the future.
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