
HAL Id: hal-03904554
https://hal.science/hal-03904554

Submitted on 16 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Construction of dead-beat switched automata:
application to cryptography

Hamid Boukerrou, Gilles Millérioux, Marine Minier, Mirko Fiacchini

To cite this version:
Hamid Boukerrou, Gilles Millérioux, Marine Minier, Mirko Fiacchini. Construction of dead-beat
switched automata: application to cryptography. ICSC 2022 - 10th International Conference on
Systems and Control (ICSC 2022), Nov 2022, Marseille, France. �10.1109/ICSC57768.2022.9993895�.
�hal-03904554�

https://hal.science/hal-03904554
https://hal.archives-ouvertes.fr

Construction of dead-beat switched automata: application to
cryptography*

Hamid Boukerrou1 and Gilles Millérioux1 and Marine Minier2 and Mirko Fiacchini3

Abstract— The work is concerned with dead-beat stability of
autonomous discrete-time switched linear systems, having in
mind a potential application to cryptography. As far as control
theory is concerned, we propose an algorithm to construct a
switched system whose shorter dead-beat stabilizing sequence
has a prescribed length. We discuss the pecularities when
the dynamical systems under consideration are defined over
finite fields. Then, it is shown how the algorithm can be used
to addressed the design of self-synchronizing stream ciphers
involving switched automata.

I. INTRODUCTION

Switching systems are dynamical systems for which the
state dynamics vary between different operating modes. The
switch is orchestrated according to a switching sequence
[1]. They are relevant models in many fields. As typical
examples, we can quote networked control systems [2], [3],
congestion control for computer networks [4], viral mitiga-
tion [5], abstractions of complex hybrid systems [6], and
many other ones (see e.g. [7], [8], [9] and references therein).
Stability as well as stabilization of switching systems has
been the purpose of many works ([10], [11], [12], [9],
[13], [14]). Among many issues related to stability of this
class of systems, characterizing dead-beat stabilizability for
discrete-time switched linear systems still remains an open
problem. However, to go further, the paper [15] established a
necessary and sufficient condition and proposed an algorithm
for constructing dead-beat stabilizable switched systems. In
the present paper, we bring the connection between such a
control-theoretic issue and the design of ciphers called self-
Synchronizing Stream Ciphers (SSSC for brevity) used in
the realm of cryptography.

It is interesting to note that for years, cryptography (see
[16] for an introduction) has been used to secure data and
systems. The aim is to directly protect data conveyed through
public channels. Since 2015, cryptography has entered the
scene of Cyber-Physical Systems (CPS) and control theory
in an unprecedented fashion. Indeed, several attempts to
incorporate cryptography into networked control systems
have appeared to enhance cybersecurity. It is the concept
of encrypted control as reported for example in [17]. More

*This work was partly supported by the french PIA project Lorraine
Université d’Excellence, reference ANR-15-IDEX-04-LUE.

1Hamid Boukerrou and Gilles Millérioux are with Uni-
versité de Lorraine, CNRS, CRAN, F-54000 Nancy, France
{hamid.boukerrou,gilles.millerioux}@univ-lorraine.fr

2Marine Minier is with Université de Lorraine, CNRS, Inria, LORIA,
F-54000 Nancy, France {marine.minier}@univ-lorraine.fr

3Mirko Fiacchini is with Univ. Grenoble Alpes,
CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France
mirko.fiacchini@gipsa-lab.grenoble-inp.fr>

generally, the recent literature reveals that automatic control
can be relevant to tackle security of Cyber Physical Systems
(CPS). As examples, the paper [18] (and references therein)
investigates the concept of Covert channel, originated in
1973 by Butler Lampson. The paper [19] is devoted to a
bibliographical review and addresses control-oriented per-
spectives for CPS security. Bringing together the issues of
security and automatic control is one of the objective of the
present paper.

More precisely, this work is concerned with symmetric
cryptography, in particular stream ciphers. They are based
on automata that are dynamical systems operating on finite
fields. Roughly speaking, they aim at delivering sequences
of symbols, named keystreams, of high complexity from
a statistical point of view. Then, those sequences are used
to scramble information. In this context, the motivations
of the present paper are the following. Having in mind a
trade-off between high statistical complexity of keystream
sequences and low architectural complexity for the sake of
implementation, it turns out that switched linear systems
are potential good candidates as keystream generators. As a
general principle of stream ciphers, the keystream generated
by the automata at the cipher and decipher sides must
be synchronized to ensure proper decryption. To achieve
the synchronization, the dynamical systems, at both sides,
should get specific properties. In this paper, it will be
shown that finite-time stabilizability will be central. The
pecularities due to finite fields will be highlighted.

The outline of the paper is the following. Section II
recalls the general principle of SSSCs. The role of dynamical
systems in this context is emphasized. Then, after motivating
the use of the special class of switched linear systems as
keystream generators of the ciphers, a connection between
the necessary property of finite input memory for the
generators and dead-beat stabilizability is brought out.
Section III is devoted to the methodology to construct
a statistical SSSC mainly based on the construction of
dead-beat stabilizing sequences. The pecularities due to the
fact that the automata operate on a finite field are discussed.
Finally, a complete code written in SageMath is provided
along with an illustrative example describing the design of
a statistical SSSC and its execution.

Notation: For a vector zt indexed by the time t ∈ N, zit
denotes its i-th component. Given n ∈ N, define Nn = {j ∈
N : 1 ≤ j ≤ n}. The set of q switching modes is I = Nq

and the related matrices forms a finite collection A ⊆ Rn×n,

whose i-th element is denoted with Ai, i.e. A = {Ai}i∈I ,
with Ai ∈ Rn×n for all i ∈ I. The mode at time t of a
switched system is denoted σ(t). All the possible sequences
σ of modes of length N is IN =

∏N
j=1 I, with IN = ∅

if N = 0. The length of a sequence σ is denoted by |σ|
and |σ| = N if σ ∈ IN . Given σ, δ sequences of modes,
(σ, δ) is their concatenation. Given σ ∈ IN , define Aσ =∏N

j=1 Aσ(j) = Aσ(N) · · ·Aσ(1) and
∏n1

j=n0
Aσ(j) = In if

n0 > n1 where In stands for the identity matrix.

II. KEYSTREAM GENERATORS FOR
SELF-SYNCHRONIZING STREAM CIPHERS

The principle of using a state automaton to design a
keystream generator has been first suggested in [20]. Here-
after, the automaton operates on a finite field F. Thus,
necessary basics on finite field should be recalled. It is the
purpose of the following subsection.

A. Basics on finite fields

A field is a 3-uplet (F,+,·) where F is a set, + an operation
usually called addition and · an operation usually called
multiplication. The following properties apply

1) For all a and b in F both a+ b and a · b are F,
2) For all a, b and c in F, associativity holds: a+(b+c) =

(a+ b) + c and a · (b · c) = (a · b) · c,
3) For all a and b in F, commutativity holds: a+b = b+a

and a · b = b · a,
4) There exists an element of F, called the additive

identity element and denoted by 0 such that for all
a in F, a + 0 = 0 + a = a. Likewise, there is an
element called the multiplicative identity element and
denoted by 1, such that for all a in F, a · 1 = a. The
identity elements 0 and 1 have to be different,

5) For every a in F, there exists an element −a in F
such that a + (−a) = 0. Similarly, for any a in F
other than 0, there exists an element a−1 in F such
that a · a−1 = 1,

6) For all a, b and c in F distributivity of
the multiplication over the addition holds:
a · (b+ c) = (a · b) + (a · c).

The number of elements of a finite field is called its
order. A finite field of order Z exists if and only if Z is
a prime power Qm (where Q is a prime number and m is a
positive integer). Thus, the field FQm = GF (Z) (where GF
stands for Galois Field) may be explicitly constructed in the
following way. One first chooses an irreducible polynomial
P in the ring of polynomials defined by the variable X ,
GF (Q)[X] of degree m (such an irreducible polynomial
always exists). Then, the elements of GF (Z) are the poly-
nomials over GF (Q) whose degree is strictly less than m.
The addition and the subtraction are those of polynomials
over GF (Q). The product of two elements is the remainder
of the Euclidean division by P of the product in GF (Q)[X].
The multiplicative inverse of a non-zero element may be
computed with the extended Euclidean algorithm.

B. General principle of SSSC

At the ciphering side, the automaton delivering the
keystream takes the form:

xt+1 = gK(xt, ct) (1)

where t ∈ N is the discrete-time, xt ∈ Fn is the internal
state, gK is the next-state transition function parameterized
by the secret key K ∈ FL, being L the length of the secret
key. The symbol ct ∈ Fm is the cryptogram. It is calculated
by

ct = e(zt,mt−r), (2)

where mt ∈ Fm is the plaintext symbol and zt ∈ Fm is called
the keystream (or running key) symbol that is computed by

h : xt ∈ Fn 7→ zt = h(xt) (3)

The function e is the encrypting function and is invertible
for any zt. The integer r ≥ 0 stands for a possible delay
between the plaintext mt and the corresponding keystream
zt and ciphertext ct symbols. It is sometimes introduced for
computational or implementation reasons.

By iterating (1) a finite number of times, if there exists a
function ℓK and two finite integers ℓ and ℓ′ (with ℓ, ℓ′ ∈ Z
and |ℓ′| ≥ |ℓ|, | · | stands for the absolute value) such that

xt = ℓK(ct−ℓ, . . . , ct−ℓ′). (4)

then,
zt = h(ℓK(ct−ℓ, . . . , ct−ℓ′)). (5)

Otherwise stated, if after a finite number of iterations, the
current state of the automaton (1) will only depend on
shifted cryptograms, such an automaton is called a finite
input memory automaton according to [20]. The word input
is used since the cryptogram ct is considered as the input of
the automaton (1).
Actually, the fact that the keystream symbol can be written
in the general form

zt = αK(ct−ℓ, . . . , ct−ℓ′), (6)

with αK a function involving a finite number of shifted
ciphertexts from time t− ℓ to t− ℓ′ (ℓ, ℓ′ ∈ Z), is the central
feature of the SSSC. Equation (6) is called the canonical
equation. The integer M = |ℓ′| − |ℓ|+ 1 is called the delay
of memorization.
At the deciphering side, the automaton takes the form

x̂t+1 = gK(x̂t, ct), (7)

where x̂t ∈ Fn is the internal state and ẑt ∈ Fm verifies

ẑt = h(x̂t) (8)

which stands as the keystream symbol similarly to zt at the
ciphering side.

The decryption function d obeys the following rule. For
any two keystream symbols ẑt, zt ∈ Fm, it holds that

m̂t := d(ct, ẑt) = mt−r whenever ẑt = zt. (9)

The automaton has the same dynamics than the cipher, thus
it is a finite input memory one. It means that iterating
Equation (7) a finite number of times also yields

x̂t = ℓK(ct−ℓ, . . . , ct−ℓ′),

and thus,
ẑt = αK(ct−ℓ, . . . , ct−ℓ′).

Hence, it is clear that after a transient time of maximal length
equal to M , it holds that, for t ≥M ,

x̂t = xt and ẑt = zt. (10)

In other words, the keystream generators synchronize
automatically after at most M iterations. Hence, the
decryption is automatically and properly achieved after at
most M iterations too. No specific synchronizing protocol
between the cipher and the decipher is needed. This explains
the terminology Self-Synchronizing Stream Ciphers and it
is one of its practical interest.

Two classes of SSSC can be defined according to the delay
of synchronization:

• Deterministic: the delay of synchronization is bounded
by the constant M a priori fixed.

• Statistical: the bound of the delay of synchronization
is not constant but is a random variable with respect to
the sequence of ciphertexts or the initial state vector.

The general architecture of a SSSC is depicted in Figure 1.
Statistical SSSC have been introduced for the first time

e
(2)

Keystream generator
(1) xt

zt (3)

mt−r ct m̂t

Keystream generator
(7) x̂t

ẑt (8)

(9)

Cipher Decipher

d

Fig. 1. Self-Synchronizing Stream Cipher block diagram.

in [21]. Essentially, this concept calls for several modes
orchestrated by a switching rule. It is motivated by the fact
that each mode benefits from a specific outcome in terms
of security but on the other hand they may suffer from
weakness in terms of computational complexity for example.
The hybrid architectures allows to getting a trade-off. The
present paper focuses on this class of SSSC.

For SSSC, it has been stressed that the state vector xt of
the automaton (1) must be expressed as a function of a finite
number of its shifted outputs as described by Equation (4).
In next section, the connection between the design of SSSC,
that are dynamical systems having this specific property, and
the construction of dead-beat stabilizable switched systems
is brought out.

C. The connection between the properties of finite input
memory automata and dead-beat stabilizability

Switched linear systems correspond to the Maiorana Mc-
Farland construction which has proved to produce functions
that have many interesting cryptographic properties like high
non linearities, high correlation immunity and good propa-
gation characteristics (see [22] when considering Boolean
functions defined over the two-element field). Hence, as a
special case of the state transition function gK of (1), it is
interesting to consider the nonlinear automaton in the form

xt+1 = Pσ(t)xt +Rσ(t)ct (11)

where xt ∈ Fn is the state at time t ∈ N and σ is a
switching rule which depends in a nonlinear way on a
finite sequence of past ciphertexts ct, . . . , ct−s with s ∈ N.
Hence, at each time t, the switching function selects
the mode by performing σ(t) = φ(ct, ct−1, · · · , ct−s) in
I. The n-dimensional square matrix Pσ(t) belongs to a
finite set of q matrices with entries in F and Rσ(t) is a
(n×m)-dimensional vector with entries in F.

As a clue to tackle the design of statistical SSSC, it is
worthwhile realizing that the property of finite input memory
with a statistical delay of memorization expressed by Equa-
tion (4) is obtained for (11) whenever there exists at least a
switching sequence of length N so that

∏N
i=1 Pσ(t+i−1) = 0.

It turns out that it is related to the property of dead-beat
stabilizability. Indeed, let us consider the so-called auxiliary
system of (11) defined by

xt+1 = Aσ(t)xt (12)

where xt ∈ Fn is the state at time t ∈ N and Aσ(t) is the
n-dimensional square matrix that verifies Aσ(t) = Pσ(t) for
all t ∈ N. The following definition is recalled from [15].

Definition 1: The system (12) is dead-beat stabilizable if
and only if

∃N ∈ N, ∃γ ∈ IN s.t. Aγ = 0. (13)

All in all, the automaton defined by Equation (11) has a
finite input memory whenever the auxiliary system (12) is
dead-beat stabilizable. Since the switching rule σ depends
on past ciphertexts and that the ciphertexts are assumed to
be random and uniformly distributed (a common feature of
the cipher), the time before a stabilizing switching sequence
appears is also random. As a result, the upper bound M of
the memorization delay is a random variable. The resulting
SSSC belongs to the class of statistical, what is precisely
our objective.

III. METHODOLOGY TO BUILD A SSSC

This section aims at giving a methodology along with a
code for SSSC design perspectives. To this end, first, we
recall a Necessary and Sufficient Condition for dead-beat
stabilizability and the algorithm that allows to construct a

dead-beat stabilizable system. Then, we highlight the pecu-
larities due to the consideration of finite fields. The notion
of orthogonality deserves a special treatment. Finally, we
propose a code written in SageMath along with an illustrative
example.

A. Dead-beat stabilizability and algorithm

Let us consider the systems described by Equation (12).
For this system, let us introduce the following notation

Is = {i ∈ I : detAi = 0},
Ins = {i ∈ I : detAi ̸= 0}, (14)

the sets of modes of singular and nonsingular matrices Ai

in A and by qs and qns the number of elements of Is and
Ins, respectively. Clearly, one has qs + qns = q where it is
recalled that q is the number of modes of the system (12).

The aim of this section is to illustrate how to build the set
A of matrices such that condition (13) is satisfied for a given,
desired N ∈ N but it is not for any N ′ < N . This means
that the set A of matrices would allow to generate sequences
γ with length greater than or equal to N such that Aγ = 0,
but not shorter ones, and then there exists only one sequence
such that Aγ = 0 among the qN of length N at most. This
property is useful to design a SSSC whose upper bound M
of the memorization delay is a design parameter determined
by q and N .

The main underlying idea of the proposed method relies on
results from [23], [15], in which it is proved that γ such that
Aγ = 0 exists, and hence (12) is dead-beat stabilizable, if and
only if there is a set of m̃ switching sequences σp of finite
length rp, with p ∈ Nm̃ and 1 ≤ m̃ ≤ n, whose last element
is related to a singular matrix, and such that the intersection
of the kernel of Aσp and the image of the product

∏p−1
k=1 Aσk

of matrices has a dimension strictly greater than zero. In
particular if m̃ = n and denoting with Xp−1 ∈ Rn×n−p+1 a
basis matrix of

∏p−1
k=1 Aσk , then the necessary and sufficient

condition recalled above is equivalent to

dimker (AσpXp−1) = 1 (15)

for all p ∈ Nn, which implies that

n∏
k=1

Aσk = 0 (16)

and then (13) holds with γ = (σ1, . . . , σn) and |γ| = N . It
can be also proved that |σ1| = 1, see [23], [15].

The proposed approach consists in generating a set A of
matrices for which sequences σp exist such that (15) holds,
and then also (16). Moreover, by choosing the length rp ∈ N
of the subsequences, i.e. such that |σp| = rp, for p ≥ 2,
the desired length N of the sequence γ can be fixed since
|γ| = 1+

∑n
p=2 r

p (let us recall that |σ1| = 1). The algorithm
presented in [15] is recalled and commented hereafter, more
detailed explanations can be found in the cited paper.

Algorithm 1 Build a dead-beat stabilizable system.
Input: qs and qns cardinalities of I and Is, subsequences

lengths rp.
1: Is ← ∅ ▷ Initialization
2: Ins ← ∅
3: A ← ∅
4: for s ∈ Nqs do ▷ Generate Is
5: generate As singular ▷ Item (i)
6: insert s in Is
7: insert As in A
8: end for
9: for j ∈ Nqns−n+1 do ▷ Generate a part of Ins

10: generate Aqs+j nonsingular ▷ Item (ii)
11: insert qs + j in Ins
12: insert Aqs+j in A
13: end for
14: random selection of s1 ∈ Is ▷ First step
15: σ1 ← s1
16: for p ∈ {i ∈ N : 2 ≤ i ≤ n} do ▷ p-th step
17: random selection of αp and βp ▷ Item (a)
18: random selection of sp ∈ Is ▷ Item (b)
19: compute Bp ▷ Item (c)
20: Aip ← Bp ▷ Item (d)
21: insert ip in Ins
22: insert Aip in A
23: σp ← (βp, ip, αp, sp)
24: end for
Output: A ▷ Matrix set of the stabilizable system

The initialization (lines 4-13) consists in randomly com-
puting the qs singular matrices and qns − n+ 1 nonsingular
ones. In particular the nonsingular matrices are given by
Ans = Ts and the singular ones by As = T−1

s ΛsTs with:
(i) Λs a diagonal matrix whose diagonal has 0 as first entry

and the other ones are randomly generated but non-null.
(ii) Ts a randomly generated invertible matrix.

The first iteration of Algorithm 1 (line 15) consists in
choosing the only matrix composing σ1 among the singular
ones. Then, the algorithm builds a sequence of subsequences
σp (lines 16-24) such that (15) holds. To this end:
(a) compute the random sequences αp and βp of modes

related to nonsingular matrices and such that |αp| +
|βp| = rp − 2 (line 17). Note that Aαp

and Aβp
are

nonsingular;
(b) select sp ∈ Is, then Asp singular (line 18);
(c) define (line 19)

Bp = A−1
αp

T−1
sp RpC

−1
p

Cp =
[
AβpXp−1 (AβpXp−1)

⊥] (17)

with

Rp =


1 0 · · · 0

0
...
0

R̄p


where R̄p ∈ Rn−1×n−1

p is an arbitrary nonsingular ma-
trix and where V ⊥ is a basis of the subspace orthogonal

to the one spanned by the columns of V , implying the
nonsingularity of Cp;

(d) define the new mode ip such that Aip = Bp, de-
fine σp = (βp, ip, αp, sp) and include Aip in the
matrix set A (lines 20-23). It is proved in [23] that
dimker(AspAαp

BpAβp
Xp−1) = 1 and then (15) is

satisfied with σp = (βp, ip, αp, sp).

B. The pecularities of finite fields
Generally speaking, if we have a vector space E over a

field F and a bilinear form B : E × E → F, it is said
that v, w in E are orthogonal if B(v, w) = 0. For the
special case E = Fn, letting v = (a1, ..., an) and w =
(b1, ..., bn), the bilinear form is defined by a1b1+ ...+anbn.
Orthogonality is central when examining the construction of
matrix Cp (see Equation (17)). Indeed, given both matrices
Aβp

and Xp−1, we must build a basis of the subspace
orthogonal to Aβp

Xp−1. And yet, regarding orthogonality,
some pecularities due to the fact that we do not consider the
field of real numbers, should be highlighted. For example, it
is possible for an element of the vector space E over a field
F to be “orthogonal to itself”. It means that the bilinear form
may vanish i.e. B(v, v) = 0 for v ̸= 0. As an example, let us
consider the field F2 as specified in Section II. The field F2

is the basic field with 2 elements {0, 1} with the two laws:
the addition which is the exclusive or XOR (i.e. the addition
modulo 2) and the multiplication which is the logical and ∧.
It turns out that the vector (1, 0, 1)T is orthogonal to itself.
Another pecularity should be highlighted and encompass the
previous one. Let E

′⊥ be the subspace defined by

E
′⊥ = {v ∈ E|B(v, w) = 0 for all w ∈ E′}

If E′ ⊂ E is a k-dimensional subspace, then E
′⊥ is of

dimension n−k. However, unlike in the field of real numbers,
(E,E

′⊥) is not necessary a basis because it may happen
that E ∩ E

′⊥ ̸= ∅. In other words, elements of E
′⊥ may

be linearly dependent from the basis of E while they are
orthogonal to the elements of E. The fact that a vector
can be orthogonal to itself enters such a situation. In our
context, the consequence is that Algorithm 1 may fail when
computing Bp at line 19. Indeed, Cp may not be invertible.
As as example, let us consider again the field F2 and the
matrices

Aβp
=

 1 0 0
0 1 0
0 1 1

 , Xp−1 =
(
1 0 1

)T
Then, we have that

AβpXp−1 =
(
1 0 1

)T
The vectors which are orthogonal to (1, 0, 1)T are all the
vectors (b1, b2, b3)T that fulfill 1b1+0b2+1b3 = 0. It yields
the conditions b1 = b3 and b2 arbitrary. Hence, the set of
vectors orthogonal to (1, 0, 1)T is the space generated by
(1, 0, 1)T and (0, 1, 0)T . Consequently,

Cp =

 1 1 0
0 0 1
1 1 0



which is not invertible.

As another example, let us consider the matrices defined
on the field F4

Aβp
=

 1 1 α+ 1 1
1 α α 1

α+ 1 0 α α+ 1
0 1 1 α+ 1

,

Xp−1 =

 1
α
0
α


Then, we have that

Aβp
Xp−1 =

 1
0
α

α+ 1


The set of vectors orthogonal to AβpXp−1 is the space
generated by:

(AβpXp−1)
⊥ =

 1 0 0
0 1 0
0 0 1
α 0 α+ 1


and

Cp =

 1 1 0 0
0 0 1 0
α 0 0 1

α+ 1 α 0 α+ 1


which is not invertible. Indeed, v1 = α · v4 + v2 where vi
are the column vectors of Cp (= 1, . . . , 4).

It turns out that we can derive a necessary condition
for Algorithm 1 to perform successfully at line 19. This
condition is expressed as an inequality between the size of
the field over which the SSSC operates and the dimension n
of the system. It is based on a result borrowed from coding
theory [24].
In coding theory, the purpose of an error-correcting code
is to increase the ability to detect and correct transmission
errors while not adding more overhead than necessary. A
linear code takes a sequence of k symbols (the dimension of
the code) and encodes it as a sequence of N symbols (the
length of the code). These symbols come from an alphabet
of size ℓ. Data are processed through a generator matrix
G. Matrix G is a matrix whose rows form a basis for the
linear code. It is a k × N matrix. Usually, error correcting
codes are defined over finite fields such as FQm as defined
in Section II. The ability of a code to detect and correct
errors is measured by its minimal distance d between code
words. For the linear codes, the optimal minimal distance
is reached by the codes called MDS (Maximum Distance
Separable, see [24] for more details). For MDS codes, each
extraction of the G matrix of square matrices is of full rank.
This property is central for our purpose. Indeed, MDS codes
could only be constructed on fields with a sufficient number
of elements to ensure the full rank property [24]. This last
remark guarantees an existence bound stated as a corollary
given below.

Corollary 1: The finite field FQm over which the SSSC
operates, considering that the matrix Cp is of size k×(N−k)
with N = 2k, must fulfill N − k ≤ Qm + 1.

Indeed, the standard form for a generator matrix G is
(Ik||H) where H is a k× (N − k) matrix (|| stands for the
concatenation and it is recalled that Ik denotes the identity
matrix of size k). Back to our context, consider that the
matrix (Ik||Cp) is a virtual generator matrix G. Since the
size of G is k×N and the size of Cp is n×n (being n the
dimension of the system), that amounts to setting N = 2k
and k = n. Hence, the inequality of Corollary 1 turns into

n ≤ Qm + 1 (18)

It means that the size of the finite field FQm must be chosen
according to the dimension n of the system.

The SageMath code of Algorithm 1 is given in Appendix.
The inputs are the dimension n of the system, the number of
singular and nonsingular matrices qs and qns at line 40, αp,
βp at lines 76-77. The outputs are the sequence γ at line 132
and the corresponding matrices at line 61.

C. Proof Of Concept Example

We illustrate how to build an SSSC cipher and we show
how it operates. All along this section, we will use the
particular field F4 seen as the extension of degree 2 of the
finite field F2. From this basic field, we construct F4 as a
degree two extension, thus F4 is defined on F2 with the
following polynomial of degree 2 with its coefficients over
F2: X2+X+1. Thus, we have F4 = F2[X]/(X2+X+1).
An other way to describe F4 is to consider the root α of
the polynomial X2 +X + 1. Then, the elements of F4 are
written with respect to α. More precisely, in this case, the
elements of F4 are: (0,1, α, α+1). All those elements have
a degree stricly smaller than 2 as the definition polynomial
is of degree 2.

First, we must build a switching linear automaton
like (11) that acts as the cipher part of an SSSC. The
dimension of the automaton is n = 4. With such a setting,
the inequality (18) is verified since n = 4, Q = 2 and
m = 2 and so n = 4 is less than 22+1 = 5. Thus, invertible
matrices Cp exists and Algorithm 1 should not fail at line 19.

Next, we build a dead-beat stabilizable auxiliary sys-
tem (12) and so, a dead-beat stabilizable sequences of matri-
ces Ai (i = 1, . . . , q). Then, we set Pi = Ai (i = 1, . . . , q)
for (11). For simplicity, The matrices Rσ(t) in (11) are all
equal and set to the identity matrix.
The switching rule σ is defined by a mere one-to-one cor-
respondance between the cryptogram ct ∈ F4 (four possible
elements) and the mode σ(t) ∈ {1, 2, 3, 4} (q = 4).
Let us consider an instanciation of the automaton (11) that
reads  xt+1 = Pσ(t)xt +

(
1 0
0 1

)
ct

zt = x1
t + x2

t

(19)

The encryption function (2) is defined as

ct = zt +mt (20)

The equations of the decipher (7) are exactly the same than
(19) except the fact that the state vector xt is replaced by
the vector x̂t. The equations of the deciphering function (9)
are also the same than (20). Indeed, the addition and the
substraction on the field F4 coincide one another.

Let αp = 1, βp = 1, rp = 4 for all p > 1 and r1 = 1
by construction. The number of singular and nonsingular
matrices are respectively qs = 2 and qns = 2. The corre-
sponding matrices are respectively (A0, A1) and (A2, A3).
As expected since inequality (18) is verified, Algorithm 1
performs successfully and gives

A0 =

(
α α
1 1

)
, A1 =

(
0 α+ 1
0 α+ 1

)
,

A2 =

(
α+ 1 α
α 1

)
, A3 =

(
α+ 1 α
0 1

)
The sequence of modes γ is γ = (σ1, σ2) =

((1), (2, 3, 2, 1)).
A realization of a synchronization time plot is depicted on
Figure 2, Figure 3 and Figure 4.

Fig. 2. Time evolution of x1
t − x̂1

t (left) and x2
t − x̂2

t (right)

Fig. 3. Time evolution of m1
t (left) and m̂1

t (right)

Fig. 4. Time evolution of m2
t (left) and m̂2

t (right)

From arbitrary initial conditions x0 and x̂0, a random
sequence of plaintext symbols mt ∈ F2

4 is generated. At t =
15, the dead-beat stabilizing sequence γ appears, causing the
self-synchronization to succeed and so a proper decryption,
after M = 20.
For random messages and random initial conditions, 1000
runs have been performed. The ratio between the number
of successful resynchronizations after a time t and the total
number of runs has been reported in Figure 5. As expected,
the plot tends towards 1 as the time t before synchronization
tends towards infinity. The stairs are explained by the fact
that the ratio between the number of successful resynchro-
nizations after a time t and the total number of runs has been
not calculated for every t and is kept constant between two
time windows.

Fig. 5. Experimental probability of successful resynchronizations after a
time t.

IV. CONCLUSION

It has been shown how the concept of dead-beat sta-
bilizability can yield an approach for the design of self-
synchronizing stream ciphers. This Proof-Of-Concept clearly
deserves further investigation to give a complete cipher. As
most of the remaining issues enter the area of pure cryp-
tography, they are not addressed here but the main lines are
mentioned in this conclusion. For a real-world application,
automata with higher dimension and larger sequences should
be used. The design approach remains unchanged and still
work. However, the more the length of the dead-beat stabi-
lizing sequences, the longer the time before synchronization.
Hence, the setting of the parameters should obey a trade-off.
Besides, as usual in cryptography, security analysis must be
performed. The way how to incorporate the secret key is also
an important issue.

APPENDIX

1 T_inverse = []
2 #Generate the singular matrice
3 def random_singular_matrix(field, size):
4

5 test = True
6 while(test == True):
7 A = random_matrix(field, size)
8 v_p = []

9 vp = A.eigenspaces_left(format=’galois’
)

10 for i in range(len(vp)):
11 v_p.append(vp[i][0])
12 if A.rank() == size:
13 test = 0 in v_p
14

15

16 B = matrix(field, 1, 1, [0])
17 A = block_matrix([[B, 0], [0, A]],

subdivide = False)
18

19

20 T = random_matrix(field , size + 1 , size +
1)

21

22 while T.rank() != size + 1:
23 T = random_matrix(field , size + 1 ,

size + 1)
24

25 A = Tˆ(-1) * A * T
26

27 T_inverse.append(Tˆ(-1))
28 return A
29

30 #Generate the nonsingular matrice
31 def random_nonsingular_matrix(field, size):
32 test = True
33 while(test == True):
34 A = random_matrix(field, size)
35 test = A.is_singular()
36

37 return A
38

39

40 def stabilizable_system(field, size, q_s, q_ns):
41

42 I_s = []
43 I_ns = []
44 A_s = []
45 A_ns = []
46

47 sigma_p = []
48

49 #Generate I_s
50 for s in range(q_s):
51 A = random_singular_matrix(field, size -

1)
52 A_s.append(A)
53 I_s.append(s)
54

55 #Generate a part of I_ns
56 for j in range(q_ns - size + 1):
57 A = random_nonsingular_matrix(field,

size)
58 A_ns.append(A)
59 I_ns.append(j + q_s)
60

61 A = A_s + A_ns
62

63 #The first subsequence, of one element,
corresponds to a singular matrix

64 s0 = choice(I_s)
65

66 sigma_p = []
67 sigma_p.append([s0])
68

69 stable = [A[s0]]
70

71 x_im = [A[s0]]
72

73 for k in range(1, size):
74

75 #Compute the random sequences a_p and
b_p

76 ap = [choice(list(I_ns)) for i in range
(1)]

77 bp = [choice(list(I_ns)) for i in range
(1)]

78

79 #select s_p in I_s
80 sp = choice(I_s)
81

82 #Compute A_ap
83 A_ap = ones_matrix(field, size)
84 A_ap = A[ap[-1]]
85

86 for i in reversed(ap[:-1]):
87 A_ap = A_ap * A[i]
88

89 #Compute A_bp
90 A_bp = ones_matrix(field, size)
91 A_bp = A[bp[-1]]
92

93 for i in reversed(bp[:-1]):
94 A_bp = A_bp * A[i]
95

96 #Compute R_p
97 R = random_nonsingular_matrix(field,

size - 1)
98 B = matrix(field, 1, 1, [1])
99 R_p = block_matrix([[B, 0], [0, R]],

subdivide = False)
100

101 #Basis matrix
102 if (k == 1):
103 A_p = A[s0]
104 s = A_p.column_space()
105 X = s.basis_matrix()
106

107 if (k >= 2):
108 A_p = A[sigma_p[-1][-1]]
109 for i in reversed((sigma_p[-1][:-1])

):
110 A_p = A_p * A[i]
111

112 x_im.append(A_p)
113 for i in reversed(x_im[:-1]):
114 A_p = A_p * i
115

116 v = A_p.image()
117 s = A_p.column_space()
118 X = s.basis_matrix()
119

120

121 #Compute C_p
122 Cp = matrix(field, 0, size)
123 Cp = block_matrix([[A_bp * X.transpose()

, ((A_bp * X.transpose()).kernel()).matrix()
.transpose()]], subdivide = False)

124

125 #Compute B_p
126 B_p = A_apˆ(-1) * T_inverse[sp] * R_p *

Cpˆ(-1)
127 A.append(B_p)
128

129 I_ns.append(1 + I_ns[-1])
130

131 #Compute sigma_p
132 sigma_p.append(bp + [I_ns[-1]] + ap + [

sp])

REFERENCES

[1] D. Liberzon. Switching in Systems and Control. Systems and Control:
Foundations and Applica- tions. Birkhäuser, Boston, MA, 2003.

[2] Rajeev Alur, Alessandro D’Innocenzo, Karl Henrik Johansson,
George J Pappas, and Gera Weiss. Compositional modeling and anal-
ysis of multi-hop control networks. IEEE Transactions on Automatic
control, 56(10):2345–2357, 2011.

[3] Raphael M Jungers, Alessandro D’Innocenzo, and Maria Domenica
Di Benedetto. Feedback stabilization of dynamical systems with
switched delays. In Proc. of the 51st IEEE Conference on Decision
and Control, pages 1325–1330, 2012.

[4] Robert Shorten, Fabian Wirth, and Douglas Leith. A positive systems
model of TCP-like congestion control: asymptotic results. IEEE/ACM
Transactions on Networking, 14(3):616–629, 2006.

[5] Esteban A Hernandez-Vargas, Richard H Middleton, and Patrizio
Colaneri. Optimal and MPC switching strategies for mitigating viral
mutation and escape. In Proc. of the 18th IFAC World Congress Milano
(Italy) August, 2011.

[6] Daniel Liberzon and A Stephen Morse. Basic problems in stability
and design of switched systems. IEEE Control Systems Magazine,
19(5):59–70, 1999.

[7] Raphaël Jungers. The joint spectral radius. Lecture Notes in Control
and Information Sciences, 385, 2009.

[8] H. Lin and P. J. Antsaklis. Stability and stabilizability of switched
linear systems: a survey of recent results. IEEE Transaction on
Automatic Control, 54(2):308–322, 2009.

[9] Robert Shorten, Fabian Wirth, Oliver Mason, Kai Wulff, and Christo-
pher King. Stability criteria for switched and hybrid systems. SIAM
review, 49(4):545–592, 2007.

[10] Ji-Woong Lee and Geir E Dullerud. Uniform stabilization of discrete-
time switched and markovian jump linear systems. Automatica, 42(2),
205-218, 2006.

[11] Ray Essick, Ji-Woong Lee, and Geir E Dullerud. Control of linear
switched systems with receding horizon modal information. IEEE
Transactions on Automatic Control, 59(9):2340–2352, 2014.

[12] Hai Lin and Panos J Antsaklis. Stability and stabilizability of switched
linear systems: a survey of recent results. IEEE Transactions on
Automatic control, 54(2):308–322, 2009.

[13] Atreyee Kundu and Debasish Chatterjee. Stabilizing switching signals
for switched systems. IEEE Transactions on Automatic Control,,
60(3):882–888, 2015.

[14] Jamal Daafouz and Jacques Bernussou. Parameter dependent lyapunov
functions for discrete time systems with time varying parametric
uncertainties. Systems & Control Letters, 43(5):355–359, 2001.

[15] M. Fiacchini and G. Millérioux. Dead-beat stabilizability of discrete-
time switched linear systems: algorithms and applications. IEEE Trans.
on Automatic Control, 64:3839 – 3845, 2019.

[16] A. J. Menezes, P. C. Oorschot, and S. A. Vanstone. Handbook of
Applied Cryptography. CRC Press, October 1996.

[17] Moritz Fauser and Ping Zhang. Resilient homomorphic encryption
scheme for cyber-physical systems. In 2021 60th IEEE Conference
on Decision and Control (CDC), pages 5634–5639, 2021.

[18] A. Abdelwahab, W. Lucia, and A. Youssef. Covert channels in cyber-
physical systems. IEEE Control Systems Letters, 5(4):1273–1278,
2021.

[19] Helem S. Sánchez, Damiano Rotondo, Teresa Escobet, Vicenç Puig,
and Joseba Quevedo. Bibliographical review on cyber attacks from a
control oriented perspective. Annual Reviews in Control, 48:103–128,
2019.

[20] U. M. Maurer. New approaches to the design of self-synchronizing
stream cipher. Advance in Cryptography, In Proc. Eurocrypt ’91,
Lecture Notes in Computer Science, pages 458–471, 1991.

[21] Oliver Jung and Christoph Ruland. Encryption with statistical self-
synchronization in synchronous broadband networks. In Çetin K. Koç
and Christof Paar, editors, Cryptographic Hardware and Embedded
Systems, pages 340–352, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

[22] C. Carlet. Boolean Models and Methods in Mathematics, Computer
Science, and Engineering, chapter Vectorial Boolean Functions for
Cryptography. Cambridge Press, 2010.

[23] M. Fiacchini and G. Millérioux. Dead-beat stabilizability of au-
tonomous switched linear discrete-time systems. IFAC-PapersOnLine,
50(1):4576–4581, 2017.

[24] Florence Jessie MacWilliams and Neil James Alexander Sloane. The
theory of error correcting codes, volume 16. Elsevier, 1977.

