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We address the question of the measurement of social welfare and inequalities in the context of partially-ordered health variables. We propose a general framework based on the assumption that the distribution of well-being states forms an m-dimensional Boolean lattice. To this end, the distribution of well-being states is constructed based on the prevalence of a finite number of illnesses where each state represents the number of illnesses an individual may suffer from. The implementation of the framework involves breaking down the Boolean lattice into a set of linear extensions where all health states become fully ordered. The linear extensions account for all possible ordering of the health states based on the depth of health problems (i.e., the severity of health conditions). Having constructed these linear extensions, we then proceed on ranking distributions in terms of welfare by applying appropriate dominance criteria and employ aggregate metrics to provide a numerical representation of the social welfare and inequality associated with each distribution. An illustrative application of the methodology is provided.

Introduction

Welfare and inequality analysis relying on ordinal attributes has received a rising interest in the literature (e.g., [START_REF] Cuhadaroglu | Evaluating ordinal inequalities between groups[END_REF][START_REF] Gravel | Ranking distributions of an ordinal variable[END_REF][START_REF] Makdissi | Robust rankings of socioeconomic health inequality using a categorical variable[END_REF][START_REF] Cowell | Inequality with ordinal data[END_REF][START_REF] Muller | A dominance approach to the appraisal of the distribution of wellbeing across countries[END_REF][START_REF] Erreygers | Measuring socioeconomic inequality in health, health care and health financing by means of rank-dependent indices: a recipe for good practice[END_REF][START_REF] Abul Naga | Inequality measurement for ordered response health data[END_REF][START_REF] Allison | Measuring health inequality using qualitative data[END_REF]. Previous literature has hitherto focused on ordinal (categorical) variables (e.g., self-reported health status, life satisfaction and happiness), where well-being states can be fully orderedi.e., all states are comparable. In this context, appropriate dominance criteria and inequality metrics have been advanced and applied to rank different distributions and measure the degree of inequality (e.g., [START_REF] Makdissi | Measuring socioeconomic health inequalities in presence of multiple categorical information[END_REF][START_REF] Abul Naga | Inequality measurement for ordered response health data[END_REF].

In population surveys, it is quite common to find information on individuals' wellbeing available in the form of a series of questions querying whether (or not) an individual has a given attribute (e.g., an illness). The resulting list of attributes allows to generate two distinct types of well-being variables: a nominal variable (e.g., types of illnesses) and a fixed-scale variable (e.g., the number of illnesses). In the context of a nominal variable such as the types of illnesses, [START_REF] Erreygers | Measuring socioeconomic inequality in health, health care and health financing by means of rank-dependent indices: a recipe for good practice[END_REF] and [START_REF] Makdissi | Measuring socioeconomic health inequalities in presence of multiple categorical information[END_REF] pointed out that one can only assign subjects to different groups without ranking them. Under such conditions, standard welfare and inequality metrics cannot be applied. However, in the case of a fixed-scale variable, standard measures are shown to be readily applied given the absolute (real) zero indicating the complete absence of illness [START_REF] Erreygers | Measuring socioeconomic inequality in health, health care and health financing by means of rank-dependent indices: a recipe for good practice[END_REF]. In the context of a multiple categorical variable, [START_REF] Makdissi | Measuring socioeconomic health inequalities in presence of multiple categorical information[END_REF] suggested to transform the available information on the width of health problems (e.g., vision, hearing, speech, …) into a ratio-scale variableconstructed by counting the number of attributes in which an individual is considered to have a health problem.

However, the use of the Alkire and Foster's (2011) counting approach to derive a measure of inequality based on the breadth of health problems involves two caveats. The first is emphasized by [START_REF] Makdissi | Measuring socioeconomic health inequalities in presence of multiple categorical information[END_REF] and relates to the loss of information on the depth of health problems (i.e., the severity of health conditions). The second stems from the fact that many survey data do not provide further information on the depth of health problems. Thus, by merely counting the number of attributes, or assuming one particular ordering of the health states, one may run the risk of comparing the incomparable.

This paper seeks to address the measurement problems that arise when well-being states are a priori incomparable. We propose a general framework based on the assumption that the distribution of well-being states forms an 𝑚 -dimensional Boolean lattice. To this end, the distribution of well-being states is constructed based on the prevalence of a finite number of attributes where each state represents, for instance, the number of health problems an individual suffers from. The implementation of this framework involves breaking down the Boolean lattice into a set of linear extensions where all well-being states become fully ordered.

To illustrate, consider, for instance, an ordinal health variable ℎ = (ℎ 1 , … , ℎ 𝐾 ), where 𝐾 is the number of health states. Let ℎ 1 be the worst health state while ℎ 𝐾 is the best health state. The variable ℎ is totally-ordered if all health states can be compared such that ℎ 1 ≼ ℎ 2 ≼ ⋯ ≼ ℎ 𝐾 , where ≼ is a binary order relation. The variable ℎ is said to be partially-ordered if there is at least two health states 𝑟, 𝑠 ∈ {1, … , 𝐾} such that ℎ 𝑟 and ℎ 𝑠 are incomparable. For example, let ℎ = (ℎ 1 , ℎ 2 , ℎ 3 , ℎ 4 ) where ℎ 1 indicates the presence of a chronic and an infectious illness, ℎ 2 and ℎ 3 indicate the presence of a chronic illness and an infectious illness, respectively, while ℎ 4 indicates no illness. It is obvious that having one illness, ℎ 2 or ℎ 3 , is not as bad as having two illnesses, ℎ 1 , and worse than having no illness, ℎ 4 . However, in the absence of additional information on the depth of health problems, it may not be possible to conclude that ℎ 2 is worse than ℎ 3 or ℎ 3 is worse than ℎ 2 . This kind of partially-ordered sets (POSET) can be visualised using a two-dimensional Boolean lattice [START_REF] Fattore | Visualizing partially ordered sets for socioeconomic analysis[END_REF][START_REF] Davey | Introduction to Lattices and Order[END_REF]. We, therefore, apply the lattice theory that allows permuting all the possible combinations of health sates.

The lattice theory has recently been applied to study different socio-economic phenomena such as fuzzy multidimensional material deprivation (e.g., Fattore et al. 2011), and cooperative game theory (e.g., [START_REF] Alonso-Meijide | Some structural properties of a lattice of embedded coalitions[END_REF][START_REF] Caulier | Allocation rules for coalitional network games[END_REF][START_REF] Grabisch | The lattice of embedded subsets[END_REF]. However, to the best of our knowledge, there has hitherto been no previous endeavours to apply this approach to social welfare and inequality analysis where health is the main attribute of individuals' wellbeing. This paper seeks therefore to introduce a general framework that is suitable for the analysis of partially-ordered variables which form a Boolean lattice.

The main contribution of this paper consists in converting the Boolean lattice of a distribution into a set of totally-ordered distributions. This is conducted by constructing all possible linear orderings of the latticethe linear extensionswhich are formed from the permutations of all incomparable elements in the lattice. In our example above, the set of all possible linear orderings contains only two elements {(ℎ 1 , ℎ 2 , ℎ 3 , ℎ 4 ), (ℎ 1 , ℎ 3 , ℎ 2 , ℎ 4 )}, which result from the permutations of the incomparable health states, ℎ 2 and ℎ 3 . Note that, the first element of the set is obtained by assuming that ℎ 2 is more severe than ℎ 3 while the second element is obtained by assuming that ℎ 3 is more severe than ℎ 2 . Having constructed these linear extensions, one can proceed on ranking different distributions of health states using dominance criteria. We first illustrate and discuss the application of the first-order stochastic dominance and the Hammond dominance criteria in the context of partially-ordered sets. We then proceed by employing appropriate social welfare function [START_REF] Gravel | Ranking distributions of an ordinal variable[END_REF]) and inequality index [START_REF] Abul Naga | Inequality measurement for ordered response health data[END_REF] to provide a summary measure of the level of social welfare and the degree of inequality associate with each distribution.

The paper is organised as follows. Section 2 presents the methodology used to provide an ordering of distributions of partially-ordered health variables using stochastic dominance criteria and social welfare and inequality metrics. Section 3 illustrates our methodology in the context of a group of five MENA region countries. Section 4 illustrates the application of our methodology under some monotonicity restrictions. Section 5 concludes the paper.

Methodology

We consider a population of 𝑛 ≥ 2 individuals. Health status for each individual is measured using a set of 𝑚 ≥ 2 illnesses. Each illness is represented by a dichotomized variable that takes 1 if individual has the illness and 0 otherwise. Assume that these illnesses are denoted by 𝑑 1 , 𝑑 2 , … , 𝑑 𝑚 . An individual may report no illness, 𝜙, or having 𝒹 illnesses, 0 < 𝒹 ≤ 𝑚. The number of all possible combinations of health states is, thus, 𝐾 = 2 𝑚 . Each health state is assigned an integer 𝑘 = 1, … , 𝐾. Let ℎ = (ℎ 1 , … , ℎ 𝐾 ) denotes the vector of health states ranked from the worst (ℎ 1 ) to the best (ℎ 𝐾 ). For simplicity, we consider 𝑚 = 3, hence 𝐾 = 8 and the set of all possible health states is

ℎ = (ℎ 1 , … , ℎ 8 ) = ({𝑑 1 , 𝑑 2 , 𝑑 3 }, {𝑑 1 , 𝑑 2 }, {𝑑 1 , 𝑑 3 }, {𝑑 2 , 𝑑 3 }, {𝑑 1 }, {𝑑 2 }, {𝑑 3 }, 𝜙)
where ℎ 1 = {𝑑 1 , 𝑑 2 , 𝑑 3 } is the worst health state and ℎ 8 = 𝜙 is the best health state. In what follows, 𝑋 might be the set of health states or the set of vectors (distributions) of health states. In this section, we first provide a cursory description of the partially-ordered sets of health states. Then, we define the possible linear extensions of these sets and the dominance criteria that enable to order different distributions of partially-ordered sets of health states. Finally, we define a suitable social welfare function and inequality measure for the comparison of ordered health variables.

Partially-Ordered Health States

Let 𝔻 be a set of 𝐾 health states that are measured by the number of illnesses that an individual may report in a survey data. Assume that these illnesses are independent and can only be partially-ordered; i.e., some of the health states are a priori incomparable. The set of all possible health states, 𝔻, consists of the following:

𝔻 𝑚 = {{𝑑 1 , 𝑑 2 , … , 𝑑 𝑚 }, 𝑃({𝑑 𝑖 }, 𝑚 -1), 𝑃({𝑑 𝑖 }, 𝑚 -2), … . , 𝑃({𝑑 𝑖 }, 1), 𝜙}

where 𝑃(𝑑 𝑖 , 𝑚 -𝑙), 𝑙 = 1, … , 𝑚 -1 is a permutation of the set of 𝑚 -𝑙 illnesses. If 𝑚 = 3, then 𝔻 3 = {{𝑑 1 , 𝑑 2 , 𝑑 3 }, 𝑃({𝑑 𝑖 }, 3 -1), 𝑃({𝑑 𝑖 }, 3 -2), 𝜙} 𝔻 3 = {{𝑑 1 , 𝑑 2 , 𝑑 3 }, 𝑃({𝑑 𝑖 }, 2), 𝑃({𝑑 𝑖 }, 1), 𝜙} 𝑃({𝑑 𝑖 }, 2) is all possible permutations of the sets that contain two illnesses and 𝑃({𝑑 𝑖 }, 1) is all possible permutations of the sets that contain one illness. Hence

𝔻 3 = {{𝑑 1 , 𝑑 2 , 𝑑 3 }, {𝑑 1 , 𝑑 2 }, {𝑑 1 , 𝑑 3 }, {𝑑 2 , 𝑑 3 }, {𝑑 1 }, {𝑑 2 }, {𝑑 3 }, 𝜙}
where {𝑑 𝑔 }, {𝑑 𝑔 , 𝑑 𝑟 } ≼ 𝜙 and {𝑑 1 , 𝑑 2 , 𝑑 3 } ≼ {𝑑 𝑔 }, {𝑑 𝑔 , 𝑑 𝑟 }, 𝑔, 𝑟 = 1,2,3. The state of having one illness, {𝑑 𝑔 }, or two illnesses {𝑑 𝑔 , 𝑑 𝑟 } are clearly worse than the state 𝜙 and better than the state {𝑑 1 , 𝑑 2 , 𝑑 3 }. However, the states within the subsets of one illness {{𝑑 𝑔 }, 𝑔 = 1,2,3 } and two illnesses {{𝑑 𝑔 , 𝑑 𝑟 }, 𝑔, 𝑟 = 1,2,3 } are incomparable. For instance, {𝑑 1 } ∥ {𝑑 2 } ∥ {𝑑 3 }.

Furthermore, not all elements in the different subsets are comparable: while {𝑑 𝑔 , 𝑑 𝑟 } is worse than

{𝑑 𝑔 }, ∀𝑟 ≠ 𝑔, {𝑑 𝑔 } is incomparable to {𝑑 𝑠 , 𝑑 𝑟 } ∀ 𝑠, 𝑟 ≠ 𝑔; that is either {𝑑 𝑔 } ≼ {𝑑 𝑠 , 𝑑 𝑟 } or {𝑑 𝑠 , 𝑑 𝑟 } ≼ {𝑑 𝑔 }.
Given incomparability between some elements in the relation defined over the set in Eq. 1, the relation ≼ is not a unique complete order. In this case, ≼ is said to be a partiallyordered relation, hence 𝔻 is a partially-ordered set (𝑃𝑂𝑆𝐸𝑇)denoted as 𝑃 = (𝔻, ≼).

The 𝑃𝑂𝑆𝐸𝑇, 𝑃, can be depicted using the Hass Diagram (also known as Boolean lattice ordering) of dimension 𝑚 = 3, denoted as 𝐵 3 (Figure 1).

Insert Figure 1 here

As can be seen from Figure 1, 𝐵 3 has the following sets of comparable and incomparable pairsdenoted respectively as 𝐶𝑜𝑚𝑝(𝐵 3 ) and 𝐼𝑛𝑐(𝐵 3 ): In general, the total number of comparable and incomparable pairs of a set 𝔻 of dimension 𝑘 is

𝐶𝑜𝑚𝑝(𝐵 3 ) = { (𝜙, {𝑑 𝑔 }), (𝜙, {𝑑 𝑔 , 𝑑 𝑟 }), (𝜙, {𝑑 1 , 𝑑 2 , 𝑑 3 }), (𝑑 𝑔 , {𝑑 𝑔 , 𝑑 𝑟 }), (𝑑 𝑔 , {𝑑 1 , 𝑑 2 , 𝑑 3 }), ({𝑑 𝑔 , 𝑑 𝑟 }, {𝑑 1 , 𝑑 2 , 𝑑 3 }) } (2) {d2} Ø {d1} {d1, d2} {d1, d2, d3} {d1, d3} { d3} {d2,d3}
𝐶 2 𝐾 = ( 𝐾 2 ) = 𝐾! (𝐾 -2)! 2! = 𝐾(𝐾 -1)(𝐾 -2)! (𝐾 -2)! 2 = 𝐾(𝐾 -1) 2 (4) 
In our case, where 𝐾 = 8, the number of all pairs is 8(8 -1) 2 ⁄ = 28 of which 19 pairs are comparable, which equals to the size of the set 𝐶𝑜𝑚𝑝(𝐵 3 ): |𝐶𝑜𝑚𝑝(𝐵 3 )| = 19, and 9 pairs are incomparable, which equals to the size of the set 𝐼𝑛𝑐(𝐵 3 ): |𝐼𝑛𝑐(𝐵 3 )| = 9.

A set that includes comparable elements is referred to as ≼-chain, while a set that includes incomparable elements is referred to as ≼-antichain. The set of chains in Figure 1 includes: 𝐶 1 = {𝜙, {𝑑 3 }, {𝑑 2 , 𝑑 3 }, {𝑑 1 , 𝑑 2 , 𝑑 3 }}, and 𝐶 2 = {𝜙, {𝑑 3 }, {𝑑 1 , 𝑑 3 }}. The set of antichains in Figure 1 includes: 𝐴 1 = { {𝑑 1 }, {𝑑 2 }, {𝑑 3 }}, and 𝐴 2 = {{𝑑 2 }, {𝑑 1 , 𝑑 3 }}. The size of the largest chain is the height of 𝑃 and the size of the largest antichain is the width of 𝑃. In our case, the height is four and the width is three.

Complete (Linear) Order Extensions

A social welfare function shall provide an order extension of 𝐵 𝑚 , which produces a complete ranking of health states. A linear extension is a total (linear) order of the POSET, 𝑃, which does not contain incomparable elements. A linear extension can be obtained by imposing some restrictions on the incomparable health states. For instance, by assuming that 𝑑 1 ≼ 𝑑 2 ≼ 𝑑 3

(assumption 1), the set of incomparable pairs in Eq. 3 reduces to:

𝐼𝑛𝑐(𝐵 3 ) = {({𝑑 𝑔 }, {𝑑 𝑟 , 𝑑 𝑠 })}, ∀𝑔, 𝑟, 𝑠 = 1,2,3 and 𝑔 ≠ 𝑟 ≠ 𝑠 (5)
Since the elements of two illnesses are still incomparable, such restriction yields the nonlinear (incomplete order) extension of 𝐵 3 given in Figure 2-A. Another plausible restriction is to assume further that {𝑑 1 , 𝑑 2 } ≼ {𝑑 1 , 𝑑 3 } ≼ {𝑑 2 , 𝑑 3 } (assumption 2), then the extension of 𝐵 3 given in Figure 2-B is a linear (complete order) extension. This linear extension can be expressed as:

𝐸 = {{𝑑 1 , 𝑑 2 , 𝑑 3 }, {𝑑 1 , 𝑑 2 }, {𝑑 1 , 𝑑 3 }, {𝑑 2 , 𝑑 3 }, {𝑑 1 }, {𝑑 2 }, {𝑑 3 }, 𝜙} (6) 
Insert Figure 2 here Assumption 1 and 2 yield an ordering of the subset of one illness and the subset of two illnesses, respectively. Each of these two subsets can be ordered in 3! manners. For example, the elements {𝑑 1 }, {𝑑 2 }, {𝑑 3 } can be ordered in the following manners: Thus, another linear extension can be obtained if we assume that {𝑑 3 } ≼ {𝑑 1 , 𝑑 3 }. The respective linear extension is:

𝑑 1 ≼ 𝑑 2 ≼ 𝑑 3 , 𝑑 1 ≼ 𝑑 3 ≼ 𝑑 2 , 𝑑 2 ≼ 𝑑 1 ≼ 𝑑 3 , 𝑑 2 ≼ 𝑑 3 ≼ 𝑑 1 , 𝑑 3 ≼ 𝑑 1 ≼ 𝑑 2 ,
𝐸 ′ = {{𝑑 1 , 𝑑 2 , 𝑑 3 }, {𝑑 1 , 𝑑 2 }, {𝑑 3 }, {𝑑 1 , 𝑑 3 }, {𝑑 2 , 𝑑 3 }, {𝑑 1 }, {𝑑 2 }, 𝜙} (7) 
There are another 12 linear extensions resulting from the permutations of 𝑑 𝑔 with {𝑑 𝑟 , 𝑑 𝑠 }. The total number of linear extensions, 𝐸 𝑖 , 𝑖 = 1, … , ℯ is, thus, ℯ = 48.

Stochastic Dominance of Partially-Ordered Sets

For totally-(linearly-) ordered continuous health variables, comparisons of distributions in terms of welfare can be achieved using the FOSD criterion [START_REF] Hammond | Do Happier Britons Have More Income? First-Order Stochastic Dominance Relations[END_REF] is the 𝑘 𝑡ℎ coordinate of the distribution 𝐹 1 . In this case, 𝐹 2 is said to exhibit higher welfare than 𝐹 1 . This section constructs the conditions for ordering a pair of distributions in terms of social welfare for partially-ordered health variables. In this case, there will be ℯ linear extensions of each health distribution. Let 𝑓 1,𝑖 and 𝑓 2,𝑖 be two PDFs of the 𝑖 𝑡ℎ linear extension of the first and second health distributions, respectively, defined as follows:

𝑓 1,𝑖 = (𝑓 1 1,𝑖 , … , 𝑓 8 1,𝑖 ) 𝑓 2,𝑖 = (𝑓 1 2,𝑖 , … , 𝑓 8 2,𝑖 ) (8) 
where 𝑓 𝑘 𝑗,𝑖 is the share of the population with health state, 𝑘 = 1, … , 𝐾 = 8, in distribution 𝑗 = 1, 2 and linear extension 𝑖 = 1, … , ℯ = 48. The corresponding CDFs are

𝐹 1,𝑖 = (𝐹 1 1,𝑖 , … , 𝐹 8 1,𝑖 ) 𝐹 2,𝑖 = (𝐹 1 2,𝑖 , … , 𝐹 8 2,𝑖 ) (9) 
where 𝐹 𝑘 𝑗,𝑖 = ∑ 𝑓 𝑙 𝑗,𝑖 𝑘 𝑙=1

, ∀ 𝑗 = 1, 2, 𝑘, 𝑙 = 1, … ,8 and 𝑖 = 1, … ,48. For each linear extension, 𝐸 𝑖 , there are three possible cases of FOSD between 𝐹 1,𝑖 and 𝐹 2,𝑖 : 𝐹 1,𝑖 ≼ 𝐹𝑂𝑆𝐷 𝐹 2,𝑖 or 𝐹 2,𝑖 ≼ 𝐹𝑂𝑆𝐷 𝐹 1,𝑖 or 𝐹 1,𝑖 ∥ 𝐹𝑂𝑆𝐷 𝐹 2,𝑖 . The dominance criteria can be established as in Definition 1.

Definition 1: Let 𝔻 be a POSET of 𝐾 health states. For any two health distributions 𝐹 1 and 𝐹 2 ∈ 𝔻, 𝐹 1 first-order stochastically dominates 𝐹 2written as 𝐹 2 ≼ 𝐹𝑂𝑆𝐷 𝐹 1if

𝐹 𝑘 1,𝑖 ≤ 𝐹 𝑘 2,𝑖 ∀ 𝑘 = 1, … , 𝐾, 𝑖 = 1, … , 𝐼 (10) 
where 𝐼 is the number of all possible linear extensions. Eq. 10 suggests that 𝐹 1 exhibits higher social welfare than 𝐹 2 if 𝐹 2 ≼ 𝐹𝑂𝑆𝐷 𝐹 1 for all linear extensions. As will be shown below (in Section 3), the CDFs of any two health distributions may cross for some linear extensions. Thus, the relation ≼ 𝐹𝑂𝑆𝐷 which is defined over the set 𝔻 × 𝔻 does not allow for comparisons of the two distributions.

A weaker dominance criterion than the FOSD is, thus, in order. A possible order extension which preserves the original order relation ≼ 𝐹𝑂𝑆𝐷 but allows for a larger subset of linear extensions to be ordered is the Hammond dominance criteriondenoted as ≼ 𝐻 [START_REF] Gravel | Ranking distributions of an ordinal variable[END_REF]. Let 𝐹 ∈ 𝔻 be a distribution of health states. Define the 𝑘-dimensional Hammond distribution function (HDF)

𝐻: 𝔻 → [0, 2 𝑘-1 ] 𝑘 as 𝐻(𝐹) = (𝐻 1 (𝐹), … , 𝐻 𝑘 (𝐹)) (11) 
where the 𝑘 𝑡ℎ coordinate of the Hammond function, 𝐻 𝑘 (𝐹): 𝔻 → [0, 2 𝑘-1 ] is defined by

𝐻 𝑘 (𝐹) = ∑ 2 𝑘-𝑙 𝑓 𝑙 𝑘 𝑙=1 (12) 
The values of the first and last coordinates of the HDF are, respectively, 𝐻 1 (𝐹) = ∑ 2 1-𝑙 𝑓 𝑙 𝑘=1 𝑙=1

= 𝑓 1 = 𝐹 1 and 𝐻 8 (𝐹) = 64𝐹 1 + 32𝐹 2 + 16𝐹 3 + 8𝐹 4 + 4𝐹 5 + 2𝐹 6 + 𝐹 7 + 𝐹 8 . For any two distributions 𝐹 1 , 𝐹 2 ∈ 𝔻, the Hammond dominance criteria for partially-ordered health variables can be established as in Definition 2.

Definition 2: Let 𝔻 be a POSET of 𝐾 health states. For any two health distributions 𝐹 1 and 𝐹 2 ∈ 𝔻, 𝐹 1 Hammond dominates 𝐹 2written as 𝐹 2 ≼ 𝐻 𝐹 1if

𝐻 𝑘 1,𝑖 (𝐹 1 ) ≤ 𝐻 𝑘 2,𝑖 (𝐹 2 ) ∀ 𝑘 = 1, … , 𝐾, 𝑖 = 1, … , 𝐼 (13) 
Similar to the relation ≼ 𝐹𝑂𝑆𝐷 , Eq. 13 suggests that 𝐹 1 exhibits higher social welfare than 𝐹 2 if 𝐹 2 ≼ 𝐻 𝐹 1 for all linear extensions. In general, the Hammond dominance criterion enables to extend the number of comparable extensions for different distributions. For any two distributions 𝐹 1 and 𝐹 2 , if there is at least one extension where 𝐹 1 Hammond dominates 𝐹 2 , then either 1 Hammond dominates 𝐹 2 for some/all extensions or 𝐹 1 and 𝐹 2 are incomparable for some extensions. This result is summarized in Proposition 1.

Proposition 1: Let 𝔻 be a POSET of 𝐾 health states. For any two health distributions 𝐹 1 and 𝐹 2 ∈ 𝔻, if there is a linear extension

𝑖 ′ = 1, … , 𝐼 such that 𝐻 1 1,𝑖 ′ (𝐹 1 ) ≤ 𝐻 1 2,𝑖 ′ (𝐹 2 ) then (i) either 𝐹 2,𝑖 ′ ≼ 𝐻 𝐹 1,𝑖 ′ (ii) or 𝐹 2,𝑖 ′ ∥ 𝐻 𝐹 1,𝑖 ′ .
Proof: Suppose that there is an extension 𝑖 ′′ such that 𝐹 1,𝑖 ′′ ≼ 𝐻 𝐹 2,𝑖 ′′ . This implies that 𝐻 1 1,𝑖 ′ (𝐹 1 ) > 𝐻 1 2,𝑖 ′ (𝐹 2 ) which is a contradiction since 𝐻 1 1,𝑖 ′ (𝐹 1 ) ≤ 𝐻 1 2,𝑖 ′ (𝐹 2 ).

Constructing a Social Welfare Function for POSETs

A social welfare function (SWF) is conventionally used in the case of totally-ordered variables to provide an aggregate numerical representation that allows to compare different distributions (e.g., Robert 2018; [START_REF] Asheim | Sustainable recursive social welfare functions[END_REF]). In the case of partially-ordered variables, such a SWF will be evaluated for each possible linear extension. Given that the health variable considered in this paper is ordinal, then a suitable SWF is in order. An appropriate SWF for ordinal variables, accounts for the number of individuals in each health state, is proposed by [START_REF] Gravel | Ranking distributions of an ordinal variable[END_REF]. This SWF satisfies the Hammond progressive transfers, which is equivalent to the Pigou-Dalton principle of transfers in the case of ordinal variables. The Hammond progressive transfers implies that an increase in an individual's welfare associated with a decrease in another individual's welfareholding their positions unchangedimproves the overall social welfare [START_REF] Hammond | Equity, Arrow's Conditions and Rawls's Difference Principle[END_REF]. For a population with 𝐾 health states, the Hammond SWF can be defined as

𝑊 𝐻 = 1 𝑛 ∑ 𝑛 𝑘 𝛼 𝑘 𝐾 𝑘=1 (14) 
where 𝑛 𝑘 is the size of the population with health state 𝑘, and 𝛼 𝑘 is a scale (weight). These weights are constructed such that they are increasing at a decreasing rate with the best health state being attached the highest weight. To illustrate the intuition underlying this choice of the vector 𝛼 = (𝛼 1 , … , 𝛼 𝐾 ), we define the best and the worst health PDFs, 𝑓 and 𝑓, respectively, as follows

𝑓 = (0, … , 0, 𝑛 𝑛 ) 𝑓 = ( 𝑛 𝑛 , … , 0, 0) (15) 
For the best distribution, 𝑓 , all the population reports no illness while for the worst distribution, 𝑓, all the population reports the three illnesses. Using Eq. 14, the corresponding SWF of the distributions 𝑓 and 𝑓 can be defined, respectively, as

𝑊 𝐻 (𝑓) = 1 𝑛 (∑ 0 + 𝐾-1 𝑙=1 𝑛 𝛼 𝐾 ) = 𝛼 𝐾 (16) 𝑊 𝐻 (𝑓) = 1 𝑛 (𝑛 𝛼 1 + ∑ 0 𝐾 𝑙=2 ) = 𝛼 1
The monotonicity property of the SWF implies that the best distribution shall exhibit higher welfare than the worst distribution. Accordingly, 𝛼 1 < 𝛼 𝐾 . In general, let 𝑓 𝑘 and 𝑓 𝑘 ′ be two PDFs such that all the population reports the health state 𝑘 and 𝑘 ′ , respectively, where 𝑘 < 𝑘 ′ . The corresponding SWFs are 𝑊 𝐻 (𝑓 𝑘 ) = 𝛼 𝑘 and 𝑊 𝐻 (𝑓 𝑘 ′ ) = 𝛼 𝑘 ′ . An increasing SWF implies that 𝑊 𝐻 (𝑓 𝑘 ) < 𝑊 𝐻 (𝑓 𝑘 ′ ), hence 𝛼 𝑘 < 𝛼 𝑘 ′ . Moreover, the strict concavity property implies that the SWF is increasing at a decreasing rate. Let 𝑓 𝑘 , 𝑓 𝑘 ′ and 𝑓 𝑘 ′′ be three PDFs such that all the population reports the health state 𝑘, 𝑘 ′ and 𝑘 ′′ , respectively, where 𝑘 < 𝑘 ′ < 𝑘 ′′ . As shown, an increasing SWF implies that 𝑊 𝐻 (𝑓 𝑘 ) < 𝑊 𝐻 (𝑓 𝑘 ′ ) < 𝑊 𝐻 (𝑓 𝑘 ′′ ). Strict concavity implies that 𝑊 𝐻 (𝑓 𝑘 ′ ) -𝑊 𝐻 (𝑓 𝑘 ) > 𝑊 𝐻 (𝑓 𝑘 ′′ ) -𝑊 𝐻 (𝑓 𝑘 ′ ). Accordingly, 𝛼 𝑘 ′ -𝛼 𝑘 > 𝛼 𝑘 ′′ -𝛼 𝑘 ′ . A possible choice of the vector of weights 𝛼 that will be used in Section 3 is

𝛼 𝑘 = ∑ ( 1 2 ) 𝑙 𝑘-1 𝑙=1 ≡ { ( 1 2 ) 0 = 1, 𝑘 = 1 𝛼 𝑘-1 + ( 1 2 ) 𝑘-1 , 𝑘 > 1 (17)
The choice of the weights is arbitrary except that these weights shall be increasing at a decreasing rate. Eq. 17 shows that the differences between the weights attached to different health states decrease with health states. The vector of differences between health states is

𝛼 𝑘 -𝛼 𝑘-1 = ( 1 2 , ( 1 2 ) 2 , ( 1 2 ) 3 , ( 1 2 ) 4 , … , ( 1 2 ) 7 
)

In order to bound the values of the SWF in the interval [0,1], the SWF defined in Eq. 14 can be normalized as follows

𝑊 𝑁 (𝑓) = 𝑊 𝐻 (𝑓) -𝑊 𝐻 (𝑓) 𝑊 𝐻 (𝑓) -𝑊 𝐻 (𝑓) (18) 
Using Eq. 14 and Eq. 17, Eq. 18 can be expressed as Definition 3: Let 𝔻 be a POSET of 𝐾 health states. For any two health distributions 𝐹 1 and 𝐹 2 ∈ 𝔻, 𝐹 1 exhibits higher social welfare than 𝐹 2written as 𝐹 2 ≼ 𝑊 𝐹 1if

𝑊 𝑁 (𝑓) = 1 𝑛 ∑ 𝑛 𝑘 𝛼 𝑘 𝐾 𝑘=1 -𝛼 1 𝛼 𝐾 -𝛼 1 (19) 
𝑊 𝑁 (𝑓 1,𝑖 ) ≥ 𝑊 𝑁 (𝑓 2,𝑖 ) ∀ 𝑖 = 1, … , 𝐼 (20) 
where 𝑓 𝑗,𝑖 is the PDF of extension 𝑖 of distribution 𝑗.

Measuring Inequality for POSETs Distributions

Inequality metrics can be used to provide a single-valued measure to compare different distributions. The standard measures of inequality such as the Gini index or the Atkinson index are inappropriate for ordinal variables [START_REF] Abul Naga | Inequality measurement for ordered response health data[END_REF]. One approach to compare distributions of an ordinal variable with finite categories is the method developed by Abul Naga and Yalcin ( 2008). This inequality measure can be applied to compare distributions of ordinal health data which have the same median health state. As is shown in Section 3, most of individuals in survey data report no illness, thus, the median health state is the last (best) state. Therefore, we can employ the inequality index proposed by Abul Naga and Yalcin ( 2008) for ordered response health data. In our context, this inequality index can be defined as

𝐼(𝐹) = 1 -( 2 ∑ |𝐹 𝑘 -0.5| 𝐾 𝑘=1 -1 𝐾 -1 ) (21) 
As shown in Eq. 21, this inequality index is based on the CDF only, thus, it is insensitive to values assigned to the different health states.

Definition 4: Let 𝔻 be a POSET of 𝐾 health states. For any two health distributions 𝐹 1 and 𝐹 2 ∈ 𝔻, 𝐹 1 exhibits lower inequality than 𝐹 2written as 𝐹 2 ≼ 𝐼 𝐹 1if

𝐼(𝐹 1,𝑖 ) ≤ 𝐼(𝐹 2,𝑖 ) ∀ 𝑖 = 1, … , 𝐼 (22) 
Similar to the dominance criteria, Definition 4 states that the distribution 𝐹 1 exhibits lower inequality than the distribution 𝐹 2 if the degree of inequality is lower in distribution 𝐹 1 than in distribution 𝐹 2 for all possible linear extensions.

An Empirical Application

To illustrate the proposed methodology, we use data on three main morbidities from the available World Health Surveys (WHS 2000(WHS -2001) ) that have been conducted in five MENA countries: Egypt, Iran, Lebanon, Syria and Turkey. The WHS offer a detailed list of illnesses (up to 15 illnesses and health problems) declared by adult respondents (18 years old and above). For the purpose of this application, we consider the distributions of three major illnesses: 𝑑 1 = 𝑐𝑎𝑟𝑑𝑖𝑜𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑠; 𝑑 2 = 𝑟𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑜𝑟𝑦 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑠, and 𝑑 3 = 𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠. The first illness includes heart diseases, high blood pressure and stroke while the second includes in addition to pulmonary diseases, chronic bronchitis. Table 1 summarizes the frequency distributions of these illnesses in the five countries under consideration.

Insert Table 1 here Table 1 shows that the number of individual reporting three illnesses is the lowest in Turkey (with a proportion of population of 0.19%), whilst the highest proportion of individuals with three illnesses is observed in Lebanon (0.40%).

FOSD and Hammond Dominance

We first illustrate, in Table 2.a and Figure 3, the construction of the CDF and HDF for one of the possible 48 linear extensions that corresponds to the following linear extension

𝐸 1 = {{𝑑 1 , 𝑑 2 , 𝑑 3 }, {𝑑 1 , 𝑑 2 }, {𝑑 1 , 𝑑 3 }, {𝑑 2 , 𝑑 3 }, {𝑑 1 }, {𝑑 2 }, {𝑑 3 }, 𝜙} (23) 
Insert Table 2.a here Table 2.a clearly show that ∀ 𝑘 = 1, … ,8, 𝐹 𝑘 𝑇 ≤ 𝐹 𝑘 -𝑇 , -𝑇 = {𝐸, 𝐼, 𝐿, 𝑆}, thus 𝐹 𝑇 ≤ 𝐹𝑂𝑆𝐷 𝐹 -𝑇 . This suggests that Turkey has the least ill-health distribution with the corresponding CDF lying below the CDFs of all other countries (see Figure 3). In this case, appears to have higher health welfare compared with all other countries.

Insert Figure 3 here

Given that the ill-health distributions of some countries cross, we can extent the dominance analysis to apply the Hammond dominance criteria. Figure 4 3). To sum up, Table 3 shows that the health distribution of Lebanon is always the worst distribution while the health distribution of Turkey is always the best under the Hammond dominance criteria.

Insert Table 3 here 

Social Welfare and Inequality for Partially-Ordered Health Distributions

Table 4 presents the results on social welfare and inequality indices for the 48 linear extensions. Each cell in row, 𝑗, and column, 𝑗 ′ , reports the proportion of linear extensions where country 𝑗 has higher social welfare or inequality as compared to country 𝑗 ′ .

Insert Table 4 here 

Some Restrictions

As shown in Section 3, there are some cases where the ranking of distributions according to the four criteria introduced in this paper is still ambiguous. In order to obtain a clearer ranking, it is possible to reduce the number of linear extensions by imposing some restrictions on the health states ordering. In general, from a normative point of view, ordering illnesses according to, for example, their degree of severity might be problematic. This is because the severity of an illness might not be easily measurable and it can be expressed differently from different points of view.

However, there have been several attempts to measure the severity of illness using different indicators such as the mortality rate. Suppose that 𝑑 1 and 𝑑 2 can be ranked in terms of the rate of mortality where, for example, 𝑑 1 is less severe than 𝑑 2denoted as 𝑑 1 ≼ 𝑑 2 (restriction 1). This restriction assumption implies that {𝑑 1 , 𝑑 3 } ≼ {𝑑 2 , 𝑑 3 }. This restriction assumption reduces the number of linear extensions illustrated in Section 3 to 14. Suppose further that 𝑑 1 ≼ 𝑑 2 ≼ 𝑑 3 (restriction 2). This implies that {𝑑 1 , 𝑑 2 } ≼ {𝑑 1 , 𝑑 3 } ≼ {𝑑 2 , 𝑑 3 }, hence reduces the number of linear extensions to the following two extensions.

𝐸 𝑎 = {{𝑑 1 , 𝑑 2 , 𝑑 3 }, {𝑑 2 , 𝑑 3 }, {𝑑 1 , 𝑑 3 }, {𝑑 1 , 𝑑 2 }, {𝑑 3 }, {𝑑 2 }, {𝑑 1 }, 𝜙} 𝐸 𝑏 = {{𝑑 1 , 𝑑 2 , 𝑑 3 }, {𝑑 2 , 𝑑 3 }, {𝑑 1 , 𝑑 3 }, {𝑑 3 }, {𝑑 1 , 𝑑 2 }, {𝑑 2 }, {𝑑 1 }, 𝜙} (25) 
Results pertaining to the dominance analysis under (restriction 1 and restriction 2) are illustrated in Table 5. The two monotonicity restrictions yield a complete order of the five distributions as follows: 𝐿 ≼ 𝐼 ≼ 𝐸 ≼ 𝑆 ≼ 𝑇.

Insert Table 5 here 

Conclusion

This paper presents a general framework for the analysis of social welfare when well-being states are a priori incomparable. In such context, the distribution of well-being states forms an mdimensional Boolean lattice. The basic idea of the present framework is to breakdown the Boolean lattice into a set of linear extensions where all well-being states are totally ordered. Then, the different distributions can be evaluated in term of social welfare using appropriate dominance criteria as well as inequality metrics. Accordingly, the ranking of two distributions is the result of the simple ranking of all possible linear extensions of the original lattice. When some monotonicity restrictions are imposed, the number of linear extensions of each distribution would decrease.

Accordingly, a full ranking of all distributions can be established. Furthermore, under such restrictions, the Hammond SWF and the inequality index provide the same ranking of the distributions under consideration.

The method proposed in this paper can be generalized to the case of 𝑚 illnesses where the number of health states is 2 𝑚 . If we assume, for simplicity, that one illness is as bad as two illnesses and two illnesses are as bad as four illnesses, etc., then the number of possible linear extensions is

ℯ = 𝑚! ( 𝑚 2 ) ! … ( 𝑚 𝑚 -1
) !. For the case where 𝑚 = 4, there will be hundreds of thousands linear extensions which may render the tractability and comparison of linear extensions burdensome. A possible solution to this problem is to reduce the number of linear extensions. This can be done by either imposing some monotonicity restrictions as is shown in Section 4 or by aggregating illnesses into three categories, hence reducing the problem to the case presented in this paper.

The framework introduced in this paper can be also applied to the analysis of social welfare in terms of alternative attributes. One example is when the social welfare is measured in terms of amenities available for each household. In this case, given that the availability of an amenity is a good outcome, then the worst well-being state is having no amenity while the best well-being is the availability of all amenities under consideration. Another example includes the analysis of multidimensional well-being as measured by richness, healthiness and happiness or any other potential welfare attribute. In order to apply the current framework, each of these attribute is assumed to be a binary variable where an individual is said to be rich, happy and health based on a certain threshold for each dimension. Then, well-being states can be generated in terms of the number of deprivations an individual may suffer from with the worst well-being state being that when an individual is poor, unhappy and unhealthy. The well-being states where individuals are deprived in only one dimension (poor or unhappy or unhealthy) are incomparable. Of course, a variety of possible applications can be analyzed using the framework presented in this paper.
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 1 Figure 1: Boolean Lattice of Dimension m=3

  Eqs. 18 and 19 show how the welfare value of a distribution is relatively far from that of the worst distribution. Since the range of the values of the SWF will vary based on the choice of the weights, 𝛼 𝑘 , the normalization of the SWF brings the values of 𝑊 into the fixed range [0,1]. Some intuition of using a normalized version of the SWF is to allow comparison of different distributions if different weights are assigned to health states in each distribution. For any two PDFs 𝑓 1 and 𝑓 2 , the dominance criteria of social welfare for partially-ordered health variables defined in Eq. 19 can be established as in Definition 3.

  Figure 3: FOSD of five health distributions for one linear extension

  The number of individuals in health state 𝑘 is 𝑛 𝑘 . Let 𝑓 = (𝑓 1 , … , 𝑓 8 ) be the probability density function (PDF) 𝑋 that is reflexive, antisymmetric and transitive[START_REF] Davey | Introduction to Lattices and Order[END_REF]. Let 𝑥 𝑖 and 𝑥 𝑗 (𝑖 ≠ 𝑗) be two elements in the set 𝑋. Conventionally, the two elements are said to be comparable if either 𝑥 𝑖 ≼ 𝑥 𝑗 or 𝑥 𝑗 ≼ 𝑥 𝑖 , otherwise, the two elements are incomparabledenoted by 𝑥 𝑖 ∥ 𝑥 𝑗 . If 𝑥 𝑖 ≼ 𝑥 𝑗 , then 𝑥 𝑖 is said to be worse than (or less preferred to) 𝑥 𝑗 .

	of health states where 𝑓 𝑘 = 𝑛 𝑘 𝑛 ⁄ , 𝑘 = 1, … ,8 is the share of individuals with health state 𝑘. The
	corresponding CDF is 𝐹 = (𝐹 1 , … , 𝐹 8 ) where 𝐹 𝑘 = ∑ 𝑓 𝑙 𝑘 𝑙=1 , 𝑘 = 1, … ,8. Let ≼ be a binary relation
	on a set

  Furthermore, the element 𝑑 𝑔 is incomparable to {𝑑 𝑟 , 𝑑 𝑠 } ∀𝑟, 𝑠 ≠ 𝑔. This means that, for example, in the linear extension in Figure2, 𝑑 3 ∥ {𝑑 1 , 𝑑 2 }.
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or 𝑑 3 ≼ 𝑑 2 ≼ 𝑑 1 . Thus, we will obtain from this

Table 1 :

 1 Descriptive Statistics of the five health distributions for the five MENA countries

		Egypt	Iran	Lebanon	Syria	Turkey
	𝜙	3466	7612	2414	7605	4412
	{𝑑 1 }	465	1031	368	762	318
	{𝑑 2 } {𝑑 3 } {𝑑 1 , 𝑑 2 } {𝑑 1 , 𝑑 3 } {𝑑 2 , 𝑑 3 }	239 115 85 99 9	490 131 265 149 7	202 52 94 94 8	435 140 199 151 15	292 53 73 36 9
	{𝑑 1 , 𝑑 2 , 𝑑 3 }	12	32	13	37	10
	𝑛	4490	9717	3245	9344	5203

Table 2

 2 

		.a: The CDF and HDF of five health distributions for a possible linear extension
				CDF					HDF		
		Egypt Iran Lebanon Syria Turkey Egypt Iran Lebanon Syria Turkey
	𝐸 𝑖	𝐹 𝑖 𝐸	𝐹 𝑖 𝐼	𝐹 𝑖 𝐿	𝐹 𝑖 𝑆	𝐹 𝑖 𝑇	𝐻 𝑖 𝐸	𝐻 𝑖 𝐼	𝐻 𝑖 𝐿	𝐻 𝑖 𝑆	𝐻 𝑖 𝑇
	{𝑑 1 , 𝑑 2 , 𝑑 3 } 0.003 0.003 0.022 0.031 {𝑑 1 , 𝑑 2 } 0.044 0.046 {𝑑 1 , 𝑑 3 } 0.046 0.047 {𝑑 2 , 𝑑 3 } 0.149 0.153 {𝑑 1 } 0.202 0.203 {𝑑 2 } {𝑑 3 } 0.228 0.217	0.004 0.033 0.062 0.064 0.178 0.240 0.256	0.004 0.002 0.003 0.003 0.025 0.016 0.024 0.034 0.041 0.023 0.071 0.083 0.043 0.025 0.143 0.167 0.125 0.086 0.390 0.440 0.171 0.142 0.833 0.930 0.186 0.152 1.692 1.873	0.004 0.037 0.103 0.208 0.530 1.122 2.261	0.004 0.002 0.029 0.018 0.075 0.043 0.151 0.087 0.383 0.235 0.813 0.527 1.641 1.063
	𝜙	1	1	1	1	1	4.156 4.530	5.265	4.095 2.975

Table 2

 2 This suggests that the two distribution are incomparable in the sense of the FOSC, i.e., 𝐹 𝐸 ∥ 𝐹𝑂𝑆𝐷 𝐹 𝐿 . However, as soon as Hammond dominance criteria is applied, the two distributions pertaining to these two countries under the extension 𝐸 2 become now comparable with 𝐹 𝐸 ≤ 𝐻 𝐹 𝐿 .

			Figure 4: Hammond dominance of five health distributions for one
						linear extension			
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		.a also shows that 𝐹 𝑘 𝐸 ≤ 𝐹 𝑘 𝐿 ∀ 𝑘 = 1, … ,8 suggesting that Egypt dominates Lebanon
	under this linear extension. However, this is not always the case: changing the order of
	incomparable health states results in a change in the rank of distributions. For instance, consider
	the following linear extension:						
		𝐸 2 = {{𝑑 1 , 𝑑 2 , 𝑑 3 }, {𝑑 2 , 𝑑 3 }, {𝑑 1 , 𝑑 3 }, {𝑑 3 }, {𝑑 , 𝑑 2 }, {𝑑 1 }, {𝑑 2 }, 𝜙}		(24)
	where the health state {𝑑 3 } is supposed to be worse than the health state {𝑑 1 , 𝑑 2 }. Under such
	extension, 𝐹 𝑘 𝐸 < 𝐹 𝑘 𝐿 ∀ 𝑘 ≠ 4 but 𝐹 4 𝐸 ≥ 𝐹 4 𝐿 . Insert Table 2.b here					
	Table 2.b: The CDF and HDF of five health distributions for another possible linear extension
				CDF				HDF	
		Egypt Iran Lebanon Syria Turkey Egypt Iran Lebanon Syria Turkey

Table 3

 3 presents the dominance results for the 48 linear extensions. The value in each cell represents the share (out of the 48) of linear extensions where distribution 𝑗 (column) dominates distribution 𝑗 ′ (row). A positive (negative) value means that distribution 𝑗 dominates (dominated by) distribution 𝑗 ′ . As shown in Table3, the health distributions of Egypt and Iran are incomparable under the 45 extensions using the FOSD criteria. Interestingly, the Hammond stochastic dominance criteria allows, as expected, to extend the 𝐹𝑂𝑆𝐷 as reflected by higher proportions of dominance under 𝐻𝐷𝐹 (with Egypt dominating Iran in about 33.3% of the 48 linear extensions). Also of note, Lebanon appears to be dominated by all other countries under all linear extensions in the Hammond sense (as is captured by the value of -1 in Table

Table 3 :

 3 The FOSD and Hammond dominance for the 48 linear extensions CDF HDF 𝑗\𝑗 ′

		Egypt Iran Lebanon Syria Turkey Egypt Iran Lebanon Syria Turkey
	Egypt	.	0	-0.917	0	1	.	-0.333	-1	-0.125	1
	Iran	0	.	-1	0	1	0.333	.	-1	-0.125	1
	Lebanon 0.917	1	.	1	1	1	1	.	1	1
	Syria	0	0	-1	.	0.917 0.125 0.125	-1	.	1
	Turkey	-1	-1	1	-0.917	.	-1	-1	-1	-1	.

Table 4 :

 4 The SWF and inequality index for the 48 linear extensions

				𝑆𝑊𝐹				Inequality index	
	𝑗\𝑗 ′	Egypt Iran Lebanon Syria Turkey Egypt Iran Lebanon Syria Turkey
	Egypt	.	0.5	1	0.292	0	.	0.813	0	1	1
	Iran	0.5	.	1	0.208	0	0.188	.	0	1	1
	Lebanon	0	0	.	0	0	1	1	.	1	1
	Syria	0.708 0.792	1	.	0	0	0	0	.	1
	Turkey	1	1	1	1	.	0	0	0	0	.

Table 4

 4 shows that, for instance, Syria appears to have higher social welfare and lower inequality as compared to Egypt in about 70.8% and 100% of the 48 linear extensions, respectively.Overall, results confirm the trends reported in Table3on the FOSD and Hammond dominance where Turkey appears to have the highest welfare and lowest inequality as compared to all other countries under all the 48 linear extensions, while Lebanon appears to have the lowest welfare and the highest inequality as compared to all other countries.

Table 5 :

 5 The SWF and inequality index under restriction 1 and restriction 2

				𝑆𝑊𝐹					Inequality index	
	𝑗\𝑗 ′	Egypt Iran Lebanon Syria Turkey Egypt Iran Lebanon Syria Turkey
	Egypt	.	1	1	0	0	.	0	0	1	1
	Iran	0	.	1	0	0	1	.	0	1	1
	Lebanon	0	0	.	0	0	1	1	.	1	1
	Syria	1	1	1	.	0	0	0	0	.	1
	Turkey	1	1	1	1	.	0	0	0	0	.
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