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Abstract

In the context of Multiple Criteria Decision Making, this paper studies the robustness

of the sign of nonadditivity index for subset of criteria in a Choquet integral model.

In the case where the set of alternatives is discrete, the use of the nonadditivity index

proposed in the literature often leads to interpretations which are not always robust.

Indeed, the sign of this nonadditivity index can depend on the arbitrary choice of a

numerical representation in the set of all numerical representations compatible with the

ordinal preferential information given by the Decision Maker. We characterize the ordinal

preferential information for which the problem appears. We also propose a linear program

allowing to test the non robustness of the sign of nonadditivity index for subset of criteria.

Keywords: Robustness, Nonadditivity index, Binary alternatives, Choquet integral

model, Numerical representation.

JEL Codes: C44

1. Introduction

The theory of value functions in Multiple Criteria Decision Making (MCDM), consists

in assigning a real number to each alternative, so that the order on the alternatives

induced by these real numbers is compatible with the ordinal preferential information of

the Decision Maker (DM). Preferential independence is a necessary condition for these

numbers to be obtained using an additive model2. But this property may not always be

satisfied13. In this case it therefore becomes interesting to use a more general models such

as the Choquet integral model. It was popularized by the work of Michel Grabisch9,11 and

is now considered as a central tool in MCDM when one wants to escape the preferential

independence hypothesis10,12,13. The use of Choquet integral requires that criteria are

“commensurate”14.
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When a set of ordinal preferential information is not compatible with an additive

model, it is common to interpret this situation by the existence of some interactions

between criteria. It is well known that the interaction among criteria caused by the

nonadditivity of a capacity can be measured by a cardinal probabilistic interaction index,

in particular the Shapley interaction index8,26. More details in the literature on axiomatic

properties of all kinds of cardinal probabilistic interaction indices can be found in4,5,6,10.

Besides the Shapley interaction index30 suggests to interpret this lack of compatibility

with an additive model using the notion of nonadditivity, which is the subject of this

paper.

After having modeled the preferences by a Choquet integral model, we are interested

to the interactions between criteria. For a subset of criteria, when its Shapley interaction

index is negative (resp. null, positive), it is usual to conclude that the interaction for this

set of criteria is negative (resp. null, positive). However, it is possible to build another

representation for which the conclusions are totally contradictory. Thus in17, we showed

that, in practice, when we elicit a capacity on the basis of preferential information, the

interaction is not easy to interpret and requires caution. The objective of this present

paper, is to extend this analysis to the nonadditivity index, which is used to take into

account some interaction phenomenon.

In the case where all the alternatives are binary, we characterize the ordinal preferential

information for which the use of the nonadditivity index proposed in the literature leads

to interpretations that are not robust. Since, in practice, wag only binary alternatives is

restrictive, so we propose a linear program, inspired by22, allowing to test whether the

interpretation of the nonadditivity index is ambiguous or not.

This paper is organized as follows. We recall in Section 2 some basic elements of

Choquet integral model in MCDM. In Section 3, we give an example to motivate the

introduction of the notion of necessary and possible nonadditivity. This notion is the

subject of Section 4. In Section 5, we give our main results. Section 6 proposes a linear

programming model allowing to test the existence of necessary and possible nonadditivity.

A final section concludes.

2. Notation and preliminaries

2.1. The framework

Let X be a set of alternatives evaluated on a set of n criteria N = {1, 2, . . . , n} (n ≥ 2).

For each subset A ⊆ N , throughout this paper we use the notation A ⊆≥t N (resp.

A ⊆=t N) if |A| ≥ t (resp. |A| = t), where t is an integer in {1, 2, . . . , n}. The set of all

alternatives X is assumed to be a subset of a Cartesian product X1 × . . . × Xn, where

Xi is the set of possible levels on criterion i ∈ N . The criteria are recoded numerically
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using, for all i ∈ N, a utility function ui from Xi to [0,+∞[. Using these functions, we

assume that the various recoded criteria are commensurate and, hence, the application of

the Choquet integral model is meaningful14.

As in21,23, we assume that the DM is able to identify on each criterion i ∈ N two

reference levels 0i and 1i:

• the level 0i in Xi is considered as a neutral level and we set ui(0i) = 0,

• the level 1i in Xi is considered as a good level and we set ui(1i) = 1.

For all x = (x1, . . . , xn) ∈ X and S ⊆ N, we will sometimes write u(x) as a shorthand for

(u1(x1), . . . , un(xn)) and we define the alternatives aS = (1S, 0−S) ∈ X such that ai = 1i

if i ∈ S and ai = 0i otherwise. We shall often work on the set Bg which we define as

follows.

Definition 1. The set of generalized binary alternatives is defined by:

Bg = {aS = (1S, 0−S) : S ⊆ N}.

2.2. Choquet integral

The Choquet integral3,8,10,13,19,24,29 is an aggregation function known in MCDM as a tool

generalizing the weighted arithmetic mean. The Choquet integral uses the notion of

capacity3,25 defined as a function µ from the power set 2N into [0, 1] such that:

• µ(∅) = 0,

• µ(N) = 1,

• ∀S, T ∈ 2N ,
[
S ⊆ T =⇒ µ(S) ≤ µ(T )

]
(monotonicity).

For an alternative x = (x1, . . . , xn) ∈ X, the expression of the Choquet integral w.r.t. the

capacity µ is given by:

Cµ

(
u(x)

)
= Cµ

(
u1(x1), . . . , un(xn)

)
=

n∑
i=1

[
uσ(i)(xσ(i))− uσ(i−1)(xσ(i−1))

]
µ
(
Nσ(i)

)
,

where σ is a permutation on N such that: Nσ(i) = {σ(i), . . . , σ(n)}, uσ(0)(xσ(0)) = 0 and

uσ(1)(xσ(1)) ≤ uσ(2)(xσ(2)) ≤ . . . ≤ uσ(n)(xσ(n)).

We often suppose that the DM gives his preferences by comparing some elements of Bg.

We then obtain the binary relations P and I defined as follows.

Definition 2. An ordinal preferential information {P, I} on Bg is given by:
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P = {(x, y) ∈ Bg× Bg: DM strictly prefers x to y},

I = {(x, y), (y, x) ∈ Bg× Bg: DM is indifferent between x and y}.

The next definition makes explicit the compatibility of {P, I} with a Choquet integral

model.

Definition 3. An ordinal preferential information {P, I} on X is representable by a

Choquet integral model if we can find a capacity µ such that: for all x, y ∈ X, we have,

xP y =⇒ Cµ

(
u(x)

)
> Cµ

(
u(y)

)
,

x I y =⇒ Cµ

(
u(x)

)
= Cµ

(
u(y)

)
.

The set of all capacities that can be used to represent the ordinal preferential infor-

mation {P, I} at hand will be denoted by CPref(P, I). When there is no ambiguity on the

underlying ordinal preferential information, we will simply write CPref.

As in [? ? ], we add to this ordinal preferential information a binary relation M modeling

the monotonicity relations between generalized binary alternatives, and allowing us to

ensure the satisfaction of the monotonicity condition:
[
S ⊆ T =⇒ µ(S) ≤ µ(T )

]
.

Definition 4. For all aS, aT ∈ Bg, aS M aT if
[
not(aS(P ∪ I)aT ) and S ⊇ T

]
.

Remark 1. For all S ⊆ N , we have Cµ(u(aS)) = µ(S).

Remark 2. For all S, T ⊆ N , we have aS M aT =⇒ Cµ(u(aS)) ≥ Cµ(u(aT )).

In the sequel, we need the following two basic definitions in graph theory20.

Definition 5. There exists a strict path in (P ∪M ∪ I), from x to y if there exists the

elements x0, x1, . . . , xr of Bg such that x = x0(P∪M∪I)x1(P∪M∪I) . . . (P∪M∪I)xr =

y and for a least one i ∈ {0, . . . , r − 1}, xi P xi+1. In this case, we note xTCP y.

We speak of a strict cycle when x = y.

Definition 6. x TCM∪I y if there exists elements x0, x1, . . . , xr of Bg such that

x = x0(M ∪ I)x1(M ∪ I) . . . (M ∪ I)xr = y. Hence, TCM∪I is the transitive closure of the

binary relation M ∪ I.

In the next subsection, we recall the definition of the nonadditivity index30.

2.3. Nonadditivity index

Our work is based on the nonadditivity index, for which the definition and axiomatic

properties can be found in30.
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Definition 7. For all A ⊆≥2 N, the nonadditivity index16,30,31 w.r.t. a capacity µ is

defined as follows:

ηµA =
1

2|A|−1 − 1

∑
(B,A\B)
∅⊊B⊊A

(
µ(A)− µ(B)− µ(A \B)

)
(1)

For all A ⊆≥2 N, for each partition (B,A \ B) of A with ∅ ⊊ B ⊊ A, we compute

the difference µ(A)−
(
µ(B) +µ(A \B)

)
. Thus ηµA corresponds to the arithmetic mean of

these differences over all such partitions.

Remark 3. We have ηµij = µij − µi − µj, therefore the nonadditivity index coincides with

the Shapley interaction index Iµij, for pairs {i, j}. We recall that, the Shapley interaction

index26 of A ⊆≥2 N is given by IµA =
∑

K⊆N\A

(n− |K| − |A|)!|K|!
(n− |A|+ 1)!

∑
L⊆A

(−1)|A|−|L|µ(K ∪L).

The following remark gives two equivalent expressions of ηµA that can be found on

pages 3 and 4 in30.

Remark 4. Given a capacity µ on N and A ⊆≥2 N , Equation (1) is equivalent to each

of Equations (2) and (3).

ηµA =
1

2|A| − 2

∑
∅⊊B⊊A

(
µ(A)− µ(B)− µ(A \B)

)
(2)

ηµA = µ(A)− 1

2|A|−1 − 1

∑
∅⊊B⊊A

µ(B) (3)

In the next section, we give an example, motivating the introduction of the concept

of necessary and possible nonadditivity.

3. A motivating example

This example is inspired by13. Four students are evaluated on three subjects Mathematics

(M), Statistics (S) and Language skills (L). All marks are taken from the same scale, from

0 to 1. The evaluations of these students are given in the Table 1.

1:Mathematics(M) 2:Language(L) 3: Statistics(S)

a 0.3 0.25 0.6

b 0.3 0.6 0.25

c 0.7 0.25 0.6

d 0.7 0.6 0.25

Table 1: Evaluations of the four students on the three criteria
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To select the best students, the Dean of the faculty expresses his/her preferences where

the notation xP y means x is strictly preferred to y.

For a student bad in Mathematics, Statistics is more important that Language, so that

aP b. (4)

For a student good in Mathematics, Language is more important that Statistics, so that

dP c. (5)

It is not possible to model the two preferences aP b and dP c by an arithmetic mean

model. Indeed let us denote by qM , qS and qL the weights associated to Mathematics,

Statistics and Language. We have:

aP b =⇒ uM(0.3)qM + uL(0.25)qL + uS(0.6)qS > uM(0.3)qM + uL(0.6)qL + uS(0.25)qS.

d P c =⇒ uM(0.7)qM + uL(0.6)qL + uS(0.25)qS > uM(0.7)qM + uL(0.25)qL + uS(0.6)qS.

Adding up the previous two inequalities leads to the contradiction 0 > 0.

Let us assume that the scale of evaluation [0, 1] corresponds to the utility function

associated to each subject, i.e., uM(0.3) = 0.3, uM(0.7) = 0.7, uL(0.25) = 0.25, uL(0.6) =

0.6, uS(0.25) = 0.25 and uS(0.6) = 0.6. In this case, the strict preferences aP b and dP c,

are now representable by a Choquet integral model w.r.t. any capacity given in Table 2.

We choose six capacities compatible with these preferences (Cap. for short in Table 2)

in order to illustrate the fact that the sign of nonadditivity index is strongly dependent

upon the chosen capacity.

In this example, the interpretation of the nonadditivity index between criteria is not

easy. For instance, the nonadditivity index between Language and Statistics, ηµLS, could

be strictly positive (Cap. 1, Cap. 3) or null (Cap. 5), or strictly negative (Cap. 2,

Cap. 4, Cap. 6). This conclusion is still valid concerning the nonadditivity index ηµMS

between Mathematics and Statistics, the nonadditivity index ηµML between Mathematics

and Language, the nonadditivity index ηµMLS between Mathematics, Language and Statis-

tics. Moreover, all nonadditivity indices are strictly positive w.r.t. Cap. 3 but strictly

negative w.r.t. Cap. 2.
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Cap. 1 Cap. 2 Cap. 3 Cap. 4 Cap. 5 Cap. 6

µM 0 0.5 0 0.7 0.6 0.6

µL 0 0.4 0 0.3 0.2 0.1

µS 0.4 0.6 0.5 0.5 0.4 0.4

µML 1 0.7 0.8 1 0.9 0.9

µMS 0.4 0.6 0.7 0.7 0.6 0.6

µLS 0.5 0.6 0.7 0.5 0.6 0.4

Cµ(a) 0.39 0.46 0.43 0.43 0.4 0.4

Cµ(b) 0.3 0.40 0.29 0.39 0.35 0.32

Cµ(c) 0.39 0.51 0.49 0.56 0.52 0.5

Cµ(d) 0.6 0.54 0.53 0.67 0.62 0.62

ηµML 1 −0.2 0.8 0 0.1 0.2

ηµMS 0 −0.5 0.2 −0.3 −0.4 −0.4

ηµLS 0.1 −0.4 0.2 −0.3 0 −0.1

ηµMLS 0.23 −0.13 0.1 −0.23 −0.1 0

Table 2: A set of six capacities compatible with the preferences aP b and dP c.

Depending on the choice of a capacity µ, the nonadditivity index can be null, or strictly

positive, or strictly negative. This leads us to the definition of the notion of necessary

and possible nonadditivity. This notion is similar at the notion of, necessary and pos-

sible interaction introduced in the case of a 2-additive Choquet integral model22, and is

somewhat similar to the notion of necessary and possible preference relations introduced

in robust ordinal regression7,15, replacing preferences with interaction indices.

4. Necessary and possible nonadditivity

The following definition of necessary and possible nonadditivity will be central in the rest

of this text.

Definition 8. Let A ⊆≥2 N and {P, I} an ordinal preferential information. We say that:

1. There exists a possible positive (resp. null, negative) nonadditivity for A if there

exists µ ∈ CPref such that ηµA > 0 (resp. ηµA = 0, ηµA < 0),

2. There exists a necessary positive (resp. null, negative) nonadditivity for A if ηµA > 0

(resp. ηµA = 0, ηµA < 0) for all µ ∈ CPref.
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Remark 5. Let A ⊆≥2 N .

• If there exists a necessary positive (resp. null, negative) nonadditivity for A, then

there exists a possible positive (resp. null, negative) nonadditivity for A.

• If there is no necessary positive (resp. null, negative) nonadditivity for A, then

there exists a possible negative or null (resp. positive or negative, positive or null)

nonadditivity for A.

If we have a possible but not necessary nonadditivity, then the interpretation of the

nonadditivity is difficult because it depends on the capacity chosen in CPref. Indeed, the

interpretation of the nonadditivity only makes sense in the case of the necessary.

In18, we treated the case where preferential information does not contains indifference.

The next section treats the second case. Under some conditions, positive and negative

nonadditivity are always possible.

5. Results when I is not empty

In the framework of generalized binary alternatives, we proved in17, that, an ordinal pref-

erential information {P, I} on Bg is representable by a Choquet integral model if and

only if the binary relation (P ∪M ∪ I) contains no strict cycle. In this section, we assume

that this condition holds and the set of ordinal preferential information {P, I} can contain

an indifference. Given a subset A ⊆≥2 N , Proposition 1 gives a sufficient condition on

{P, I} such that negative nonadditivity is always possible for A. Indeed, she shows that,

if the DM is not indifferent between the worst alternative a0 and another alternative, then

negative nonadditivity is always possible for A.

Proposition 1. Let {P, I} be an ordinal preferential information on Bg representable by

a Choquet integral model and A ⊆≥2 N . If for all i ∈ A, not(a0 TCM∪Iai), then there

exists a capacity µ ∈ CPref such that ηµA < 0.

Proof. Let A ⊆≥2 N , we assume that for all i ∈ A, not(a0 TCM∪Iai). Since {P, I} is

representable by a Choquet integral model, then (P ∪ M ∪ I) contains no strict cycle,

hence we can build a partition {B0,B1, . . . ,Bm} of Bg using a suitable topological sorting

on (P ∪M ∪ I) (see proof of Proposition 4 on17).

Let us define the capacity µ: 2N −→ [0, 1] as follows:

for all S ⊆ N , µ(S) =


0, if aS ∈ B0

ℓ+ 1

ℓ+ 2
, if aS ∈ Bℓ, ℓ ∈ {1, 2, . . . ,m− 1}

1, if aS ∈ Bm
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Let aS, aT ∈ Bg.

• If aS I aT , then aS, aT ∈ Bℓ, thus µ(S) = µ(T ).

• If aS P aT , then there exists r, q ∈ {0, 1, . . . ,m} such that aS ∈ Br, aT ∈ Bq

since {B0,B1, . . . ,Bm} is a partition of Bg. As aS P aT , then r > q. We have

Cµ(u(aS)) = µ(S) =
r + 1

r + 2
(if 1 ≤ r ≤ m− 1) or µ(S) = 1 (if r = m), we then have

Cµ(u(aS)) ≥
r + 1

r + 2
, since 1 ≥ r + 1

r + 2
.

• If q = 0, then Cµ(u(aT )) = Cµ(u(a0)) = µ(∅) = 0 <
r + 1

r + 2
≤ Cµ(u(aS)).

• If q ≥ 1, Cµ(u(aT )) = µ(T ) =
q + 1

q + 2
, since 1 ≤ q ≤ m − 1. But r > q

then
r + 1

r + 2
>

q + 1

q + 2
, since the sequence (fn)n∈N is strictly increasing, where

fn =
n+ 1

n+ 2
for all n ∈ N. Then Cµ(u(aS)) > Cµ(u(aT )).

Hence, in both cases we have Cµ(u(aS)) > Cµ(u(aT )). We deduce that µ ∈ CPref.

Let ∅ ⊊ B ⊊ A, as ∀i ∈ A, not(a0 TCM∪Iai), then ∀i ∈ A, we have ai /∈ B0, so aB /∈ B0.

Hence µ(B) ≥ ℓ+ 1

ℓ+ 2
with 1 ≤ ℓ ≤ m − 1. Thus µ(B) ≥ 2

3
>

1

2
, then

∑
∅⊊B⊊A

µ(B) >

1

2
(2|A| − 2) = 2|A|−1 − 1, i.e.,

1

2|A|−1 − 1

∑
∅⊊B⊊A

µ(B) > 1 ≥ µ(A). Thus ηµA < 0.

Remark 6. The sufficient condition of Proposition 1 is a necessary condition for A ⊆=2

N (see Proposition 2 below) but not necessary for A ⊆≥3 N . Indeed, let us consider

N = {1, 2, 3}, P = {(a13, a2)}, I = {(a0, a1)} and A = N . {P, I} is representable by the

capacity given by the Table 3.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

µ(S) 0 0.5 1 1 1 0.5 1

Table 3: A capacity µ ∈ CPref

We have 1 ∈ A and a0TCM∪Ia1, but η
µ
123 = 1− 1

3
(µ1+µ2+µ3+µ12+µ13+µ23) = −1

3
< 0.

Given {i, j} ⊆ N , the following Proposition 2 gives a necessary and sufficient condition

on {P, I} such that negative nonadditivity that is always possible for {i, j}.

Proposition 2. Let {P, I} be an ordinal preferential information on Bg representable by

a Choquet integral model and i, j ∈ N . There exists a capacity µ ∈ CPref such that ηµij < 0

if and only if not(a0 TCM∪Iai) and not(a0 TCM∪Iaj).

9



Proof. Let i, j ∈ N , we assume that {P, I} is representable by a Choquet integral model.

Necessity. Assume that there exists a capacity µ ∈ CPref such that ηµij < 0. If

a0 TCM∪I ai or a0 TCM∪I aj, then ηµij = µij − µj ≥ 0 or ηµij = µij − µi ≥ 0 respectively.

Therefore ηµij ≥ 0 in the both cases. Contradiction since we assume that ηµij < 0.

Sufficiency. According to the Proposition 1 it sufficient to consider A = {i, j}.

Let A ⊆≥2 N and ∅ ≠ B ⊊ A, suppose that DM is indifferent between alternatives aA

and aA\B. This would suggest that subset B is quite unimportant for the DM, so that aB

is indifferent with a0. We translate this idea by the following Definition 9.

Definition 9. Let A ⊆≥2 N . We call Monotonicity of Ordinal Preferential Information

for A, the following property (denoted A−MOPI): for all ∅ ≠ B ⊊ A,

aA ∼ aA\B =⇒ not(aB TCP a0).

Given a subset A ⊆≥2 N , the Proposition 3 gives a sufficient condition on {P, I} such

that null or positive nonadditivity that is always possible for A.

Proposition 3. Let {P, I} be an ordinal preferential information on Bg representable by

a Choquet integral model. Let A ⊆≥2 N . If the A-MOPI property is satisfied, then there

exists a capacity µ ∈ CPref such that ηµA ≥ 0.

Proof. Since {P, I} is representable by a Choquet integral model, then (P ∪M ∪ I) con-

tains no strict cycle, hence we can build a partition {B0,B1, . . . ,Bm} of Bg using a suitable

topological sorting on (P ∪ M ∪ I) (see proof of Proposition 4 on17). Let us define the

capacity µ: 2N −→ [0, 1] as follows:

for all S ⊆ N, µ(S) =

 0, if aS ∈ B0

(2n)ℓ

(2n)m
, if aS ∈ Bℓ, ℓ ∈ {1, 2, . . . ,m}

Let aS, aT ∈ Bg.

• If aS I aT , then aS, aT ∈ Bq, therefore µ(S) = µ(T ).

• If aS P aT , then aS ∈ Bq and aT ∈ Br with q > r. Therefore µ(S) =
(2n)q

(2n)m
and

µ(T ) = 0 (if r = 0) or µ(T ) =
(2n)r

(2n)m
(if r ≥ 1). But

(2n)q

(2n)m
> max

(
0,

(2n)r

(2n)m

)
since q > r ≥ 0, so µ(S) > µ(T ).

Hence, we have µ ∈ CPref.

Let A ⊆≥2 N , we consider the set Ψ = {∅ ≠ B ⊊ A : not(aA ∼ aB) and not(aA ∼ aA\B)}.
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We can write:

(2|A| − 2)ηµA =
∑

∅̸=B⊊A

(
µ(A)− µ(B)− µ(A \B)

)
=

∑
B∈Ψ

(
µ(A)− µ(B)− µ(A \B)

)
+

∑
B/∈Ψ

(
µ(A)− µ(B)− µ(A \B)

)
.

Let ∅ ≠ B ⊊ A. If B /∈ Ψ, then aA ∼ aB or aA ∼ aA\B, therefore we have
(
aA ∼ aB and

not(aA\B TCP a0)
)
or

(
aA ∼ aA\B and not(aB TCP a0)

)
since by hypothesis, the property

A-MOPI is satisfied. Thus,
(
µ(A) = µ(B) and µ(A \ B) = 0

)
or

(
µ(A) = µ(A \ B) and

µ(B) = 0
)
respectively, i.e., µ(A)− µ(B)− µ(A \ B) = 0 in the both cases, and we have∑

B/∈Ψ

(
µ(A)−µ(B)−µ(A\B)

)
= 0. Hence (2|A|−2)ηµA =

∑
B∈Ψ

(
µ(A)−µ(B)−µ(A\B)

)
.

• If Ψ = ∅, then (2|A| − 2)ηµA = 0, i.e., ηµA = 0.

• If Ψ ̸= ∅, then for allB ∈ Ψ, we have aB ∈ Br, aA\B ∈ Bs and aA ∈ Bq with q > r and

q > s. Hence µ(B) ≤ (2n)r, µ(A \ B) ≤ (2n)s and µ(A) = (2n)q = (2n)(2n)q−1 >

2(2n)q−1 = (2n)q−1+(2n)q−1 ≥ (2n)r+(2n)s since q−1 ≥ r and q−1 ≥ s. Therefore

µ(A) > (2n)r + (2n)s ≥ µ(B) + µ(A \ B), i.e., µ(A)− µ(B)− µ(A \ B) > 0 for all

B ∈ Ψ. Hence
∑
B∈Ψ

(
µ(A)− µ(B)− µ(A \B)

)
> 0, so ηµA > 0.

In the both case, we deduce that ηµA ≥ 0.

Remark 7. The sufficient condition of Proposition 3 is a necessary condition for A ⊆=2

N (see Theorem 4 in22) but not necessary for A ⊆≥3 N . Indeed, if we consider N =

{1, 2, 3}, P = {(a23, a1), (a3, a0)}, I = {(a12, a123)} and A = N . The ordinal preferential

information {P, I} is representable by the Choquet integral model w.r.t the capacity given

in the Table 4.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

µ(S) 0 0 0.5 1 0.5 0.5 1

Table 4: A capacity µ ∈ CPref

We have a12 ∼ a123 and a3 TCP a0 so the {1, 2, 3}−MOPI property is not satisfied, while

ηµ123 = 1− 1

3
(µ1 + µ2 + µ3 + µ12 + µ13 + µ23) =

1

6
≥ 0.

Given a subset A ⊆≥2 N , we are interested in the class of alternatives for which the DM

is neutral for all the criteria not belonging to A. The alternative aA is the best of them.

Proposition 4 shows that, if the DM is not indifferent between this best alternative aA

and another alternative aB (with B ⊊ A), then positive nonadditivity is always possible

for A.
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Proposition 4. Let {P, I} be an ordinal preferential information on Bg representable by

a Choquet integral model and A ⊆≥2 N . If for all i ∈ A, not(aA\{i} TCM∪I aA), then there

exists a capacity µ ∈ CPref such that ηµA > 0.

Proof. Let A ⊆≥2 N . We assume that for all i ∈ A, not(aA\{i} TCM∪I aA). We define the

set Ψ as in the proof of Proposition 3. Since, for all i ∈ A, not(aA\{i} TCM∪I aA), then

for all ∅ ⊊ B ⊊ A, we have not(aB ∼ aA) and not(aA\B ∼ aA). Therefore each subset

∅ ≠ B ⊊ A is an element of Ψ, hence Ψ ̸= ∅. According to the proof of Proposition 3, we

can build µ ∈ CPref such that ηµA > 0.

Remark 8. The sufficient condition of Proposition 4 is a necessary condition for A ⊆=2

N (see Proposition 5 below) but not necessary for A ⊆≥3 N . Indeed, let us consider

N = {1, 2, 3}, P = {(a12, a3)}, I = {(a13, a123)} and A = N . {P, I} is representable by

the capacity given by the Table 5.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

µ(S) 0 0 0 1 1 0 1

Table 5: A capacity µ ∈ CPref

We have 2 ∈ A and a13TCM∪Ia123, but η
µ
123 = 1− 1

3
(µ1+µ2+µ3+µ12+µ13+µ23) =

1

3
> 0.

Given a pair of criteria {i, j}, Proposition 5 gives a necessary and sufficient condition

on {P, I} such that positive nonadditivity that is always possible for {i, j}.

Proposition 5. Let {P, I} be an ordinal preferential information on Bg representable by

a Choquet integral model and i, j ∈ N . There exists a capacity µ ∈ CPref such that ηµij > 0

if and only if [not(ai TCM∪I aij) and not(aj TCM∪I aij)].

Proof. Let i, j ∈ N .

Necessity. Assume that there exists a capacity µ ∈ CPref such that ηµij > 0. If

ai TCM∪I aij or aj TCM∪I aij, then ηµij = −µj ≤ 0 or ηµij = −µi ≤ 0 respectively. Therefore

ηµij ≤ 0 in the both cases. Contradiction since we assume that ηµij > 0.

Sufficiency. According to the Proposition 4, it is sufficient to consider A = {i, j}.

The results of this section show that, under some conditions, it is possible to represent

the preferences of DM, in such a way as to have indices of nonadditivity with non-constant

sign. Therefore, the interpretation of nonadditivity between criteria requires caution.

All previous results are based on the set of generalized binary alternatives Bg. As this

set is restrictive in practice, we propose in the next section, a process based on linear

programming, allowing us to test the existence of a necessary positive (resp. negative)

nonadditivity for a subset of criteria A ⊆≥2 N .
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6. A LP model testing for necessary nonadditivity

In17 we proposed outside the framework of generalized binary alternatives, a linear pro-

gram allowing to test the existence of some necessary interactions when I = ∅. We show

how to test the existence necessary positive or negative nonadditivity on the basis of in-

formation given on a subset of X that is not necessarily Bg, when I = ∅.
We assume that the DM provides at least one strict preference, (i.e., P ̸= ∅) and an

indifference I relations on a subset of X. Our approach consists in testing first, the

compatibility of this ordinal preferential information with a Choquet integral model, and

then, in the second step, the existence of a necessary positive or negative nonadditivity

for a subset A ⊆≥2 N .

6.1. The process

Step 1. At this step, we test the compatibility of {P, I} with a Choquet integral. This

is similar to what is done in1,22. The following linear program LP1 models each prefer-

ence of P by introducing a non negative slack variable ε in the corresponding constraint

(Equation (1a)). The Equation (1c) (resp. (1d)) ensures the normalization (resp. mono-

tonicity) of capacity µ. The objective function Z1 maximizes the non negative variable ε

introduced in (1a).

Maximize Z1 = ε LP1

Subject to

Cµ(u(x))− Cµ(u(y)) ≥ ε ∀x, y ∈ X such that x P y (1a)

Cµ(u(x))− Cµ(u(y)) = 0 ∀x, y ∈ X such that x I y (1b)

µ(N) = 1 (1c)

µ(S ∪ {i}) ≥ µ(S) ∀S ⊊ N, ∀i ∈ N \ S. (1d)

ε ≥ 0

We have one of the following two cases:

1. If the linear program LP1 is not feasible or feasible with an optimal solution Z∗
1 = 0,

then there is no Choquet integral model compatible with {P, I}.

2. If the linear program LP1 is feasible with an optimal solution Z∗
1 > 0, then ordinal

information {P, I} is representable by a Choquet integral model.

Step 2. At this step, we suppose that the preference information {P, I} is representable

by a Choquet integral model, i.e., Z∗
1 > 0. In order to know if the nonadditivity index

for subset of criteria A is necessarily negative, at LP1, we add the constraint (1e) and we

obtain the following linear program denoted by LPA
NN .

13



Maximize Z2 = ε LPA
NN

Subject to

Cµ(u(x))− Cµ(u(y)) ≥ ε ∀x, y ∈ X such that x P y (1a)

Cµ(u(x))− Cµ(u(y)) = 0 ∀x, y ∈ X such that x I y (1b)

µ(N) = 1 (1c)

µ(S ∪ {i}) ≥ µ(S) ∀S ⊊ N, ∀i ∈ N \ S (1d)

ε ≥ 0

ηµA ≥ 0. (1e)

To know if the nonadditivity index for subset of criteria A is necessarily positive, we

change the constraint (1e) by ηµA ≤ 0 and we obtain the linear program denoted LPA
NP .

After a resolution of the linear programs, we have one of the following three possible

conclusions:

1. If LPA
NN (resp. LPA

NP ) is not feasible, then there is a necessary negative (resp.

positive) nonadditivity index for the subset A. Indeed, as the program LP1 is

feasible with an optimal solution Z∗
1 > 0, the contradiction about the representation

of {P, I} only comes from the introduction of the constraint ηµA ≥ 0 (resp. ηµA ≤ 0).

2. If LPA
NN (resp. LPA

NP ) is feasible and the optimal solution Z∗
2 = 0, then the

constraint Cµ(u(x)) − Cµ(u(y)) ≥ ε ∀x, y ∈ X such that xP y is satisfied with

ε = 0, i.e., it is not possible to model strict preference by adding the constraint

ηµA ≥ 0 (resp. ηµA ≤ 0) in LPA
NN (resp. LPA

NP ). Therefore, we can conclude that

there is a necessary negative (resp. positive) nonadditivity index for A.

3. If LPA
NN (resp. LPA

NP ) is feasible and the optimal solution Z∗
2 > 0, then there is no

necessary negative (resp. positive) nonadditivity index for A.

Note that this process can be done in three steps22. This way of doing it saves from

having to specify an arbitrary parameter ε. But here we chose to do it in two steps.

For each of the previous linear programs, we have n(2n−1−1) monotonicity constraints.

Furthermore, the Table 6 gives an idea of the decision variables and Table 7 gives an idea

of number of variables and number of monotonicity constraints.

Decision variables

LP1 ε, µ(S) (∅ ⊊ S ⊊ N)

LPA
NN ε, µ(S) (∅ ⊊ S ⊊ N)

LPA
NP ε, µ(S) (∅ ⊊ S ⊊ N)

Table 6: Decision variables
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Number of variables µ(S) Number of constraints of monotonicity

n = 3 6 9

n = 4 14 28

n = 5 30 75

n = 6 62 186

n = 7 126 441

n = 8 254 1 016

n = 9 510 2 295

n = 10 1 022 5 110

n = 11 2 046 11 253

n = 12 4 094 24 564

Table 7: Number of variables µ(S) and number of monotonicity constraints with 3 ≤ n ≤ 12

In practice, the number of criteria generally does not exceed 12. Thus, with a standard

LP solver, we are able to deal with these linear programs.

6.2. Example

In this section, we illustrate our decision procedure with an example given by Brice Mayag

in21. Six young artists without a producer take part in a high-audience singing competition

program, where a winner will see his/her work produced by a famous record company.

Each candidate performs, in front of a jury his own song. The jury is subdivided into

three groups: a group of choreography professionals, another of professional singers and

vocals, and the last group is formed by professional musicians. The following three criteria

are used to classify candidates.

1. Choreography: the choreography chosen by the candidate during his performance.

Evaluations are given as a number of vertical bars |. There are four members of the

sub jury and each marks from 0 to 5 bars. The best candidate in choreography will

be the one who will collect the greatest number of bars.

2. Singing: the quality of the song performed, taking into account the voice of the

performer. The Singing sub jury evaluates the candidates in a classic way, assigning

them marks between 0 and 20. The best candidate in singing will be the one who

will collect the greatest number of marks.

3. Music: the quality of the music used to accompany the chosen song. The ability to

play musical instruments is also taken into account at this level. The evaluations

are given between 0 and 100. The best candidate in music will be the one who will

collect the greatest number of marks.
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The evaluations obtained by the candidates are given in the Table 8.

Candidates 1: Choreography 2: Singing 3: Music

a: Anita ||||| || 17 70

b: Bertrand ||||| |||| 17 60

c: Carine ||||| || 8 70

d: Didier ||||| |||| 8 60

e: Elise ||||| ||||| | 10 45

f : Fabien ||||| ||||| || 10 45

Table 8: Evaluation matrix

In this example we have N = {1, 2, 3} and X = {a, b, c, d, e, f}. To choose the

winner, the jury establishes the following two rules:

• When two candidates have good marks in singing and in music, the jury will prefer

the one who has a better evaluation in choreography, even if it means being less

good in singing or in music. Therefore he strictly prefers b to a.

• When two candidates have a poor performance in singing, the jury will prefer the

one who has the best rating in music. Therefore he strictly prefers c to d.

Besides, the jury finding the evaluations of candidates e and f very similar, considers them

indifferent. The ordinal preferential information on X provided by the jury will therefore

consist of the four following binaries relations P = {(b, a), (c, d)}, I = {(e, f), (f, e)}
To apply the Choquet integral to our example, we need to define commensurable scales.

We assume that the construction of the utility functions u1, u2 and u3 is done simply

by normalization the evaluations according to each criterion by reducing them to marks

between 0 and 20. Thus, the evaluations of the choreography criterion will be done by

counting just the number of bars obtained by each candidate. On the music criterion, the

evaluations will be normalized by a division by 5. We then obtain the Table 9.

1 2 3

ui(a) 7 17 14

ui(b) 9 17 12

ui(c) 7 8 14

ui(d) 9 8 12

ui(e) 11 10 9

ui(f) 12 10 9

Table 9: Utility function ui scaled between 0 and 20
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Step 1. The linear program corresponding to the test of the existence of a capacity µ

compatible with {P, I} is the following.

Maximize Z1 = ε LP1

Subject to

Cµ(u(b))− Cµ(u(a)) ≥ ε

Cµ(u(c))− Cµ(u(d)) ≥ ε

Cµ(u(e))− Cµ(u(f)) + α+
ef − α−

ef = 0

Cµ(u(a)) = 7 + 7µ23 + 3µ2

Cµ(u(b)) = 9 + 3µ23 + 5µ2

Cµ(u(c)) = 7 + µ23 + 6µ3

Cµ(u(d)) = 8 + µ13 + 3µ3

Cµ(u(e)) = 9 + µ12 + µ1

Cµ(u(f)) = 9 + µ12 + 2µ1

µ1 ≥ 0; µ2 ≥ 0; µ3 ≥ 0

µ12 ≥ µ1; µ12 ≥ µ2; µ13 ≥ µ1; µ13 ≥ µ3; µ23 ≥ µ2; µ23 ≥ µ3

µ123 ≥ µ12; µ123 ≥ µ13; µ123 ≥ µ23

µ123 = 1

ε ≥ 0.

The linear program LP1 is feasible with an optimal solution Z∗
1 = 0.8 > 0, then we can

conclude that, {P, I} is representable by a Choquet integral model.

Step 2. In order to know if the nonadditivity for {1, 2, 3} is necessarily negative (resp.

positive). We obtain the LP 123
NN (resp. LP 123

NP ) by adding at the previous linear program

LP1 the constraints η
µ
123 ≥ 0 (resp. ηµ123 ≤ 0) with ηµ123 = 1−1

3
(µ12+µ13+µ23+µ1+µ2+µ3).

• The linear program LP 123
NN is feasible with an optimal solution Z∗

2 = 0.8 > 0. Then

the nonadditivity for {Choreography, Singing, Music} is not necessarily negative.

Moreover, the results obtained by solving LP 123
NN are given by the Tables 10 and 11

(with ηµ123 = 0.3 > 0).

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

µ(S) 0 0.4 0.4 0.5 0.4 0.4 1

Table 10: A capacity µ ∈ CPref

x a b c d e f

Cµ(u(x)) 11 12.2 9.8 9.6 9.5 9.5

Table 11: Choquet integral corresponding at the capacity µ of Table 10
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• The linear program LP 123
NP is feasible with an optimal solution Z∗

2 = 0.8 > 0. Then

the nonadditivity for {Choreography, Singing, Music} is not necessarily positive.

Moreover, the results obtained by solving LP 123
NP are given by the Tables 12 and 13

(with ηµ123 = −0.2 < 0).

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

µ(S) 0 0.7 0.7 0.8 0.7 0.7 1

Table 12: A capacity µ ∈ CPref

x a b c d e f

Cµ(u(x)) 14 14.6 11.9 10.8 9.8 9.8

Table 13: Choquet integral corresponding at the capacity µ of Table 12

7. Conclusion

In the Choquet integral model, the capacity elicited to represent the preferences of the

decision maker is not likely to be unique. This contrasts with the “continuous case”

studied in27,28. This non-uniqueness complicates the interpretation of the nonadditivity

index. Indeed, we give some examples in which the sign of the nonadditivity index de-

pends upon the arbitrary choice of a capacity within the set of all capacities compatible

with the preferences that were obtained. We define the concept of necessary and possible

nonadditivity. This concept is similar at necessary and possible interaction, introduced

in22 in the case of 2-additive capacities. Necessary nonadditivity is the only nonadditivity

that can safely be interpreted since its sign does not vary within the set of all compati-

ble capacities. We have given conditions under which preferences on binary alternatives

can be represented using a capacity in a Choquet integral model. We do the same by

adding the extra conditions so that one of the representative capacities induces strictly

positive nonadditivity indices for all groups of criteria, and another representative capaci-

ties induces strictly negative nonadditivity indices for all groups of criteria. These results

show that, in practice, when we elicit a capacity on the basis of preferential information,

it is not easy to interpret what we find using the nonadditivity index. Therefore, the

interpretation of nonadditivity between criteria requires caution.

Our results leave some important questions open. The first one would be to develop

tools allowing to analyze “necessary nonadditivity” for a large class of aggregation models,

including the Choquet integral model. The second would be to study of aggregation

models using bipolar scales10.
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