Paul Alain Kaldjob Kaldjob 
email: paul-alain.kaldjob-kaldjob@dauphine.psl.eu
  
Brice Mayag 
email: brice.mayag@dauphine.psl.eu
  
Denis Bouyssou 
email: bouyssou@lamsade.dauphine.fr
  
On the robustness of the sign of nonadditivity index in a Choquet integral model

Keywords: Robustness, Nonadditivity index, Binary alternatives, Choquet integral model, Numerical representation

In the context of Multiple Criteria Decision Making, this paper studies the robustness of the sign of nonadditivity index for subset of criteria in a Choquet integral model. In the case where the set of alternatives is discrete, the use of the nonadditivity index proposed in the literature often leads to interpretations which are not always robust. Indeed, the sign of this nonadditivity index can depend on the arbitrary choice of a numerical representation in the set of all numerical representations compatible with the ordinal preferential information given by the Decision Maker. We characterize the ordinal preferential information for which the problem appears. We also propose a linear program allowing to test the non robustness of the sign of nonadditivity index for subset of criteria.

Introduction

The theory of value functions in Multiple Criteria Decision Making (MCDM), consists in assigning a real number to each alternative, so that the order on the alternatives induced by these real numbers is compatible with the ordinal preferential information of the Decision Maker (DM). Preferential independence is a necessary condition for these numbers to be obtained using an additive model 2 . But this property may not always be satisfied [START_REF] Grabisch | Fuzzy Measures and Integrals in MCDA[END_REF] . In this case it therefore becomes interesting to use a more general models such as the Choquet integral model. It was popularized by the work of Michel Grabisch [START_REF] Grabisch | Fuzzy integral in multicriteria decision making[END_REF][START_REF] Grabisch | The application of fuzzy integrals in multicriteria decision making[END_REF] and is now considered as a central tool in MCDM when one wants to escape the preferential independence hypothesis [START_REF] Grabisch | Set Functions, Games and Capacities in Decision Making[END_REF][START_REF] Grabisch | A decade of application of the Choquet and Sugeno integrals in multi-criteria decision aid[END_REF][START_REF] Grabisch | Fuzzy Measures and Integrals in MCDA[END_REF] . The use of Choquet integral requires that criteria are "commensurate" [START_REF] Grabisch | On the extension of pseudo-Boolean functions for the aggregation of interacting criteria[END_REF] .

When a set of ordinal preferential information is not compatible with an additive model, it is common to interpret this situation by the existence of some interactions between criteria. It is well known that the interaction among criteria caused by the nonadditivity of a capacity can be measured by a cardinal probabilistic interaction index, in particular the Shapley interaction index [START_REF] Grabisch | k-order additive discrete fuzzy measures and their representation[END_REF][START_REF] Shapley | A Value for n-Person Games[END_REF] . More details in the literature on axiomatic properties of all kinds of cardinal probabilistic interaction indices can be found in [START_REF] Fujimoto | Cardinal-Probabilistic Interaction Indices and their Applications: A Survey[END_REF][START_REF] Fujimoto | Representations of Importance and Interaction of Fuzzy Measures, Capacities, Games and Its Extensions: A Survey[END_REF][START_REF] Fujimoto | Axiomatic characterizations of probabilistic and cardinal-probabilistic interaction indices[END_REF][START_REF] Grabisch | Set Functions, Games and Capacities in Decision Making[END_REF] . Besides the Shapley interaction index [START_REF] Wu | Nonadditivity index and capacity identification method in the context of multicriteria decision making[END_REF] suggests to interpret this lack of compatibility with an additive model using the notion of nonadditivity, which is the subject of this paper.

After having modeled the preferences by a Choquet integral model, we are interested to the interactions between criteria. For a subset of criteria, when its Shapley interaction index is negative (resp. null, positive), it is usual to conclude that the interaction for this set of criteria is negative (resp. null, positive). However, it is possible to build another representation for which the conclusions are totally contradictory. Thus in [START_REF] Kaldjob Kaldjob | A characterization of necessary and possible interaction among more than two criteria in a Choquet integral model[END_REF] , we showed that, in practice, when we elicit a capacity on the basis of preferential information, the interaction is not easy to interpret and requires caution. The objective of this present paper, is to extend this analysis to the nonadditivity index, which is used to take into account some interaction phenomenon.

In the case where all the alternatives are binary, we characterize the ordinal preferential information for which the use of the nonadditivity index proposed in the literature leads to interpretations that are not robust. Since, in practice, wag only binary alternatives is restrictive, so we propose a linear program, inspired by [START_REF] Mayag | Necessary and possible interaction between criteria in a 2-additive Choquet integral model[END_REF] , allowing to test whether the interpretation of the nonadditivity index is ambiguous or not.

This paper is organized as follows. We recall in Section 2 some basic elements of Choquet integral model in MCDM. In Section 3, we give an example to motivate the introduction of the notion of necessary and possible nonadditivity. This notion is the subject of Section 4. In Section 5, we give our main results. Section 6 proposes a linear programming model allowing to test the existence of necessary and possible nonadditivity. A final section concludes.

Notation and preliminaries

The framework

Let X be a set of alternatives evaluated on a set of n criteria N = {1, 2, . . . , n} (n ≥ 2). For each subset A ⊆ N , throughout this paper we use the notation

A ⊆ ≥t N (resp. A ⊆ =t N ) if |A| ≥ t (resp. |A| = t)
, where t is an integer in {1, 2, . . . , n}. The set of all alternatives X is assumed to be a subset of a Cartesian product X 1 × . . . × X n , where X i is the set of possible levels on criterion i ∈ N . The criteria are recoded numerically using, for all i ∈ N, a utility function u i from X i to [0, +∞[. Using these functions, we assume that the various recoded criteria are commensurate and, hence, the application of the Choquet integral model is meaningful [START_REF] Grabisch | On the extension of pseudo-Boolean functions for the aggregation of interacting criteria[END_REF] .

As in [START_REF] Mayag | Elaboration d'une démarche constructive prenant en compte les interactions entre critères en aide multicritère à la décision[END_REF][START_REF] Mayag | A representation of preferences by the Choquet integral with respect to a 2-additive capacity[END_REF] , we assume that the DM is able to identify on each criterion i ∈ N two reference levels 0 i and 1 i :

• the level 0 i in X i is considered as a neutral level and we set u i (0 i ) = 0,

• the level 1 i in X i is considered as a good level and we set u i (1 i ) = 1.

For all x = (x 1 , . . . , x n ) ∈ X and S ⊆ N, we will sometimes write u(x) as a shorthand for (u 1 (x 1 ), . . . , u n (x n )) and we define the alternatives a S = (1 S , 0 -S ) ∈ X such that a i = 1 i if i ∈ S and a i = 0 i otherwise. We shall often work on the set B g which we define as follows.

Definition 1. The set of generalized binary alternatives is defined by:

B g = {a S = (1 S , 0 -S ) : S ⊆ N }.

Choquet integral

The Choquet integral [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Grabisch | k-order additive discrete fuzzy measures and their representation[END_REF][START_REF] Grabisch | Set Functions, Games and Capacities in Decision Making[END_REF][START_REF] Grabisch | Fuzzy Measures and Integrals in MCDA[END_REF][START_REF] Keikha | An Approach Based on Combining Choquet Integral and TOPSIS Methods to Uncertain MAGDM Problems[END_REF][START_REF] Olgun | A Cosine Similarity Measure Based on the Choquet Integral for Intuitionistic Fuzzy Sets and Its Applications to Pattern Recognition[END_REF][START_REF] Ünver | Cosine and Cotangent Similarity Measures Based on Choquet Integral for Spherical Fuzzy Sets and Applications to Pattern Recognition[END_REF] is an aggregation function known in MCDM as a tool generalizing the weighted arithmetic mean. The Choquet integral uses the notion of capacity [START_REF] Choquet | Theory of capacities[END_REF][START_REF] Pignon | A methodological approach for operational and technical experimentation based evaluation of systems of systems architectures[END_REF] defined as a function µ from the power set 2 N into [0, 1] such that:

• µ(∅) = 0, • µ(N ) = 1, • ∀S, T ∈ 2 N , S ⊆ T =⇒ µ(S) ≤ µ(T ) (monotonicity).
For an alternative x = (x 1 , . . . , x n ) ∈ X, the expression of the Choquet integral w.r.t. the capacity µ is given by:

C µ u(x) = C µ u 1 (x 1 ), . . . , u n (x n ) = n i=1 u σ(i) (x σ(i) ) -u σ(i-1) (x σ(i-1) ) µ N σ(i) ,
where σ is a permutation on N such that:

N σ(i) = {σ(i), . . . , σ(n)}, u σ(0) (x σ(0) ) = 0 and u σ(1) (x σ(1) ) ≤ u σ(2) (x σ(2) ) ≤ . . . ≤ u σ(n) (x σ(n) ).
We often suppose that the DM gives his preferences by comparing some elements of B g . We then obtain the binary relations P and I defined as follows.

Definition 2. An ordinal preferential information {P, I} on B g is given by: P = {(x, y) ∈ B g × B g : DM strictly prefers x to y}, I = {(x, y), (y, x) ∈ B g × B g : DM is indifferent between x and y}.

The next definition makes explicit the compatibility of {P, I} with a Choquet integral model. Definition 3. An ordinal preferential information {P, I} on X is representable by a Choquet integral model if we can find a capacity µ such that: for all x, y ∈ X, we have,

x P y =⇒ C µ u(x) > C µ u(y) , x I y =⇒ C µ u(x) = C µ u(y) .
The set of all capacities that can be used to represent the ordinal preferential information {P, I} at hand will be denoted by C Pref (P, I). When there is no ambiguity on the underlying ordinal preferential information, we will simply write C Pref . As in [? ? ], we add to this ordinal preferential information a binary relation M modeling the monotonicity relations between generalized binary alternatives, and allowing us to ensure the satisfaction of the monotonicity condition: S ⊆ T =⇒ µ(S) ≤ µ(T ) . Definition 4. For all a S , a T ∈ B g , a S M a T if not(a S (P ∪ I)a T ) and S ⊇ T . Remark 1. For all S ⊆ N , we have C µ (u(a S )) = µ(S).

Remark 2. For all S, T ⊆ N , we have a S M a T =⇒ C µ (u(a S )) ≥ C µ (u(a T )).

In the sequel, we need the following two basic definitions in graph theory [START_REF] Lidl | Applied Abstract Algebra[END_REF] . Definition 5. There exists a strict path in (P ∪ M ∪ I), from x to y if there exists the elements x 0 , x 1 , . . . , x r of B g such that x = x 0 (P ∪M ∪I)x 1 (P ∪M ∪I) . . . (P ∪M ∪I)x r = y and for a least one i ∈ {0, . . . , r -1}, x i P x i+1 . In this case, we note x T C P y. We speak of a strict cycle when x = y. Definition 6. x T C M ∪I y if there exists elements x 0 , x 1 , . . . , x r of B g such that

x = x 0 (M ∪ I)x 1 (M ∪ I) . . . (M ∪ I)x r = y. Hence, T C M ∪I is the transitive closure of the binary relation M ∪ I.
In the next subsection, we recall the definition of the nonadditivity index 30 .

Nonadditivity index

Our work is based on the nonadditivity index, for which the definition and axiomatic properties can be found in [START_REF] Wu | Nonadditivity index and capacity identification method in the context of multicriteria decision making[END_REF] .

Definition 7. For all A ⊆ ≥2 N, the nonadditivity index [START_REF] Huang | Nonadditivity Index Based Quasi-Random Generation of Capacities and Its Application in Comprehensive Decision Aiding[END_REF][START_REF] Wu | Nonadditivity index and capacity identification method in the context of multicriteria decision making[END_REF][START_REF] Wu | Nonadditivity Index Oriented Decision Preference Information Representation and Capacity Identification[END_REF] w.r.t. a capacity µ is defined as follows:

η µ A = 1 2 |A|-1 -1 (B, A\B) ∅⊊B⊊A µ(A) -µ(B) -µ(A \ B) (1) 
For all A ⊆ ≥2 N, for each partition (B, A \ B) of A with ∅ ⊊ B ⊊ A, we compute the difference µ(A) -µ(B) + µ(A \ B) . Thus η µ A corresponds to the arithmetic mean of these differences over all such partitions. Remark 3. We have η µ ij = µ ij -µ i -µ j , therefore the nonadditivity index coincides with the Shapley interaction index I µ ij , for pairs {i, j}. We recall that, the Shapley interaction index [START_REF] Shapley | A Value for n-Person Games[END_REF] of A ⊆ ≥2 N is given by

I µ A = K⊆N \A (n -|K| -|A|)!|K|! (n -|A| + 1)! L⊆A (-1) |A|-|L| µ(K ∪ L).
The following remark gives two equivalent expressions of η µ A that can be found on pages 3 and 4 in 30 .

Remark 4. Given a capacity µ on N and A ⊆ ≥2 N , Equation (1) is equivalent to each of Equations (2) and (3).

η µ A = 1 2 |A| -2 ∅⊊B⊊A µ(A) -µ(B) -µ(A \ B) (2) 
η µ A = µ(A) - 1 2 |A|-1 -1 ∅⊊B⊊A µ(B) (3) 
In the next section, we give an example, motivating the introduction of the concept of necessary and possible nonadditivity.

A motivating example

This example is inspired by [START_REF] Grabisch | Fuzzy Measures and Integrals in MCDA[END_REF] . Four students are evaluated on three subjects Mathematics (M), Statistics (S) and Language skills (L). All marks are taken from the same scale, from 0 to 1. The evaluations of these students are given in the Table 1 To select the best students, the Dean of the faculty expresses his/her preferences where the notation x P y means x is strictly preferred to y. For a student bad in Mathematics, Statistics is more important that Language, so that a P b.

(4)

For a student good in Mathematics, Language is more important that Statistics, so that

d P c. (5) 
It is not possible to model the two preferences a P b and d P c by an arithmetic mean model. Indeed let us denote by q M , q S and q L the weights associated to Mathematics, Statistics and Language. We have:

a P b =⇒ u M (0.3)q M + u L (0.25)q L + u S (0.6)q S > u M (0.3)q M + u L (0.6)q L + u S (0.25)q S . d P c =⇒ u M (0.7)q M + u L (0.6)q L + u S (0.25)q S > u M (0.7)q M + u L (0.25)q L + u S (0.6)q S .
Adding up the previous two inequalities leads to the contradiction 0 > 0.

Let us assume that the scale of evaluation [0, 1] corresponds to the utility function associated to each subject, i.e., u M (0.3) = 0.3, u M (0.7) = 0.7, u L (0.25) = 0.25, u L (0.6) = 0.6, u S (0.25) = 0.25 and u S (0.6) = 0.6. In this case, the strict preferences a P b and d P c, are now representable by a Choquet integral model w.r.t. any capacity given in Table 2. We choose six capacities compatible with these preferences (Cap. for short in Table 2) in order to illustrate the fact that the sign of nonadditivity index is strongly dependent upon the chosen capacity.

In this example, the interpretation of the nonadditivity index between criteria is not easy. For instance, the nonadditivity index between Language and Statistics, η µ LS , could be strictly positive (Cap. 1, Cap. 3) or null (Cap. 5), or strictly negative (Cap. Depending on the choice of a capacity µ, the nonadditivity index can be null, or strictly positive, or strictly negative. This leads us to the definition of the notion of necessary and possible nonadditivity. This notion is similar at the notion of, necessary and possible interaction introduced in the case of a 2-additive Choquet integral model [START_REF] Mayag | Necessary and possible interaction between criteria in a 2-additive Choquet integral model[END_REF] , and is somewhat similar to the notion of necessary and possible preference relations introduced in robust ordinal regression [START_REF] Giarlotta | Necessary and possible preference structures[END_REF][START_REF] Greco | Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions[END_REF] , replacing preferences with interaction indices.

η µ M L 1 -0.2 0.8 0 0.1 0.2 η µ M S 0 -0.5 0.2 -0.3 -0.4 -0.4 η µ LS 0.1 -0.4 0.2 -0.3 0 -0.1 η µ M LS 0.23 -0.13 0.1 -0.23 -0.1 0 Table 2: A set

Necessary and possible nonadditivity

The following definition of necessary and possible nonadditivity will be central in the rest of this text.

Definition 8. Let A ⊆ ≥2 N and {P, I} an ordinal preferential information. We say that:

1. There exists a possible positive (resp. null, negative) nonadditivity for A if there exists µ ∈ C Pref such that η µ A > 0 (resp.

η µ A = 0, η µ A < 0), 2.
There exists a necessary positive (resp. null, negative) nonadditivity for

A if η µ A > 0 (resp. η µ A = 0, η µ A < 0) for all µ ∈ C Pref . Remark 5. Let A ⊆ ≥2 N .
• If there exists a necessary positive (resp. null, negative) nonadditivity for A, then there exists a possible positive (resp. null, negative) nonadditivity for A.

• If there is no necessary positive (resp. null, negative) nonadditivity for A, then there exists a possible negative or null (resp. positive or negative, positive or null) nonadditivity for A.

If we have a possible but not necessary nonadditivity, then the interpretation of the nonadditivity is difficult because it depends on the capacity chosen in C Pref . Indeed, the interpretation of the nonadditivity only makes sense in the case of the necessary.

In [START_REF] Kaldjob Kaldjob | Study of the Instability of the Sign of the Nonadditivity Index in a Choquet Integral Model[END_REF] , we treated the case where preferential information does not contains indifference. The next section treats the second case. Under some conditions, positive and negative nonadditivity are always possible.

Results when I is not empty

In the framework of generalized binary alternatives, we proved in [START_REF] Kaldjob Kaldjob | A characterization of necessary and possible interaction among more than two criteria in a Choquet integral model[END_REF] , that, an ordinal preferential information {P, I} on B g is representable by a Choquet integral model if and only if the binary relation (P ∪ M ∪ I) contains no strict cycle. In this section, we assume that this condition holds and the set of ordinal preferential information {P, I} can contain an indifference. Given a subset A ⊆ ≥2 N , Proposition 1 gives a sufficient condition on {P, I} such that negative nonadditivity is always possible for A. Indeed, she shows that, if the DM is not indifferent between the worst alternative a 0 and another alternative, then negative nonadditivity is always possible for A.

Proposition 1. Let {P, I} be an ordinal preferential information on B g representable by a Choquet integral model and A ⊆ ≥2 N . If for all i ∈ A, not(a 0 T C M ∪I a i ), then there exists a capacity µ ∈ C Pref such that η µ A < 0.

Proof. Let A ⊆ ≥2 N , we assume that for all i ∈ A, not(a 0 T C M ∪I a i ). Since {P, I} is representable by a Choquet integral model, then (P ∪ M ∪ I) contains no strict cycle, hence we can build a partition {B 0 , B 1 , . . . , B m } of B g using a suitable topological sorting on (P ∪ M ∪ I) (see proof of Proposition 4 on [START_REF] Kaldjob Kaldjob | A characterization of necessary and possible interaction among more than two criteria in a Choquet integral model[END_REF] ). Let us define the capacity µ: 2 N -→ [0, 1] as follows:

for all S ⊆ N , µ(S) =        0, if a S ∈ B 0 ℓ + 1 ℓ + 2 , if a S ∈ B ℓ , ℓ ∈ {1, 2, . . . , m -1} 1, if a S ∈ B m
Let a S , a T ∈ B g .

• If a S I a T , then a S , a T ∈ B ℓ , thus µ(S) = µ(T ).

• If a S P a T , then there exists r, q ∈ {0, 1, . . . , m} such that a S ∈ B r , a T ∈ B q since {B 0 , B 1 , . . . , B m } is a partition of B g . As a S P a T , then r > q. We have

C µ (u(a S )) = µ(S) = r + 1 r + 2 (if 1 ≤ r ≤ m -1) or µ(S) = 1 (if r = m), we then have C µ (u(a S )) ≥ r + 1 r + 2 , since 1 ≥ r + 1 r + 2 . • If q = 0, then C µ (u(a T )) = C µ (u(a 0 )) = µ(∅) = 0 < r + 1 r + 2 ≤ C µ (u(a S )). • If q ≥ 1, C µ (u(a T )) = µ(T ) = q + 1 q + 2 , since 1 ≤ q ≤ m -1. But r > q then r + 1 r + 2 > q + 1 q + 2
, since the sequence (f n ) n∈N is strictly increasing, where

f n = n + 1 n + 2 for all n ∈ N. Then C µ (u(a S )) > C µ (u(a T )).
Hence, in both cases we have

C µ (u(a S )) > C µ (u(a T )). We deduce that µ ∈ C Pref . Let ∅ ⊊ B ⊊ A, as ∀i ∈ A, not(a 0 T C M ∪I a i ), then ∀i ∈ A, we have a i / ∈ B 0 , so a B / ∈ B 0 . Hence µ(B) ≥ ℓ + 1 ℓ + 2 with 1 ≤ ℓ ≤ m -1. Thus µ(B) ≥ 2 3 > 1 2 , then ∅⊊B⊊A µ(B) > 1 2 (2 |A| -2) = 2 |A|-1 -1, i.e., 1 2 |A|-1 -1 ∅⊊B⊊A µ(B) > 1 ≥ µ(A). Thus η µ A < 0.
Remark 6. The sufficient condition of Proposition 1 is a necessary condition for A ⊆ =2 N (see Proposition 2 below) but not necessary for A ⊆ ≥3 N . Indeed, let us consider N = {1, 2, 3}, P = {(a 13 , a 2 )}, I = {(a 0 , a 1 )} and A = N . {P, I} is representable by the capacity given by the Table 3.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} µ(S) 0 0.5 1 1 1 0.5 1 Table 3: A capacity µ ∈ C Pref We have 1 ∈ A and a 0 T C M ∪I a 1 , but η µ 123 = 1- 1 3 (µ 1 +µ 2 +µ 3 +µ 12 +µ 13 +µ 23 ) = - 1 3 < 0.
Given {i, j} ⊆ N , the following Proposition 2 gives a necessary and sufficient condition on {P, I} such that negative nonadditivity that is always possible for {i, j}.

Proposition 2. Let {P, I} be an ordinal preferential information on B g representable by a Choquet integral model and i, j ∈ N . There exists a capacity µ ∈ C Pref such that η µ ij < 0 if and only if not(a 0 T C M ∪I a i ) and not(a 0 T C M ∪I a j ).

Proof. Let i, j ∈ N , we assume that {P, I} is representable by a Choquet integral model.

Necessity. Assume that there exists a capacity µ ∈ C Pref such that η µ ij < 0. If a 0 T C M ∪I a i or a 0 T C M ∪I a j , then η µ ij = µ ij -µ j ≥ 0 or η µ ij = µ ij -µ i ≥ 0 respectively. Therefore η µ ij ≥ 0 in the both cases. Contradiction since we assume that η µ ij < 0. Sufficiency. According to the Proposition 1 it sufficient to consider A = {i, j}.

Let A ⊆ ≥2 N and ∅ ̸ = B ⊊ A, suppose that DM is indifferent between alternatives a A and a A\B . This would suggest that subset B is quite unimportant for the DM, so that a B is indifferent with a 0 . We translate this idea by the following Definition 9. Definition 9. Let A ⊆ ≥2 N . We call Monotonicity of Ordinal Preferential Information for A, the following property

(denoted A -MOPI): for all ∅ ̸ = B ⊊ A, a A ∼ a A\B =⇒ not(a B T C P a 0 ).
Given a subset A ⊆ ≥2 N , the Proposition 3 gives a sufficient condition on {P, I} such that null or positive nonadditivity that is always possible for A. for all S ⊆ N, µ(S) =

   0, if a S ∈ B 0 (2n) ℓ (2n) m , if a S ∈ B ℓ , ℓ ∈ {1, 2, . . . , m} Let a S , a T ∈ B g .
• If a S I a T , then a S , a T ∈ B q , therefore µ(S) = µ(T ).

• If a S P a T , then a S ∈ B q and a T ∈ B r with q > r. Therefore µ(S) = (2n) q (2n) m and

µ(T ) = 0 (if r = 0) or µ(T ) = (2n) r (2n) m (if r ≥ 1). But (2n) q (2n) m > max 0, (2n) 
r (2n) m since q > r ≥ 0, so µ(S) > µ(T ).

Hence, we have µ ∈ C Pref . Let A ⊆ ≥2 N , we consider the set Ψ = {∅ ̸ = B ⊊ A : not(a A ∼ a B ) and not(a A ∼ a A\B )}.

We can write:

(2 |A| -2)η µ A = ∅̸ =B⊊A µ(A) -µ(B) -µ(A \ B) = B∈Ψ µ(A) -µ(B) -µ(A \ B) + B / ∈Ψ µ(A) -µ(B) -µ(A \ B) . Let ∅ ̸ = B ⊊ A. If B /
∈ Ψ, then a A ∼ a B or a A ∼ a A\B , therefore we have a A ∼ a B and not(a A\B T C P a 0 ) or a A ∼ a A\B and not(a B T C P a 0 ) since by hypothesis, the property A-MOPI is satisfied. Thus, µ(A) = µ(B) and µ(A \ B) = 0 or µ(A) = µ(A \ B) and µ(B) = 0 respectively, i.e., µ(A) -µ(B) -µ(A \ B) = 0 in the both cases, and we have

B / ∈Ψ µ(A) -µ(B) -µ(A \ B) = 0. Hence (2 |A| -2)η µ A = B∈Ψ µ(A) -µ(B) -µ(A \ B) . • If Ψ = ∅, then (2 |A| -2)η µ A = 0, i.e., η µ A = 0.
• If Ψ ̸ = ∅, then for all B ∈ Ψ, we have a B ∈ B r , a A\B ∈ B s and a A ∈ B q with q > r and q > s. Hence µ(B) ≤ (2n) r , µ(A \ B) ≤ (2n) s and µ(A) = (2n) q = (2n)(2n) q-1 > 2(2n) q-1 = (2n) q-1 +(2n) q-1 ≥ (2n) r +(2n) s since q -1 ≥ r and q -1 ≥ s. Therefore

µ(A) > (2n) r + (2n) s ≥ µ(B) + µ(A \ B), i.e., µ(A) -µ(B) -µ(A \ B) > 0 for all B ∈ Ψ. Hence B∈Ψ µ(A) -µ(B) -µ(A \ B) > 0, so η µ A > 0.
In the both case, we deduce that η µ A ≥ 0. 4.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} µ(S) 0 0 0.5 1 0.5 0.5 1 Table 4: A capacity µ ∈ C Pref
We have a 12 ∼ a 123 and a 3 T C P a 0 so the {1, 2, 3} -MOPI property is not satisfied, while

η µ 123 = 1 - 1 3 (µ 1 + µ 2 + µ 3 + µ 12 + µ 13 + µ 23 ) = 1 6 ≥ 0.
Given a subset A ⊆ ≥2 N , we are interested in the class of alternatives for which the DM is neutral for all the criteria not belonging to A. The alternative a A is the best of them. Proposition 4 shows that, if the DM is not indifferent between this best alternative a A and another alternative a B (with B ⊊ A), then positive nonadditivity is always possible for A. Proof. Let A ⊆ ≥2 N . We assume that for all i ∈ A, not(a A\{i} T C M ∪I a A ). We define the set Ψ as in the proof of Proposition 3. Since, for all i ∈ A, not(a A\{i} T C M ∪I a A ), then for all ∅ ⊊ B ⊊ A, we have not(a B ∼ a A ) and not(a A\B ∼ a A ). Therefore each subset ∅ ̸ = B ⊊ A is an element of Ψ, hence Ψ ̸ = ∅. According to the proof of Proposition 3, we can build µ ∈ C Pref such that η µ A > 0.

Remark 8. The sufficient condition of Proposition 4 is a necessary condition for A ⊆ =2 N (see Proposition 5 below) but not necessary for A ⊆ ≥3 N . Indeed, let us consider N = {1, 2, 3}, P = {(a 12 , a 3 )}, I = {(a 13 , a 123 )} and A = N . {P, I} is representable by the capacity given by the Table 5.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3} µ(S) 0 0 0 1 1 0 1 Table 5: A capacity µ ∈ C Pref We have 2 ∈ A and a 13 T C M ∪I a 123 , but η µ 123 = 1- 1 3 (µ 1 +µ 2 +µ 3 +µ 12 +µ 13 +µ 23 ) = 1 3 > 0.
Given a pair of criteria {i, j}, Proposition 5 gives a necessary and sufficient condition on {P, I} such that positive nonadditivity that is always possible for {i, j}.

Proposition 5. Let {P, I} be an ordinal preferential information on B g representable by a Choquet integral model and i, j ∈ N . There exists a capacity µ

∈ C Pref such that η µ ij > 0 if and only if [not(a i T C M ∪I a ij ) and not(a j T C M ∪I a ij )]. Proof. Let i, j ∈ N .
Necessity. Assume that there exists a capacity µ

∈ C Pref such that η µ ij > 0. If a i T C M ∪I a ij or a j T C M ∪I a ij , then η µ ij = -µ j ≤ 0 or η µ ij = -µ i ≤ 0 respectively. Therefore η µ
ij ≤ 0 in the both cases. Contradiction since we assume that η µ ij > 0. Sufficiency. According to the Proposition 4, it is sufficient to consider A = {i, j}.

The results of this section show that, under some conditions, it is possible to represent the preferences of DM, in such a way as to have indices of nonadditivity with non-constant sign. Therefore, the interpretation of nonadditivity between criteria requires caution.

All previous results are based on the set of generalized binary alternatives B g . As this set is restrictive in practice, we propose in the next section, a process based on linear programming, allowing us to test the existence of a necessary positive (resp. negative) nonadditivity for a subset of criteria A ⊆ ≥2 N .

A LP model testing for necessary nonadditivity

In [START_REF] Kaldjob Kaldjob | A characterization of necessary and possible interaction among more than two criteria in a Choquet integral model[END_REF] we proposed outside the framework of generalized binary alternatives, a linear program allowing to test the existence of some necessary interactions when I = ∅. We show how to test the existence necessary positive or negative nonadditivity on the basis of information given on a subset of X that is not necessarily B g , when I = ∅. We assume that the DM provides at least one strict preference, (i.e., P ̸ = ∅) and an indifference I relations on a subset of X. Our approach consists in testing first, the compatibility of this ordinal preferential information with a Choquet integral model, and then, in the second step, the existence of a necessary positive or negative nonadditivity for a subset A ⊆ ≥2 N .

The process

Step 1. At this step, we test the compatibility of {P, I} with a Choquet integral. This is similar to what is done in [START_REF] Angilella | Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem[END_REF][START_REF] Mayag | Necessary and possible interaction between criteria in a 2-additive Choquet integral model[END_REF] . The following linear program LP 1 models each preference of P by introducing a non negative slack variable ε in the corresponding constraint (Equation (1a)). The Equation (1c) (resp. (1d)) ensures the normalization (resp. monotonicity) of capacity µ. The objective function Z 1 maximizes the non negative variable ε introduced in (1a).

Maximize Z 1 = ε LP 1 Subject to C µ (u(x)) -C µ (u(y)) ≥ ε ∀x, y ∈ X such that x P y (1a) C µ (u(x)) -C µ (u(y)) = 0 ∀x, y ∈ X such that x I y (1b) µ(N ) = 1 (1c) µ(S ∪ {i}) ≥ µ(S) ∀S ⊊ N, ∀i ∈ N \ S. (1d) ε ≥ 0
We have one of the following two cases:

1. If the linear program LP 1 is not feasible or feasible with an optimal solution Z * 1 = 0, then there is no Choquet integral model compatible with {P, I}.

2. If the linear program LP 1 is feasible with an optimal solution Z * 1 > 0, then ordinal information {P, I} is representable by a Choquet integral model.

Step 2. At this step, we suppose that the preference information {P, I} is representable by a Choquet integral model, i.e., Z * 1 > 0. In order to know if the nonadditivity index for subset of criteria A is necessarily negative, at LP 1 , we add the constraint (1e) and we obtain the following linear program denoted by LP A N N .

Maximize

Z 2 = ε LP A N N Subject to C µ (u(x)) -C µ (u(y)) ≥ ε ∀x, y ∈ X such that x P y (1a) C µ (u(x)) -C µ (u(y)) = 0 ∀x, y ∈ X such that x I y (1b) µ(N ) = 1 (1c) µ(S ∪ {i}) ≥ µ(S) ∀S ⊊ N, ∀i ∈ N \ S (1d) ε ≥ 0 η µ A ≥ 0. ( 1e 
)
To know if the nonadditivity index for subset of criteria A is necessarily positive, we change the constraint (1e) by η µ A ≤ 0 and we obtain the linear program denoted LP A N P . After a resolution of the linear programs, we have one of the following three possible conclusions:

1. If LP A N N (resp. LP A N P ) is not feasible, then there is a necessary negative (resp. positive) nonadditivity index for the subset A. Indeed, as the program LP 1 is feasible with an optimal solution Z * 1 > 0, the contradiction about the representation of {P, I} only comes from the introduction of the constraint η µ A ≥ 0 (resp. η µ A ≤ 0).

If LP A

N N (resp. LP A N P ) is feasible and the optimal solution Z * 2 = 0, then the constraint C µ (u(x)) -C µ (u(y)) ≥ ε ∀x, y ∈ X such that x P y is satisfied with ε = 0, i.e., it is not possible to model strict preference by adding the constraint η µ A ≥ 0 (resp. η µ A ≤ 0) in LP A N N (resp. LP A N P ). Therefore, we can conclude that there is a necessary negative (resp. positive) nonadditivity index for A.

If LP A

N N (resp. LP A N P ) is feasible and the optimal solution Z * 2 > 0, then there is no necessary negative (resp. positive) nonadditivity index for A.

Note that this process can be done in three steps [START_REF] Mayag | Necessary and possible interaction between criteria in a 2-additive Choquet integral model[END_REF] . This way of doing it saves from having to specify an arbitrary parameter ε. But here we chose to do it in two steps.

For each of the previous linear programs, we have n(2 n-1 -1) monotonicity constraints. Furthermore, the Table 6 gives an idea of the decision variables and Table 7 gives an idea of number of variables and number of monotonicity constraints. In practice, the number of criteria generally does not exceed 12. Thus, with a standard LP solver, we are able to deal with these linear programs.

Decision variables

LP 1 ε, µ(S) (∅ ⊊ S ⊊ N ) LP A N N ε, µ(S) (∅ ⊊ S ⊊ N ) LP A N P ε, µ(S) (∅ ⊊ S ⊊ N )

Example

In this section, we illustrate our decision procedure with an example given by Brice Mayag in [START_REF] Mayag | Elaboration d'une démarche constructive prenant en compte les interactions entre critères en aide multicritère à la décision[END_REF] . Six young artists without a producer take part in a high-audience singing competition program, where a winner will see his/her work produced by a famous record company. Each candidate performs, in front of a jury his own song. The jury is subdivided into three groups: a group of choreography professionals, another of professional singers and vocals, and the last group is formed by professional musicians. The following three criteria are used to classify candidates.

1. Choreography: the choreography chosen by the candidate during his performance.

Evaluations are given as a number of vertical bars |. There are four members of the sub jury and each marks from 0 to 5 bars. The best candidate in choreography will be the one who will collect the greatest number of bars.

2. Singing: the quality of the song performed, taking into account the voice of the performer. The Singing sub jury evaluates the candidates in a classic way, assigning them marks between 0 and 20. The best candidate in singing will be the one who will collect the greatest number of marks.

3. Music: the quality of the music used to accompany the chosen song. The ability to play musical instruments is also taken into account at this level. The evaluations are given between 0 and 100. The best candidate in music will be the one who will collect the greatest number of marks.

The evaluations obtained by the candidates are given in the In this example we have N = {1, 2, 3} and X = {a, b, c, d, e, f }. To choose the winner, the jury establishes the following two rules:

• When two candidates have good marks in singing and in music, the jury will prefer the one who has a better evaluation in choreography, even if it means being less good in singing or in music. Therefore he strictly prefers b to a.

• When two candidates have a poor performance in singing, the jury will prefer the one who has the best rating in music. Therefore he strictly prefers c to d.

Besides, the jury finding the evaluations of candidates e and f very similar, considers them indifferent. The ordinal preferential information on X provided by the jury will therefore consist of the four following binaries relations P = {(b, a), (c, d)}, I = {(e, f ), (f, e)} To apply the Choquet integral to our example, we need to define commensurable scales. We assume that the construction of the utility functions u 1 , u 2 and u 3 is done simply by normalization the evaluations according to each criterion by reducing them to marks between 0 and 20. Thus, the evaluations of the choreography criterion will be done by counting just the number of bars obtained by each candidate. On the music criterion, the evaluations will be normalized by a division by 5. We then obtain the Table 9 Step 1. The linear program corresponding to the test of the existence of a capacity µ compatible with {P, I} is the following.

Maximize

Z 1 = ε LP 1 Subject to C µ (u(b)) -C µ (u(a)) ≥ ε C µ (u(c)) -C µ (u(d)) ≥ ε C µ (u(e)) -C µ (u(f )) + α + ef -α - ef = 0 C µ (u(a)) = 7 + 7µ 23 + 3µ 2 C µ (u(b)) = 9 + 3µ 23 + 5µ 2 C µ (u(c)) = 7 + µ 23 + 6µ 3 C µ (u(d)) = 8 + µ 13 + 3µ 3 C µ (u(e)) = 9 + µ 12 + µ 1 C µ (u(f )) = 9 + µ 12 + 2µ 1 µ 1 ≥ 0; µ 2 ≥ 0; µ 3 ≥ 0 µ 12 ≥ µ 1 ; µ 12 ≥ µ 2 ; µ 13 ≥ µ 1 ; µ 13 ≥ µ 3 ; µ 23 ≥ µ 2 ; µ 23 ≥ µ 3 µ 123 ≥ µ 12 ; µ 123 ≥ µ 13 ; µ 123 ≥ µ 23 µ 123 = 1 ε ≥ 0.
The linear program LP 1 is feasible with an optimal solution Z * 1 = 0.8 > 0, then we can conclude that, {P, I} is representable by a Choquet integral model.

Step 2. In order to know if the nonadditivity for {1, 2, 3} is necessarily negative (resp. positive). We obtain the LP 123 N N (resp. LP 123 N P ) by adding at the previous linear program LP 1 the constraints η µ 123 ≥ 0 (resp. η µ 123 ≤ 0) with η µ 123 = 1-1 3 (µ 12 +µ 13 +µ 23 +µ 1 +µ 2 +µ 3 ).

• The linear program LP 123 N N is feasible with an optimal solution Z * 2 = 0.8 > 0. Then the nonadditivity for {Choreography, Singing, Music} is not necessarily negative. Moreover, the results obtained by solving LP 123 N N are given by the Tables 10 and11 

Conclusion

In the Choquet integral model, the capacity elicited to represent the preferences of the decision maker is not likely to be unique. This contrasts with the "continuous case" studied in [START_REF] Timonin | Axiomatization of the Choquet integral for 2-dimensional heterogeneous product sets[END_REF][START_REF] Timonin | Conjoint axiomatization of the Choquet integral for heterogeneous product sets[END_REF] . This non-uniqueness complicates the interpretation of the nonadditivity index. Indeed, we give some examples in which the sign of the nonadditivity index depends upon the arbitrary choice of a capacity within the set of all capacities compatible with the preferences that were obtained. We define the concept of necessary and possible nonadditivity. This concept is similar at necessary and possible interaction, introduced in 22 in the case of 2-additive capacities. Necessary nonadditivity is the only nonadditivity that can safely be interpreted since its sign does not vary within the set of all compatible capacities. We have given conditions under which preferences on binary alternatives can be represented using a capacity in a Choquet integral model. We do the same by adding the extra conditions so that one of the representative capacities induces strictly positive nonadditivity indices for all groups of criteria, and another representative capacities induces strictly negative nonadditivity indices for all groups of criteria. These results show that, in practice, when we elicit a capacity on the basis of preferential information, it is not easy to interpret what we find using the nonadditivity index. Therefore, the interpretation of nonadditivity between criteria requires caution.

Our results leave some important questions open. The first one would be to develop tools allowing to analyze "necessary nonadditivity" for a large class of aggregation models, including the Choquet integral model. The second would be to study of aggregation models using bipolar scales [START_REF] Grabisch | Set Functions, Games and Capacities in Decision Making[END_REF] .
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  of six capacities compatible with the preferences a P b and d P c.

Proposition 3 .

 3 Let {P, I} be an ordinal preferential information on B g representable by a Choquet integral model. Let A ⊆ ≥2 N . If the A-MOPI property is satisfied, then there exists a capacity µ ∈ C Pref such that η µ A ≥ 0. Proof. Since {P, I} is representable by a Choquet integral model, then (P ∪ M ∪ I) contains no strict cycle, hence we can build a partition {B 0 , B 1 , . . . , B m } of B g using a suitable topological sorting on (P ∪ M ∪ I) (see proof of Proposition 4 on 17 ). Let us define the capacity µ: 2 N -→ [0, 1] as follows:

Remark 7 .

 7 The sufficient condition of Proposition 3 is a necessary condition for A ⊆ =2 N (see Theorem 4 in 22 ) but not necessary for A ⊆ ≥3 N . Indeed, if we consider N = {1, 2, 3}, P = {(a 23 , a 1 ), (a 3 , a 0 )}, I = {(a 12 , a 123 )} and A = N . The ordinal preferential information {P, I} is representable by the Choquet integral model w.r.t the capacity given in the Table

Proposition 4 .

 4 Let {P, I} be an ordinal preferential information on B g representable by a Choquet integral model and A ⊆ ≥2 N . If for all i ∈ A, not(a A\{i} T C M ∪I a A ), then there exists a capacity µ ∈ C Pref such that η µ A > 0.

  (with η µ 123 = 0.3 > 0).S{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, µ (u(x)) 11 12.2 9.8 9.6 9.5 9.5

Table 1 :

 1 

Evaluations of the four students on the three criteria

  2, Cap. 4, Cap. 6). This conclusion is still valid concerning the nonadditivity index η µ M S between Mathematics and Statistics, the nonadditivity index η µ M L between Mathematics and Language, the nonadditivity index η µ M LS between Mathematics, Language and Statistics. Moreover, all nonadditivity indices are strictly positive w.r.t. Cap. 3 but strictly negative w.r.t. Cap. 2. Cap. 1 Cap. 2 Cap. 3 Cap. 4 Cap. 5 Cap. 6

	µ M	0	0.5	0	0.7	0.6	0.6
	µ L	0	0.4	0	0.3	0.2	0.1
	µ S	0.4	0.6	0.5	0.5	0.4	0.4
	µ M L	1	0.7	0.8	1	0.9	0.9
	µ M S	0.4	0.6	0.7	0.7	0.6	0.6
	µ LS	0.5	0.6	0.7	0.5	0.6	0.4
	C µ (a)	0.39	0.46	0.43	0.43	0.4	0.4
	C µ (b)	0.3	0.40	0.29	0.39	0.35	0.32
	C µ (c)	0.39	0.51	0.49	0.56	0.52	0.5
	C µ (d)	0.6	0.54	0.53	0.67	0.62	0.62

Table 6 :

 6 Decision variables Number of variables µ(S) Number of constraints of monotonicity

	n = 3	6	9
	n = 4	14	28
	n = 5	30	75
	n = 6	62	186
	n = 7	126	441
	n = 8	254	1 016
	n = 9	510	2 295
	n = 10	1 022	5 110
	n = 11	2 046	11 253
	n = 12	4 094	24 564

Table 7 :

 7 Number of variables µ(S) and number of monotonicity constraints with 3 ≤ n ≤ 12

Table 8 .

 8 

	Candidates 1: Choreography 2: Singing 3: Music
	a: Anita	||||| ||	17	70
	b: Bertrand	||||| ||||	17	60
	c: Carine	||||| ||	8	70
	d: Didier	||||| ||||	8	60
	e: Elise	||||| ||||| |	10	45
	f : Fabien	||||| ||||| ||	10	45

Table 8 :

 8 Evaluation matrix

  .

		1	2	3
	u i (a)	7	17	14
	u i (b)	9	17	12
	u i (c)	7	8	14
	u i (d)	9	8	12
	u i (e)	11	10	9
	u i (f )	12	10	9

Table 9 :

 9 Utility function u i scaled between 0 and 20

Table 11 :

 11 Choquet integral corresponding at the capacity µ of Table10

•

  The linear program LP 123 N P is feasible with an optimal solution Z * 2 = 0.8 > 0. Then the nonadditivity for {Choreography, Singing, Music} is not necessarily positive. Moreover, the results obtained by solving LP 123 N P are given by the Tables12 and 13(with η µ 123 = -0.2 < 0).

	S	{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
	µ(S)	0	0.7 0.7	0.8	0.7	0.7	1

Table 12 :

 12 A capacity µ ∈ C Pref

	x	a	b	c	d	e	f
	C µ (u(x)) 14 14.6 11.9 10.8 9.8 9.8

Table 13 :

 13 Choquet integral corresponding at the capacity µ of Table12