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Abstract

Recent studies using intracellular recordings in awake behaving mice revealed that cortical network states, defined
based on membrane potential features, modulate sensory responses and perceptual outcomes. Single-cell intracellu-
lar recordings are difficult and have low yield compared to extracellular recordings of population signals, such as
local field potentials (LFPs). However, it is currently unclear how to identify these behaviorally-relevant network states
from the LFP. We used simultaneous LFP and intracellular recordings in the somatosensory cortex of awake mice to
design a network state classification from the LFP, the Network State Index (NSI). We used the NSI to analyze the
relationship between single-cell (intracellular) and population (LFP) signals over different network states of wakeful-
ness. We found that graded levels of population signal faithfully predicted the levels of single-cell depolarization in
nonrhythmic regimes whereas, in d ([2–4 Hz]) oscillatory regimes, the graded levels of rhythmicity in the LFP mapped
into a stereotypical oscillatory pattern of membrane potential. Finally, we showed that the variability of network
states, beyond the occurrence of slow oscillatory activity, critically shaped the average correlations between single-
cell and population signals. Application of the LFP-based NSI to mouse visual cortex data showed that this index
increased with pupil size and during locomotion and had a U-shaped dependence on population firing rates. NSI-
based characterization provides a ready-to-use tool to understand from LFP recordings how the modulation of local
network dynamics shapes the flexibility of sensory processing during behavior.
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Significance Statement

Sensation during behavior is strongly modulated by the animal’s internal state. Such context-dependent modula-
tion of sensory processing is believed to largely stem from top-down control of network states in sensory cortices,
with different network states being associated with distinct computational properties of the circuit. So far, a de-
tailed characterization of network states in the awake cortex hasmostly been achieved through single-cell intracel-
lular recordings, which however cannot be easily recorded. Here, we developed a newmethod to classify network
states from the easily accessible extracellular LFP recordings of population activity. Given the widespread use of
LFPs, our work provides a critical methodology to greatly expand our understanding of the mechanisms underly-
ing state-dependent computations in neocortex.
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Introduction
While there is a long history of using extracellular and

scalp signals to characterize brain states (Berger, 1929;
Creutzfeldt et al., 1966; Steriade et al., 1990, 1993), recent
studies have shown that the membrane potential of individ-
ual neurons, which can be measured via intracellular record-
ing techniques, can serve as a particularly sensitive indicator
for neural network activity. Intracellular recordings have been
instrumental to characterize network states in unprec-
edented details, defining them as a set of distinctive
dynamical features that include oscillatory patterns and
depolarization levels. In particular, in awake rodents
these studies have correlated variations of behavioral
and physiological markers, such as pupil diameter, whisk-
ing activity, and locomotion speed with distinct mem-
brane potential dynamics in sensory cortices (Crochet
and Petersen, 2006; Poulet and Petersen, 2008; Okun et
al., 2010; Constantinople and Bruno, 2011; Bennett et al.,
2013; Polack et al., 2013; Reimer et al., 2014; Schneider
et al., 2014; McGinley et al., 2015a; Schiemann et al.,
2015; Einstein et al., 2017; Neske et al., 2019; Poulet and
Crochet, 2019; Nestvogel and McCormick, 2022). A
powerful concept for the modulation of network activity
in sensory cortices emerging form these studies is a “U-
model” of network states (McGinley et al., 2015b). This
model is based on the observation that, in some sensory
detection tasks, performance depends on the arousal
level following an inverted U-shape (it is maximal at inter-
mediate arousal levels (McGinley et al., 2015a; Neske et
al., 2019). This model posits the existence of a continuum
of dynamical network states across arousal levels which
includes three major and well-documented patterns of
membrane potential fluctuations. At low arousal levels
(small pupil diameter and absence of motor behavior),
membrane potential fluctuations largely exhibit stereotyp-
ical d -band oscillations. At moderate arousal (intermedi-
ate pupil diameter), single cells are hyperpolarized and
display low-amplitude membrane potential fluctuations. At
high arousal levels (active motor behavior and/or large pupil
dilation), the membrane potential exhibits sustained depola-
rization with high-frequency fluctuations and high firing ac-
tivity occurs. Network states identified based on these
properties of membrane potential dynamics profoundly
modulate perceptual abilities and cortical processing of sen-
sory stimuli (McGinley et al., 2015a; Neske et al., 2019).
These results shed light on how the internal state of the

animal modulates sensory information processing about

external stimuli. However, in many experimental settings
using awake animals, extracellular measurement of popu-
lation-level LFP signals is often preferred over single-cell
intracellular recordings, because of low yield and high
technical difficulty of intracellular experiments. Although
LFPs capture subthreshold and integrative phenomena
in a local neuronal population (Buzsáki et al., 2012;
Panzeri et al., 2015), it is currently unknown how to iden-
tify the variety of network states previously described
with membrane potentials from the LFP. Furthermore,
while it has been reported that single-cell membrane
potentials and population-level LFPs are related and
their relation varies considerably across cortical states and
behavioral conditions (Poulet and Petersen, 2008; Okun et
al., 2010; Neske et al., 2019; Nestvogel and McCormick,
2022), it is not yet fully clear how to predict when they are
tightly related and when they are not. Precise classification
of network state variability from LFPs and its comparison with
network state classification performed on membrane poten-
tials could thus be greatly useful to enhance our understand-
ing of how network states change during behavior and what
function they may serve. Moreover, such a classification
would enhance our comprehension of the relationship be-
tween single-cell and population dynamics.
By combining simultaneous intracellular and extracellular

recordings in the somatosensory cortex of awake head-fixed
mice with novel analytical methods, here we developed an
approach to identify, from the LFP signal alone, low-fre-
quency rhythmic states as well as nonrhythmic network
states with different levels of depolarization or hyperpolariza-
tion. We first characterized themembrane potential dynamics
across different cortical states in awakemice. We then identi-
fied the LFP properties that better distinguished network
states and we used those LFP properties to derive a method
for robust classification of network states. Next, we show that
our classification method enables to classify well network
states and explains the variability of the relationship between
LFPs and membrane potentials observed across recordings
of neural activity during wakefulness. Finally, we illustrate the
generality of the method by applying the NSI classification on
recordings from the “Visual coding – Neuropixels” dataset
shared by the Allen Institute (Siegle et al., 2021).

Materials and Methods
Animals
Experimental procedures involving animals have been

approved by the IIT Animal Welfare Body and by the
Italian Ministry of Health (authorization # 34/2015-PR and
125/2012-B), in accordance with the National legislation
(D.Lgs. 26/2014) and the European legislation (European
Directive 2010/63/EU). Experiments were performed on
young-adult (four to six weeks old, either sex) C57BL/6J
mice (Charles River). The animals were housed in a 12/12
h light/dark cycle in singularly ventilated cages, with ac-
cess to food and water ad libitum.

Experimental design
The experimental procedure for simultaneous extracel-

lular and intracellular recordings in awake head-fixed
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mice have been previously described (Zucca et al., 2017),
and the present dataset was used in a previous study
(Zerlaut et al., 2019). Briefly, a custom metal plate was
fixed on the skull of n = 4 young (22-24 post-natal days)
mice two weeks before the experimental sessions. After a
2- to 3-d recovery period, mice were habituated to sit qui-
etly on a fixed platform (without the ability to freely run) for
at least 7–10 d (one session per day and gradually in-
creasing session duration). Mice were not involved in any
task, and whisking and pupil size were not measured. The
day of the experiment, mice were anesthetized with 2.5%
isoflurane and a small craniotomy (0.5 x 0.5 mm) was
opened over the somatosensory cortex. A 30-min-long
recovery period was provided to the animal before start-
ing recordings. Brain surface was kept moist with a
HEPES-buffered artificial CSF (aCSF). Local field potential
(LFP) recordings were performed by lowering a glass pip-
ette filled with aCSF into the tissue with the tip placed at
;300 mm from pial surface. Simultaneous current-clamp
patch-clamp recordings were carried out on superficial
layers (100–350 mm) within the same craniotomy. The dis-
tance between the tips of the electrodes was in the 200-
to 250-mm range. All recorded cells had a regular-spiking
response to current pulses (data not shown) and were
therefore identified as putative pyramidal neurons
(Connors and Gutnick, 1990); 3–6 MV borosilicate glass
pipettes (Hilgenberg) were filled with an internal solution
containing (in mM): 140 K-gluconate, 1 MgCl2, 8 NaCl,
2 Na2ATP, 0.5 Na3GTP, 10 HEPES, and 10 Tris-phos-
phocreatine to pH 7.2 with KOH. Current-clamp record-
ings were not corrected for liquid junction potential
offset. Electrical signals were grounded at the top of the
skull (at the location of the craniotomy) and were ac-
quired using a Multiclamp 700B amplifier, filtered at 10
kHz, digitized at 50 kHz with a Digidata 1440 and stored
with pClamp 10 (Axon Instruments). From the previ-
ously described recordings, we extracted samples with
stable membrane potential periods. The early hyperpo-
larized period (;5 min) following pipette lowering was
discarded from the analysis. Next, periods with action
potential peaking below 0 mV or displaying a slow
(;1 min) drift in the Vm trace were discarded from the
analysis. This criterion enabled us to perform the analy-
sis on an absolute scale of membrane potential values.
Multiunit activity (MUA) was computed by band-pass
filtering (0.3–3 kHz) the extracellular signal and taking
the absolute value of the resulting signal (Einevoll et al.,
2013).

Wavelet transform
Our signal processing pipeline of the LFP was based on

the wavelet transform. We implemented a wavelet trans-
form based on the Morlet wavelet, which has the following
equation (Torrence and Compo, 1998):

Md0 f; tð Þ ¼ Cd0 fð Þ � e2ip ft � e�
ffiffi
2

p
p ft

d0

� �2

; (1)

where f is the frequency of the wavelet and d0 the decay
parameter of the envelope. We used a value of d0=6
throughout the study. The coefficient Cd0 fð Þ is the

normalization coefficient of the wavelet. Note that, to
keep a meaningful link with the physical units of the sig-
nal, we did not normalize the wavelet with respect to itself,
but with respect to a sinusoid (otherwise the wavelet trans-
form with standard normalization of a sinusoid of frequency f
and amplitude 1 has a value greater than 1 at the frequency
f). The wavelet normalization coefficient was therefore de-
fined, for a wavelet frequency f and an extent d0, as:

Cd0 fð Þ ¼
ð1

�1

cos 2p fsð Þ �Md0 f; sð Þds ¼ d0
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The transform was implemented by a convolution be-
tween the complex conjugate of the Morlet wavelet (Eq. 1)
and the signal S tð Þ, i.e.:

W f; tð Þ ¼
ðTf

�Tf

S t� sð Þ � hSit;Tf
� �

�Md0 f; sð Þ ds; (2)

where hSit;Tf
is the signal average in the window centered

at t of extent Tf . Tf is the frequency-dependent window on
which the convolution is performed, it was defined as the
extent of the wavelet where its amplitude decays by

1� e�4ð Þ = 98.2%, i.e., Tf ¼
ffiffiffi
2

p d0

p f
. From Equation 2, we

computed the envelope and the phase at time t of a given
frequency f in the signal by taking the norm and argument
of the complex numberW f; tð Þ.

Computing the pLFP signal
From the LFP time series (Fig. 1), we computed a “proc-

essed LFP” (pLFP; Mukovski et al., 2007), which corre-
sponds to the temporally-smoothed high-g envelope
variations of the LFP fluctuations (see main text). The
pLFP was computed as follows. We consider a frequency
band spanning [f0=w0, f0 �w0], where f0 is a root frequency
and w0 the width parameter of the band. We take a set of
N = 5 wavelets uniformly spanning this band (i.e., evenly
space from f0=w0 to f0 �w0). The pLFP signal was com-
puted as the sum over N of the k wavelet envelopes of fre-
quency fk 2 f0=w0; f0 �w0½ �, i.e.:

pLFP tð Þ ¼
X
k2 1;N½ �

k W fk; tð Þ k
N

: (3)

This time-varying signal is then smoothed over time with a
Gaussian filter to yield the final pLFP signal (see Fig. 2a). The
parameters f0,w0, and the time smoothing width
Tsmooth were set to maximize the correlations between

the time course of the membrane potential and the pLFP
(see Results) and their value is reported in Table 1.

Computing the Network State Index (NSI)
Then, from the pLFP we computed the NSI, as follows.

The pLFP was first downsampled by averaging over bins
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of 1 ms (keeping the 50 kHz sampling of electrophysio-
logical signals is unnecessary given the much slower
time scale of state transitions, see Results). We then
computed the distribution of the pLFP over the whole
recording and we extract the baseline noise level of the
pLFP signal p0 by taking the value of the first (lowest)
percentile of the distribution. We interpret this record-
ing-specific p0 value as the residual high-g envelope in
absence of neural activity (see the systematic depola-
rization from the activity at pLFP � p0 in Fig. 2a) and
we therefore considered it as an estimate of the noise
level in the pLFP signal.
We computed the time-varying envelope of the [2,4] Hz

band d env of the pLFP signal using the above wavelet
transform (Eq. 2). We took a set of 20 wavelets uniformly
sampling the [2,4] Hz band and, at every 1-ms time point,
we extract the maximum envelope from this band. We
constructed a weighted estimate X tð Þ of the low-
frequency content of the pLFP signal by X tð Þ ¼ p01a � d env,
where a is the threshold parameter for the rhythmic/non-
rhythmic classification (see Results). We also computed a
slow average of the pLFP fluctuations with a Gaussian
smoothing of time constant Tmean = 500 ms, yielding the
signal Y tð Þ.
Finally, the NSI was defined from the above computed

signals by the following equation:

NSI tð Þ ¼ �2 � d env � H X � Yð Þ1 Y � p0ð Þ � H Y � Xð Þ;
(4)

where H is the Heaviside step function.
From this time-varying signal, we computed what we

termed “validated” network states by running through the
time axis in steps of Tstate /2 = 200 ms and identifying those
time periods in which the Tstate = 400 ms window surround-
ing each time point does not contain variations of the NSI
signal larger than the noise level p0. When averaging quanti-
ties for a given NSI level (Figs. 3-5, 7), we considered only
the NSI levels including more than five validated episodes to
get a meaningful average (thus discarding a few recordings
in the population analysis because of a too low number of
rhythmic episodes; see figure legends).
The signal processing steps of this procedure are illus-

trated on Figure 3a, and all parameters of the analysis are
summarized in Table 1 for our dataset.

Analysis of the “Visual coding –Neuropixels” dataset
We analyzed data from the publicly available Allen Institute

for Brain Science Brain Observatory data (Siegle et al., 2021).
The full data collection methodology as well as the download
instructions can be found at the link https://allensdk.
readthedocs.io/en/latest/visual_coding_neuropixels.html. We
restricted the analysis to recordings in primary visual
cortex (V1) of wild-type mice in absence of visual stimulation
(i.e., focusing on the 20 min in the center of the grey screen
presentation episode in the “functional connectivity” record-
ings). These constraints resulted in a collection of recordings
from n = 11 mice. After selecting the probe located in V1, we
defined the LFP signal by choosing a single channel within all
available channels in the V1 column (;20 channels per
Neuropixels probes). We selected the LFP channel with the
strongest mean pLFP envelope in the d range over the whole
session. By pooling all the available well-isolated single-unit
spikes of the V1 channels, we computed a time-varying pop-
ulation rate by binning spikes in bins of 5 ms and smoothing
the resulting trace with a Gaussian smoothing of width
30 ms. We also extracted the running speed and pupil area
(p ·width·height after their ellipse fit) from the dataset. All mo-
dalities (rate, running speed, pupil) were resampled to the
LFP sampling using nearest-neighbour interpolation during
the analysis.

Statistical analysis
Experimental data were imported in Python using the neo

module (Garcia et al., 2014). All signal processing steps (sub-
sampling, convolution, filtering) were implemented in numpy
(Harris et al., 2020). Statistical analysis was performed with
the scipy.statsmodule of SciPy (Oliphant, 2007). We analyzed
the linear relationship between continuous samples with a
Pearson correlation analysis (function scipy.stats.pearsonr),
and we reported the two-tailed p-value of the null correlation
hypothesis. For the statistics of samples consisting of an
averages over a given recording session (n = 14 recordings
sessions), we tested the significance using two-tailed t tests
(functions scipy.stats.ttest_rel, scipy.stats.ttest_ind, or scipy.
stats.ttest_1samp for paired samples, unpaired samples and
single samples respectively). The multiple linear regressions
of Figure 6 were performed with the OLS (ordinary least
squares) function of the statsmodelmodule. We analyzed the
statistical significance of the single or multicomponent mod-
els with an F test, and we report the variance adjusted by the
numbers of factors.

Software accessibility
We implemented the described analysis into a software

publicly available at the following link https://github.com/
yzerlaut/Network_State_Index (Zenodo archive: https://
doi.org/10.5281/zenodo.6597313).

Results
Simultaneous intracellular and extracellular dynamics
in the somatosensory cortex of awakemice: variability
and network states of wakefulness
We performed simultaneous closely-located (;200–

250 mm) recordings of the LFP and the membrane

Table 1: Parameters of the NSIpLFP characterization

Parameter Symbol Value
d Band Fd [2,4] Hz
pLFP root frequency f0 72.8 Hz
pLFP band factor w0 1.83
pLFP smoothing Tsmoothing 42.2 ms
Percentile for pLFP lower bound pthre

0 1%
pLFP lower bound p0 2.85 6 0.73 mV
State window Tstate 400 ms
Sliding mean window Tmean 500 ms
pLFP threshold for state validation pthre

fluct=p0 2.85 6 0.73 mV
factor for rhythmicity threshold a 2.87

Values used for the S1 dataset (Figs. 2-6). Note that the p0 and pthre
fluct parame-

ters are data-driven quantities, i.e., varying from recording to recording, deriv-
ing from the value of pthre

0 (mean 6 SEM over the n = 14 recordings).
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Figure 1. Network states of wakefulness in the mouse somatosensory cortex: electrophysiological signature and characterization
based on spectral analysis. a, Two examples of simultaneous recordings (top: recording #2, bottom: recording #11) of the extracellular
LFP and of the membrane potential Vm of a Layer II/III pyramidal cell in awake mouse. b, Episodes of duration 1.5 s extracted from re-
cording #11 at the times points highlighted in a (LFP on top and Vm on the bottom panel). In the middle panel, the time-varying SD
s (LFP) evaluated over a 500-ms sliding window (brown line), the d -envelope d env (purple line), and the g envelope genv (green line) of the
fluctuations are shown. c, Sorted histograms of the absolute correlation coefficient between LFP and Vm over recordings (n = 14, gray).
Blue (recording #2) and orange (recording #11) indicate the example recordings shown in a. d, Frequency spectrum of the Vm signal ob-
tained with wavelet-based time-frequency analysis (see Materials and Methods). The power-line frequency was blanked (50 6 2 Hz). We
highlighted the d (2–4 Hz) and g (30–80 Hz) bands in purple and green, respectively. e, Histogram of Vm d envelope across recordings.
Time samples classified as “rhythmic” are shown in purple (see main text). f, Histogram of Vm depolarization level for nonrhythmic sam-
ples. g, Relationship between mean d envelope of the Vm and SD in nonrhythmic episodes per recording for all recordings. h, Same as
in d for the extracellular LFP. i, Histogram of the d envelope (d env, left) and the g envelope (genv, right) of the LFP over recordings. In the
top inset, we show the histogram of the resulting g-to-d ratio. j, Mean depolarization level (shown as mean 6 SEM over time samples at
a given g-to-d level) as a function of the g-to-d ratio for a single recording (recording #11, shown in a, b). We highlight how the g-to-d
measure classifies the episodes shown in b (see main text). k, Mean depolarization level as a function of the g-to-d ratio for recording
#11. k, Mean depolarization level as a function of the g-to-d ratio over time samples. l, Relationship between MUA (see Materials and
Methods) and g-to-d ratio over time samples. For panels d–f, h, i, k, l, we show two example recordings (recording #2 in blue and re-
cording #11 in orange) and the population data as mean 6 SEM. over x-axis levels (n = 14, gray line with shaded area). See Extended
Data Figure 1-1 for the relationship between cellular properties and Vm-LFP correlations across recordings.
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potential (Vm) of pyramidal cells (see traces from
two example recordings in Fig. 1a) in the superficial
layers of the barrel cortex (S1). Recordings were per-
formed in awake head-fixed mice habituated to sit qui-
etly on the recording rig (Materials and Methods; see
also Poulet and Petersen, 2008). Recordings had a du-
ration of 5.1 6 2.0 min (n = 14 from 4 mice). Before pro-
ceeding to use these data to define indices of network
states from the LFP, we document some of its basic
properties.
First, we found a notable heterogeneity across record-

ings (compare recording #2 with #11 in Fig. 1a). In particu-
lar, the relationship between extracellular population
(LFP) and intracellular (Vm) signals was highly variable (Fig
1c, recordings were sorted by their level of absolute cor-
relation, note the large range of observed correlation val-
ues) and this variability could not be explained by cellular
properties of the recorded cell (such as the membrane re-
sistance and action potential threshold; see Extended
Data Fig. 1-1). Second, intracellular and extracellular dy-
namics had a rich repertoire of activity patterns (illustrated
in Fig. 1b). As previously reported under similar conditions
(Poulet and Petersen, 2008; McGinley et al., 2015a; Vinck
et al., 2015; Chen et al., 2017; Einstein et al., 2017), both
LFP and Vm traces displayed epochs of rhythmic activity
in the d -band (defined as time samples with high [2,4] Hz
envelope, see the Vm and LFP spectrums in Fig. 1d,h, re-
spectively, peaks were observed at 3.0 6 0.3 Hz for the
Vm and 3.3 6 0.5 for the LFP, n = 14 recordings). Those
rhythmic epochs presented a high synchronization be-
tween LFP and Vm (correlation between Vm and LFP d en-
velopes across time samples: 0.55 6 0.11, one-sample t
test for positive correlation, p = 2e-10, n = 14). Examples
epochs of rhythmic activity are shown in traces number 1
and 2 of recording #11 (Fig. 1b). Next, confirming previous
observations (McGinley et al., 2015a; Neske et al., 2019;
Zerlaut et al. 2019; Nestvogel and McCormick, 2022), we
found nonrhythmic epochs (here defined as time samples
with a Vm d envelope lower than 6 mV; see Fig. 1e) at dif-
ferent depolarization levels (see the population histogram
on Fig. 1f ranging from ;�80 mV hyperpolarization levels
to ;�45 mV depolarization levels). Example epochs of
nonrhythmic activity patterns at different depolarization
levels (increasing from epoch 3 to 7) are shown in Figure
1b. Taken together, the epochs 1–7 of Figure 1b recapitu-
late the different states described by the “U-model” of
cortical states (McGinley et al., 2015b), that is rhythmic
states of d -band activity and nonrhythmic states at vari-
ous membrane potential depolarization levels (from hy-
perpolarized to depolarized). Finally, recordings also
differed not only in terms of the average strength of d
rhythmicity, but also in terms of the distribution of Vm lev-
els over time (Fig. 1f). Recordings with lower average d
envelope tended to have lower variability of Vm levels over
time in nonrhythmic states (Fig. 1g, Pearson correlation
between mean Vm d envelope per recording and Vm SD of
nonrhythmic time samples, c = 0.83, p = 2e-4). The diver-
sity of recordings thus filled a continuum between two
qualitatively different cases of either recordings displaying
mostly nonrhythmic states at an almost constant

depolarization level (e.g., recording #2 in Fig. 1a, see Vm his-
togram in Fig. 1f showing a low variability of mean Vm over
time) and recordings exhibiting overall stronger time-aver-
aged d Vm envelope and a much wider variation of the Vm
depolarization levels (e.g., recording #11 in Fig. 1a, see Vm
histogram on Fig. 1f). These latter cases exhibited a com-
plex dynamics with the alternation of oscillatory d -band ac-
tivity together with nonrhythmic activity at very different Vm
depolarization levels (see example epochs of recording #11
in Fig. 1b). In the next sections, we investigate how to quan-
titatively classify and differentiate these network states
based on the extracellular LFP.

Limitations of the existing spectral analysis of LFP for
the characterization of network states with different
degrees of membrane potential rhythmicity and
depolarization
Because of the high impact of different strength of Vm

rhythmicity and Vm depolarization levels on behavior and
sensory function, we next considered how to determine a
quantitative index of networks states with such Vm fea-
tures from the more easily accessible LFP signal. Ideal
properties of this index would include: (1) the ability to
predict the rhythmicity and depolarization of Vm from the
LFP; (2) a U-shaped dependence of the index on depolari-
zation levels of membrane potential and of firing of local
neural populations to directly map onto the U-model of
network states.
We first evaluated whether existing methods based on

simple spectral properties, could be used to characterize
in this way, using only the LFP, the diversity of network
states observed in the awake neocortex. Previous LFP-
based characterization of different network states relied
on the ratio between d and g power (Cheng-yu et al.,
2009; Saleem et al., 2010). We therefore computed the
time-varying d [2,4] Hz and g [30,80] Hz envelope of the
LFP, and the g-to-d envelope ratio over time samples
(see example single recording and population histograms
in Fig. 1i). We investigated the ability of the g-to-d ratio to
differentiate between epochs of activity that have dynami-
cal features resembling the network states previously
documented with Vm and described by the U-model of
cortical states (McGinley et al., 2015b). To gain intuition,
we first considered the example epochs 1–7, which were
sorted according to the g-to-d ratio of their LFP (Fig. 1i,
see the corresponding time-varying d and g envelopes
for those epochs in Fig. 1b). While this ratio could distin-
guish the strongly rhythmic epochs (1,2) from the high-g
and highly depolarized nonrhythmic epoch 7 (Fig. 1i), it
could not distinguish well different Vm depolarization lev-
els within the nonrhythmic sets of epochs. Epoch 6 had a
mean Vm depolarization value .15 mV higher than that of
epochs 3, 5, but all these three epochs had similar g-to-d
ratios (Fig. 1i). Moreover, a nonrhythmic epoch (4) had
similar g-to-d ratio to the two rhythmic epochs (1, 2).
Overall, when quantifying the dependence of mean depo-
larization level on the g-to-d ratio across all epochs for ei-
ther the example recording #11 (Fig. 1j) or across all
sessions (Fig. 1k), it was apparent that, using the g-to-d
LFP ratio, it would be very difficult to distinguish
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between rhythmic states and nonrhythmic hyperpolar-
ized states, and to distinguish between hyperpolarized
and depolarized states within the nonrhythmic range.
Next, because states with nonrhythmic and hyperpolar-
ized Vm are accompanied by a reduced level of spiking
activity (McGinley et al., 2015a; Neske et al., 2019;
Zerlaut et al., 2019; Nestvogel and McCormick, 2022),
we also analyzed the level of population firing by com-
puting the MUA from the extracellular recordings (see
Materials and Methods). Similar to what we observed
with the average Vm depolarization (Fig. 1k), we found
that the g-to-d LFP ratio had a very weak predictive
power with regard to the population spiking activity (Fig.
1l). Thus, the g-to-d ratio could not be used to identify
states of reduced spiking network activity during nonrhyth-
mic activity. Reduced depolarization levels and spiking ac-
tivity are important as they identify specific network states
which are characterized by different properties of sensory
information processing during wakefulness (Reimer et al.,

2014; McGinley et al., 2015a; Vinck et al., 2015; Neske et
al., 2019).
We concluded that the g-to-d LFP ratio poorly differen-

tiated rhythmic and nonrhythmic states and, more im-
portantly, did not enable to evidence different levels of
depolarization within the nonrhythmic states observed in
cortical dynamics under awake condition. In the next sec-
tion, we introduce a processing step of the LFP that al-
lows such characterization.

Using the time-varying high-c envelope of the LFP for
a richer network state characterization
Because the membrane potential Vm is the reference sig-

nal for cortical state classification (Poulet and Petersen,
2008; Polack et al., 2013; Reimer et al., 2014; McGinley et
al., 2015a; Einstein et al., 2017; Arroyo et al., 2018), and be-
cause we wanted to capture from the LFP the finer features
of Vm dynamics (including the variations in rhythmicity and

Figure 2. The time-varying high-g envelope of the LFP displays strong correlations with the membrane potential of pyramidal neu-
rons in awake mice S1. a, Example simultaneous recording of the LFP (top) and Vm of a layer 2/3 pyramidal cell (bottom). In the mid-
dle, we show the time-varying high-g envelope (brown thin line) and its smoothed fluctuations (brown thick line, the pLFP signal).
The p0 value (brown dotted line) corresponds to the first 100th percentile of the pLFP distribution over the whole recording. b,
Cross-correlation between Vm and the envelope of the LFP wavelet transform in the frequency band [f/w, f·w] (f is a root frequency
and w is a width factor). We show the cross-correlation value after averaging over n = 14 recordings (see the individual values per
recording in c). Note the optimal band found for fopt = 72.8 Hz and wopt = 1.83 (brown circle). c, The effect of temporal smoothing
on the cross-correlation between the LFP and Vm signals. Shown for all recordings [individual recordings are color-coded according
to their cc(Vm,pLFP) value, we show the correspondence with the recording index of Fig. 1c in the inset]. At Tsmoothing = 0 ms, one
can see the mean value of b and its variability over recordings (black error bar). d, Cross-correlation between LFP and Vm as func-
tion of the temporal smoothing parameter plotted after normalizing the raw cross-correlation levels of c by their maximum amplitude
and subtraction of their level at Tsmoothing = 0 ms. With this normalization, a peak is clearly visible at Topt = 42.2 ms.
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depolarization levels posited by the U model) that cannot
be captured by the simple d -to-g ratio, we next investi-
gated whether simple mathematical transformations of the
LFP displayed temporal fluctuations more qualitatively sim-
ilar to those of the membrane potential.
The inverted LFP (–LFP) displays high correlation values

(cc ;0.5) with the membrane potential in awake animals
(Poulet and Petersen, 2008; Arroyo et al., 2018) and could
thus potentially provide a basis signal for the characteri-
zation of network states. However, the amplitude of the
LFP is strongly dependent on the depth of the recording
(Sakata and Harris, 2009; Kajikawa and Schroeder, 2011;
Lindén et al., 2011; Smith et al., 2012; Herreras et al.,
2015) and is subjected to drifts over short (,10 s, Fig. 2a;
epochs i and ii) and long (.1 min) time scales. These fac-
tors limit the similarity between Vm and –LFP, and they
were shown in previous work to prevent robust classifica-
tion of network state during slow wave (,1 Hz) activity
(Mukovski et al., 2007).

Guided by the previous findings in anesthetized animals
(Mukovski et al., 2007), we hypothesized that the high-fre-
quency content (f . 40 Hz, including the g band activity)
of the LFP would provide a good predictor of the depolari-
zation level Vm. We therefore applied a wavelet transform
to the extracellular LFP and identified the frequency band
maximizing the cross-correlation with the simultaneously
recorded membrane potential in our dataset (Fig. 2b). This
was performed by independently varying a root frequency
f and a width factor w, yielding the frequency band [f/w,
f·w]. For each frequency band, we divided the band into
20 evenly spaced wavelet frequencies, we computed the
mean over frequencies of the wavelet envelope of the LFP
(resulting in the time-varying envelope shown in Fig. 2a),
and we analyzed the correlation between this transformed
LFP trace and the Vm trace after averaging over record-
ings (see the individual values per recording in Fig. 2c
sorted by recording index in the inset). We found that the
band maximizing this correlation was achieved for fopt =

Figure 3. The Network State Index based on the processed LFP (NSIpLFP). We define a graded measure of network states based on
the mean level (for nonrhythmic activity) or the low frequency envelope (for rhythmic activity) of the time-varying pLFP signal. a,
Example epochs of activity at different NSIpLFP levels (see bottom plot), the epochs are identical to those of Figure 1b (recording
#11). In the top plot, we superimpose the pLFP fluctuations and the Vm fluctuations. In the middle plot, we illustrate the signal proc-
essing steps leading to the NSIpLFP measure (see main text and Materials and Methods). Two time-varying quantities derived from
the pLFP signal are used to classify network states: a weighted estimate of the low frequency content of the pLFP signal X(t) (purple
line, shown for a = 2.87) and the pLFP sliding mean Y(t) (black line). A consistency criterion validates a fraction of those as “vali-
dated” network states (brown dots). b, Fraction of rhythmic, nonrhythmic and unclassified states as a function of the parameter a
(weighting the propensity to classify as rhythmic states). c, Vm envelope of the [2,4] Hz band averaged across all identified rhythmic
states (mean 6 SEM over the n = 14 recordings) for different values of the parameter a. We fit the decay with an exponential func-
tion (dashed red line) and take its decay parameter as the optimal value aopt for the classification. d, Mean depolarization level
(shown as mean 6 SEM over episodes at a given NSIpLFP level) as a function of the NSIpLFP measure for a single recording (record-
ing #11). We highlight how the NSIpLFP measure classifies the episodes shown in a (see main text). e, Mean depolarization level as a
function of NSIpLFP for the n = 14 recordings of the dataset. We show the mean relation per recording (color-coded dots) and the
mean and variability over recordings after Gaussian smoothing of 5 mV width (black curve and gray area, respectively). f,
Relationship between MUA (see Materials and Methods) and NSIpLFP over episodes for all recordings (color-code following e).
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72.8 Hz and wopt = 1.83, i.e., the [39.7,133.6] Hz band
(see Fig. 2b). We also found that a temporal smoothing of
the LFP envelope (with an optimal value Topt = 42.2 ms;
see Fig. 2d) enhanced its correlation with the Vm signal.
We refer in the following to such smoothed high-g en-
velope as the pLFP (in analogy with the terminology by
Mukovski et al., 2007). Following previous literature, we
interpreted this quantity as an approximation to the
time-varying recruitment of synaptic activity from a
local region (diameter: ;100–200 mm) surrounding the
extracellular electrode (Ray et al., 2008; Katzner et al.,
2009; Lindén et al., 2011; Mazzoni et al., 2011; Ray and
Maunsell, 2011; Buzsáki et al., 2012; Gaucher et al.,
2012; Einevoll et al., 2013).
After this transformation of the LFP, we observed a

qualitative match between the previously reported Vm sig-
natures of network states (McGinley et al., 2015b) and
specific features of the pLFP signal. We illustrate this find-
ing on the recording shown in Figure 3a. We observed
rhythmic activity at different envelope levels (example
epochs #1, #2) as well as nonrhythmic fluctuations at vari-
ous mean levels of pLFP signal (example epochs #3–7).
This similarity encouraged us to develop a quantitative
NSI based on the pLFP.

Designing a NSI from the pLFP
To better discriminate specific network states of wake-

fulness from the LFP, we thus developed a quantitative
index from the pLFP: the pLFP-based NSI (NSIpLFP). The
rationale and procedure to compute the NSI from the pLFP
are described in the following text and is sketched graphi-
cally with example data in Figure 3a.
To capture the slow fluctuations of network activity over

time, we computed the sliding mean Y(t) of the pLFP over
a slow time scale (Tmean = 500 ms). Because the pLFP sig-
nal had a nonzero value at all points, we quantified the
baseline of the raw pLFP signal p0 (set as the lowest
100th percentile of the pLFP distribution, and a measure
of the level of baseline noise in the extracellular signal).
We then analyzed pLFP fluctuations relative to this base-
line level. We classified the pLFP fluctuations at such slow
time scale as either rhythmic or nonrhythmic. Rhythmicity
was quantified by the time-varying low-frequency envelope
of the pLFP fluctuations d env(t) using a wavelet transform.
We observed that establishing the rhythmic condition by
only thresholding d env(t) would be misleading. Indeed, the
d -band envelope was strongly co-modulated by the mean
activity level Y(t) even for nonrhythmic epochs (correlation
coefficients between Y(t) and d env(t) in the nonrhythmic
epochs defined as NSIpLFP . 0: c = 0.396 0.16 across the
n = 14 recordings, significance of a positive correlation: p =
3.3e-10, one-sample t test). This indicated that the d enve-
lope could reach high values, and cross an arbitrary thresh-
old in absence of strong rhythmicity. This phenomenon is
visible on Figure 3a: the envelope in epoch 7 is equivalent
to the envelope in epoch 2 without exhibiting the clear
rhythmicity in the pLFP or in the Vm signal that charac-
terized epoch 2 (middle and top plots, respectively). We
therefore introduced a simple model-based criterion for
evaluating rhythmicity based on the following reasoning. In

a noiseless, purely rhythmic setting defined by pLFP(t) = p0
1 d env · (11 sin(2·p ·fd ·t)), where d env is the envelope of the
oscillation, we have Y(t) = p0 1d env. If Y(t) has an additional
nonrhythmic component, we get Y(t). p0 1 d env(t) (i.e., the
oscillation alone does not account for the mean level of the
signal). We adapted this last relation to build our rhythmicity
criterion: a higher signal mean Y(t) than the mean expected
from the d component implies nonrhythmicity. Given the
nonideal nature of the signal and to compensate for the mis-
estimation of rhythmicity in fluctuating regimes, we rescaled
the slow oscillation with a parameter a (see the next section
for the determination of a), i.e., we introduced the time-vary-
ing quantity X(t) = p0 1 a·d env(t). We compared the estimate
of the rhythmic contribution, X(t), with the mean activity, Y(t),
to quantify rhythmicity: if X(t) � Y(t) activity was set as
“rhythmic” (because the slow oscillation pattern is able to
account for the mean activity level). Activity was defined
as “nonrhythmic” otherwise. Finally, we quantified the
amount of the pLFP activity in the two regimes. In the
rhythmic regime, the amount of network activity was
captured by the amplitude of the oscillation, 2·d env(t). In
the nonrhythmic regime, the pLFP deviations from
baseline Y(t)-p0 estimated the level of ongoing activity.
The pLFP-derived NSI was defined as the amount of

pLFP activity projected on the negative and positive axis
for the rhythmic and nonrhythmic regimes respectively.
Such a definition resulted in a continuous index where
states with stronger d components had negative values
while nonrhythmic states with stronger high-g compo-
nents had higher positive values (Fig. 3a). As highlighted
by the colored area (Fig. 3a, bottom plot, purple and kaki
colors for rhythmic and nonrhythmic epochs, respec-
tively), the classification into the two states relied on the
sign of the difference between the X(t) and Y(t) signals
(Fig. 3a, middle plot) followed by a projection on either the
negative part of the axis weighted by the oscillation ampli-
tude 2·d env(t) for rhythmic epochs, or the positive part of
the axis weighted by the increase from baseline Y(t)-p0

nonrhythmic epochs (Fig 3a, bottom plot). The described
procedure for the computation of the NSI is formalized in
Equation 4 in Materials and Methods.
As the time-varying signal NSI(t) might exhibit fluctua-

tions due to noise in both the Y(t) and X(t) quantities (X
and Y are derived from the noisy LFP signal and their dif-
ference might amplify noise, see for example the signal
jumps in epochs 2, 3 in Fig. 3a), we added a consistency
criterion to NSI(t) to obtain a robust state classification of
individual epochs. We first defined network state “epi-
sodes” with a window of Tstate = 400 ms and an update
every Tstate/2 = 200 ms. The motivation behind the choice
of this time scale Tstate was that it offered a good compro-
mise between two constraints: Tstate was long enough to
get well defined states (e.g., more than half a cycle for os-
cillations in the [2,4] Hz range) and it was short enough to
catch the fast and frequent switches of network states
during wakefulness (McGinley et al., 2015b). The consis-
tency criterion for episode classification required that,
within a given time window of duration Tstate, the fluctua-
tions of the NSI signal remained within a fluctuation
threshold, equal to the pLFP noise level p0 (because this
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noise level provided an estimate of the amount of signal
below which a variation is not a robust signal variation). If
this stability condition was met, a network state in this time
window was labelled as “validated.” The “validated” states
are highlighted with brown dots over some sample epochs in
Figure 3a. If this stability condition was not met, a network
state at a well-defined level could not be assessed and the
network state was labelled as “unclassified.” The consis-
tency criterion prevented state validations in the presence of
strong fluctuations in the time-varying NSI signal (epochs 3
and 4 in Fig. 3a, bottom).

Calibration of the rhythmicity threshold in the NSI
definition
The parameter a in the pLFP-based NSI weights the

propensity to classify the network activity as rhythmic. Its
effect is illustrated in Figure 3b. Increasing a increased
the proportion of rhythmic states from ;0% at a , 1 to
;100% at a . 6. We used simultaneous Vm recordings to
optimize a to ensure that the classification of states as
rhythmic using the LFP actually finds states that would be
defined as rhythmic based on the membrane potential. In
Figure 3c, we show, as a function of a, the average across
all episodes classified as rhythmic of the [2,4] Hz d enve-
lope of the membrane potential Vm. The d envelope of Vm

of the states classified as rhythmic decreased exponen-
tially when a increased. We thus set a to a value aopt =
2.87 that was equal to the decay constant of the Vm enve-
lope as a function of a. This choice ensures we detect a
large enough number of rhythmic states with a genuine
amount of Vm rhythmicity. When classifying rhythmic
states using such a value in the pLFP-based NSI algo-
rithm, we indeed obtained that the states classified as
rhythmic had Vm d envelope systematically larger than
the states classified as nonrhythmic (paired t test, p =
1.2e-7, n = 14 recordings). Importantly, such a a value
was found to be very close to the value maximizing the
fraction of unclassified states (a = 2.95, Fig. 3b, thin grey
dashed line), thus corresponding to the most conservative
setting to classify network states.

Electrophysiological signatures of NSIpLFP-defined
network states
We then analyzed additional electrophysiological fea-

tures of network regimes defined by the NSIpLFP measure.
We show the relationship between the NSIpLFP level and
the mean Vm depolarization value for a single recording in
Figure 3d and across all recordings in Figure 3e. In Figure
3f, we show the relationship between the NSIpLFP level
and the MUA across recordings.
States of robust rhythmicity (high d envelope, e.g.,

epoch 1 in Fig. 3a) showed strongly negative NSIpLFP val-
ues and were associated to intermediate depolarization
and MUA levels (see population data in Fig. 3e,f). When
the rhythmicity was not present (low values of pLFP d en-
velope, as, e.g., in epochs 3 and 4 in Fig. 3a), both the de-
polarization and the MUA levels had values close to their
minimum (see population data in Fig. 3e,f). States for
which the d component did not significantly contribute to

the network activity (quantified by the pLFP) were classi-
fied as nonrhythmic (i.e., NSIpLFP . 0) and both their de-
polarization and MUA levels strongly increased with the
mean level of network activity as captured by the NSIpLFP
(epochs 4–7 in Fig. 3a and population data in Fig. 3e,f).
Importantly, the values of mean depolarization and of
mean spiking activity in Figure 3e,f had a much lower SE
for any given value of the NSIpLFP than the one that was
found when considering the dependence of mean depola-
rization and of mean spiking activity on the g-to-d ratio
(Fig. 1k,l), suggesting that the NSIpLFP is a much tighter
predictor of membrane potential and of spiking dynamics
than the g-to-d ratio of the LFP.
We conclude that the NSIpLFP, has several strengths,

especially when compared to previous indices. The
NSIpLFP captured key features of Vm-defined network
states during wakefulness (McGinley et al., 2015b): it
enabled extraction of membrane potential activity re-
gimes ranging from d -band activity, to asynchronous
regimes at low activity levels and asynchronous re-
gimes at high activity levels (Fig. 3e,f). The NSIpLFP
therefore provided a quantitative measure of network
states that allowed extracting the U-shape nature of
cortical states from LFP recordings previously docu-
mented with intracellular recordings (Fig. 3e,f).

Evaluation of the pLFP-based NSI accuracy in
estimating membrane potential-based features
The above considerations suggest that it should be

possible to use the NSIpLFP, a measure only based in
LFPs, to identify reasonably well states that have either
rhythmic or nonrhythmic membrane potential proper-
ties, and to identify among the states with nonrhythmic
membrane potentials, those that have either depolari-
zation or hyperpolarization of membrane potential. In
this section, we quantified the accuracy of such state
characterization using the pLFP-based NSI.
To this aim, we first computed the NSI on the Vm signal.

The lower bound of the signal p0 was translated into the
Vm0 value by taking the first percentile of the Vm distribu-
tion (see Figs. 2a, 4a). We computed the sliding mean and
the time-varying low-frequency envelope with the same
parameters as for the pLFP signal. We derived the X(t)
and Y(t) and the “Vm-defined NSI” (NSIVm) according to
Equation 4 (see Materials and Methods). This Vm-defined
NSI has (by construction) negative values for the states
with Vm rhythmicity, low positive values for states with hy-
perpolarized nonrhythmic Vm, and high positive values for
states with depolarized nonrhythmic Vm. Thus, comparing
the value of the Vm-defined and pLFP-defined NSI during
the validated network states enables a simple quantifica-
tion of how good is the pLFP-defined NSI at identifying
states of rhythmic, nonrhythmic, depolarized and hyper-
polarized membrane potential.
Figure 4a shows the time course over different record-

ing sessions of the NSI computed either on the pLFP or
on Vm. From these plots, it is apparent that the two NSI
indices are remarkably well matched over the time
epochs of the recordings, with the occasional presence
of episodes in which the two indices were mismatched
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Figure 4. The pLFP-based NSI across multiple recordings: variability and estimated accuracy. We show seven recordings (from i to
vii) covering the whole range of observed values of correlations between the intracellular (Vm) and extracellular (pLFP) signals. a, A
60-s sample of the simultaneous LFP (gray) and Vm (black) signals. At the bottom, we show the validated network states with their
NSI value both for the “pLFP-defined NSI” (NSIpLFP, brown dots) and “Vm-defined NSI” (NSIVm, black dots). b, Histogram of the
NSIpLFP over the whole recording length for each recording. The color code per recording (from red to blue, see also Fig. 2c) repre-
sents the value of the correlation coefficient between the Vm and pLFP signals. c, Scatter plots of the “Vm-defined NSI” (NSIVm) and
the “pLFP-defined NSI” (NSIpLFP) values for all validated episodes in a given recording (i.e., extending before and after the recording
sample shown in a). We highlight the correct area with a green color and the incorrect area with a red color. The large red circles
give examples of the different sort of rejections that may happen during cross-validation (see main text). See Extended Data Figure
4-1 for the accuracy estimate with different dataset segmentation.
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(e.g., those marked by red circles in Fig .4a). To assess
when the pLFP-based NSI did and did not correctly pre-
dict the NSI measured on the membrane potential, we
implemented the criterion displayed in Figure 4c. We
first determined the scaling factor F between the Vm-
based NSI and the pLFP-based NSI, by performing the
linear fit of the data predicting either both rhythmicity or
both nonrhythmicity (i.e., on the lower left or the upper
right of the plots in Fig. 4c). This linear relationship
yielded a prediction for the NSIVm value from a NSIpLFP
value. Then, at a given time-point ti, the prediction was
considered as correct if the difference between the pre-
dicted and observed value of NSIVm lied within a toler-
ance interval defined by two free parameters, ptol and
Vtol
m . We set the value of ptol as the average noise level of

the pLFP signal across recordings, i.e., pnoise= 2.85 mV.
For the tolerance value Vtol

m , we took Vtol
m = 2 mV to be

well above the noise level of Vm recordings (;0.1 mV)
and still have a high resolution in the [0–35] mV range
of observed depolarization levels (see Fig. 3e). Correct detec-
tion thus occurred when the following conditions were met:
F � NSIVm tið Þ1Vtol

m

� �
,NSIpLFP tið Þ1ptol and F � NSIVm tið Þ��

Vtol
m Þ.NSIpLFP tið Þ � ptol. The strictness of this criterion is illus-

trated in Figure 4c. States were taken as incorrect when there
was a mismatch between the rhythmic versus nonrhyth-
mic classification (as shown for cases ii, iv–vii in Fig. 4,
see the nonmatching events highlighted with a red circle).
Importantly, state classification was also taken as incorrect
when the graded level of the rhythmicity or the nonrhythmicity
was not predicted well enough (see Fig. 4, i, iii). For example,
in recording #11 (Fig. 4, i), the NSIVm value did not display a
high enough value to be linearly related to NSIpLFP level ac-
cording to the relationship F.
Using the tolerance criteria defined in the above

paragraph, the accuracy of detection of a Vm-based
NSI value from the pLFP-based NSI value was 79.7 6
10.2% (mean 6 SEM over the n = 14 recordings and all
validated episodes). Decreasing the tolerance parame-
ter values to ptol = 1 mV and Vtol

m = 1 mV (corresponding
to extremely strict matching criteria) led to an accuracy
of 57.2 6 15.1%, meaning that, in more than half of the
cases, the network state could be identified even with
such remarkably high precision. We checked that ac-
curacy was not artificially inflated by overfitting by
splitting the dataset into different training and test
sets. In this control analysis, we found very similar pa-
rameters and we did not find any significant differen-
ces in the measured accuracies (see Extended Data
Fig. 4-1).

Table 2: Misclassifications in the pLFP-based (NSIpLFP) ver-
sus Vm-based (NSIVm) NSI characterization

Misclassification cases Percentage
NSIpLFP . 0 and NSIVm � 0 65.3%
NSIpLFP � 0 and NSIVm . 0 25.0%
NSIpLFP . 0 and NSIVm . 0 5.4%
NSIpLFP � 0 and NSIVm � 0 4.3%

Proportions of the misclassifications split into the rhythmic (NSI � 0) and non-
rhythmic (NSI . 0) cases for both the pLFP and Vm signals over all episodes
in the n = 14 recordings (related to Fig. 4c).

Figure 5. Relationship between pLFP-derived population activity
(NSIpLFP) and single-cell depolarization (Vm) in rhythmic and non-
rhythmic regimes. a, Relationship, at the single recording level
(shown for recording #1), between the NSIpLFP levels and the
properties of the Vm fluctuations. For rhythmic states (NSIpLFP �
0, purple color), we show the relationship between the NSI level
and the Vm amplitude of the d -band envelope. For nonrhythmic
states (NSIpLFP . 0, kaki color), we show the link between the
NSI level and the mean Vm depolarization level over a Tstate = 400
ms window. We highlight with gray dots the values of the single
episodes visible on Figure 3a (reproduced on the top inset, Vm in
black and pLFP in brown). We show the linear regressions for the
rhythmic and nonrhythmic data (dashed red line). Note that the
plain curve does not reach episode 3 because the minimum
number of episodes for averaging is not reached at that level (see
Materials and Methods). b, Same than a for recording #11. c,
Reproducing the analysis of a, b over all n = 14 recordings (see
main text). We show the mean relations over recordings (thin
gray lines) and the mean (wide curve) and SD (shaded area)
across recordings. Evaluated only for the NSIpLFP levels displayed
by multiple recordings (i.e., n = 6 recordings for rhythmic activity
and n = 13 recordings for nonrhythmic activity). For each record-
ing, we perform a linear regression with respect to the NSIpLFP
levels, we compute the mean across recordings hsi and the
probability of a deviation from the 0-slope hypothesis p (paired t
test). d, Relationship between the a parameter (that sets the pro-
portion of nonrhythmic episodes; see Fig. 3c) and the mean slope
over cells (top, hsicells) together with the p-value testing the signifi-
cance of a non-zero slope (bottom), i.e., reproducing the analysis
of c for different a values.
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We noted that the misclassifications were not homoge-
neously distributed across different states (see Table 2). A
specific set of network state misclassifications repre-
sented 65.3% of the misclassifications over the merged
episodes across all recordings (i.e., 13.1% of all epi-
sodes). In this set, rhythmic activity predicted from the Vm

(NSIVm � 0) was misclassified as nonrhythmic activity
from the pLFP (NSIpLFP . 0). We analyze in the next sec-
tion the reasons behind this finding.

Graded aspect of network states in terms of pLFP and
Vm fluctuations: rhythmic versus nonrhythmic states
The above analysis revealed a stronger tendency to

classify network states as rhythmic from the Vm than from
the pLFP fluctuations. This difference in classification
suggested that the NSI measures revealed previously un-
explored asymmetries between the characteristics of fluc-
tuations of pLFP and Vm signal across different network
states. We therefore analyzed more closely the corre-
spondence between pLFP and Vm fluctuations for differ-
ent levels of pLFP-based NSI and how this impacted our
classification results.
For nonrhythmic activity (NSIpLFP . 0), the level of the

NSIpLFP was given by the mean pLFP deflection (Y-p0) in
the time window Tstate = 400 ms. We thus compared the
positive NSI values to the mean membrane potential de-
polarization level in the same window Tstate. For rhythmic
activity (NSIpLFP � 0), the level of the NSI was proportional
to the d envelope of the pLFP. We thus compared the
negative NSI values to the d envelope in the Vm signal.
We show the relationship between those pLFP-defined
and Vm-defined levels for two recordings in Figure 5a,b
(for recording #1 and recording #11, respectively) and for
the population data on Figure 5c.
Overall, we found (Fig. 5) that the membrane depolari-

zation exhibited a strong dependency on the pLFP-based
NSI level for nonrhythmic activity (NSIpLFP . 0). We
showed single episodes of increasing NSIpLFP levels
(numbered 3, 4, 5, 6 in Fig. 5a,b) and their respective epi-
sode averages at all NSIpLFP . 0 levels for those two re-
cordings (Fig. 5a,b, kaki curves). The ;15 mV variability in
terms of pLFP based NSI levels corresponded to a
;30 mV variability of depolarization level with a clear
monotonic relationship for those two sample recordings.
This behavior was confirmed at the population level (Fig.
5c). We standardized the analysis across all recordings by
binning the NSIpLFP levels from 0 to 30 mV (a range cover-
ing all observed values) in bins of 1 mV. We found that all
recordings exhibited depolarizations with a steep de-
pendency on the NSIpLFP level 1.5 6 0.7 mV/mV, signifi-
cantly deviating from the null hypothesis of a zero slope
(p = 1.2e-5, n = 13 recordings, paired t test). On the other
hand, we found that the value of pLFP-based NSI for
rhythmic activity (NSIpLFP � 0) had a much lower impact
on the membrane depolarization level (see Fig. 5). The
;10 mV variability in terms of pLFP based NSI levels
translated into a weakly modulated Vm oscillation with a
5 to 10 mV amplitude (Fig. 5a,b, purple curves). We high-
light this weak dependency on the selected samples
shown in Figure 5a,b. We extended the analysis to all

recordings, after standardizing the data by binning the
pLFP-based NSI levels from –30 to 0 mV. At the popula-
tion level, we confirmed that the mean membrane depola-
rization had a weak dependency on the pLFP-based NSI
level (–0.2 6 0.3 mV mV), which was not significantly devi-
ating from the null hypothesis of a zero slope (p = 0.14,
over the n = 6 recordings displaying rhythmic activity
within multiple NSIpLFP bins, paired t test). It should be
noted that the lack of graded Vm variations for rhythmic
activity was not related to our “rhythmicity threshold” lim-
iting the set of rhythmic samples to a potentially-biased
subset. When varying the rhythmicity-factor a up to a = 5
(where the occurrence of rhythmic NSIpLFP � 0 states
reaches ;80%; see Fig. 3b), the depolarization level still
showed a very weak dependency to the NSI level com-
pared to that for nonrhythmic activity (Fig. 5d, top) with
similar statistical significance values (see Fig. 5d, bottom).
We concluded that the graded levels of neural activity

captured by the NSIpLFP had a strong correlate in terms of
membrane potential depolarization for nonrhythmic activ-
ity (NSIpLFP . 0), while the various pLFP-based NSI levels
of rhythmic activity (NSIpLFP � 0) rather corresponded to a
stereotypical Vm oscillation with;5 to 10 mV amplitude.
Those observations explained the results of our cross-

validation analysis (Table 2). The high precision of the
classification in the jointly nonrhythmic case (“NSIpLFP . 0
and NSIVm . 0” in Table 2, only 5.4% of the misclassifica-
tions) resulted from the strong relationship between the
pLFP and Vm signals during nonrhythmic states (Fig. 5a–
c, kaki curves). On the other hand, the existence of a few
episodes showing a high envelope d oscillation in the Vm

with a low d envelope in the pLFP (cases such as episode
2 in Fig. 5a,b) created an ambiguous situation for the clas-
sifier because rhythmicity was hard to establish from the
pLFP signal in those episodes. The cases with mixed
rhythmic/nonrhythmic predictions indeed represented
90.3% of the misclassifications (“NSIpLFP . 0 and NSIVm
� 0” and “NSIpLFP � 0 and NSIVm . 0” in Table 2). In par-
ticular, predicting rhythmicity from the Vm and nonrhyth-
micity from the pLFP was the prevalent misclassification
case (65.3% for the case “NSIpLFP � 0 and NSIVm . 0”),
consistent with the stronger representation of the d pat-
tern in the Vm than in the pLFP (NSIpLFP � 0 range in Fig.
5a–c). We confirmed that such misclassification cases ori-
ginated from episodes of low d envelope in the pLFP sig-
nal: the mean d env in misclassified cases was significantly
lower than in accurately classified cases (1.5 6 0.3 vs
2.7 6 0.5 mV, p = 3.3e-10 paired t test, in the n = 13 re-
cordings displaying both conditions).

Using the NSIpLFP to quantify network state
distributions in the somato-sensory cortex of awake
head-fixedmice
We analyzed the NSIpLFP state distribution in the whole

dataset (n = 14 simultaneous Vm and LFP recordings in
the somato-sensory cortex of awake head-fixed awake
mice). Figure 4 shows eight example recordings represen-
tative of the dataset, spanning the full range of correla-
tions between the pLFP and Vm fluctuations (see Fig. 2c).
We show a 60-s sample of the intracellular and extracellular
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recordings together with the time-varying NSIpLFP (Fig. 4a)
and the histogram of the NSIpLFP levels across the whole re-
cording (Fig. 4b).
Overall, the dataset was dominated by nonrhythmic ac-

tivity with a fraction of nonrhythmic states: FNSI.0 =
81.1 6 15.9%. The fraction of rhythmic activity exhibited
a large variability with n = 3 recordings below FNSI�0 = 2%
and n = 3 recordings above FNSI�0 = 35% (peaking at
FNSI�0 = 46.8% for recording #1, see Fig. 4b).
The mean absolute NSIpLFP value over rhythmic periods

(i.e., NSIpLFP � 0) was 5.65 6 1.02 mV (mean 6 SEM over
n = 14 recordings) and 6.676 1.34 mV for nonrhythmic pe-
riods (i.e., NSIpLFP . 0), yielding a significant increase
from rhythmic to nonrhythmic states (p = 3.0e-5, paired
t test). The increased amplitude in terms of pLFP signal
(i.e., high-frequency content of the LFP) suggested
that, as an average, synaptic activity was stronger in
the nonrhythmic periods that in the rhythmic ones (see
Discussion). This increased range of pLFP level was
also true for the maximum level displayed by single re-
cordings with 9.52 6 2.25 versus 12.06 6 3.4 mV (p =
9.8e-3, paired t test) for rhythmic and nonrhythmic ac-
tivity, respectively. During nonrhythmic periods, we
found a mild but significant increase of the variability
(SD, from 1.29 6 0.32 to 1.56 6 0.71 mV, p = 8.9e-2,
paired t test) and skewness of the pLFP distributions
(from 0.35 6 0.33 to 0.7 6 0.41, p = 8.2e-2, paired t
test).

Network state variability within individual recordings
predicts the average correlation between population
and single-cell signals
We next analyzed whether the NSIpLFP state distribu-

tions could explain the variability of the correlation cc(Vm,
pLFP) between the time-varying population signal pLFP(t)
and the single-cell signal Vm(t) in our recordings (see Fig.
4a,b). We reduced the NSIpLFP distribution per recording
to a few components (detailed below) and we used uni-
variate and multivariate linear regressions to analyse how
the variability of those components across recordings ex-
plained the variability of the observed correlation values.
From top to bottom in Fig. 4b (i.e., from high to low cor-

relation recordings), the distribution of NSIpLFP levels
across recordings was quantitatively different. At the top
[high correlations, cc(Vm, pLFP) . 0.4, panels i–v], distri-
butions were bimodal with two high peaks both in the
rhythmic (NSIpLFP � 0) and nonrhythmic (NSIpLFP . 0)
areas. At the bottom [low correlations, cc(Vm, pLFP) ,
0.4, panels vi, vii], distributions were dominated by non-
rhythmic episodes with rather narrow range of NSIpLFP
values within the (NSIpLFP . 0) domain. To quantify these
features within the single recording distributions, we de-
composed each distribution into the following quantities:
(1) the mean NSIpLFP . 0 over the whole recording mNSI;
(2) the variability (SD) of the full NSI distribution sNSI; (3)
the fraction of rhythmic episodes FNSI�0; (4) the mean in
NSIpLFP values restricted to nonrhythmic episodes mNSI.0;
(5) the mean in NSIpLFP values restricted to rhythmic epi-
sodes mNSI�0; (6) the variability in NSIpLFP values restricted

to nonrhythmic episodes sNSI.0; (7) the variability in
NSIpLFP values restricted to rhythmic episodes sNSI�0.
We show the results of a linear regression analysis for

each factor in Figure 6a (ordered by explained variance)
and their relationship with the correlation value in Figure
6b. The factor explaining the highest percentage of the
variability (55.27% of the full variability) was the SD of the
NSI distribution sNSI. Strikingly, the fraction of (synchro-
nous) rhythmic states was only the third most important
factor with an explained variance of 33.89%. A more im-
portant factor was found to be the variability of network
states within nonrhythmic states sNSI.0 with an explained
variance of 41.5%. Recording #14 in Figure 4ii provided
an example of these observations. It exhibited strong vari-
ability in terms of nonrhythmic states and relatively low
occurrence of rhythmic activity (e.g., lower than recording
#1). However, it still displayed high correlation coeffi-
cient [with cc(Vm, pLFP) = 0.66]. Other individual factors
had weak statistical significance (p . 0.04; see Fig.6a).
However, using a multiple linear regression including all
factors, we found that different components of the NSI

Figure 6. Features in the distribution of the pLFP-based NSI ex-
plain the diversity over recordings of the correlation value be-
tween the population (pLFP) and single-cell (Vm) signals. a, We
perform a linear-regression between the correlation coefficient
cc(Vm,pLFP) and the following quantities characterizing the
NSIpLFP distribution: (1) the variability sNSI (SD) of the NSIpLFP
values across the whole recording, (2) the variability in NSIpLFP
values restricted to nonrhythmic episodes sNSI.0 , (3) the frac-
tion of rhythmic episodes FNSI�0 , (4) the mean NSIpLFP over the
whole recording mNSI, (5) the variability in NSIpLFP values re-
stricted to rhythmic episodes sNSI�0 , (6) the mean in NSIpLFP
values restricted to nonrhythmic episodes mNSI.0 , (7) the mean
in NSI values restricted to rhythmic episodes mNSI�0. We show
the explained variance for all quantities on the x-axis and the
statistical significance of those linear models (p-values). We
also performed multiple linear regressions with all those factors
(dark gray bar) and we show the best three component model
(light gray bar: sNSI.0, FNSI�0,sNSI�0). We report the variance
corrected by the number of linear factors (adjusted R2). b, Scatter
plot between the value of a given factor and the Vm-pLFP cor-
relation coefficient across individual recordings. Shown for the
first five factors of the NSIpLFP distribution with the highest
percentage of explained variance (see variance explained and
p-values in a). The color code of individual recordings matches
that of Figure 2c.
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distributions had complementary contributions in shap-
ing the average correlation per recording. The full linear
model indeed yielded an explained variance of 69.17%
(after correction by the number of linear factors, f test
p = 3.1e-2). Reducing the dimensionality of the linear
model (up to three components), we found that combin-
ing the significant subcomponents of the NSI variability
(sNSI.0 and FNSI�0) with the variability within rhythmic
states sNSI�0 produced a statistically-significant model
(f test, p = 6.6e-3) predicting 59.84% of the variability
(corrected by the number of factors).
We concluded that, in the present dataset, the average

correlation between a single-cell signal (Vm) and the popu-
lation signal (pLFP) could be largely explained (up to
;70%) by features of the NSIpLFP distributions. State vari-
ability among all NSIpLFP-defined states (sNSI) was a criti-
cal factor in determining such a variability (Fig. 6a, blue).
We decomposed this state variability and found that
the two most prominent factors are the variability within
nonrhythmic states (sNSI.0; Fig 6a, orange) followed by
the occurrence of synchronous rhythmic activity (FNSI�0;
Fig. 6a, green).

Computation ofNSIpLFP indices in mouse visual cortex
Finally, we demonstrate the general applicability of the

method on a publicly available dataset from the Allen
Institute for Brain Science (Siegle et al., 2021). We ana-
lyzed neural activity recorded with Neuropixels probes

(Jun et al., 2017) in the V1 of awake mice on a steering
wheel during spontaneous activity (grey screen presenta-
tion). We extracted a V1-located LFP signal from the
probes (Materials and Methods) and we computed the
time-varying population firing rate summing spikes from
all well-isolated single units (Materials and Methods). We
first re-performed all calibration steps of the method on
the new dataset. We found that, with respect to our Vm

and LFP S1 dataset analyzed in previous figures, the d
oscillation in V1 was clearly shifted up in frequency (Fig.
7a, peak at 5.7 6 0.6 Hz, n = 11 sessions). We therefore
shifted the d -band to [4,8] Hz, and we decreased the tem-
poral smoothing (Tsmoothing = 30 ms) to avoid smoothing
out the faster temporal dynamics of the d oscillation. We
next determined the optimal rhythmicity parameter a by
analyzing the amount of d envelope in rhythmic states
when varying a (Fig. 7b, analysis as in Fig. 3c). We found
an optimal value of a=3.07, close to the a= 2.85 value of
the S1 dataset with Vm recordings. Optimal parameters
for the V1 dataset are summarized in Table 3.
Similarly to our S1 dataset, we observed that network

activity in V1 during wakefulness was characterized by a
strong variability of network activity patterns, including d
oscillation and nonrhythmic episodes at various spiking
activity levels (see raw data in Fig. 7f,g and histograms in
Fig. 7c). The activity was overall dominated by nonrhyth-
mic episodes with a percentage of 86.76 3.3% of all vali-
dated episodes (see Fig. 7c), i.e., activity was ;5% less
rhythmic than in our dataset. State distributions were less
variable across recordings than in our S1 dataset (e.g.,
rhythmic activity fraction only varies from a minimum of
10.2% to a maximum of 22.5%), likely due to the in-
creased sampling durations (20 min here vs ;5 min in
our dataset). We used this dataset to analyze the rela-
tionship between NSIpLFP values, behavioral state and
population firing rates. If the NSIpLFP index well cap-
tures the U-shaped relationship between network
states and behavioral states, it should satisfy three
properties: (1) high values during running; (2) increas-
ing values with pupil size; (3) a U-shape relationship

Table 3: Parameters of the NSIpLFP characterization in the
“Visual coding – Neuropixels” dataset

Parameter Symbol Value
d Band Fd [4,8] Hz
pLFP smoothing Tsmoothing 30 ms
pLFP lower bound p0 18.9 6 3.7 mV
Factor for rhythmicity threshold a 3.07

All other parameters are identical to Table 1. The p0 parameter is a recording-
specific parameter (reported as mean 6 SEM over the n = 11 sessions) re-
sulting from the setting pthre

0 =1%. As in Table 1, the pLFP threshold for state
validation was set to pthre

fluct=p0 for each recording.

continued
Figure 7. Application of the NSI analysis to the “Visual coding – Neuropixels” dataset of the Allen Institute (Siegle et al., 2021). a,
pLFP envelope in the d range for the Allen dataset in V1 and in our S1 dataset for comparison. b, Mean d envelope in the spiking
rate (Materials and Methods) across all pLFP-defined rhythmic episodes as a function of the a parameter. c, Network state variabili-
ty in the Allen dataset captured by the pLFP-defined NSI. Thin lines represent single session data. d, Histogram of pLFP-defined
NSI values depending on running conditions. The “running” condition corresponds to episodes when the absolute speed is .5cm/s
and “still” when the absolute speed is ,5 cm/s. e, Relationship between pLFP-defined NSI levels and average pupil area at those
levels. f, Example episodes (from left to right) in session 774875821. From top to bottom, The single unit spikes over time, the time-
varying rate computed from those spikes (thick transparent line: sliding mean), the raw LFP in the selected channel (see Materials
and Methods), the pLFP signal (thick transparent line: sliding mean), and the pLFP-defined NSI with the validated episodes (vali-
dated episodes as dots). g, Same as in f for session 768515987. h, Relationship, at the single session level, between the NSIpLFP
levels and the rate fluctuations (shown as mean 6 SEM over episodes). For rhythmic states (NSIpLFP � 0, purple color), we show the
relationship between the NSI level and the rate amplitude of the d -band. For nonrhythmic states (NSIpLFP . 0, kaki color), we show
the link between the NSI level and the mean rate level over a Tstate = 400 ms window. We highlight with black dots the values of the
single episodes shown in g. We show the linear regressions for the rhythmic and nonrhythmic data (dashed red line). i, Same as in h
for session 774875821. j, Reproducing the analysis of h, i over all n = 11 sessions. Evaluated only for the NSIpLFP levels displayed
by multiple recordings (i.e., n = 9 recordings for rhythmic activity and n = 11 recordings for nonrhythmic activity; Materials and
Methods). For each recording, we performed a linear regression with respect to the NSIpLFP levels, we computed the mean across
recordings hsi and the probability of a deviation from the 0-slope hypothesis p (paired t test). In a,b,c,d,e,j, data are shown as mean
6 SEM (thick line with shaded area) over the sessions of the dataset.
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with firing rates. We examined next how well the
NSIpLFP index matches these expectations.
We first computed the network state distribution in

“running” (mean absolute running speed during the epi-
sode larger than 5cm/s) and “still” conditions (Fig. 7d). As
predicted based on previous studies (Niell and Stryker,
2010; Ayaz et al., 2013; Polack et al., 2013; Vinck et al.,
2015), we found a significant shift of the mean network
state toward the higher values of NSIpLFP (mean NSIpLFP
in running 31.3 6 9.6 vs 18.9 6 4.7 mV in still conditions,
p = 2e-4, paired t test, n = 11 sessions). Next, we found a
strong and monotonic relationship between NSI and
pupil area (Fig. 7e, Pearson correlation, c = 0.85, p =
8e-6) as reported in previous studies (Reimer et al.,
2014; McGinley et al., 2015a), suggesting that the
NSIpLFP is a good index of the states expected by the
U-model (McGinley et al., 2015b). Finally, we investi-
gated the dependence of population firing rates on the
NSIpLFP index. We found that the relationship between
pLFP and spiking rates significantly deviated from the
null hypothesis of 0-slope both in the rhythmic and
nonrhythmic regimes (one sample t test with slope val-
ues, p , 0.05 in both cases, see values in Fig. 7j), with a
positive slope for positive NSIpLFP values and a negative
slope for negative NSIpLFP values. Thus, the NSIpLFP had
a U shape relationship with the population firing rate.

Discussion
In this study, we developed a method to extract from

LFP recordings in the awake mouse cortex network states
information that previously could be obtained only with in-
tracellular Vm recordings (Poulet and Petersen, 2008;
Polack et al., 2013; Reimer et al., 2014; McGinley et al.,
2015a; Einstein et al., 2017; Arroyo et al., 2018; Nestvogel
and McCormick, 2022). Prolonged membrane potential
recordings are difficult to achieve, and most of the
times require head-fixation (but see Lee et al., 2006).
This strongly limits our ability to describe the complex-
ity of network states and their relationship with behav-
ior. Achieving precise state classification based on LFP
recordings, which are technically easier to perform and
can be performed in freely moving animals, will greatly
increase our ability to understand the cellular and net-
work mechanisms underlying cortical processing dur-
ing behavior. Previous attempts to classify network
states from the LFP have been limited to the d -band ac-
tivity (Vinck et al., 2015; Chen et al., 2017; Pala and
Petersen, 2018). When applied to data gathered in
awake animals, the d -to-g state classification used in
anesthetized preparations (Cheng-yu et al., 2009;
Saleem et al., 2010) was shown to only separate be-
tween the two extremes of the spectrum of cortical states:
synchronized d -band activity and desynchronized activity
at high-g power. In contrast, the new classification method
developed in this study, NSI, captured the large spectrum
of network states in the awake neocortex. Importantly, it
provided quantitative measurement of the “U-model” of
cortical states, which was previously developed only
based on intracellular membrane potential recordings
(McGinley et al., 2015b).

Prior to the NSI classification, we found it essential to
apply a preprocessing step to the extracellular LFP. We
computed the time-varying envelope after a wavelet
transformation in the high-g band (yielding the pLFP sig-
nal). In a previous study in cat neocortex (Mukovski et al.,
2007), the authors identified active and silent states (up
and down, respectively) under anesthesia from the pLFP
signal (with a slightly different frequency band of the LFP:
20–100 Hz, instead of the data-driven [39.7,133.6] Hz
band used here). We showed that such a signal process-
ing step enabled capturing various states of wakefulness,
ranging from d (;3 Hz) oscillatory activity to desynchron-
ized states at various levels of spiking activity.
We then used the NSI to analyze how the distribution of

network states within a recording period shaped the aver-
age correlations between the single-cell (intracellular) and
population (extracellular) signals. Such diverse correlation
levels seemed not to be explained by single-cell features
(Extended Data Fig. 1-1) and are unlikely to result from a
variable distance between electrodes across recordings
(Arroyo et al., 2018), given the close and narrow variability
setting of our experiments (200 to 250 mm distance be-
tween electrodes; see Materials and Methods). In anes-
thetized preparations, a consolidated view suggests that
low-frequency activity is the main source for neural syn-
chrony in cortical networks and thus for cell-to-population
correlation (Steriade et al., 1993). Also in our dataset re-
corded during wakefulness, the fraction of slow (d -band)
oscillatory episodes was a factor significantly contributing
to the level of correlation between single-cell and popula-
tion signal (Fig. 6). However, and unexpectedly, we found
that this was a weaker factor than the variability in the set
of nonrhythmic states NSI values of cortical activity (Fig.
6). This observation was explained by the fact that
synchronized d activity represented only a modest frac-
tion of network activity during wakefulness (18.9% in the
S1 dataset, 13.3% in the Allen V1 dataset) and by the fact
that the diverse nonrhythmic states corresponded to
strongly differing levels of both the Vm depolarization and
the high-g activity (Reimer et al., 2014; McGinley et al.,
2015a; Zerlaut et al., 2019; Figs. 2-4). Importantly, the di-
versity of network state distributions across recordings
largely contributed to the high variability in the measured
cell-to-population correlations (70% of this variability
could be explained by recording-specific features of the
NSIpLFP distribution; Fig. 6). This observation further high-
lights the necessity of network-state monitoring in the in-
terpretation of experimental results in the awake cortex
(McGinley et al., 2015b), and it suggests the possible im-
portance of NSI indices to understand and characterize
how the degree of coupling between single-cell and pop-
ulation-level activity varies across different behavioral
states.
Our results provide possible insights on the circuit dy-

namics during different cortical states observed during
wakefulness. First, nonrhythmic episodes had population
activity levels (pLFP) varying over a wide range and
seemed to reach up to levels never observed in rhythmic
episodes (Fig 3f). Second, in such nonrhythmic states, we
observed a tight relationship between the population
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activity and single-cell depolarization (Fig. 5). This sug-
gests that local recurrent spiking activity plays a major
role is shaping the dynamics of nonrhythmic states. It also
corroborates, at the level of population signals, that the
hyperpolarized nonrhythmic states observed at intermedi-
ate arousal when sensory detection is optimal are charac-
terized by lower levels of ongoing recurrent synaptic
activity in local cortical populations (McGinley et al.,
2015a; Neske et al., 2019; Nestvogel and McCormick,
2022). Instead, during rhythmic states, population activity
varied over a much more limited range, and the relation-
ship between population activity (pLFP) and single-cell
membrane potential was much less tight (Fig. 5). This sug-
gests that, in rhythmic states, strong depolarization pat-
terns can be evoked despite a low level of spiking activity
in the local recurrent population (see Fig. 5 vs Fig. 7).
Such a phenomenon might be explained by the fact that:
(1) the slow rhythmic ;3 to 6 Hz oscillatory activity origi-
nates from thalamo-cortical interactions (Nestvogel and
McCormick, 2022) and (2) the Vm can display high ampli-
tude patterns in response to a few excitatory-only inputs
while the LFP may only display strong signals at higher re-
cruitment levels involving inhibition (Tele�nczuk et al.,
2017). Because of the occasionally low level of the pLFP
signal during rhythmic activity, the NSIpLFP was biased to-
wards low activity nonrhythmic states when compared to
intracellular recordings. Despite this limitation, the overall
high matching value obtained through cross-validation
(;80% correct) suggested that the pLFP-based NSI is a
valid index to characterize the different network states oc-
curring during wakefulness.
Given the widespread use of extracellular recordings in

neuroscientific research in both head fixed and freely
moving preparations (Panzeri et al., 2015; Jun et al., 2017)
and the relevance of state modulation in sensory processing
(Niell and Stryker, 2010; Vijayan et al., 2010; Destexhe, 2011;
Ayaz et al., 2013; Bennett et al., 2013; Ecker et al., 2014; Fu
et al., 2014; Lee et al., 2014; Pinto et al., 2013; Polack et al.,
2013; Reimer et al., 2014; Zhou et al., 2014; Pachitariu et al.,
2015; Vinck et al., 2015; Arandia-Romero et al., 2016; Pakan
et al., 2016; Busse et al., 2017; Dadarlat and Stryker, 2017;
Einstein et al., 2017; Muller et al., 2018; Poulet and Crochet,
2019; Davis et al., 2020), the presented method provides
a potentially important analytical tool to document the
properties and functions of state-dependent computa-
tions in neocortex (Buonomano and Maass, 2009;
Cardin, 2019).
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