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Abstract

The hard-sphere model is one of the most extensively studied models in statistical physics. It

describes the continuous distribution of spherical particles, governed by hard-core interactions.

An important quantity of this model is the normalizing factor of this distribution, called the

partition function. We propose a Markov chain Monte Carlo algorithm for approximating the

grand-canonical partition function of the hard-sphere model in 𝑑 dimensions. Up to a fugacity

of 𝜆 < e/2𝑑 , the runtime of our algorithm is polynomial in the volume of the system. This

covers the entire known real-valued regime for the uniqueness of the Gibbs measure.

Key to our approach is to define a discretization that closely approximates the partition func-

tion of the continuous model. This results in a discrete hard-core instance that is exponential

in the size of the initial hard-sphere model. Our approximation bound follows directly from

the correlation decay threshold of an infinite regular tree with degree equal to the maximum

degree of our discretization. To cope with the exponential blow-up of the discrete instance we

use clique dynamics, a Markov chain that was recently introduced in the setting of abstract

polymer models. We prove rapid mixing of clique dynamics up to the tree threshold of the

univariate hard-core model. This is achieved by relating clique dynamics to block dynamics

and adapting the spectral expansion method, which was recently used to bound the mixing

time of Glauber dynamics within the same parameter regime.

Keywords: hard-sphere model • Markov chain • partition function • Gibbs distribu-

tion • approximate counting • spectral independence



1 Introduction

Statistical physicsmodels particle systems as probability distributions. One of themost fundamental

and mathematically challenging models in this area is the hard-sphere model, which plays a central

role in understanding the thermodynamic properties of monoatomic gases and liquids [8, 30]. It is

a continuous model that studies the distribution and macroscopic behavior of indistinguishable

spherical particles, assuming only hard-core interactions, i.e., no two particles can occupy the

same space.

We focus on computational properties of the grand-canonical ensemble of the hard-sphere model

in a finite 𝑑-dimensional cubic region V = [0, ℓ)𝑑 in the Euclidean space. In the grand-canonical

ensemble, the system can exchange particles with its surrounding based on a fugacity parameter 𝜆,

which is inverse to the temperature of the system. For the rest of the paper, we make the common

assumption that the system is normalized such that the particles have unit volume. That means

we fix their radii to 𝑟 = (1/𝑣𝑑 )1/𝑑 , where 𝑣𝑑 is the volume of a unit sphere in 𝑑 dimensions.

A simple probabilistic interpretation of the distribution of particles in the grand-canonical

ensemble is that centers of points that are drawn from a Poisson point process onVwith intensity 𝜆,

conditioned on the event that no two particles overlap (i.e., every pair of centers has distance at

least 2𝑟 ). The resulting distribution over particle configurations inV is called the Gibbs distribution
of the model. An important quantity in such models is the so called partition function 𝑍 (V, 𝜆),
which can be seen as the normalizing constant of the Gibbs distribution. Formally, it is defined as

𝑍 (V, 𝜆) = 1 +
∑︁
𝑘∈N>0

𝜆𝑘

𝑘!

∫
V𝑘

𝐷

(
𝑥 (1) , . . . , 𝑥 (𝑘)

)
d𝜈𝑑×𝑘 ,

where

𝐷

(
𝑥 (1) , . . . , 𝑥 (𝑘)

)
=

{
1 if 𝑑

(
𝑥 (𝑖) , 𝑥 ( 𝑗) ) ≥ 2𝑟 for all 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗

0 otherwise

and 𝜈𝑑×𝑘 is the Lebesgue measure on R𝑑×𝑘 . Commonly, two computational task are associated

with the grand-canonical hard-sphere model: (1) approximating its partition function 𝑍 (V, 𝜆), and
(2) approximately sampling from the Gibbs distribution.

Studying computational aspects of the hard-sphere model carries a historical weight, as in

the seminal work of Metropolis [43], the Monte Carlo method was introduced to investigate a

two-dimensional hard-sphere model. Approximate-sampling Markov chain approaches have been

mainly focused on the canonical ensemble of the model, that is, the system does not exchange par-

ticles with its surrounding and thus, the distribution is defined over a fixed number of spheres [32,

35, 37]. Considering the grand canonical ensemble, exact sampling algorithms have appeared

in the literature for the two-dimensional model without asymptotic runtime guarantees [38, 39,

45]. A result that is more aligned with theoretical computer science was given in [29], where the

authors introduced an exact sampling algorithm for the grand-canonical hard-sphere model in

𝑑-dimensions. Their algorithm is based on partial rejection sampling with a runtime linear in
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the volume of the system |V| when assuming a continuous computational model and access to

a sampler from a continuous Poisson point process. Their approach is guaranteed to apply for

𝜆 < 2
−(𝑑+1/2)

.

Besides such sampling results, there is an ongoing effort to improve the known fugacity regime

where the Gibbs measure is unique and correlations decay exponentially fast [15, 23, 33, 44]. Note

that for many discrete spin systems, such as the hard-core model, correlation decay is closely

related to the applicability of different methods for efficient approximation of the partition function

[25, 53, 56]. Recently, the correlation decay bounds for the hard-sphere model were improved in

[33] to 𝜆 < 2/2−𝑑 , using probabilistic arguments, and in [44] to 𝜆 < e/2𝑑 , based on an analytic

approach. A common feature of [33] and [44] is that they translated tools originally developed

in theoretical computer science for investigating the discrete hard-core model to the continuous

domain.

Our work is in line with the computational view on the hard-sphere model but more algorithmic

in nature. We investigate the range of the fugacity 𝜆 for which an approximation of 𝑍 (V, 𝜆) can be

obtained efficiently in terms of the volume of the system |V|, assuming a discrete computational

model. Our main result is that for all 𝜆 < e/2𝑑 there is a randomized algorithm for 𝜀-approximating

the partition function in time polynomial in |V| and 1/𝜀.

▶ Theorem 1. Let (V, 𝜆) be an instance of the continuous hard-sphere model with V = [0, ℓ)𝑑 .
If there is a 𝛿 ∈ (0, 1] such that

𝜆 ≤ (1 − 𝛿) e
2
𝑑
,

then for each 𝜀 ∈ (0, 1] there is a randomized 𝜀-approximation of 𝑍 (V, 𝜆) computable in time

polynomial in |V|1/𝛿2 and 1

𝜀
. ◀

Note that this bound on 𝜆 precisely coincides with the best known bound for the uniqueness of

the Gibbs measure in the thermodynamic limit, recently established in [44]. For many discrete

spin systems, such as the hard-core model or general anti-ferromagnetic 2-state spin systems,

the region of efficient approximation of the partition function is closely related to uniqueness of

the Gibbs measure. More precisely, it can be shown that the partition function of every graph

of maximum degree 𝛥 can be approximated efficiently if the corresponding Gibbs distribution

on an infinite 𝛥 regular tree is unique [41, 55]. A detailed discussion for the discrete hard-core

model can be found in the next subsection. In a sense, Theorem 1 can be seen as the algorithmic

counterpart of the recent uniqueness result for the continuous hard-sphere model. This answers

an open question, asked in [44].

The way we prove our result is quite contrary to [33] and [44]. Instead of translating discrete

tools from computer science into the continuous domain, we rather discretize the hard-sphere

model. By this, existing algorithmic and probabilistic techniques for discrete models become

available, and we avoid continuous analysis.

Our applied discretization scheme is fairly intuitive and results in an instance of the discrete

hard-core model. This model has been extensively studied in the computer science community.

However, as this hard-core instance is exponential in the size of the continuous system |V|,
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existing approaches for approximating its partition function, such a Markov chain Monte Carlo

methods based on Glauber dynamics, are not feasible. We overcome this problem by applying a

Markov chain Monte Carlo approach based on clique dynamics, which were introduced in [24]

in the setting of abstract polymer models. Previously known conditions for the rapid mixing of

clique dynamics were developed for the multivariate version of the hard-core model. Due to this

generality, those conditions do not result in the desired bound in our univariate setting. Instead

we relate those clique dynamics to another Markov chain, called block dynamics. We then prove

the desired mixing time for the block dynamics by adapting a recently introduced technique for

bounding the mixing time of Markov chains, based on local spectral expansion [2]. Together with

a known self-reducibility scheme for clique dynamics, this results in the desired approximation

algorithm.

Note that we aim for a rigorous algorithmic result for approximating the partition function

of the continuous hard-sphere model. To be in line with commonly used discrete computational

models, our Markov chain Monte Carlo algorithm does not assume access to a continuous sampler

but instead samples approximately from a discretized version of the Gibbs distribution. Note that

sampling from the continuous hard-sphere partition function cannot be done using a discrete

computation model as this would involve infinite float pointer precision. For practical matters,

our discretization of the Gibbs distribution can be seen as an approximation of the original

continuous Gibbs measure. However, a rigorous comparison between both distributions based on

total variation distance is not applicable, due to the fact that one is discrete whereas the other is

continuous in nature.

Assuming access to a continuous sampler, we believe that our approach can be used to obtain an

approximation of the Gibbs distribution of the continuous model within the same fugacity regime,

by adding small perturbations to the drawn sphere centers. This would be in line with the relation

between the mixing time of continuous heat-bath dynamics and strong spatial mixing, pointed

out in [33], combined with the uniqueness bound from [44].

In Sections 1.1 to 1.3 we discuss our technical contributions in more detail and explain how they

relate to the existing literature. Finally in Section 1.4 we discuss possible extensions and future

work.

1.1 Discretization and hard-core model

Our discretization scheme expresses the hard-sphere partition function as the partition function

of an instance of the (univariate) hard-core model. An instance of the hard-core model is a tuple

(𝐺, 𝜆) where 𝐺 = (𝑉 , 𝐸) is an undirected graph and 𝜆 ∈ R>0. Its partition function is defined as

𝑍 (𝐺, 𝜆) B
∑︁

𝐼 ∈I(𝐺)
𝜆 |𝐼 |,

where I(𝐺) denotes the independent sets of 𝐺 . A common way to obtain an approximation

for the partition function is by applying a Markov chain Monte Carlo algorithm. This involves

sampling from the Gibbs distribution 𝜇 (𝐺,𝜆) of (𝐺, 𝜆), which is a probability distribution on I(𝐺)
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that assigns each independent set 𝐼 ∈ I(𝐺) the probability

𝜇 (𝐺,𝜆) (𝐼 ) = 𝜆 |𝐼 |

𝑍 (𝐺, 𝜆) .

Conditions for efficient approximation of the hard-core partition function have been studied

extensively in the theoretical computer science community. Due to hardness results in [53] and

[25], it is known that for general graphs of maximum degree 𝛥 ∈ {3} ∪N>5 there is a critical

parameter value 𝜆c(𝛥) = (𝛥 − 1)𝛥−1/(𝛥 − 2)𝛥 , such that there is no FPRAS for the partition

function of (𝐺, 𝜆) for 𝜆 > 𝜆c(𝛥), unless RP = NP. On the other hand, in [56] it was proven that

there is a deterministic algorithm for approximating the partition function of (𝐺, 𝜆) for 𝜆 < 𝜆c(𝛥)
that runs in time |𝑉 |O(𝛥)

. The critical value 𝜆c(𝛥) is especially interesting, as it precisely coincides
with the upper bound on 𝜆 for which the hard-core model on an infinite 𝛥-regular tree exhibits

strong spatial mixing and a unique Gibbs distribution [56]. For this reason, it is also referred to as

the tree threshold. This relation between computational hardness and phase transition in statistical

physics is one of the most celebrated results in the area. Both, the hardness results [4, 26] and the

approximation algorithms [31, 48] were later generalized for complex 𝜆.

Note that the computational hardness above the tree threshold 𝜆c(𝛥) for general graphs of
maximum degree 𝛥 applies to both, randomized and deterministic algorithms. However, in the

randomized setting, Markov chain Monte Carlo methods are known to improve the runtime of

the algorithm introduced in [56]. Those approaches use the vertex-wise self-reducibility of the

hard-core model to construct a randomized approximation of the partition function based on an

approximate sampler for the Gibbs distribution. Commonly, a Markov chain on the state space

I(𝐺), called Glauber dynamics, is used to construct the sampling scheme. At each step, a vertex

𝑣 ∈ 𝑉 is chosen uniformly at random. With probability 𝜆/(1 + 𝜆) the chain tries to add 𝑣 to the

current independent set and otherwise it tries to remove it. The resulting Markov chain is ergodic

and reversible with respect to the Gibbs distribution, meaning that it eventually converges to 𝜇 (𝐺,𝜆) .
A sequence of results has shown that for all 𝛥 ≥ 3 there is a family of graphs with maximum degree

𝛥, such that the Glauber dynamics are torpidly mixing for 𝜆 > 𝜆c(𝛥), even without additional

complexity-theoretical assumptions [18, 28, 47]. Whether the Glauber dynamics are rapidly mixing

for the entire regime 𝜆 < 𝜆c(𝛥) remained a long-standing open problem, until recently the picture

was completed [2]. By relating spectral expansion properties of certain random walks on simplicial

complexes to the Glauber dynamics, it was shown that the mixing time is polynomial in |𝑉 | below
the tree threshold. The mixing time was recently further improved in [13] for a broader class of

spin systems by combining simplicial complexes with entropy factorization and using the modified

log-Sobolev inequality.

By mapping the hard-sphere model to an instance of the hard-core model we can make use of

the existing results about approximation and sampling below the tree threshold. Roughly, our

discretization scheme restricts the positions of sphere centers to an integer grid, while scaling

the radii of spheres and the fugacity appropriately. For a hard-sphere instance (V, 𝜆) with V =

[0, ℓ)𝑑 the hard-core representation for resolution 𝜌 ∈ R≥1 is a hard-core instance (𝐺𝜌 , 𝜆𝜌 ) with
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𝐺𝜌 = (𝑉𝜌 , 𝐸𝜌 ). Each vertex 𝑣 ∈ 𝑉𝜌 represents a grid point in the finite integer lattice of side

length 𝜌ℓ . Two distinct vertices in 𝑉𝜌 are connected by an edge in 𝐸𝜌 if the Euclidean distance

of the corresponding grid points is less than 2𝜌𝑟 . Furthermore, we set 𝜆𝜌 = 𝜆/𝜌𝑑 . We provide

the following result on the rate of convergence of 𝑍
(
𝐺𝜌 , 𝜆𝜌

)
to the hard-sphere partition function

𝑍 (V, 𝜆) in terms of 𝜌 .

▶ Lemma 2. Let (V, 𝜆) be an instance of the continuous hard-sphere model in 𝑑 dimensions. For

each resolution 𝜌 ≥ 2

√
𝑑 it holds that

1 − 𝜌−1eΘ( |V | ln |V |) ≤ 𝑍 (V, 𝜆)
𝑍

(
𝐺𝜌 , 𝜆𝜌

) ≤ 1 + 𝜌−1eΘ( |V | ln |V |) . ◀

Although proving this rate of convergence involves some detailed geometric arguments, there

is an intuitive reason why the partition functions converge eventually as 𝜌 → ∞. Increasing the

resolution 𝜌 also linearly increases the side length of the grid and the minimum distance that

sphere centers can have. This is equivalent to putting a grid into V with increasing granularity

but fixing the radii of spheres instead. However, only scaling the granularity of this grid increases

the number of possible configurations by roughly 𝜌𝑑 , which would cause the partition function of

the hard-core model to diverge as 𝜌 → ∞. To compensate for this, we scale the weight of each

vertex in the hard-core model by the inverse of this factor.

Using this discretization approach, the fugacity bound from Theorem 1 results from simply

considering 𝛥𝜌 , the maximum degree of𝐺𝜌 and comparing 𝜆𝜌 with the corresponding tree thresh-

old 𝜆c
(
𝛥𝜌

)
. Recall that we assume 𝑟 = (1/𝑣𝑑 )1/𝑑 . A simple geometric argument shows that 𝛥𝜌 is

roughly upper bounded by 2
𝑑𝜌𝑑 for sufficiently large 𝜌 . Now, observe that

𝜆𝜌 =
𝜆

𝜌𝑑
< 𝜆c

(
2
𝑑𝜌𝑑

)
,

for 𝜆 < 𝜌𝑑𝜆c
(
2
𝑑𝜌𝑑

)
. This follows from the fact that 𝜌𝑑𝜆c

(
2
𝑑𝜌𝑑

)
converges to e/2𝑑 from above

for 𝜌 → ∞. Thus, the approximation bound from Theorem 1 and the uniqueness bound in [44]

coincide with the regime of 𝜆, for which 𝜆𝜌 is below the tree threshold 𝜆c
(
𝛥𝜌

)
in the limit 𝜌 → ∞.

The arguments above show that for a sufficiently high resolution 𝜌 the partition function of the

hard-sphere model 𝑍 (V, 𝜆) is well approximated by the partition function of our discretization

(𝐺𝜌 , 𝜆𝜌 ) and that (𝐺𝜌 , 𝜆𝜌 ) is below the tree threshold for 𝜆 < e/2𝑑 . However, this does not

immediately imply an approximation algorithm within the desired runtime bounds. Based on

Lemma 2, we still need to choose 𝜌 exponentially large in the volume |V|. Note that the number

of vertices in 𝐺𝜌 is roughly
��𝑉𝜌 �� ∈ Θ

(
𝜌𝑑 |V|

)
. Even without explicitly constructing the graph, this

causes problems, as the best bound for the mixing time of the Glauber dynamics is polynomial in��𝑉𝜌 �� and thus exponential in |V|. Intuitively, the reason for this mixing time is that the Glauber

dynamics only change one vertex at each step. Assuming that each vertex should be updated at least

once to remove correlations with the initial state, any mixing time that is sublinear in the number

of vertices is unlikely. We circumvent this problem by applying dynamics that update multiple
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vertices at each step but still allow each step to be computed efficiently without constructing the

graph explicitly.

1.2 Block and clique dynamics

Most of the results that we discuss from now on apply to the multivariate version of the hard-core

model, that is, each vertex 𝑣 ∈ 𝑉 has its own weight 𝜆𝑣. For a given graph 𝐺 = (𝑉 , 𝐸) we denote
the set of such vertex weights by 𝝀 = {𝜆𝑣}𝑣∈𝑉 and write (𝐺,𝝀) for the resulting multivariate

hard-core instance. In the multivariate setting, the contribution of an independent set 𝐼 ∈ I(𝐺)
to the partition function is defined as the product of its vertex weights (i.e.,

∏
𝑣∈𝐼 𝜆𝑣), where the

contribution of the empty set is fixed to 1. Similar to the univariate hard-core model, the Gibbs

distribution assigns a probability to each independent set proportionally to its contribution to the

partition function. For a formal definition, see Section 2.2.

As we discussed before, the main problem with approximating the partition function of our

discretization (𝐺𝜌 , 𝜆𝜌 ) is that the required graph 𝐺𝜌 is exponential in the volume of the original

continuous system |V|. As the Glauber dynamics Markov chain only updates a single vertex at

each step, the resulting mixing time is usually polynomial in the size of the graph, which is not

feasible in our case. Various extensions to Glauber dynamics for updating multiple vertices in each

step have been proposed in the literature, two of which we discuss in the following.

Clique dynamics

Recently, in [24] a Markov chain, called clique dynamics, was introduced in order to efficiently

sample from the Gibbs distribution of abstract polymer models. Note that this is similar to our

algorithmic problem, as abstract polymer models resemble multivariate hard-core instances. For

a given graph 𝐺 = (𝑉 , 𝐸), we call a set 𝛬 = {𝛬𝑖}𝑖∈[𝑚] ⊆ 2
𝑉
a clique cover of size 𝑚 if and

only if its union covers all vertices 𝑉 and each 𝛬𝑖 ∈ 𝛬 induces a clique in 𝐺 . For an instance of

the multivariate hard-core model (𝐺,𝝀) and a given clique cover 𝛬 of 𝐺 with size𝑚 the clique

dynamics Markov chain C(𝐺,𝝀, 𝛬) is defined as follows. First, a clique 𝛬𝑖 ∈ 𝛬 for 𝑖 ∈ [𝑚] is chosen
uniformly at random. Let us write 𝐺 [𝛬𝑖] for the subgraph, induced by 𝛬𝑖 , and 𝝀 [𝛬𝑖] = {𝜆𝑣}𝑣∈𝛬𝑖
for the corresponding set of vertex weights. Next, an independent set from I(𝐺 [𝛬𝑖]) is chosen
according to the Gibbs distribution 𝜇 (𝐺 [𝛬𝑖 ],𝝀 [𝛬𝑖 ])

. Note that, as the vertices 𝛬𝑖 form a clique, such

an independent set is either the empty set or contains a single vertex from 𝑣 ∈ 𝛬𝑖 . If the empty set

is drawn, all vertices from 𝛬𝑖 are removed from the current independent set. Otherwise, if a single

vertex 𝑣 ∈ 𝛬𝑖 is drawn, the chain tries to add 𝑣 to the current independent set.

Using a coupling argument, it was proven in [24] that the so-called clique dynamics condition
implies that for any clique cover of size𝑚 the clique dynamics are mixing in time polynomial in𝑚

and 𝑍max, where 𝑍max = max𝑖∈[𝑚]{𝑍 (𝐺 [𝛬𝑖],𝝀 [𝛬𝑖])} denotes the maximum partition function of

a clique in 𝛬. This is important for the application to polymer models, as they are usually used to

model partition functions of other spin systems, which often results in a multivariate hard-core

model of exponential size [7, 9, 10, 11, 27, 34, 36]. As discussed in [24], those instances tend to have
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polynomial size clique covers that arise naturally from the original spin system. In such cases, the

mixing time of clique dynamics is still polynomial in the size of original spin system, as long as

the clique dynamics condition is satisfied.

This is very similar to our discretization (𝐺𝜌 , 𝜆𝜌 ). To see this, set 𝑎 =
2𝜌√
𝑑
𝑟 and divide the

𝑑-dimensional integer lattice of side length 𝜌ℓ into cubic regions of side length 𝑎. Every pair of

integer points within such a cubic region has Euclidean distance less than 2𝜌𝑟 , meaning that the

corresponding vertices in𝐺𝜌 are adjacent. Thus, each such cubic region forms a clique, resulting

in a clique cover of size (𝜌ℓ/𝑎)𝑑 ∈ O( |V|). This means, there is always a clique cover with size

linear in |V| and independent of the resolution 𝜌 . By showing that, for the univariate hard-core

model, the mixing time of clique dynamics is polynomial in the size of the clique cover for all

𝜆𝜌 < 𝜆c
(
𝛥𝜌

)
, we obtain a Markov chain with mixing time polynomial in |V| independent of the

resolution 𝜌 . Unfortunately, the clique dynamics condition does not hold for the entire regime up

to the tree threshold in the univariate hard-core model. We overcome this problem by proving a

new condition for rapid mixing of clique dynamics based on a comparison with block dynamics.

Block dynamics

Block dynamics are a very natural generalization of Glauber dynamics to arbitrary sets of vertices.

For a given graph 𝐺 = (𝑉 , 𝐸), we call a set 𝛬 = {𝛬𝑖}𝑖∈[𝑚] ⊆ 2
𝑉
a block cover of size𝑚 if and only

if its union covers all vertices𝑉 . We refer to the elements of 𝛬 as blocks. Note that the clique cover

discussed before is a special case of a block cover, where all blocks are restricted to be cliques.

At each step, the block dynamics Markov chain B(𝐺, 𝜆, 𝛬) chooses a block 𝛬𝑖 ∈ 𝛬 uniformly at

random. Then, the current independent set is updated on 𝛬𝑖 based on the projection of the Gibbs

distribution onto 𝛬𝑖 and conditioned on the current independent set outside 𝛬𝑖 . For a formal

definition, see Section 2.4.

In fact, block dynamics are defined for a much more general class of spin systems than the

hard-core model. However, due to the fact that each step of the Markov chain involves sampling

from a conditional Gibbs distribution, block dynamics are rarely used as an algorithmic tool on its

own. Instead, they are usually used to deduce rapid mixing of other dynamics.

For spin systems on lattice graphs, close connections between the mixing time of block dynamics

and Glauber dynamics are known [42]. Such connections were for example applied to improve the

mixing time of Glauber dynamics of the Monomer Dimer model on torus graphs [3]. Moreover,

block dynamics were used to improve conditions for rapid mixing of Glauber dynamics on specific

graph classes, such as proper colorings [17, 19, 20, 46] or the hard-core model [19, 46] in sparse

random graphs. A very general result for the mixing time of block dynamics was achieved in [5],

who proved that for all spin systems on a finite subgraph of the 𝑑-dimensional integer lattice the

mixing time of block dynamics is polynomial in the number of blocks if the spin system exhibits

strong spatial mixing. This result was later generalized in [6] for the Ising model on arbitrary

graphs. Very recently, block dynamics based random equally-sized blocks where used in [13] to

prove entropy factorization and improve the mixing time of Glauber dynamics for a variety of

discrete spin systems up to the tree threshold.
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Although our discretization works by restricting sphere positions to the integer lattice, the

resulting graph is rather different from the lattice. Thus, results like those in [5] do not apply to

our setting. However, on the other hand, we do not need to prove rapid mixing for arbitrary block

covers. Instead, in order to obtain rapid mixing for clique dynamics, it is sufficient to establish this

result for cases where all blocks are cliques.

Applying block dynamics directly would involve sampling from a conditional Gibbs distribution

within each clique. Due to the exponential size of the cliques in our discretization, this would

impose additional algorithmic challenges. Instead, similar to the previous literature, we rather

use block dynamics as a tool for proving rapid mixing of another Markov chain, namely clique

dynamics.

Improved mixing condition for clique dynamics via block dynamics

We analyze the mixing time of clique dynamics for a given clique cover by relating it to the mixing

time of block dynamics, using the cliques as blocks. This is done by investigating a notion of

pairwise influence between vertices that has also been used to establish rapid mixing of Glauber

dynamics up to the tree threshold [2]. Let P𝐺 [𝑤] denote the probability of the event that a vertex

𝑤 ∈ 𝑉 is in an independent set drawn from 𝜇 (𝐺,𝝀) . Further, let P𝐺 [𝑤] denote the probability that

𝑤 is not in an independent set. We extend this abuse of notation to conditional probabilities, so

P𝐺 [· | 𝑤 ] for example denotes the probability of some event conditioned on 𝑤 not being in an

independent set. For a pair of vertices 𝑣,𝑤 ∈ 𝑉 the influence𝛹𝐺 (𝑣,𝑤) of 𝑣 on 𝑤 is defined as

𝛹𝐺 (𝑣,𝑤) =
{
0 if 𝑣 = 𝑤,

P𝐺 [𝑤 | 𝑣 ] − P𝐺 [𝑤 | 𝑣 ] otherwise.

The following condition in terms of pairwise influence is central to our analysis.

▶ Condition 3. Let (𝐺,𝝀) be an instance of the multivariate hard-core model. There is a constant

𝐶 ∈ R>0 and a function 𝑞 : 𝑉 → R>0 such that for all 𝑆 ⊆ 𝑉 and 𝑟 ∈ 𝑆 it holds that∑︁
𝑣∈𝑆

|𝛹𝐺 (𝑟, 𝑣) |𝑞(𝑣) ≤ 𝐶𝑞(𝑟 ) . ◀

Note that this condition appeared before in [14], where it was used for bounding the mixing

time of Glauber dynamics for anti-ferromagnetic spin systems. Given Condition 3, we obtain the

following result for the mixing time of block dynamics based on a clique cover.

▶ Theorem 4. Let (𝐺,𝝀) be an instance of the multivariate hard-core model that satisfies Con-

dition 3. Let 𝛬 be a clique cover for𝐺 of size𝑚, and let 𝑍max = max𝑖∈[𝑚]{𝑍 (𝐺 [𝛬𝑖],𝝀 [𝛬𝑖])}. The
mixing time of the block dynamics B(𝐺,𝝀, 𝛬), starting from ∅ ∈ I(𝐺), is bounded by

𝜏
( ∅)
B (𝜀) ≤ 𝑚O( (2+𝐶)𝐶)𝑍O( (2+𝐶)𝐶)

max
ln

(
1

𝜀

)
. ◀
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Using a bound for the sum of absolute pairwise influences that was recently established in [14],

it follows that the univariate hard-core model satisfies Condition 3 up to the tree threshold. As

a result, we know that the mixing time of block dynamics is polynomial in𝑚 and 𝑍max for any

clique cover of size𝑚. To the best of our knowledge, this is the first result for the mixing time of

block dynamics for the univariate hard-core model on general graphs that holds in this parameter

range.

As we aim to apply clique dynamics to avoid sampling from the conditional Gibbs distribution

in each step, we still need to prove that Theorem 4 also holds in terms of clique dynamics. To

this end, we apply a Markov chain comparison argument from [16] to prove that using clique

dynamics instead of block dynamics for the same clique cover 𝛬 increases the mixing time by at

most a factor 2𝑍max. The following corollary, which is central for proving Theorem 1, follows

immediately.

▶ Corollary 5. Let (𝐺, 𝜆) be an instance of the univariate hard-core model such that the degree

of𝐺 is bounded by 𝛥. Let 𝛬 be a given clique cover of size𝑚 with 𝑍max = max𝑖∈[𝑚]{𝑍 (𝐺 [𝛬𝑖], 𝜆)}.
Denote by C = C(𝐺, 𝜆, 𝛬) the corresponding clique dynamics. If there is some 𝛿 ∈ R>0 such

that 𝜆 ≤ (1 − 𝛿)𝜆c(𝛥) then the mixing time of the clique dynamics C, starting from ∅ ∈ I(𝐺), is
bounded by

𝜏
( ∅)
C (𝜀) ≤ 𝑚O(1/𝛿2)𝑍O(1/𝛿2)

max
ln

(
1

𝜀

)
. ◀

A side journey: comparison to multivariate conditions

In fact, Corollary 5 is sufficient for our application to the hard-sphere model. However, we also

aim to set Condition 3 in the context of other conditions for rapid mixing of clique dynamics for

the multivariate hard-core model. Note that such a rapid mixing result for clique dynamics caries

over to Glauber dynamics by taking each vertex as a separate clique of size 1.

To this end, we compare Condition 3 to a strict version of the clique dynamics condition,

originally introduced in [24] in the setting of clique dynamics for abstract polymer models. It

turns out that this strict version of the clique dynamics condition directly implies Condition 3.

This is especially interesting, as the clique dynamics condition was initially introduced as a local

condition (only considering the neighborhood of each vertex) and is based on a coupling argument.

However, we show that it can as well be understood as a sufficient condition for the global decay

of pairwise influence with increasing distance between vertices.

Formally, we say that the strict clique dynamics condition is satisfied for an instance of the

multivariate hard-core model (𝐺,𝝀) if there is a function 𝑓 : 𝑉 → R>0 and a constant 𝛼 ∈ (0, 1)
such that for all 𝑣 ∈ 𝑉 it holds that∑︁

𝑤∈𝑁 (𝑣)

𝜆𝑤

1 + 𝜆𝑤
𝑓 (𝑤) ≤ (1 − 𝛼) 𝑓 (𝑣),

where 𝑁 (𝑣) is the neighborhood of 𝑣 in𝐺 . This is a strict version of the clique dynamics condition
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in that the original clique dynamics condition would correspond to the case 𝛼 = 0 (i.e., the strict

clique dynamics condition requires some strictly positive slack 𝛼).

The result of our comparison is summarized in the following statement.

▶ Lemma 6. Let (𝐺,𝝀) be an instance of the multivariate hard-core model. If (𝐺,𝝀) satisfies the
strict clique dynamics condition for a function 𝑓 and a constant 𝛼 , then it also satisfies Condition 3

for 𝑞 = 𝑓 and 𝐶 = 1

𝛼
. ◀

Lemma 6 is proven by translating the calculation of pairwise influences to the self-avoiding

walk tree of the graph, based on a result in [14], and applying a recursive argument on this tree.

The technical details are given in Section 5.

Despite being an interesting relationship between local coupling arguments and global pairwise

influence, Lemma 6 also implies that, from an algorithmic perspective, Theorem 4 can be used to

produce similar results as those obtained in [24] for abstract polymer Further, note that for the

univariate model, using pairwise influence yields strictly better results than any coupling approach

in the literature. This raises the question if a refined argument based on pairwise influences can

be used in the multivariate setting to improve on the clique dynamics condition, leading to better

approximation results on abstract polymer models.

1.3 Analyzing spectral expansion

As core technique for obtaining Theorem 4, we adapt an approach for bounding the mixing time

that was recently used to prove rapid mixing of Glauber dynamics for the entire regime blow

the tree threshold for several applications, such as the hard-core model [2], general two-state

spin systems [14], and proper colorings [12, 22]. The idea is to map the desired distribution to a

weighted simplicial complex.

A simplicial complex𝑋 over a groundset𝑈 is a set family𝑋 ⊆ 2
𝑈
such that for each 𝜏 ∈ 𝑋 every

subset of 𝜏 is also in 𝑋 . We call the elements 𝜏 ∈ 𝑋 the faces of 𝑋 and refer to its cardinality |𝜏 | as
dimensionality.

For a hard-core instance (𝐺, 𝜆), the authors of [2] construct a simplicial complex over a ground

set 𝑈 that contains two elements 𝑥𝑣, 𝑥𝑣 ∈ 𝑈 for each vertex 𝑣 ∈ 𝑉 . For every independent set

𝐼 ∈ I(𝐺), a face 𝜏𝐼 ∈ 𝑋 is introduced such that 𝑥𝑣 ∈ 𝜏𝐼 if 𝑣 ∈ 𝐼 and 𝑥𝑣 ∈ 𝜏𝐼 otherwise. The

simplicial complex is completed by taking the downward closure of these faces. Note that by

construction all maximum faces of the resulting complex are |𝑉 |-dimensional and there is a one-to-

one correspondence between the maximum faces and the independent sets in I(𝐺). By assigning

each maximum face 𝜏𝐼 ∈ 𝑋 an appropriate weight, the Glauber dynamics can be represented as a

random walk on those maximum faces, which is sometimes referred to as the two-step walk or

down-up walk. Using a local-to-global theorem [1], the mixing time of this two-step walk can then

be bounded based on certain local expansion properties of the simplicial complex 𝑋 (see Section 2

for the technical details). It is then proved that such local expansion properties are well captured

by the largest eigenvalue of the pairwise influence matrix𝛹𝐺 , which is a |𝑉 | × |𝑉 | matrix that

contains the pairwise influence𝛹𝐺 (𝑣,𝑤) for all 𝑣,𝑤 ∈ 𝑉 . Finally, by bounding those influences a

10



bound on this largest eigenvalue of𝛹𝐺 is obtained. This analysis was later refined and generalized

in [14] to general two-state spin systems.

This method was independently extended in [12] and [22] to the non-Boolean domain by

applying it to the Glauber dynamics for proper colorings. The main differences to the Boolean

domain are that elements of the simplicial complex now represent combinations of a vertex and a

color. Furthermore, the bound on the local spectral expansion was obtained by using a different

influence matrix, which captures the effect of selecting a certain color for one vertex on the

distribution of colors for another vertex.

Although we are dealing with the hard-core model, which is Boolean in nature, the way that we

model block dynamics is mainly inspired by the existing work on proper colorings [12]. Assume

we have an instance of the multivariate hard-core model (𝐺,𝝀) and let 𝛬 be a clique cover for 𝐺

of size𝑚 such that every pair of distinct cliques is vertex-disjoint (i.e., 𝛬 is a partition of 𝐺 into

cliques). We construct a simplicial complex 𝑋 based on a ground set𝑈 that contains one element

𝑥𝑣 ∈ 𝑈 for each vertex 𝑣 ∈ 𝑉 and one additional element ∅𝑖 for each clique 𝛬𝑖 ∈ 𝛬. We introduce

a face 𝜏𝐼 ∈ 𝑋 for each independent set 𝐼 ∈ I(𝐺) such that for every 𝛬𝑖 ∈ 𝛬 we have ∅𝑖 ∈ 𝜏𝐼 if
𝛬𝑖 ∩ 𝐼 = ∅ and 𝑥𝑣 ∈ 𝜏𝐼 if 𝛬𝑖 ∩ 𝐼 = {𝑣} for some 𝑣 ∈ 𝛬𝑖 . The simplicial complex is completed by

taking the downward closure of these faces. As we discuss in Section 3.1, all maximum faces of

the resulting complex are𝑚-dimensional and there is a bijection between the maximum faces and

the independent sets of 𝐺 . Furthermore, there is a natural partitioning {𝑈𝑖}𝑖∈[𝑚] of the ground
set𝑈 , each partition𝑈𝑖 corresponding to a clique 𝛬𝑖 , such that every maximum face in 𝑋 contains

exactly one element from each partition𝑈𝑖 .

By weighting each maximum face of 𝑋 by the contribution of the corresponding independent

set to the partition function, the block dynamics based on 𝛬 are equivalent to the two-step walk

on 𝑋 . Thus, in order to bound the mixing time of the block dynamics, it is sufficient to study

the local expansion properties of 𝑋 . To this end, we adapt the influence matrix used for proper

colorings in [12]. For 𝑥 ∈ 𝑈 , let P𝐺 [𝑥] denote the probability that 𝑥 ∈ 𝜏𝐼 for an independent set

𝐼 ∈ I(𝐺) drawn from 𝜇 (𝐺,𝝀) and corresponding maximum face 𝜏𝐼 ∈ 𝑋 . Similarly as for defining

pairwise influences, we extend this notation to conditional probabilities. The clique influence

matrix𝛷𝐺,𝛬 contains an entry𝛷𝐺,𝛬 (𝑥,𝑦) for each 𝑥,𝑦 ∈ 𝑈 with

𝛷𝐺,𝛬 (𝑥,𝑦) =
{
0 if 𝑥,𝑦 ∈ 𝑈𝑖 for some 𝑖 ∈ [𝑚],
P𝐺 [𝑦 | 𝑥 ] − P𝐺 [𝑦] otherwise.

By using similar linear-algebraic arguments as in [12] we prove that the maximum eigenvalue

of𝛷𝐺,𝛬 can be used to upper bound the local spectral expansion of 𝑋 . To obtain Theorem 4 it is

then sufficient to relate Condition 3 to the maximum eigenvalue of𝛷𝐺,𝛬. The following lemma

establishes this connection.

▶ Lemma 7. Let (𝐺,𝝀) be an instance of the multivariate hard-core model that satisfies Condi-

tion 3 for a function 𝑞 and a constant𝐶 . For every 𝑆 ⊆ 𝑉 and every disjoint clique cover 𝛬 of𝐺 [𝑆]
it holds that the largest eigenvalue of𝛷𝐺 [𝑆 ],𝛬 is at most (2 +𝐶)𝐶 . ◀
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Note that our simplicial-complex representation is only given under the assumption that the

cliques in the clique cover 𝛬 are pairwise disjoint. Indeed, this is a necessary requirement to

map the block dynamics to the two-step walk such that the local-global-theorem from [1] can

be applied. Thus, Lemma 7 only helps to prove Theorem 4 for disjoint clique covers. However,

we relax this requirement by proving that for every clique cover 𝛬 a disjoint clique cover 𝐾 can

be constructed such that the block dynamics B(𝐺,𝝀, 𝛬) and B(𝐺,𝝀, 𝐾) have asymptotically the

same mixing time. By this comparison argument, we extend Theorem 4 to arbitrary clique covers.

We are aware that, in the case of Glauber dynamics, more recent techniques for combining

simplical complex representations with entropy factorization as proposed in [13] yield superior

mixing time results. However, in case of the hard-core model, this approach comes with an

additional multiplicative factor of 𝛥O(𝛥2)
in the mixing time (see section 8 of [13]). Although

negligible for bounded degree graphs, this would be too much for our application, as the degree

of our discretization gets exponentially large in the continuous volume |V| of the system. Thus,

directly relating local spectral expansion with the spectral gap of block dynamics is more suitable

in our case. We leave as an open question, whether a modification of the approach in [13] can be

applied to further improve our mixing time result.

1.4 Outlook

We obtain the fugacity bound from Theorem 1 based on the tree threshold 𝜆c(𝛥) of the hard-core
model. An obvious question is whether there are any structural properties of our discretization

that can be used to improve this bound. Similar results are known for specific graph classes, such

as the 2-dimensional square lattice [50, 54, 56]. In [44] the authors discuss that a generalization

of the connective constant to the continuous Euclidean space might be applicable to improve

their uniqueness result for the hard-sphere model. A comparable algorithmic result was already

established for the discrete hard-core model in [52]. However, any such improvement for our

discretization would require the connective constant of𝐺𝜌 to be at least by a constant factor small

than its maximum degree 𝛥𝜌 . Unfortunately, due to a result in [49], this is not the case. Although

this does not necessarily imply that a similar concept does not work in continuous space, it gives a

strong evidence that a more specialized tool instead of the connective constant might be required.

A different direction for future work is to see which other quantities and properties of the model

are preserved under discretization. This would especially include the thermodynamic pressure and

its analyticity. As a matter of fact, non-analytic points of the pressure along the positive real axis

of fugacity in the thermodynamic limit are known to mark phase transitions in infinite volume

systems (see for example [44]). One way to approach this could be to prove a relation between

zero-freeness of the continuous and the discretized partition function in a complex neighborhood

of the real axis by extending our convergence result to the complex domain. Along this line,

insights could be gained in how far properties like correlation decay and phase transitions (or

their absence) are preserved under sufficiently fine discretization.

From a purely technical point of view, it is interesting to see if our result on the mixing time

of block dynamics in Theorem 4 also holds without the requirement of using cliques as blocks.
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Especially: is the mixing time for block dynamics for the univariate hard-core model polynomial

in the number of blocks for any block cover? Most of our techniques that we use for clique covers,

such as modeling the distribution as a simplicial complex and relating its local spectral expansion

to the clique influence matrix, can be generalized in a straightforward way for different choices of

blocks. However, the main difficulty is to relate generalized versions of the clique influence matrix

to pairwise influences, as we do in Lemma 7. One way to circumvent this might be to not rely on

pairwise influences at all but to rather investigate the influence matrix directly, for example, via

different computational-tree methods.

Finally, it would be interesting to see if approaches like ours can be extended to other continuous

models from statistical physics (see for example coarse-graining [21]). We believe that the variety

of tools that are already established for discrete spin systems are useful in this setting to establish

rigorous computational results for different continuous models. We emphasize that clique and

block dynamics are a useful computational tool to handle the exponential blow-ups caused by

discretization.

2 Preliminaries

We denote the set of all natural numbers (including 0) byN and the set of all real numbers byR. For

each 𝑛 ∈ N, let [𝑛] denote the interval [1, 𝑛] ∩N. Further, for a graph𝐺 = (𝑉 , 𝐸), we write 𝑁𝐺 (𝑣)
for the open neighborhood of a vertex 𝑣 ∈ 𝑉 (i.e., all𝑤 ∈ 𝑉 with (𝑣,𝑤) ∈ 𝐸) and 𝑁 [𝑣] = 𝑁𝐺 (𝑣) ∪ {𝑣}
for the closed neighborhood. We might omit the graph if it is clear from the context.

2.1 Markov chains and spectral properties

For any (time-homogeneous) Markov chainM, we denote its state space by 𝛺M and its transition

probabilities by 𝑃M . If M has a unique stationary distribution, we denote it by 𝜋M . Assume

|𝛺M | = 𝑁 ∈ N>0. It is well known that, ifM is reversible with respect to 𝜋M , this implies that

𝑃M has 𝑁 real eigenvalues

1 = 𝛽1(𝑃M) ≥ 𝛽2(𝑃M) ≥ · · · ≥ 𝛽𝑁 (𝑃M) ≥ −1.

We write 𝛽∗(𝑃M) = max{𝛽1(𝑃), |𝛽𝑁 (𝑃) |} for the largest absolute eigenvalue and call 1 − 𝛽∗(𝑃M)
the spectral gap of 𝑃M . We extend these notations to general matrices 𝐴 with real eigenvalues,

e.g., we denote the largest eigenvalue by 𝛽1(𝐴).
IfM is ergodic, we define its mixing time starting from some state 𝑥 ∈ 𝛺M as

𝜏
(𝑥)
M (𝜀) = inf{𝑡 ∈ N | 𝑑TV

(
𝑃𝑡M (𝑥, ·), 𝜋M

)
≤ 𝜀},

where 𝑃𝑡M (𝑥, ·) is the distribution of M on 𝛺M after 𝑡 steps, starting from 𝑥 , and where 𝑑TV
(
·, ·

)
denotes the total variation distance. Recall that for any ergodic, reversible Markov chainM and
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every state 𝑥 ∈ 𝛺M , it holds that

𝜏
(𝑥)
M (𝜀) ≤ 1

1 − 𝛽∗(𝑃M) ln
(

1

𝜋M (𝑥) · 𝜀

)
. (1)

For further details on Markov chains please refer to [40].

2.2 The multivariate hard-core model

Let 𝐺 = (𝑉 , 𝐸) be an undirected graph, and let I(𝐺) denote the set of independent sets in 𝐺 ; if
the graph is clear from the context, we only write I. The multivariate hard-core model is a tuple
(𝐺,𝝀), where 𝝀 = {𝜆𝑣}𝑣∈𝑉 is a set of weights, containing one weight 𝜆𝑣 ∈ R>0 for each vertex

𝑣 ∈ 𝑉 . The partition function of (𝐺,𝝀) is defined as

𝑍 (𝐺,𝝀) B
∑︁
𝐼 ∈I

∏
𝑣∈𝐼

𝜆𝑣 .

The Gibbs distribution 𝜇 (𝐺,𝝀) is a probability distribution on I, assigning each independent set

𝐼 ∈ I the probability

𝜇 (𝐺,𝝀) (𝐼 ) =
∏
𝑣∈𝐼 𝜆𝑣

𝑍 (𝐺,𝝀) .

If the model (𝐺,𝝀) is clear, we only write 𝑍 and 𝜇.

Large parts of our analysis consider the Gibbs distributions and the partition functions of

induced subgraphs 𝐺 [𝑆] for 𝑆 ⊆ 𝑉 while keeping the weights of the respective vertices in 𝑆 . In

this case, we might omit the set of weights and write 𝑍 (𝐺 [𝑆]) for 𝑍 (𝐺 [𝑆],𝝀 [𝑆]) or 𝜇 (𝐺 [𝑆 ])
for

𝜇 (𝐺 [𝑆 ],𝝀 [𝑆 ])
. Further, for any non-empty set of vertices 𝑆 ⊆ 𝑉 , we define 𝜇 (𝐺)

|𝑆 to be the distribution

of the independent sets in I(𝐺 [𝑆]) induced by 𝜇 (𝐺)
. Formally, this means 𝜇

(𝐺)
|𝑆 assigns every

independent set 𝐼 ∈ I(𝐺 [𝑆]) the probability

𝜇
(𝐺)
|𝑆 (𝐼 ) =

∑︁
𝐼 ′∈I(𝐺)

1𝐼 ⊆𝐼 ′𝜇
(𝐺) (𝐼 ′).

We associate every independent set 𝐼 ∈ I with a spin assignment 𝜎 (𝐼 )
: 𝑉 → {0, 1} such that(

𝜎 (𝐼 ) )−1(1) = 𝐼 . We extend this notation to restrictions on subsets 𝑆 ⊆ 𝑉 . For any independent

set 𝐼 ∈ I, the partial configuration on 𝑆 corresponding to 𝐼 is a spin assignment 𝜎
(𝐼 )
|𝑆 : 𝑆 → {0, 1}

such that

(
𝜎
(𝐼 )
|𝑆

)−1(1) = 𝐼 ∩ 𝑆 . By abuse of notation, we use these spin assignments as events (e.g.,

for conditioning on partial configurations). Further, for all 𝑆 ⊆ 𝑉 let 0 |𝑆 : 𝑆 → {0} be the partial
configuration that fixes all vertices in 𝑆 not to be in the independent set (i.e., 0 |𝑆 = 𝜎

( ∅)
|𝑆 ).

Finally, for each for 𝑣 ∈ 𝑉 , we write P𝐺 [𝑣] to denote the probability of the event that 𝑣 ∈ 𝐼 for
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𝐼 ∼ 𝜇, and P𝐺 [𝑣] to denote the probability of the event 𝑣 ∉ 𝐼 for 𝐼 ∼ 𝜇. Formally,

P𝐺 [𝑣] = 𝜇 (𝐺)
| {𝑣} ({𝑣}) and P𝐺 [𝑣] = 𝜇

(𝐺)
| {𝑣} (∅) .

2.3 Clique dynamics and clique covers

For any graph𝐺 = (𝑉 , 𝐸), a set 𝛬 = {𝛬𝑖}𝑖∈[𝑚] ⊆ 2
𝑉
is called a clique cover of𝐺 with size𝑚 ∈ N>0

if

⋃
𝑖∈[𝑚] 𝛬𝑖 = 𝑉 and each 𝛬𝑖 ∈ 𝛬 induces a clique in 𝐺 . Further, we call 𝛬 a disjoint clique cover if

every pair of distinct cliques in 𝛬 is vertex-disjoint.

Note that for every 𝑆 ⊆ 𝑉 it holds that 𝜇
(𝐺)
|𝑆

(
·
�� 0 |𝑉 \𝑆

)
= 𝜇 (𝐺 [𝑆 ]) (·). Thus, the following definition

of clique dynamics is equivalent to our description in the introduction and easier to compare with

our formalization of block dynamics in Definition 9.

▶ Definition 8 (clique dynamics [24]). Let (𝐺,𝝀) be a multivariate hard-core model, and let 𝛬

be a clique cover of𝐺 with size𝑚. The clique dynamics C(𝐺,𝝀, 𝛬) are the following Markov chain

with state space I(𝐺). Let (𝑋𝑡 )𝑡 ∈N denote a (random) sequence of states of C(𝐺,𝝀, 𝛬), where 𝑋0

is arbitrary. Then, for all 𝑡 ∈ N and all 𝑋𝑡 = 𝐼 with 𝐼 ∈ I(𝐺), the transitions of C(𝐺,𝝀, 𝛬) are as
follows:

1: choose 𝑖 ∈ [𝑚] uniformly at random ;

2: choose 𝐼+ ∈ I(𝐺 [𝛬𝑖]) according to 𝜇 |𝛬𝑖
(
·
�� 0 |𝑉 \𝛬𝑖

)
;

3: if 𝐼+ = ∅ then 𝑋𝑡+1 = 𝐼 \ 𝛬𝑖 ;
4: else if 𝐼 ∪ 𝐼+ is an independent set then 𝑋𝑡+1 = 𝐼 ∪ 𝐼+ ;
5: else 𝑋𝑡+1 = 𝐼 ; ◀

It was shown in [24] that for any clique cover 𝛬 the clique dynamics Markov chain C(𝐺,𝝀, 𝛬)
is ergodic and reversible with stationary distribution 𝜇 (𝐺,𝝀) . In the case 𝛬 = {{𝑣} | 𝑣 ∈ 𝑉 }, the
clique dynamics correspond to the Glauber dynamics.

2.4 Block dynamics and block covers

For any graph 𝐺 = (𝑉 , 𝐸), we call a set 𝛬 = {𝛬𝑖}𝑖∈[𝑚] ⊆ 2
𝑉
a block cover of 𝐺 with size𝑚 ∈ N>0

if

⋃
𝑖∈[𝑚] 𝛬𝑖 = 𝑉 . We refer to the elements of 𝛬 as blocks. Note that a clique cover is a special case

of a block cover, where all blocks are cliques.

▶ Definition 9 (block dynamics). Let (𝐺,𝝀) be a multivariate hard-core model, and let 𝛬 be a

block cover of𝐺 with size𝑚. We define the block dynamics B(𝐺,𝝀, 𝛬) to be the following Markov

chain with state space I(𝐺). Let (𝑋𝑡 )𝑡 ∈N denote a (random) sequence of states of B(𝐺,𝝀, 𝛬),
where 𝑋0 is arbitrary. Then, for all 𝑡 ∈ N and any 𝑋𝑡 = 𝐼 with 𝐼 ∈ I(𝐺), the transitions of

B(𝐺,𝝀, 𝛬) are as follows:
1: choose 𝑖 ∈ [𝑚] uniformly at random ;

2: choose 𝐼+ ∈ I(𝐺 [𝛬𝑖]) according to 𝜇 |𝛬𝑖
(
·
��� 𝜎 (𝐼 )

|𝑉 \𝛬𝑖

)
;

3: 𝑋𝑡+1 = (𝐼 \ 𝛬𝑖) ∪ 𝐼+ ; ◀
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The block dynamics Markov chain B(𝐺,𝝀, 𝛬) is ergodic with stationary distribution 𝜇, inde-

pendent of the chosen block cover 𝛬. If 𝛬 = {{𝑣} | 𝑣 ∈ 𝑉 }, then the block dynamics correspond to

the Glauber dynamics.

2.5 Pairwise influence

Let 𝑣,𝑤 ∈ 𝑉 and let 𝑆 ⊂ 𝑉 such that 𝑣,𝑤 ∉ 𝑆 . Further, let 𝜎 |𝑆 = 𝜎
(𝐼 )
|𝑆 be a partial configuration on 𝑆

corresponding to any independent set 𝐼 ∈ I. The pairwise influence of 𝑣 on𝑤 in𝐺 under condition

𝜎 |𝑆 is defined as

𝛹
𝜎 |𝑆
𝐺

(𝑣,𝑤) =
{
0 if 𝑣 = 𝑤,

P𝐺
[
𝑤

�� 𝑣, 𝜎 |𝑆 ]
− P𝐺

[
𝑤

�� 𝑣, 𝜎 |𝑆 ]
otherwise .

For the case 𝑆 = ∅, we also write𝛹𝐺 (𝑣,𝑤). Furthermore, we denote by𝛹
𝜎 |𝑆
𝐺

and𝛹𝐺 the correspond-

ing (𝑛 − |𝑆 |) × (𝑛 − |𝑆 |) matrices.

2.6 Simplicial complexes and local spectral expansion

Let 𝑈 denote a set. A simplicial complex (over 𝑈 ) is family of subsets 𝑋 ⊆ 2
𝑈
such that, for all

𝜏 ∈ 𝑋 and all 𝜏 ′ ⊆ 𝜏 , it holds that 𝜏 ′ ∈ 𝑋 . We call the elements 𝜏 ∈ 𝑋 faces, and we call |𝜏 | the
dimension of a face 𝜏 . We denote the set of all 𝑘-dimensional faces in 𝑋 by 𝑋 (𝑘). A simplicial

complex is pure 𝑑-dimensional if and only if the set of all inclusion-maximal faces is exactly 𝑋 (𝑑).
Last, we say that a pure 𝑑-dimensional simplicial complex is 𝑑-partite if and only if there is a

partition {𝑈𝑖}𝑖∈[𝑑 ] such that, for all 𝑖 ∈ [𝑑] and all 𝜏 ∈ 𝑋 (𝑑), it holds that |𝑈𝑖 ∩ 𝜏 | = 1.

We extend the definition of a pure 𝑑-dimensional simplicial complex 𝑋 to a weighted simplicial

complex (𝑋,𝑤) with a weight function 𝑤 : 𝑋 → R>0 in the following inductive manner. Each face

𝜏 ∈ 𝑋 (𝑑) is assigned a weight 𝑤 (𝜏) ∈ R>0. Each non-maximal face 𝜏 ′ ∈ 𝑋 has the weight

𝑤 (𝜏 ′) =
∑︁

𝜏 ∈𝑋 (𝑑) :𝜏′⊂𝜏
𝑤 (𝜏) .

We are interested in two types of Markov chains on a weighted pure 𝑑-dimensional simplicial

complex (𝑋,𝑤). (1) The two-step random walk V(𝑋,𝑤), which is a Markov chain on the state

space 𝑋 (𝑑). Let 𝜏𝑡 ∈ 𝑋 (𝑑) be the state ofV(𝑋,𝑤) at time 𝑡 ∈ N, then 𝜏𝑡+1 is chosen according the

following transition rule:

1. choose 𝑥 ∈ 𝜏𝑡 uniformly at random, let 𝜏 ′ = 𝜏𝑡 \ {𝑥}, and

2. choose 𝜏𝑡+1 ∈ {𝜏 ∈ 𝑋 (𝑑) | 𝜏 ′ ⊂ 𝜏 } proportionally to their weights 𝑤 (𝜏).

(2) The 1-skeleton of (𝑋,𝑤) is an edge-weighted graph with vertices 𝑉𝑋 =
{
𝑥 ∈ 𝑈

�� {𝑥} ∈ 𝑋
}
,

edges 𝐸𝑋 =
{
(𝑥,𝑦) ∈ 𝑉 2

𝑋

�� {𝑥,𝑦} ∈ 𝑋 }
, and weights𝑤 ({𝑥,𝑦}). The skeleton walk on (𝑋,𝑤), denoted

by S(𝑋,𝑤), is the non-lazy random walk on its 1-skeleton.
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For a face 𝜏 ∈ 𝑋 , the link of 𝜏 is a weighted pure (𝑑 − |𝜏 |)-dimensional simplicial complex

(𝑋𝜏 , 𝑤𝜏 ), where 𝑋𝜏 = {𝜏 ′ \ 𝜏 | 𝜏 ′ ∈ 𝑋, 𝜏 ⊆ 𝜏 ′ } and, for all 𝜏 ′ ∈ 𝑋 , we have 𝑤𝜏 (𝜏 ′) = 𝑤 (𝜏 ′ ∪ 𝜏).

▶ Definition 10 (local expander). Let (𝑋,𝑤) be a weighted pure 𝑑-dimensional simplicial

complex, and let 𝛼 ∈ R>0. We say that a face 𝜏 ∈ 𝑋 is a local 𝛼-expander if and only if the second

largest eigenvalue of its skeleton walk S𝜏 = S(𝑋𝜏 , 𝑤𝜏 ) is at most 𝛼 (i.e., 𝛽2
(
𝑃S𝜏

)
≤ 𝛼). Further,

we say (𝑋,𝑤) is a local (𝛼0, . . . , 𝛼𝑑−2)-expander if and only if, for all 𝑘 ∈ {0} ∪ [𝑑 − 2], each face

𝜏 ∈ 𝑋 (𝑘) is a local 𝛼𝑘 -expander. ◀

In [1] the authors relate local expansion and two-step walks. We use the following formulation

of their result.

▶ Theorem 11 ([2, Theorem 1.3]). Let (𝑋,𝑤) be a weighted pure 𝑑-dimensional simplicial

complex. If (𝑋,𝑤) is a local (𝛼0, . . . , 𝛼𝑑−2)-expander, then for the second-largest eigenvalue of the

two-step walkV = V(𝑋,𝑤), it holds that

𝛽2(𝑃V) ≤ 1 − 1

𝑑

∏
𝑘∈{0}∪[𝑑−2]

(1 − 𝛼𝑘 ) . ◀

3 Mixing time of block dynamics for clique covers

3.1 Simplicial-complex representation

Let (𝐺,𝝀) be an instance of the multivariate hard-core model and let 𝛬 be a disjoint clique cover

of size𝑚. We construct the simplicial-complex representation as follows. For each clique 𝛬𝑖 ∈ 𝛬,
we have a set𝑈𝑖 that consists of an element ∅𝑖 ∈ 𝑈𝑖 and one element 𝑥𝑣 ∈ 𝑈𝑖 for each vertex 𝑣 ∈ 𝛬𝑖 .
The ground set of the simplicial complex is𝑈 =

⋃
𝑖∈[𝑚] 𝑈𝑖 . Further, the complex 𝑋 contains a face

𝜏𝐼 ∈ 𝑋 for each independent set 𝐼 ∈ I where,

• for each 𝑖 ∈ [𝑚] and 𝑥𝑣 ∈ 𝑈𝑖 , we have 𝑥𝑣 ∈ 𝜏𝐼 if and only if 𝑣 ∈ 𝐼 , and,

• for each 𝑖 ∈ [𝑚], we have ∅𝑖 ∈ 𝜏𝐼 if and only if 𝐼 ∩ 𝛬𝑖 = ∅ .

Note that each independent set contains at most one vertex 𝑣 ∈ 𝛬𝑖 for each clique in the clique

cover 𝛬𝑖 ∈ 𝛬. As 𝛬 is a disjoint cover, each of the faces 𝜏𝐼 ∈ 𝑋 contains exactly one element from

each 𝑈𝑖 for 𝑖 ∈ [𝑚]. We complete 𝑋 by taking the downward closure of these faces. We make the

following observation.

▶ Observation 12. The simplicial-complex representation 𝑋 for an instance of the multivariate

hard-core model (𝐺,𝝀) with disjoint clique cover 𝛬 of size𝑚 is pure𝑚-dimensional and𝑚-partite

with partition {𝑈𝑖}𝑖∈[𝑚] as constructed above. Further, there is a one-to-one correspondence

between the independent sets of 𝐺 and the maximum faces 𝑋 (𝑚). ◀

We continue by equipping 𝑋 (𝑚) with weights, which induces weights for all other faces in 𝑋

as well. For a face 𝜏𝐼 ∈ 𝑋 (𝑚), corresponding to the independent set 𝐼 ∈ I, we set 𝑤 (𝜏𝐼 ) = 𝜇 (𝐼 ).
We now observe the following relation to block dynamics.
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▶ Observation 13. Let (𝐺,𝝀) be an instance of the multivariate hard-core model, and let 𝛬

be a disjoint clique cover of 𝐺 . Further, let (𝑋,𝑤) be the corresponding simplicial-complex

representation. It holds that the two-step walk V(𝑋,𝝀) is equivalent to the block dynamics

B(𝐺,𝝀, 𝛬) in the sense that there is a bijection between both state spaces that preserves transition

probabilities. Consequently,V(𝑋,𝝀) is ergodic, reversible and has a unique stationary distribution
𝜋V (𝜏𝐼 ) = 𝜇 (𝐼 ) for every maximum face 𝜏𝐼 ∈ 𝑋 (𝑚), corresponding to the independent set 𝐼 ∈
I(𝐺). ◀

Based on Observation 12, applying Theorem 11, we obtain a lower bound on the spectral gap of

V = V(𝑋,𝑤) in terms of local expansion. Moreover, for an independent set 𝐼 ∼ 𝜇, it holds that

Pr[𝑥𝑣 ∈ 𝜏𝐼 ] = P𝐺 [𝑣] for all 𝑣 ∈ 𝑉 and Pr[∅𝑖 ∈ 𝜏𝐼 ] = P𝐺

[⋂
𝑣∈𝛬𝑖

𝑣

]
for all 𝑖 ∈ [𝑚] .

For simplicity, we also write P𝐺 [𝑥𝑣] and P𝐺 [∅𝑖] for these probabilities.

3.2 Bounding local expansion by clique influence

Let (𝐺,𝝀) be an instance of the multivariate hard-core model with disjoint clique cover 𝛬 of

size𝑚. Further, let (𝑋,𝑤) be the resulting simplicial-complex representation with ground set𝑈

and partition {𝑈𝑖}𝑖∈[𝑚] . The clique influence matrix𝛷𝐺,𝛬 contains an entry𝛷𝐺,𝛬 (𝑥,𝑦) for each
𝑥,𝑦 ∈ 𝑈 with

𝛷𝐺,𝛬 (𝑥,𝑦) =
{
0 if 𝑥,𝑦 ∈ 𝑈𝑖 for some 𝑖 ∈ [𝑚],
P𝐺 [𝑦 | 𝑥 ] − P𝐺 [𝑦] otherwise.

(2)

Note that this definition includes the cases where 𝑥 ∈ {∅𝑖 | 𝑖 ∈ [𝑚] } or 𝑦 ∈ {∅𝑖 | 𝑖 ∈ [𝑚] }. The
following lemma and its proof are an adapted version of [12, Theorem 8].

▶ Lemma 14. Let (𝐺,𝝀) be an instance of the multivariate hard-core model with a disjoint clique

cover 𝛬 of size𝑚. Further, let (𝑋,𝑤) be the resulting simplicial-complex representation. Denote

by S = S(𝑋,𝑤) be the skeleton walk on (𝑋,𝑤), and let 𝛷𝐺,𝛬 be the clique influence matrix as

defined in equation (2). Then

𝛽2(𝑃S) ≤
1

𝑚 − 1

𝛽1
(
𝛷𝐺,𝛬

)
. (3)

◀

Proof. We first take a detailed look at the entries of the transitions 𝑃S . Note that by definition

𝛺S = 𝑈 and 𝑃S (𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝑈 . Further, it holds for each 𝑥 ∈ 𝑈 that∑︁
𝑧∈𝑈 :

𝑧≠𝑥

𝑤 ({𝑥, 𝑧}) =
∑︁
𝑧∈𝑈 :

𝑧≠𝑥

P𝐺 [𝑥, 𝑧] =
∑︁
𝑖∈[𝑚]

∑︁
𝑧∈𝑈𝑖 :

𝑧≠𝑥

P𝐺 [𝑥, 𝑧] =
∑︁
𝑖∈[𝑚]:
𝑥∉𝑈𝑖

∑︁
𝑧∈𝑈𝑖

P𝐺 [𝑥, 𝑧] = (𝑚 − 1)P𝐺 [𝑥],

18



where the third equality comes from the fact that for all 𝑖 ∈ [𝑚] and every pair 𝑥, 𝑧 ∈ 𝑈𝑖 it holds
that P𝐺 [𝑥, 𝑧] = 0. Thus, we get for each 𝑦 ∈ 𝑈 with 𝑦 ≠ 𝑥 the transition probability

𝑃S (𝑥,𝑦) =
𝑤 ({𝑥,𝑦})∑
𝑧∈𝑈 :

𝑧≠𝑥
𝑤 ({𝑥, 𝑧}) =

P𝐺 [𝑥,𝑦]
(𝑚 − 1)P𝐺 [𝑥]

=
1

𝑚 − 1

P𝐺 [𝑦 | 𝑥 ] .

Note that this especially implies 𝑃S (𝑥,𝑦) = 0 if 𝑥,𝑦 ∈ 𝑈𝑖 for some 𝑖 ∈ [𝑚].
Let 𝑫 be the matrix with 𝑫 (𝑥, 𝑥) = 1

𝑚
P𝐺 [𝑥] for each 𝑥 ∈ 𝑈 and 0 everywhere else, and let 𝒅 be

the vector of its diagonal, that is, for all 𝑥 ∈ 𝑈 , we have 𝒅 (𝑥) = 𝑫 (𝑥, 𝑥). Note that S satisfies the

detailed-balance equations with 𝒅, that is, it is reversible with respect to 𝒅. Thus,𝑨 = 𝑫1/2𝑃S𝑫
−1/2

is symmetric. This implies that for each eigenvector 𝒛 of 𝑨 with eigenvalue 𝛽 there is a left

eigenvector 𝒛T𝑫1/2 =
(
𝑫1/2𝒛

)T
and a right eigenvector 𝑫−1/2𝒛 of 𝑃S for the same eigenvalue 𝛽 .

Thus, if 𝒛 ′ = 𝑫−1/2𝒛 is such a right eigenvector of 𝑃S , then 𝑫𝒛 ′ = 𝑫𝑫−1/2𝒛 = 𝑫1/2𝒛 yields a

(transposed) left eigenvector for the same eigenvalue.

We investigate the eigenvalues of 𝑃S more carefully. Consider the column vector 1with 1(𝑥) = 1

for all 𝑥 ∈ 𝑈 . Note that 1 is a right eigenvector of 𝑃S for eigenvalue 1, which is the maximum

eigenvalue, since 𝑃S is a transition matrix. We denote by 𝝅 = (𝑫1)T the corresponding left

eigenvector with 𝝅 (𝑥) = 1

𝑚
P𝐺 [𝑥] for all 𝑥 ∈ 𝑈 . Further, we define a set of column vectors

{1𝑖}𝑖∈[𝑚] and a set of row vectors {𝝅 𝑖}𝑖∈[𝑚] such that for each 𝑖 ∈ [𝑚] and each 𝑥 ∈ 𝑈 it holds

that

1𝑖 (𝑥) =
{
1 if 𝑥 ∈ 𝑈𝑖 ,
0 otherwise

and 𝝅 𝑖 (𝑥) =
{

1

𝑚
P𝐺 [𝑥] if 𝑥 ∈ 𝑈𝑖 ,

0 otherwise.

Note that for each 𝑖, 𝑗 ∈ [𝑚], 𝑖 ≠ 𝑗 , and each 𝑥 ∈ 𝑈𝑖 it holds that
∑
𝑦∈𝑈 𝑗

𝑃S (𝑥,𝑦) = 1

𝑚−1 and∑
𝑦∈𝑈𝑖

𝑃S (𝑥,𝑦) = 0. Thus, for all 𝑖 ∈ [𝑚], we have 𝑃S1𝑖 = 1

𝑚−1 (1 − 1𝑖). It follows that

𝑃S

(
1

𝑚
1 − 1𝑖

)
=

1

𝑚
1 − 1

𝑚 − 1

(1 − 1𝑖) = − 1

𝑚(𝑚 − 1) 1 +
1

𝑚 − 1

1𝑖 = − 1

𝑚 − 1

(
1

𝑚
1 − 1𝑖

)
,

which shows that for each 𝑖 ∈ [𝑚] the vector 1

𝑚
1 − 1𝑖 is a right eigenvector with eigenvalue − 1

𝑚−1 .

Similarly, the vector

(
𝑫

(
1

𝑚
1 − 1𝑖

) )
T

= 1

𝑚
𝝅 − 𝝅 𝑖 is a left eigenvector for this eigenvalue.

We use these vectors to construct an eigenbasis of 𝑃S . Let 𝑖 ∈ [𝑚], and consider the set

𝑆 = {1} ∪
⋃
𝑗 ∈[𝑚]:
𝑗≠𝑖

{
1

𝑚
1 − 1𝑗

}
.

Note that 𝑆 is a set of𝑚 linearly independent right eigenvectors of 𝑃S . By the relation between

eigenvectors of 𝑃S and 𝑨, we construct a set 𝑆𝑨 =
{
𝑫1/2𝒛

�� 𝒛 ∈ 𝑆
}
of independent eigenvectors

of 𝑨. As 𝑨 is symmetric, such a set can always be extended to an eigenbasis 𝑆𝑨 of 𝑨, such
that the vectors in 𝑆𝑨 \ 𝑆𝑨 are orthogonal to the vectors in 𝑆𝑨. This gives us an eigenbasis
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𝑆 =

{
𝑫−1/2𝒛

��� 𝒛 ∈ 𝑆𝑨
}
of right eigenvectors of 𝑃S .

We proceed by relating the eigenvalues of 𝑃S to the eigenvalues of 𝛷𝐺,𝛬, using 𝑆 . Note that

both 𝑃S and 𝛷𝐺,𝛬 are (𝑛 +𝑚) × (𝑛 +𝑚) matrices. We first show (Claim 1) that all vectors of 𝑆

are in the kernel of𝛷𝐺,𝛬. Since |𝑆 | = 𝑚 + 1 and since the vectors of 𝑆 are linearly independent,

the kernel of𝛷𝐺,𝛬 has a dimension of at least𝑚 + 1. Thus,𝛷𝐺,𝛬 has at least𝑚 + 1 eigenvectors

associated with the eigenvalue 0. Then (Claim 2) we show that all vectors of 𝑆 \ 𝑆 , which are the

remaining eigenvectors of 𝑃S in our consideration, are also right eigenvectors of𝛷𝐺,𝛬 but with

eigenvalues scaled by (𝑚 − 1). Last (Claim 3), we conclude that equation (3) holds.

Claim 1. Let 𝒛 ∈ 𝑆 , and let 0 denote the vector with 0(𝑥) = 0 for all 𝑥 ∈ 𝑈 . If 𝒛 = 1, then
𝛷𝐺,𝛬𝒛 = 0 because for all 𝑗 ∈ [𝑚] and every 𝑥 ∈ 𝑈 𝑗 it holds that

𝛷𝐺,𝛬1(𝑥) =
∑︁

𝑘∈[𝑚]:
𝑘≠𝑗

∑︁
𝑦∈𝑈𝑘

(P𝐺 [𝑦 | 𝑥 ] − P𝐺 [𝑦]) =
∑︁

𝑘∈[𝑚]:
𝑘≠𝑗

∑︁
𝑦∈𝑈𝑘

P𝐺 [𝑦 | 𝑥 ] −
∑︁

𝑘∈[𝑚]:
𝑘≠𝑗

∑︁
𝑦∈𝑈𝑘

P𝐺 [𝑦] = 0.

If 𝒛 = 1𝑗 for some 𝑗 ∈ [𝑚], again, we have𝛷𝐺,𝛬𝒛 = 0 because for all 𝑘 ∈ [𝑚] and every 𝑥 ∈ 𝑈𝑘
it holds that

𝛷𝐺,𝛬1𝑗 (𝑥) =
∑︁
𝑙 ∈[𝑚]:
𝑙≠𝑘

∑︁
𝑦∈𝑈𝑙

𝛷𝐺,𝛬 (𝑥,𝑦)1{𝑘 = 𝑗, 𝑙 = 𝑗} = 0.

Claim 2. We first show that all vectors 𝒛 ∈ 𝑆 \ 𝑆 are orthogonal to
1

𝑚
𝝅 − 𝝅 𝑗 for all 𝑗 ∈ [𝑚]. Let

𝒛 ∈ 𝑆 \ 𝑆 . First, note that

𝝅𝒛 = (𝑫1)T𝒛 = 1T𝑫𝒛 =

(
𝑫1/21

)
T

𝑫1/2𝒛 = 0,

where the last equality is due to 𝑫1/21 ∈ 𝑆𝑨 and 𝑫1/2𝒛 ∈ 𝑆𝑨 \ 𝑆𝑨. Similarly, we obtain for each

𝑗 ∈ [𝑚] with 𝑗 ≠ 𝑖 that (
1

𝑚
𝝅 − 𝝅 𝑗

)
𝒛 =

(
𝑫1/2

(
1

𝑚
1 − 1𝑗

))
T

𝑫1/2𝒛 = 0.

Finally, note that
1

𝑚
𝝅 − 𝝅 𝑖 can be obtain as a linear combination from 𝝅 and the vectors

1

𝑚
𝝅 − 𝝅 𝑗

for 𝑗 ≠ 𝑖 , implying that it is orthogonal to 𝒛 as well.
Assume that 𝒛 has eigenvalue 𝛽 . We define the matrix 𝜫 = 1𝝅 and the matrices 𝜫 𝑗 = 1𝑗𝝅 𝑗 for

𝑗 ∈ [𝑚], and note that

𝛷𝐺,𝛬 = (𝑚 − 1)𝑃S −𝑚©«𝜫 −
∑︁
𝑗 ∈[𝑚]

𝜫 𝑗
ª®¬.

Since 𝒛 is orthogonal to all vectors
1

𝑚
𝝅 − 𝝅 𝑗 for 𝑗 ∈ [𝑚], we have for every 𝑘 ∈ [𝑚] and 𝑥 ∈ 𝑈𝑘
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that

©«©«𝜫 −
∑︁
𝑗 ∈[𝑚]

𝜫 𝑗
ª®¬𝒛ª®¬(𝑥) =

∑︁
𝑦∈𝑈

∑︁
𝑗 ∈[𝑚]

((
1

𝑚
𝜫 (𝑥,𝑦) − 𝜫 𝑗 (𝑥,𝑦)

)
𝒛

)
(𝑦) =

∑︁
𝑗 ∈[𝑚]

(
1

𝑚
𝝅 − 𝝅 𝑗

)
𝒛 = 0.

This implies that

(
𝜫 − ∑

𝑗 ∈[𝑚] 𝜫 𝑗

)
𝒛 = 0, and thus it holds that

𝛷𝐺,𝛬𝒛 = (𝑚 − 1)𝑃S𝒛 = (𝑚 − 1)𝛽𝒛 .

Claim 3. Recall that 𝛽1(𝑃S) = 1 and that all eigenvectors of 𝑃S from 𝑆 \ {1} have a negative
eigenvalue. We make a case distinction with respect to the sign of 𝛽2(𝑃S) = 𝛽 . If 𝛽 > 0, then

there is an eigenvector 𝒛 ∈ 𝑆 \ 𝑆 corresponding to 𝛽 , as the eigenvalues of vectors from 𝑆 \ {1}
are negative. By Claim 2, there is an eigenvalue 𝛽 ′ of 𝛷𝐺,𝛬 such that 𝛽 = 𝛽 ′/(𝑚 − 1). Since
𝛽 ′ ≤ 𝛽1

(
𝛷𝐺,𝛬

)
, equation (3) holds.

If 𝛽 ≤ 0, then equation (3) follows immediately, as the kernel of𝛷𝐺,𝛬 is nontrivial and, thus,

𝛽1
(
𝛷𝐺,𝛬

)
≥ 0. This concludes the proof. ■

3.3 Bounding clique influence

We prove an upper bound for 𝛽1
(
𝛷𝐺′,𝛬

)
for all induced subgraphs𝐺 ′

of𝐺 and every disjoint clique

cover 𝛬 of 𝐺 ′
, given that (𝐺,𝝀) satisfy Condition 3.

▶ Lemma 7. Let (𝐺,𝝀) be an instance of the multivariate hard-core model that satisfies Condi-

tion 3 for a function 𝑞 and a constant𝐶 . For every 𝑆 ⊆ 𝑉 and every disjoint clique cover 𝛬 of𝐺 [𝑆]
it holds that the largest eigenvalue of𝛷𝐺 [𝑆 ],𝛬 is at most (2 +𝐶)𝐶 . ◀

In the proof of Lemma 7, we apply the following lemma, based on a result in [14].

▶ Lemma 15. Let 𝑛 ∈ N, let 𝐴 ∈ C𝑛×𝑛 , and let 𝜌 (𝐴) denote the spectral radius of 𝐴. Assume that

there is a 𝜉 ∈ R and a 𝑝 : [𝑛] → R>0 such that for all 𝑖 ∈ [𝑛] it holds that ∑𝑗 ∈[𝑛] |𝐴(𝑖, 𝑗) |𝑝 ( 𝑗) ≤
𝜉𝑝 (𝑖). Then 𝜌 (𝐴) ≤ 𝜉 . ◀

Note that, by Lemma 15, Condition 3 implies 𝛽1
(
𝛹𝐺 [𝑆 ]

)
≤ 𝐶 for all 𝑆 ⊆ 𝑉 .

We show that Condition 3 implies the existence of a 𝜉 from Lemma 15 such that for all induced

subgraphs 𝐺 ′
of 𝐺 and every disjoint clique cover 𝛬 of 𝐺 ′

there is a function 𝑝 that satisfies the

conditions of Lemma 15 for𝛷𝐺′,𝛬. To this end, we use the following lemmas.

▶ Lemma 16. Let (𝐺,𝝀) be an instance of the multivariate hard-core model with clique cover 𝛬

of size𝑚. Further, let (𝑋,𝑤) be the corresponding simplicial-complex representation with ground

set𝑈 and partition {𝑈𝑖}𝑖∈[𝑚] . For all 𝑖, 𝑗 ∈ [𝑚] and 𝑥 ∈ 𝑈𝑖 it holds that

𝛷𝐺,𝛬
(
𝑥, ∅𝑗

)
= −

∑︁
𝑣∈𝛬𝑗

𝛷𝐺,𝛬 (𝑥, 𝑥𝑣) . ◀
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Proof. By definition,

𝛷𝐺,𝛬
(
𝑥, ∅𝑗

)
= P𝐺

[⋂
𝑤∈𝛬𝑗

𝑤

���� 𝑥 ]
− P𝐺

[⋂
𝑤∈𝛬𝑗

𝑤

]
= −

(
P𝐺

[⋃
𝑤∈𝛬𝑗

𝑤

���� 𝑥 ]
− P𝐺

[⋃
𝑤∈𝛬𝑗

𝑤

] )
.

Note that for any pair of vertices from the same clique 𝑤1, 𝑤2 ∈ 𝛬𝑗 with 𝑤1 ≠ 𝑤2 the events that

𝑤1 is in an independent set and that 𝑤2 is in an independent set are disjoint. Thus, we obtain

−
(
P𝐺

[⋃
𝑤∈𝛬𝑗

𝑤

���� 𝑥 ]
− P𝐺

[⋃
𝑤∈𝛬𝑗

𝑤

] )
= −

∑︁
𝑤∈𝛬𝑗

(P𝐺 [𝑤 | 𝑥 ] − P𝐺 [𝑤]) = −
∑︁
𝑤∈𝛬𝑗

𝛷𝐺,𝛬 (𝑥,𝑤) . ■

▶ Lemma 17. Let (𝐺,𝝀) be an instance of the multivariate hard-core model with clique cover 𝛬

of size𝑚. Further, let (𝑋,𝑤) be the corresponding simplicial-complex representation with ground

set𝑈 and partition {𝑈𝑖}𝑖∈[𝑚] . For all 𝑖, 𝑗 ∈ [𝑚] with 𝑖 ≠ 𝑗 and all 𝑣 ∈ 𝛬𝑖 , 𝑤 ∈ 𝛬𝑗 it holds that

𝛷𝐺,𝛬 (𝑥𝑣, 𝑥𝑤) = P𝐺 [𝑣]𝛹𝐺 (𝑣,𝑤). ◀

Proof. By the law of total probability,

𝛷𝐺,𝛬 (𝑥𝑣, 𝑥𝑤) = P𝐺 [𝑤 | 𝑣 ] − P𝐺 [𝑤]
= P𝐺 [𝑤 | 𝑣 ] − P𝐺 [𝑤 | 𝑣 ]P𝐺 [𝑣] − P𝐺 [𝑤 | 𝑣 ]P𝐺 [𝑣]
= P𝐺 [𝑣] (P𝐺 [𝑤 | 𝑣 ] − P𝐺 [𝑤 | 𝑣 ])
= P𝐺 [𝑣]𝛹𝐺 (𝑣,𝑤) . ■

▶ Lemma 18. Let (𝐺,𝝀) be an instance of the multivariate hard-core model with clique cover 𝛬

of size𝑚. Further, let (𝑋,𝑤) be the corresponding simplicial-complex representation with ground

set𝑈 and partition {𝑈𝑖}𝑖∈[𝑚] . For all 𝑖, 𝑗 ∈ [𝑚] with 𝑖 ≠ 𝑗 and every 𝑤 ∈ 𝛬𝑗 it holds that

𝛷𝐺,𝛬 (∅𝑖 , 𝑥𝑤) =
∑︁
𝑣∈𝛬𝑖

P𝐺 [𝑣]𝛹
0|𝛬𝑖 \{𝑣}
𝐺

(𝑣,𝑤) =
∑︁
𝑣∈𝛬𝑖

P𝐺 [𝑣]𝛹𝐺𝑣
(𝑣,𝑤),

where 𝐺𝑣 = 𝐺 [𝑉 \ (𝛬𝑖 \ {𝑣})]. ◀

Proof. Let ∅𝑖 denote the complementary event to ∅𝑖 , meaning that some vertex 𝑢 ∈ 𝛬𝑖 is an

independent set drawn from the Gibbs distribution. By the law of total probability,

𝛷𝐺,𝛬 (∅𝑖 , 𝑥𝑤) = P𝐺 [𝑤 | ∅𝑖 ] − P𝐺 [𝑤]

= P𝐺 [𝑤 | ∅𝑖 ] − P𝐺 [𝑤 | ∅𝑖 ]P𝐺 [∅𝑖] − P𝐺
[
𝑤

��� ∅𝑖 ]P𝐺 [
∅𝑖

]
= P𝐺

[
∅𝑖

] (
P𝐺 [𝑤 | ∅𝑖 ] − P𝐺

[
𝑤

��� ∅𝑖 ] )
= P𝐺

[⋃
𝑢∈𝛬𝑖

𝑢

] (
P𝐺

[
𝑤

��� ⋂
𝑢∈𝛬𝑖

𝑢

]
− P𝐺

[
𝑤

��� ⋃
𝑢∈𝛬𝑖

𝑢

] )
.
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Because the events that two distinct vertices from the same clique are in an independent set are

disjoint, we get

P𝐺

[
𝑤

��� ⋃
𝑢∈𝛬𝑖

𝑢

]
=

∑︁
𝑣∈𝛬𝑖

P𝐺 [𝑤 | 𝑣 ] P𝐺 [𝑣]
P𝐺

[⋃
𝑢∈𝛬𝑖 𝑢

] and

P𝐺

[
𝑤

��� ⋂
𝑢∈𝛬𝑖

𝑢

]
= P𝐺

[
𝑤

��� ⋂
𝑢∈𝛬𝑖

𝑢

] P𝐺 [⋃
𝑣∈𝛬𝑖 𝑣

]
P𝐺

[⋃
𝑢∈𝛬𝑖 𝑢

] =
∑︁
𝑣∈𝛬𝑖

P𝐺

[
𝑤

��� ⋂
𝑢∈𝛬𝑖

𝑢

] P𝐺 [𝑣]
P𝐺

[⋃
𝑢∈𝛬𝑖 𝑢

] .
Thus, we obtain

P𝐺

[⋃
𝑢∈𝛬𝑖

𝑢

] (
P𝐺

[
𝑤

��� ⋂
𝑢∈𝛬𝑖

𝑢

]
− P𝐺

[
𝑤

��� ⋃
𝑢∈𝛬𝑖

𝑢

] )
=

∑︁
𝑣∈𝛬𝑖

P𝐺 [𝑣]
(
P𝐺

[
𝑤

��� ⋂
𝑢∈𝛬𝑖

𝑢

]
− P𝐺 [𝑤 | 𝑣 ]

)
.

Note that for each 𝑣 ∈ 𝛬𝑖 it holds that

P𝐺

[
𝑤

��� ⋂
𝑢∈𝛬𝑖

𝑢

]
= P𝐺

[
𝑤

��� 𝑣,⋂
𝑢∈𝛬𝑖\{𝑣}

𝑢

]
,

Further, because 𝑣 being in the independent set implies that no other vertex 𝑢 ∈ 𝛬𝑖 can be in the

independent set too, it also holds that

P𝐺 [𝑤 | 𝑣 ] = P𝐺
[
𝑤

��� 𝑣,⋂
𝑢∈𝛬𝑖\{𝑣}

𝑢

]
.

Consequently, we conclude that

𝛷𝐺,𝛬 (∅𝑖 , 𝑥𝑤) =
∑︁
𝑣∈𝛬𝑖

P𝐺 [𝑣]𝛹
0|𝛬𝑖 \{𝑣}
𝐺

(𝑣,𝑤) =
∑︁
𝑣∈𝛬𝑖

P𝐺 [𝑣]𝛹𝐺𝑣
(𝑣,𝑤). ■

▶ Lemma 19. Let (𝐺,𝝀) be an instance of the multivariate hard-core model, and let 𝑣 ∈ 𝑉 and

𝑤 ∈ 𝑁𝐺 (𝑣). Then P𝐺 [𝑤] ≤ −𝛹𝐺 (𝑣,𝑤) = |𝛹𝐺 (𝑣,𝑤) |. ◀

Proof. Since 𝑤 ∈ 𝑁𝐺 (𝑣), it holds that𝛹𝐺 (𝑣,𝑤) = −P𝐺 [𝑤 | 𝑣 ]. We conclude by noting that

P𝐺 [𝑤 | 𝑣 ] = 𝜆𝑤
𝑍 (𝐺 [𝑉 \ 𝑁𝐺 [𝑤]])
𝑍 (𝐺 [𝑉 \ {𝑣}]) ≥ 𝜆𝑤

𝑍 (𝐺 [𝑉 \ 𝑁𝐺 [𝑤]])
𝑍 (𝐺) = P𝐺 [𝑤] . ■

We now prove the main lemma of this subsection.

Proof of Lemma 7. To simplify notation, set 𝐺 ′ = 𝐺 [𝑆] and𝑚 = |𝛬|. Let (𝑋,𝑤) be the simplicial-

complex representation of (𝐺 ′,𝝀 [𝑆]) with clique cover 𝛬 and let 𝑈 be the corresponding ground

set of (𝑋,𝑤) with partition {𝑈𝑖}𝑖∈[𝑚] .
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As we aim to prove our claim using Lemma 15, we need to construct a function 𝑝 : 𝑈 → R>0

such that for all 𝑥 ∈ 𝑈 it holds that∑︁
𝑦∈𝑈

��𝛷𝐺′,𝛬 (𝑥,𝑦)
��𝑝 (𝑦) ≤ (2 +𝐶)𝐶𝑝 (𝑥).

To this end, we set 𝑝 (𝑥𝑣) = 𝑞(𝑣) for all 𝑣 ∈ 𝑆 and 𝑝 (∅𝑖) =
∑
𝑣∈𝛬𝑖 P𝐺′ [𝑣]𝑞(𝑣) for all 𝑖 ∈ [𝑚]. By

Lemma 19 we have for all 𝑖 ∈ [𝑚] and 𝑤 ∈ 𝛬𝑖 that∑︁
𝑣∈𝛬𝑖

P𝐺′ [𝑣]𝑞(𝑣) ≤ P𝐺′ [𝑤]𝑞(𝑤) +
∑︁

𝑣∈𝑁𝐺′ (𝑤)
|𝛹𝐺′ (𝑤, 𝑣) |𝑞(𝑣),

which, by Condition 3, implies

𝑝 (∅𝑖) < (1 +𝐶)𝑞(𝑤). (4)

Without loss of generality, assume𝑥 ∈ 𝑈𝑖 for some 𝑖 ∈ [𝑚]. Recall that by definition𝛷𝐺′,𝛬 (𝑥,𝑦) =
0 for all 𝑦 ∈ 𝑈𝑖 . By Lemma 16, we obtain

∑︁
𝑦∈𝑈

��𝛷𝐺′,𝛬 (𝑥,𝑦)
��𝑝 (𝑦) = ∑︁

𝑗 ∈[𝑚]:
𝑗≠𝑖

©«
��𝛷𝐺′,𝛬

(
𝑥, ∅𝑗

) ��𝑝 (∅𝑗 ) + ∑︁
𝑤∈𝛬𝑗

��𝛷𝐺′,𝛬 (𝑥, 𝑥𝑤)
��𝑝 (𝑥𝑤)ª®¬

≤
∑︁
𝑗 ∈[𝑚]:
𝑗≠𝑖

∑︁
𝑤∈𝛬𝑗

��𝛷𝐺′,𝛬 (𝑥, 𝑥𝑤)
�� (𝑝 (∅𝑗 ) + 𝑝 (𝑥𝑤)) .

Further, by our choice of 𝑝 and by equation (4), we obtain∑︁
𝑗 ∈[𝑚]:
𝑗≠𝑖

∑︁
𝑤∈𝛬𝑗

��𝛷𝐺′,𝛬 (𝑥, 𝑥𝑤)
�� (𝑝 (∅𝑗 ) + 𝑝 (𝑥𝑤)) < (2 +𝐶)

∑︁
𝑗 ∈[𝑚]:
𝑗≠𝑖

∑︁
𝑤∈𝛬𝑗

��𝛷𝐺′,𝛬 (𝑥, 𝑥𝑤)
��𝑞(𝑤) .

We proceed with a case distinction based on 𝑥 . Assume that 𝑥 = 𝑥𝑣 for some 𝑣 ∈ 𝛬𝑖 . By

Lemma 17, we have

(2 +𝐶)
∑︁
𝑗 ∈[𝑚]:
𝑗≠𝑖

∑︁
𝑤∈𝛬𝑗

��𝛷𝐺′,𝛬 (𝑥𝑣, 𝑥𝑤)
��𝑞(𝑤) = (2 +𝐶)P𝐺′ [𝑣]

∑︁
𝑗 ∈[𝑚]:
𝑗≠𝑖

∑︁
𝑤∈𝛬𝑗

|𝛹𝐺′ (𝑣,𝑤) |𝑞(𝑤)

≤ (2 +𝐶)
∑︁
𝑗 ∈[𝑚]:
𝑗≠𝑖

∑︁
𝑤∈𝛬𝑗

|𝛹𝐺′ (𝑣,𝑤) |𝑞(𝑤) .
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Using that the cliques are disjoint and applying Condition 3, we get

(2 +𝐶)
∑︁
𝑗 ∈[𝑚]:
𝑗≠𝑖

∑︁
𝑤∈𝛬𝑗

|𝛹𝐺′ (𝑣,𝑤) |𝑞(𝑤) ≤ (2 +𝐶)
∑︁
𝑤∈𝑆

|𝛹𝐺′ (𝑣,𝑤) |𝑞(𝑤) ≤ (2 +𝐶)𝐶𝑞(𝑣) = (2 +𝐶)𝐶𝑝 (𝑥𝑣).

Now, assume that 𝑥 = ∅𝑖 . By Lemma 18, we have

(2 +𝐶)
∑︁
𝑗 ∈[𝑚]:
𝑗≠𝑖

∑︁
𝑤∈𝛬𝑗

��𝛷𝐺′,𝛬 (∅𝑖 , 𝑥𝑤)
��𝑞(𝑤) = (2 +𝐶)

∑︁
𝑗 ∈[𝑚]:
𝑗≠𝑖

∑︁
𝑤∈𝛬𝑗

�����∑︁
𝑣∈𝛬𝑖

P𝐺′ [𝑣]𝛹𝐺′
𝑣
(𝑣,𝑤)

�����𝑞(𝑤)
≤ (2 +𝐶)

∑︁
𝑣∈𝛬𝑖

P𝐺′ [𝑣]
∑︁
𝑗 ∈[𝑚]:
𝑗≠𝑖

∑︁
𝑤∈𝛬𝑗

��𝛹𝐺′
𝑣
(𝑣,𝑤)

��𝑞(𝑤),
where𝐺 ′

𝑣 = 𝐺
′[𝑆 \ (𝛬𝑖 \ {𝑣})] = 𝐺 [𝑆 \ (𝛬𝑖 \ {𝑣})]. As the cliques are disjoint and𝐺 ′

𝑣 is a subgraph

of 𝐺 , we apply Condition 3 to obtain

(2 +𝐶)
∑︁
𝑣∈𝛬𝑖

P𝐺′ [𝑣]
∑︁
𝑗 ∈[𝑚]:
𝑗≠𝑖

∑︁
𝑤∈𝛬𝑗

��𝛹𝐺′
𝑣
(𝑣,𝑤)

��𝑞(𝑤) = (2 +𝐶)
∑︁
𝑣∈𝛬𝑖

P𝐺′ [𝑣]
∑︁

𝑤∈𝑆\(𝛬𝑖\{𝑣})

��𝛹𝐺′
𝑣
(𝑣,𝑤)

��𝑞(𝑤)
≤ (2 +𝐶)

∑︁
𝑣∈𝛬𝑖

P𝐺′ [𝑣]𝐶𝑞(𝑣)

= (2 +𝐶)𝐶
∑︁
𝑣∈𝛬𝑖

P𝐺′ [𝑣]𝑞(𝑣)

= (2 +𝐶)𝐶𝑝 (∅𝑖),

which concludes the proof. ■

3.4 Canonical paths in skeleton walks

The previous section shows that we can bound local expansion of the simplicial-complex repre-

sentation of a disjoint clique cover based on pairwise influence between vertices. The resulting

bound on the second largest eigenvalue of the skeleton walks might in some cases be larger than 1,

which makes Theorem 11 inapplicable. Thus, we introduce a more crude bound on this second

eigenvalue by applying the canonical-path method to the skeleton walk. Although the resulting

bound is worse in most cases, it is guaranteed to be less than 1, which is sufficient to cover the

cases where using pairwise influence fails.

We start by giving a short overview on the canonical-path method. Let M be a Markov

chain that is reversible with respect to its stationary distribution 𝜋M . Let 𝐸 (M) = {(𝑥,𝑦) ∈
𝛺2

M | 𝑥 ≠ 𝑦, 𝑃M (𝑥,𝑦) > 0} denote the edges of the Markov chain excluding self loops, and

let 𝐸∗(M) = {(𝑥,𝑦) ∈ 𝛺2

M | 𝑃M (𝑥,𝑦) > 0} be the set of edges including self loops. For each

(𝑥,𝑦) ∈ 𝐸∗(M), we set 𝑄M (𝑥,𝑦) = 𝜋M (𝑥)𝑃M (𝑥,𝑦). The idea of the canonical-path method
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is to construct a path 𝛾 = (𝑥0 = 𝑥, 𝑥1, . . . , 𝑥𝑙 = 𝑦) for every 𝑥,𝑦 ∈ 𝛺M with 𝑥 ≠ 𝑦 using the

edges in 𝐸 (M) (i.e., (𝑥𝑖−1, 𝑥𝑖) ∈ 𝐸 (M) for all 𝑖 ∈ [𝑙]). We denote by 𝐸
(
𝛾𝑥𝑦

)
the set of edges

that are used by the path 𝛾𝑥𝑦 and by

��𝛾𝑥𝑦 �� the length of a path. Further, we call a set of paths

𝛤 = {𝛾𝑥𝑦 | 𝑥,𝑦 ∈ 𝛺M, 𝑥 ≠ 𝑦} canonical if and only if it contains exactly one path for each

𝑥,𝑦 ∈ 𝛺M with 𝑥 ≠ 𝑦, and its congestion is defined to be

𝜌 (𝛤 ) = max

(𝑤,𝑧) ∈𝐸 (M)

1

𝑄M (𝑤, 𝑧)
∑︁

𝑥,𝑦∈𝛺M :

(𝑤,𝑧) ∈𝐸(𝛾𝑥𝑦)

��𝛾𝑥𝑦 ��𝜋M (𝑥)𝜋M (𝑦).

▶ Theorem 20 ([51, Theorem 5]). For any reversible Markov chainM and every set of canonical

paths 𝛤 forM it holds that

𝛽2(𝑃M) ≤ 1 − 1

𝜌 (𝛤 ) . ◀

By applying the canonical-path method to the skeleton walk, we obtain the following lemma.

▶ Lemma 21. Let (𝐺,𝝀) be an instance of the multivariate hard-core model with disjoint clique

cover 𝛬 of size 𝑚, and let 𝑍max = max𝑖∈[𝑚]{𝑍 (𝐺 [𝛬𝑖])}. Further, let (𝑋,𝑤) be the resulting

simplicial-complex representation, and let S = S(𝑋,𝑤) be the skeleton walk on (𝑋,𝑤). Then
𝛽2(𝑃S) ≤ 1 − 1

12𝑍 2

max

. ◀

Proof. As discussed in the proof of Lemma 14, 𝑃S is reversible with respect to its stationary

distribution 𝜋S , where 𝜋S (𝑥) = 1

𝑚
P𝐺 [𝑥]. Thus, 𝑄S (𝑥,𝑦) = 1

𝑚 (𝑚−1)P𝐺 [𝑥,𝑦].
We start by constructing the paths 𝛤 = {𝛾𝑥𝑦 | 𝑥,𝑦 ∈ 𝑈 , 𝑥 ≠ 𝑦}. To this end, let 𝑝 be a

fixed-point-free permutation of [𝑚]. Our construction goes as follows:

• 𝛾∅𝑖 ∅𝑗 = (∅𝑖 , ∅𝑗 ) for 𝑖 ≠ 𝑗 ,

• 𝛾𝑥𝑣 ∅𝑖 = (𝑥𝑣, ∅𝑖), 𝛾∅𝑖𝑥𝑣 = (∅𝑖 , 𝑥𝑣) for all 𝑣 ∈ 𝑉 with 𝑣 ∉ 𝛬𝑖 ,

• 𝛾𝑥𝑣𝑥𝑤 = (𝑥𝑣, ∅𝑖 , ∅𝑗 , 𝑥𝑤) for 𝑣 ∈ 𝛬𝑗 , 𝑤 ∈ 𝛬𝑖 with 𝑖 ≠ 𝑗 ,

• 𝛾𝑥𝑦 = (𝑥, ∅𝑝 (𝑖) , 𝑦) for 𝑥,𝑦 ∈ 𝑈𝑖 .

Let 𝐸 (𝛤 ) = ⋃
𝛾 ∈𝛤 𝐸 (𝛾) and note that for all 𝑥 ≠ 𝑦 we have

��𝛾𝑥𝑦 �� ≤ 3. It suffices to upper-bound

𝜌 (𝛤 ) ≤ 3 max

𝑒∈𝐸 (𝛤 )

1

𝑄S (𝑒)
∑︁
𝑥,𝑦∈𝑈 :

𝑒∈𝐸(𝛾𝑥𝑦)

𝜋S (𝑥)𝜋S (𝑦) .

We derive such an upper bound by partitioning 𝐸 (𝛤 ) into the 3 following types of edges:

• 𝐴 = {(𝑥𝑣, ∅𝑖) ∈ 𝐸 (𝛤 ) | 𝑣 ∉ 𝛬𝑖},
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• 𝐵 = {(∅𝑖 , 𝑥𝑣) ∈ 𝐸 (𝛤 ) | 𝑣 ∉ 𝛬𝑖},

• 𝐶 = {(∅𝑖 , ∅𝑗 ) ∈ 𝐸 (𝛤 ) | 𝑖 ≠ 𝑗}.

We make a case distinction with respect to these types.

Case 𝑨. Let (𝑥𝑣, ∅𝑖) ∈ 𝐴 and without loss of generality assume 𝑣 ∈ 𝛬𝑗 for 𝑗 ≠ 𝑖 . If 𝑝 ( 𝑗) ≠ 𝑖 , then
(𝑥𝑣, ∅𝑖) is only used by paths that start at 𝑥𝑣 and go to any element in𝑈𝑖 (including ∅𝑖 ). Further, if
𝑝 ( 𝑗) = 𝑖 , then it is also used by paths from 𝑥𝑣 to any 𝑦 ∈ 𝑈 𝑗 with 𝑦 ≠ 𝑥𝑣. Thus, we obtain

1

𝑄S (𝑥𝑣, ∅𝑖)
∑︁
𝑥,𝑦∈𝑈 :

(𝑥𝑣,∅𝑖 ) ∈𝐸(𝛾𝑥𝑦)

𝜋S (𝑥)𝜋S (𝑦) ≤
𝑚(𝑚 − 1)

𝑚2

1

P𝐺 [∅𝑖 | 𝑣 ]

©«
∑︁
𝑦∈𝑈𝑖

P𝐺 [𝑦] +
∑︁
𝑦∈𝑈 𝑗 :

𝑦≠𝑥𝑣

P𝐺 [𝑦]
ª®®®¬

≤ 2

P𝐺 [∅𝑖 | 𝑣 ]
,

where the second inequality comes from the fact that we have

∑
𝑦∈𝑈𝑘

P𝐺 [𝑦] = P𝐺
[⋃

𝑦∈𝑈𝑘
𝑦
]
= 1

for all 𝑘 ∈ [𝑚]. By the submultiplicativity of 𝑍 ,

P𝐺 [∅𝑖 | 𝑣 ] =
𝑍 (𝐺 [𝑉 \ (𝑁 [𝑣] ∪ 𝛬𝑖)])

𝑍 (𝐺 [𝑉 \ 𝑁 [𝑣]]) ≥ 𝑍 (𝐺 [𝑉 \ (𝑁 [𝑣] ∪ 𝛬𝑖)])
𝑍 (𝐺 [𝑉 \ (𝑁 [𝑣] ∪ 𝛬𝑖)])𝑍 (𝐺 [𝛬𝑖 \ 𝑁 [𝑣]]) ≥ 1

𝑍 (𝐺 [𝛬𝑖])
.

We obtain the bound

1

𝑄S (𝑥𝑣, ∅𝑖)
∑︁
𝑥,𝑦∈𝑈 :

(𝑥𝑣,∅𝑖 ) ∈𝐸(𝛾𝑥𝑦)

𝜋S (𝑥)𝜋S (𝑦) ≤ 2𝑍 (𝐺 [𝛬𝑖]) . (5)

Case 𝑩. For (∅𝑖 , 𝑥𝑣) ∈ 𝐵, by symmetry, this case is analogous to case 𝐴. Thus, we get

1

𝑄S (∅𝑖 , 𝑥𝑣)
∑︁
𝑥,𝑦∈𝑈 :

( ∅𝑖 ,𝑥𝑣) ∈𝐸(𝛾𝑥𝑦)

𝜋S (𝑥)𝜋S (𝑦) ≤ 2𝑍 (𝐺 [𝛬𝑖]) . (6)

Case 𝑪 . Finally, consider (∅𝑖 , ∅𝑗 ) ∈ 𝐶 . If 𝑝 ( 𝑗) ≠ 𝑖 and 𝑝 (𝑖) ≠ 𝑗 , then this edge is only used

by paths from 𝑥𝑣 to 𝑥𝑤 for any pair 𝑣 ∈ 𝛬𝑗 , 𝑤 ∈ 𝛬𝑖 and for the direct transition from ∅𝑖 to ∅𝑗 . If
𝑝 ( 𝑗) = 𝑖 , then it is also used by paths from any 𝑥𝑣 for 𝑣 ∈ 𝛬𝑗 to ∅𝑗 . Symmetrically, if 𝑝 (𝑖) = 𝑗 , then

it is also used by paths from ∅𝑖 to 𝑥𝑣 for 𝑣 ∈ 𝛬𝑖 . Thus, we obtain

1

𝑄S
(
∅𝑖 , ∅𝑗

) ∑︁
𝑥,𝑦∈𝑈 :

( ∅𝑖 ,∅𝑗 ) ∈𝐸(𝛾𝑥𝑦)

𝜋S (𝑥)𝜋S (𝑦)

27



≤ 𝑚(𝑚 − 1)
𝑚2

1

P𝐺
[
∅𝑖 , ∅𝑗

] ( ∑︁
𝑣∈𝛬𝑗 :

𝑤∈𝛬𝑖

P𝐺 [𝑣]P𝐺 [𝑤] + P𝐺 [∅𝑖]P𝐺
[
∅𝑗

]
+ P𝐺

[
∅𝑗

] ∑︁
𝑣∈𝛬𝑗

P𝐺 [𝑣] + P𝐺 [∅𝑖]
∑︁
𝑣∈𝛬𝑖

P𝐺 [𝑣]
)

≤ 4

P𝐺
[
∅𝑖 , ∅𝑗

] .
Now, observe that

P𝐺
[
∅𝑖 , ∅𝑗

]
=
𝑍

(
𝐺

[
𝑉 \ (𝛬𝑖 ∪ 𝛬𝑗 )

] )
𝑍 (𝐺) ≥

𝑍
(
𝐺

[
𝑉 \ (𝛬𝑖 ∪ 𝛬𝑗 )

] )
𝑍

(
𝐺

[
𝑉 \ (𝛬𝑖 ∪ 𝛬𝑗 )

] )
𝑍 (𝐺 [𝛬𝑖])𝑍

(
𝐺

[
𝛬𝑗

] )
=

1

𝑍 (𝐺 [𝛬𝑖])𝑍
(
𝐺

[
𝛬𝑗

] ) .
Thus,

1

𝑄S
(
∅𝑖 , ∅𝑗

) ∑︁
𝑥,𝑦∈𝑈

s.t. ( ∅𝑖 ,∅𝑗 ) ∈𝐸(𝛾𝑥𝑦)

𝜋S (𝑥)𝜋S (𝑦) ≤ 3𝑍 (𝐺 [𝛬𝑖])𝑍
(
𝐺

[
𝛬𝑗

] )
. (7)

Combining equations (5) to (7) we get 𝜌 (𝛤 ) ≤ 12𝑍 2

max
. By Theorem 20 this implies 𝛽2(𝑃S) ≤

1 − 1

12𝑍 2

max

, which concludes the proof. ■

Note that Lemmas 7, 14 and 21 only consider the skeleton walk on the complex (𝑋,𝑤). However,
in order to bound the local expansion, we need to investigate the skeleton walk on all links (𝑋𝜏 , 𝑤𝜏 )
for every face 𝜏 ∈ 𝑋 (𝑘) with 0 ≤ 𝑘 ≤ 𝑚 − 2. To achieve this, we map the link for any such face to

the simplicial complex representation of a smaller instance, such that we can apply Theorem 11.

To this end, we introduce the following lemma.

▶ Lemma 22. Let 𝑋 be a pure 𝑑-dimensional simplicial complex for 𝑑 ≥ 2, let 𝑤 and 𝑤 ′
be two

weight functions for 𝑋 , and let S = S(𝑋,𝑤) and S′ = S(𝑋,𝑤 ′). Further, if there is an 𝑟 ∈ R>0

such that for all maximum faces 𝜏 ∈ 𝑋 (𝑑) we have 𝑤 ′(𝜏) = 𝑟𝑤(𝜏), then S = S′
and, in particular,

𝛽2(𝑃S) = 𝛽2(𝑃S′). ◀

Proof. We prove this statement by showing equality of the state spaces and transition probabilites.

The fact that 𝛺S = 𝛺S′ follows directly from the fact that both walks are on the 1-skeleton of the

same complex. Now, let 𝜏 ′ ∈ 𝑋 be any face of 𝑋 . Note that

𝑤 ′(𝜏 ′) =
∑︁

𝜏 ∈𝑋 (𝑑) :
𝜏′⊆𝜏

𝑤 ′(𝜏) = 𝑟
∑︁

𝜏 ∈𝑋 (𝑑) :
𝜏′⊆𝜏

𝑤 (𝜏) = 𝑟𝑤 (𝜏 ′) .
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Thus, the weights of all faces differ by the same factor 𝑟 . Let {𝑥}, {𝑦} ∈ 𝑋 with 𝑥 ≠ 𝑦. If {𝑥,𝑦} ∉ 𝑋 ,
then 𝑃S (𝑥,𝑦) = 0 = 𝑃S′ (𝑥,𝑦). Otherwise, if {𝑥,𝑦} ∈ 𝑋 , then

𝑃S′ (𝑥,𝑦) = 𝑤 ′({𝑥,𝑦})∑
{𝑧 }∈𝑋 :

{𝑥,𝑧 }∈𝑋

𝑤 ′({𝑥, 𝑧}) =
𝑟𝑤 ({𝑥,𝑦})

𝑟
∑

{𝑧 }∈𝑋 :

{𝑥,𝑧 }∈𝑋

𝑤 ({𝑥, 𝑧}) = 𝑃S (𝑥,𝑦).

As both S and S′
have self loop probabilities of 0, it follows 𝑃S = 𝑃S′ . This implies 𝛽2(𝑃S) =

𝛽2(𝑃S′). ■

3.5 Block dynamics for non-disjoint clique covers

So far, we investigated the two-step walk on the simplicial complex representation resulting from

a disjoint clique cover. In this section, we discuss how this can be used to obtain information

about the eigenvalues of the block dynamics based on arbitrary clique covers. We use a Markov

chain comparison theorem based on [16]. Similarly to the canonical-paths method, it is based

on constructing paths between certain pairs of vertices in the state space. Recall the notation

introduced at the beginning of Section 3.4.

▶ Theorem 23 ([16, Theorem 2.1]). Let M,M ′
be two reversible Markov chains on a common

state space 𝛺M = 𝛺 = 𝛺M′ . For each (𝑥,𝑦) ∈ 𝐸 (M), fix some path 𝛾𝑥𝑦 = (𝑥0 = 𝑥, 𝑥1, ..., 𝑥𝑙 = 𝑦) in
𝐸∗(M ′) (i.e., (𝑥𝑖−1, 𝑥𝑖) ∈ 𝐸∗(M ′) for all 𝑖 ∈ [𝑙]) and let 𝛤 = {𝛾𝑥𝑦 | (𝑥,𝑦) ∈ 𝐸 (M)} be the resulting
set of paths. Further, let 𝑎 ∈ R>0 be such that 𝜋M (𝑥) ≥ 𝑎𝜋M′ (𝑥) for all 𝑥 ∈ 𝛺 and set

𝐴(𝛤 ) = max

(𝑤,𝑧) ∈𝐸∗ (M′)

1

𝑄M′ (𝑤, 𝑧)
∑︁

𝑥,𝑦∈𝛺 :

(𝑧,𝑤) ∈𝐸(𝛾𝑥𝑦)

��𝛾𝑥𝑦 ��𝑄M (𝑥,𝑦).

For all 2 ≤ 𝑖 ≤ |𝛺 | − 1 it now holds that

𝛽𝑖 (𝑃M′) ≤ 1 − 𝑎

𝐴(𝛤 ) (1 − 𝛽𝑖 (𝑃M)) . ◀

Although the two-step walk and block dynamics do not act directly on the same state space, we

know by Observation 12 that there is a one-to-one correspondence between their state spaces.

Thus, we can assume them to have the same state space up to relabeling of states. For every 𝐼 ∈ I,
we write 𝜏𝐼 ∈ 𝑋 (𝑚) for the corresponding maximum face in the simplicial complex and, for every

maximum face 𝜏 ∈ 𝑋 (𝑚), we let 𝐼𝜏 ∈ I denote the respective independent set.

▶ Lemma 24. Let (𝐺,𝝀) be an instance of the multivariate hard-core model with a clique cover 𝛬

of size𝑚, and let𝑍max = max𝑖∈[𝑚]{𝑍 (𝐺 [𝛬𝑖])}. Further, let B = B(𝐺,𝝀, 𝛬). Then there is a disjoint
clique cover 𝐾 of size𝑚 such that

max

𝑖∈[𝑚]
{𝑍 (𝐺 [𝐾𝑖])} ≤ 𝑍max,
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and, for (𝑋,𝑤) being the simplicial complex representation resulting from 𝐾 and V = V(𝑋,𝑤), it
holds that

𝛽2(𝑃B) ≤ 1 − 1

𝑍max

(1 − 𝛽2(𝑃V)). (8)

◀

Proof. We start by constructing the a disjoint clique cover 𝐾 from 𝛬. To this end, we set 𝐾1 = 𝛬1

and 𝐾𝑖 = 𝛬𝑖 \𝐾𝑖−1 for 2 ≤ 𝑖 ≤ 𝑚. Note that 𝐾𝑖 ∩𝐾 𝑗 = ∅ for all 𝑖 ≠ 𝑗 and
⋃
𝑖∈[𝑚] 𝐾𝑖 =

⋃
𝑖∈[𝑚] 𝛬𝑖 = 𝑉 .

Thus, 𝐾 = {𝐾𝑖}𝑖∈[𝑚] is a disjoint clique cover. Further, for all 𝑖 ∈ [𝑚] it holds that 𝐾𝑖 ⊆ 𝛬𝑖 , which

implies 𝑍 (𝐺 [𝐾𝑖]) ≤ 𝑍 (𝐺 [𝛬𝑖]) and thus max𝑖∈[𝑚]{𝑍 (𝐺 [𝐾𝑖])} ≤ 𝑍max.

We now prove equation (8) by applying Theorem 23. First note that we know by Observation 13

that 𝜋V (𝜏) = 𝜇 (𝐼𝜏 ) = 𝜋B (𝐼𝜏 ), meaning that we can set 𝑎 = 1. It remains to construct a set of paths

𝛤 and upper bound 𝐴(𝛤 ). Note that for every (𝜏, 𝜏 ′) ∈ 𝐸 (V) there exists some 𝑖 ∈ [𝑚] such that

𝐼𝜏 ⊕ 𝐼𝜏′ ⊆ 𝐾𝑖 ⊆ 𝛬𝑖 , implying that there is a corresponding edge (𝐼𝜏 , 𝐼𝜏′) ∈ 𝐸∗(B). We set the path

𝛾𝜏𝜏′ between 𝐼𝜏 and 𝐼𝜏′ to be this edge and 𝛤 to be the set of all such paths.

Note that we actually only use edges in 𝐸 (B), which means that we ignore self loops while

bounding 𝐴(𝛤 ). Further, for all (𝜏, 𝜏 ′) ∈ 𝐸 (V) it holds that |𝛾𝜏𝜏′ | = 1. We obtain for every

(𝐼 , 𝐼 ′) ∈ 𝐸 (B) that

1

𝑄B (𝐼 , 𝐼 ′)
∑︁

𝜏,𝜏′∈𝑋 (𝑚) :
(𝐼 ,𝐼 ′) ∈𝐸 (𝛾𝜏𝜏′ )

|𝛾𝜏𝜏′ |𝑄V (𝜏, 𝜏 ′) =
{
𝑄V (𝜏𝐼 ,𝜏𝐼 ′ )
𝑄B (𝐼 ,𝐼 ′) if (𝜏𝐼 , 𝜏𝐼 ′) ∈ 𝐸 (V),
0 otherwise.

We proceed by doing a case distinction based on (𝐼 , 𝐼 ′) ∈ 𝐸 (B), assuming that (𝜏𝐼 , 𝜏𝐼 ′) ∈ 𝐸 (V).
Consider a transition (𝐼 , 𝐼 ′) ∈ 𝐸 (B) with 𝐼 = 𝐼 ′ ∪ {𝑣} for some 𝑣 ∉ 𝐼 (i.e., removing 𝑣). Without

loss of generality, assume 𝑣 ∈ 𝐾𝑖 for some 𝑖 ∈ [𝑚]. First, note that

𝑄B (𝐼 , 𝐼 ′) = 𝜇 (𝐼 )
1

𝑚

∑︁
𝑗 ∈[𝑚]:
𝑣∈𝛬𝑗

𝜇 |𝛬𝑗

(
∅
��� 𝜎 (𝐼 )

|𝑉 \𝛬𝑗

)
≥ 𝜇 (𝐼 ) 1

𝑚

1

𝑍max

.

Further, by Observation 13 it holds that

𝑄V (𝜏, 𝜏 ′) = 𝜇 (𝐼 ) 1
𝑚
𝜇 |𝐾𝑖

(
∅
��� 𝜎 (𝐼 )

|𝑉 \𝐾𝑖

)
≤ 𝜇 (𝐼 ) 1

𝑚
.

Thus, we obtain

𝑄V (𝜏𝐼 , 𝜏𝐼 ′)
𝑄B (𝐼 , 𝐼 ′)

≤ 𝑍max.

Now, consider (𝐼 , 𝐼 ′) ∈ 𝐸 (B) with 𝐼 ′ = 𝐼 ∪ {𝑣} for some 𝑣 ∉ 𝐼 (i.e., adding 𝑣) and assume 𝑣 ∈ 𝐾𝑖
for some 𝑖 ∈ [𝑚]. We observe that

𝑄B (𝐼 , 𝐼 ′) = 𝜇 (𝐼 )
1

𝑚

∑︁
𝑗 ∈[𝑚]:
𝑣∈𝛬𝑗

𝜇 |𝛬𝑗

(
{𝑣}

��� 𝜎 (𝐼 )
|𝑉 \𝛬𝑗

)
≥ 𝜇 (𝐼 ) 1

𝑚

1

𝑍max

𝜆𝑣 .
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Similarly, we have

𝑄V (𝜏, 𝜏 ′) = 𝜇 (𝐼 ) 1
𝑚
𝜇 |𝐾𝑖

(
{𝑣}

��� 𝜎 (𝐼 )
|𝑉 \𝐾𝑖

)
≤ 𝜇 (𝐼 ) 1

𝑚
𝜆𝑣 .

Again, we get

𝑄V (𝜏𝐼 , 𝜏𝐼 ′)
𝑄B (𝐼 , 𝐼 ′)

≤ 𝑍max.

Finally, consider (𝐼 , 𝐼 ′) ∈ 𝐸 (B) with 𝐼 ′ = (𝐼 \ {𝑤}) ∪ {𝑣} for 𝑣 ≠ 𝑤 (i.e., remove 𝑤 and add 𝑣).

Note that, as (𝐼 , 𝐼 ′) ∈ 𝐸 (B), there has to be some 𝑗 ∈ [𝑚] such that 𝑣,𝑤 ∈ 𝛬𝑗 . We get that

𝑄B (𝐼 , 𝐼 ′) = 𝜇 (𝐼 )
1

𝑚

∑︁
𝑗 ∈[𝑚]:
𝑣,𝑤∈𝛬𝑗

𝜇 |𝛬𝑗

(
{𝑣}

��� 𝜎 (𝐼 )
|𝑉 \𝛬𝑗

)
≥ 𝜇 (𝐼 ) 1

𝑚

1

𝑍max

𝜆𝑣 .

Further, as (𝜏𝐼 , 𝜏𝐼 ′) ∈ 𝐸 (V), there is exactly one 𝑖 ∈ [𝑚] such that 𝑣,𝑤 ∈ 𝐾𝑖 . This yields

𝑄V (𝜏, 𝜏 ′) = 𝜇 (𝐼 ) 1
𝑚
𝜇 |𝐾𝑖

(
{𝑣}

��� 𝜎 (𝐼 )
|𝑉 \𝐾𝑖

)
≤ 𝜇 (𝐼 ) 1

𝑚
𝜆𝑣 .

Thus, also in this case we have

𝑄V (𝜏𝐼 , 𝜏𝐼 ′)
𝑄B (𝐼 , 𝐼 ′)

≤ 𝑍max.

As B changes at most one clique in 𝛬 at each step, the above case distinction covers all (𝐼 , 𝐼 ′) ∈
𝐸 (B). We obtain 𝐴(𝛤 ) ≤ 𝑍max, which proves the claim. ■

3.6 Bounding the mixing time

We now have everything to state and prove our main theorem on the mixing time of block

dynamics.

▶ Theorem 4. Let (𝐺,𝝀) be an instance of the multivariate hard-core model that satisfies Con-

dition 3. Let 𝛬 be a clique cover for𝐺 of size𝑚, and let 𝑍max = max𝑖∈[𝑚]{𝑍 (𝐺 [𝛬𝑖],𝝀 [𝛬𝑖])}. The
mixing time of the block dynamics B(𝐺,𝝀, 𝛬), starting from ∅ ∈ I(𝐺), is bounded by

𝜏
( ∅)
B (𝜀) ≤ 𝑚O( (2+𝐶)𝐶)𝑍O( (2+𝐶)𝐶)

max
ln

(
1

𝜀

)
. ◀

Proof. By equation (1) it is sufficient to lower bound the spectral gap of 𝑃B by
1

poly(𝑍max) and
1

poly(𝑚)
to prove our claim. Further, transforming the chain into a lazy version only results in constant

overhead in the mixing time. Thus, we focus on lower-bounding 1 − 𝛽2(𝑃B), which is equivalent

to upper-bounding 𝛽2(𝑃B).
Let 𝐾 be the disjoint clique cover, constructed from 𝛬 as described in the proof of Lemma 24,

and let 𝑍
(𝐾)
max

= max𝑖∈[𝑚]{𝑍 (𝐺 [𝐾𝑖])}. Further, let (𝑋,𝑤) be the simplicial-complex representation

based on 𝐾 with groundset𝑈 and partitions {𝑈𝑖}𝑖∈[𝑚] , and let V = V(𝑋,𝑤) denote the two-step
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walk on (𝑋,𝑤). By Lemma 24,

𝛽2(𝑃B) ≤ 1 − 1

𝑍max

(1 − 𝛽2(𝑃V)). (9)

Thus, it is sufficient for us to upper bound 𝛽2(𝑃V).
We aim to apply Theorem 11, which involves upper-bounding local expansion of the simplicial-

complex representation. Let 𝐶 be the constant for which (𝐺,𝝀) satisfies Condition 3. We proceed

by proving that (𝑋,𝑤) is a local (𝛼0, . . . , 𝛼𝑚−2)-expander, where

𝛼𝑘 ≤ min

{
1 − 1

12𝑍 2

max

,
(2 +𝐶)𝐶
𝑚 − 𝑘 − 1

}
for 0 ≤ 𝑘 ≤ 𝑚 − 2. (10)

We start by arguing both bounds for the case 𝑘 = 0. Then we generalize our arguments for the

cases 𝑘 ∈ [𝑚 − 2].
Case 𝒌 = 0. LetS = S(𝑋,𝑤) be the skeleton walk on (𝑋,𝑤). By definition, we have 𝛼0 = 𝛽2(𝑃S).

Note that the first bound 𝛼0 ≤ 1 − 1

12𝑍 2

max

follows directly from Lemma 21 and the fact that

𝑍
(𝐾)
max

≤ 𝑍max by Lemma 24. To prove the second bound, we apply Lemma 14, which gives us

𝛼0 ≤
𝛽1

(
𝛷𝐺,𝐾

)
𝑚 − 1

.

By Lemma 7, we conclude that 𝛼0 ≤ (2+𝐶)𝐶
𝑚−1 .

Case 𝒌 ∈ [𝒎 − 2]. By definition, we have to show for all 𝜏 ∈ 𝑋 (𝑘) that the skeleton walk

S𝜏 = S(𝑋𝜏 , 𝑤𝜏 ) on the link (𝑋𝜏 , 𝑤𝜏 ) satisfies

𝛽2
(
𝑃S𝜏

)
≤ min

{
1 − 1

12𝑍 2

max

,
(2 +𝐶)𝐶
𝑚 − 𝑘 − 1

}
.

We construct a subset of vertices 𝑆 ⊆ 𝑉 such that

𝑆 =
⋃
𝑥 ∈𝜏

{
𝑁 [𝑣] if 𝑥 = 𝑥𝑣 for some 𝑣 ∈ 𝑉 ,
𝛬𝑖 if 𝑥 = ∅𝑖 for some 𝑖 ∈ [𝑚].

Let 𝐺 ′ = 𝐺 [𝑉 \ 𝑆] be the subgraph induced by 𝑉 \ 𝑆 and let 𝝀′ = 𝝀 [𝑉 \ 𝑆] be the corresponding
vertex weights. Further, let 𝐾 ′ = {𝐾𝑖 \ 𝑆 | 𝑖 ∈ [𝑚] ∧ 𝜏 ∩𝑈𝑖 = ∅ } and note that 𝐾 ′

is a disjoint

clique cover of the multivariate hard-core instance (𝐺 ′,𝝀′). Let (𝑋 ′, 𝑤 ′) be the corresponding
simplicial-complex representation and let S′ = S(𝑋 ′, 𝑤 ′) be the skeleton walk on (𝑋 ′, 𝑤 ′). Note
that 𝑋 ′ = 𝑋𝜏 and that for every maximum face 𝜏 ′ ∈ 𝑋𝜏 (𝑚 − |𝜏 |) it holds that

𝑤𝜏 (𝜏 ′) = 𝑤 (𝜏 ′ ∪ 𝜏)
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=
1

𝑍 (𝐺,𝝀)
©«

∏
𝑤∈𝑉 \𝑆

𝜆𝑤1𝑥𝑤∈𝜏′
ª®¬
(∏
𝑣∈𝑆

𝜆𝑣1𝑥𝑣∈𝜏

)

=
1

𝑍 (𝐺 ′,𝝀′)
©«

∏
𝑤∈𝑉 \𝑆

𝜆′𝑤1𝑥𝑤∈𝜏′
ª®¬𝑍 (𝐺

′,𝝀′)
𝑍 (𝐺,𝝀)

(∏
𝑣∈𝑆

𝜆𝑣1𝑥𝑣∈𝜏

)
= 𝑤 ′(𝜏 ′)𝑍 (𝐺 ′,𝝀′)𝑤 (𝜏),

where 𝑍 (𝐺 ′,𝝀′)𝑤 (𝜏) > 0. Thus, by Lemma 22, we obtain 𝛽2
(
𝑃S𝜏

)
= 𝛽2(𝑃S′).

To upper-bound 𝛽2(𝑃S′), observe that

• |𝐾 ′ | =𝑚 − |𝜏 | =𝑚 − 𝑘 ,

• max𝐾 ′
𝑖
∈𝐾 ′{𝑍

(
𝐺

[
𝐾 ′
𝑖

] )
} ≤ 𝑍 (𝐾)

max
≤ 𝑍max, and

• 𝐺 ′
is and induced subgraph of 𝐺 .

Thus, analogous to the case 𝑘 = 0, applying Lemma 21 yields

𝛼𝑘 ≤ 1 − 1

12max𝐾 ′
𝑖
∈𝐾 ′{𝑍

(
𝐺

[
𝐾 ′
𝑖

] )
}2

≤ 1 − 1

12𝑍 2

max

.

Together, Lemma 14 and Lemma 7 result in

𝛼𝑘 ≤ (2 +𝐶)𝐶
|𝐾 ′ | − 1

=
(2 +𝐶)𝐶
𝑚 − 𝑘 − 1

.

From equation (10) and Theorem 11, we conclude

𝛽2(𝑃V) ≤ 1 − 1

𝑚

∏
0≤𝑘≤𝑚−2

(
1 −min

{
1 − 1

12𝑍 2

max

,
(2 +𝐶)𝐶
𝑚 − 𝑘 − 1

})
= 1 − 1

𝑚

∏
0≤𝑘≤𝑚−2

max

{
1

12𝑍 2

max

, 1 − (2 +𝐶)𝐶
𝑚 − 𝑘 − 1

}
.

Let 𝑘0 =𝑚 − 2(2 +𝐶)𝐶 − 1 and observe that for 𝑘 ≤ 𝑘0 it holds that

1 − (2 +𝐶)𝐶
𝑚 − 𝑘 − 1

≥ 1

2

>
1

12

≥ 1

12𝑍 2

max

.

Thus, we have

1

𝑚

∏
0≤𝑘≤𝑚−2

max

{
1

12𝑍 2

max

, 1 − (2 +𝐶)𝐶
𝑚 − 𝑘 − 1

}
≥ 1

𝑚

( ∏
0≤𝑘≤𝑘0

(
1 − (2 +𝐶)𝐶

𝑚 − 𝑘 − 1

)) ( ∏
𝑘0<𝑘≤𝑚−2

1

12𝑍 2

max

)
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=
1

𝑚

(
1

12𝑍 2

max

)𝑚−2−𝑘0 ∏
0≤𝑘≤𝑘0

(
1 − (2 +𝐶)𝐶

𝑚 − 𝑘 − 1

)
=

1

𝑚

(
1

√
12𝑍max

)
4(2+𝐶)𝐶−2 ∏

0≤𝑘≤𝑘0

(
1 − (2 +𝐶)𝐶

𝑚 − 𝑘 − 1

)
.

Further, because ln(1 − 𝑥) ≥ −𝑥
1−𝑥 for 𝑥 < 1, we have

ln

( ∏
0≤𝑘≤𝑘0

(
1 − (2 +𝐶)𝐶

𝑚 − 𝑘 − 1

))
=

∑︁
0≤𝑘≤𝑘0

ln

(
1 − (2 +𝐶)𝐶

𝑚 − 𝑘 − 1

)
≥

∑︁
0≤𝑘≤𝑘0

−(2 +𝐶)𝐶/(𝑚 − 𝑘 − 1)
1 − (2 +𝐶)𝐶/(𝑚 − 𝑘 − 1)

= −(2 +𝐶)𝐶
∑︁

0≤𝑘≤𝑘0

1

𝑚 − (2 +𝐶)𝐶 − 𝑘 − 1

= −(2 +𝐶)𝐶
∑︁

(2+𝐶)𝐶≤ 𝑗≤𝑚−(2+𝐶)𝐶−1

1

𝑗

≥ −(2 +𝐶)𝐶 ln(𝑚).

We obtain

𝛽2(𝑃V) ≤ 1 − 1

𝑚

(
1

√
12𝑍max

)
4(2+𝐶)𝐶−2

e
−(2+𝐶)𝐶 ln(𝑚) = 1 −

(
1

𝑚

) (2+𝐶)𝐶+1 (
1

√
12𝑍max

)
4(2+𝐶)𝐶−2

. (11)

By combining equations (9) and (11), we get

1 − 𝛽2(𝑃B) ≥
1

O

(
𝑍
4(2+𝐶)𝐶−1
max

𝑚 (2+𝐶)𝐶+1
) .

As 𝐶 is assumed to be a constant, this implies the desired mixing time. ■

4 Univariate model: mixing up to uniqueness

We consider the univariate hard-core model, often just referred to as hard-core model, in which

all vertices 𝑣 ∈ 𝑉 have the same weight 𝜆𝑣 = 𝜆 for some 𝜆 ∈ R>0. We denote an instance of this

model by (𝐺, 𝜆).
We define 𝜆c(𝛥) = (𝛥−1)𝛥−1

(𝛥−2)𝛥 to be the critical weight of the hard-core model. As we discussed in

the introduction, 𝜆c(𝛥) is the threshold for correlation decay on general graphs and a tight upper

bound for rapid mixing of Glauber dynamics.

We show that the univariate model (𝐺, 𝜆) satisfies Condition 3 for all 𝜆 ≤ 𝜆c(𝛥). To do so, we
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use the following recently established result.

▶ Lemma 25 ([14]). Let (𝐺, 𝜆) be an instance of the univariate hard-core model and assume that

the maximum degree of𝐺 is bounded by 𝛥. If there is a constant 𝛿 > 0 such that 𝜆 ≤ (1− 𝛿)𝜆c(𝛥),
then there is a constant 𝐶 ∈ O

(
1

𝛿

)
such that for all 𝑆 ⊆ 𝑉 it holds that

𝛹𝐺 [𝑆 ]

∞ ≤ 𝐶 . ◀

This implies the following result immediately.

▶ Lemma 26. Let (𝐺, 𝜆) be an instance of the univariate hard-core model and assume that the

maximum degree of 𝐺 is bounded by 𝛥. If there is a constant 𝛿 > 0 such that 𝜆 ≤ (1 − 𝛿)𝜆c(𝛥),
then (𝐺, 𝜆) satisfies Condition 3 for a constant 𝐶 ∈ O

(
1

𝛿

)
. ◀

Proof. By Lemma 25, there is a 𝐶 ∈ O

(
1

𝛿

)
such that, for all 𝑆 ∈ 𝑉 and 𝑟 ∈ 𝑆 , it holds that∑︁

𝑣∈𝑆

��𝛹𝐺 [𝑆 ] (𝑟, 𝑣)
�� ≤ 𝛹𝐺 [𝑆 ]


∞ ≤ 𝐶.

Thus, Condition 3 is satisfied for the same constant 𝐶 and 𝑞(𝑣) = 1 for all 𝑣 ∈ 𝑉 . ■

The following claim is a direct consequence of Theorem 4 and Lemma 26.

▶ Corollary 27. Let (𝐺, 𝜆) be an instance of the univariate hard-core model and assume that

the maximum degree of 𝐺 is bounded by 𝛥. Let 𝛬 be a clique cover for 𝐺 of size 𝑚, and let

𝑍max = max𝑖∈[𝑚]{𝑍 (𝐺 [𝛬𝑖])}. If there is a constant 𝛿 > 0 such that 𝜆 ≤ (1 − 𝛿)𝜆c(𝛥), then the

mixing time of the block dynamics B(𝐺, 𝜆, 𝛬), starting from ∅ ∈ I(𝐺), is bounded by

𝜏
( ∅)
B (𝜀) ≤ 𝑚O(1/𝛿2)𝑍O(1/𝛿2)

max
ln

(
1

𝜀

)
. ◀

5 Multivariate model: comparison to clique dynamics condition

In this section, we relate Condition 3 to a strict version of the clique dynamics condition, first

introduced in [24].

▶ Definition 28 (Strict clique dynamics condition). An instance of the multivariate hard-core

model (𝐺,𝝀) satisfies the strict clique dynamics condition for a function 𝑓 : 𝑉 → R>0 and a

constant 𝛼 ∈ (0, 1) if and only if for all 𝑣 ∈ 𝑉 it holds that∑︁
𝑤∈𝑁 (𝑣)

𝜆𝑤

1 + 𝜆𝑤
𝑓 (𝑤) ≤ (1 − 𝛼) 𝑓 (𝑣) . ◀

We show that the strict clique dynamics condition is sufficient to imply Condition 3. This yields

a mixing-time bound for block dynamics based on the strict clique dynamics condition and also

bounds the eigenvalues of the pairwise influence matrix, which might be of independent interest.

To obtain our result, we translate the original instance (𝐺,𝝀) to the self-avoiding-walk tree and

apply a recursive proof on this tree.
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Influence in self-avoiding-walk trees

For any instance of the multivariate hard-core model (𝐺,𝝀) and any vertex 𝑟 ∈ 𝑉 , let T(𝐺, 𝑟 )
denote the tree of self-avoiding walks as defined in [56], which is constructed as follows. Assume

there is a total order of vertices in 𝑣1, . . . , 𝑣𝑛 , where 𝑛 = |𝑉 |. A self-avoiding walk of length 𝑙 ≥ 2 is

a simple path 𝑣𝑖1, 𝑣𝑖2, . . . , 𝑣𝑖𝑙 in𝐺 . Further, a closed self-avoiding walk 𝑣𝑖1, . . . , 𝑣𝑖𝑙−1, 𝑣𝑖 𝑗 of length 𝑙 ≥ 3

consists of a self-avoiding walk 𝑣𝑖1, . . . , 𝑣𝑖𝑙−1 of length 𝑙 − 1 and an appended vertex 𝑣𝑖 𝑗 such that

𝑗 ∈ [𝑙 −2] and (𝑣𝑖𝑙−1, 𝑣𝑖 𝑗 ) ∈ 𝐸. That is, the edge (𝑣𝑖𝑙−1, 𝑣𝑖 𝑗 ) closes a cycle 𝑣𝑖 𝑗 , 𝑣𝑖 𝑗+1, . . . , 𝑣𝑖𝑙−1 . The graph
T(𝐺, 𝑟 ) consists of all closed self-avoiding walks with 𝑣𝑖1 = 𝑟 , and all self-avoiding walks with

𝑣𝑖1 = 𝑟 and 𝑣𝑖𝑙 having degree 1 in 𝐺 . Note that any vertex 𝑣 ∈ 𝑉 with 𝑣 ≠ 𝑟 might have multiple

copies in T(𝐺, 𝑟 ).
For any root 𝑟 ∈ 𝑉 , the multivariate hard-core model (𝐺,𝝀) is translated to a multivariate

hard-core model on T(𝐺, 𝑟 ) as follows. Let 𝑣𝑖1, . . . , 𝑣𝑖𝑙−1, 𝑣𝑖 𝑗 be a closed self-avoiding walk. We

fix 𝑣𝑖 𝑗 always to be in the independent set (fix spin to 1) if 𝑖 𝑗+1 > 𝑖𝑙−1, and we fix it always to be

excluded from the independent (fix spin to 0) otherwise. We call such vertices fixed copies. For
each 𝑣 ∈ 𝑉 , let 𝐶T(𝐺,𝑟 ) (𝑣) denote the set of all unfixed copies of 𝑣 in T(𝐺, 𝑟 ). We write 𝐶 (𝑣) if the
tree T(𝐺, 𝑟 ) is clear from the context. In the multivariate hard-core model on T(𝐺, 𝑟 ), each such

copy �̂� ∈ 𝐶T(𝐺,𝑟 ) (𝑣) has weight 𝜆�̂� = 𝜆𝑣.
This way of translating (𝐺,𝝀) to the tree of self-avoiding walks for some root 𝑟 ∈ 𝑉 was shown

to have a variety of useful properties. One of them is that pairwise influences are preserved in the

following sense.

▶ Lemma 29 ([14, Lemma 8]). Let (𝐺,𝝀) be an instance of the multivariate hard-core model.

For all 𝑟, 𝑣 ∈ 𝑉 and 𝑇 = T(𝐺, 𝑟 ) it holds that

𝛹𝐺 (𝑟, 𝑣) =
∑︁

�̂�∈𝐶𝑇 (𝑣)
𝛹𝑇 (𝑟, �̂�) . ◀

Lemma 29 states that it suffices to discuss the pairwise influence on the self-avoiding walk

tree instead of the original graph. This allows us to use the following multiplicative property for

pairwise influence along paths in tree graphs.

▶ Lemma 30 ([2, Lemma B.2]). Let 𝑇 = (𝑉 , 𝐸) be a tree and (𝑇,𝝀) be a multivariate hard-core

model on 𝑇 . Further, let 𝑣,𝑤 ∈ 𝑉 be a pair of distinct, non-adjacent vertices, and let 𝑢 ∈ 𝑉 with

𝑢 ≠ 𝑣 and 𝑢 ≠ 𝑤 be any vertex on the unique path between 𝑣 and 𝑤. Then

𝛹𝑇 (𝑣,𝑤) =𝛹𝑇 (𝑣,𝑢)𝛹𝑇 (𝑢,𝑤). ◀

Bounding pairwise influence via the strict clique dynamics condition

We start by proving that the influence of the root on a certain layer in the self-avoiding-walk

tree exhibits the following exponential decay in terms of depth. For a tree 𝑇 and integer 𝑘 let

𝐿𝑇 (𝑘) ⊆ 𝑉 denote the set of vertices in 𝑇 at layer 𝑘 ∈ N.
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▶ Lemma 31. Let (𝐺,𝝀) be a multivariate hard-core model, and let 𝑟 ∈ 𝑉 . Furthermore, let

𝑇 = T(𝑟,𝐺) and let 𝑉 =
⋃
𝑣∈𝑉 𝐶𝑇 (𝑣). Assume that (𝐺,𝝀) satisfies the strict clique dynamics

condition for a function 𝑓 and a constant 𝛼 , and define the function 𝑓 : 𝑉 → R>0 with 𝑓 (�̂�) = 𝑓 (𝑣)
for all �̂� ∈ 𝐶𝑇 (𝑣) and 𝑣 ∈ 𝑉 . Then for all 𝑘 ∈ N>0 it holds that∑︁

𝑤∈𝐿𝑇 (𝑘)
|𝛹𝑇 (𝑟,𝑤) |𝑓 (𝑤) ≤ (1 − 𝛼)𝑘 𝑓 (𝑟 ). ◀

Proof. Note that if (𝐺,𝝀) satisfies the strict clique dynamics condition for a function 𝑓 and a

constant 𝛼 , then the corresponding multivariate hard-core instance on 𝑇 satisfies the strict clique

dynamics condition for 𝑓 and the same constant 𝛼 . Based on that, we prove our claim by induction

on 𝑘 .

Base case: 𝒌 = 1. Note that 𝐿𝑇 (1) = 𝑁𝑇 (𝑟 ). Further, we have for each 𝑤 ∈ 𝑁𝑇 (𝑟 ) by definition

|𝛹𝑇 (𝑟,𝑤) | = |P𝑇 [𝑤 | 𝑟 ] − P𝑇 [𝑤 | 𝑟 ] | ≤ 𝜆𝑤

1 + 𝜆𝑤
.

Thus, by the strict clique dynamics condition, we obtain∑︁
𝑤∈𝐿𝑇 (1)

|𝛹𝑇 (𝑟,𝑤) |𝑓 (𝑤) ≤
∑︁

𝑤∈𝐿𝑇 (1)

𝜆𝑤

1 + 𝜆𝑤
𝑓 (𝑤) ≤ (1 − 𝛼) 𝑓 (𝑟 ) = (1 − 𝛼) 𝑓 (𝑟 ),

which proves the case 𝑘 = 1.

Induction step: 𝒌 > 1. Assume that the statement holds for 𝑘 − 1. For every 𝑢 ∈ 𝐿𝑇 (𝑘 − 1), let
𝑇𝑢 denote the subtree rooted at 𝑢, and let 𝐿𝑇𝑢 (𝑙) denote the vertices at layer 𝑙 ∈ N in 𝑇𝑢 . Note that

the sets 𝐿𝑇𝑢 (1) for 𝑢 ∈ 𝐿𝑇 (𝑘 − 1) are a partition of 𝐿𝑇 (𝑘). By Lemma 30, we get∑︁
𝑤∈𝐿𝑇 (𝑘)

|𝛹𝑇 (𝑟,𝑤) |𝑓 (𝑤) =
∑︁

𝑢∈𝐿𝑇 (𝑘−1)

∑︁
𝑤∈𝐿𝑇𝑢 (1)

|𝛹𝑇 (𝑟,𝑤) |𝑓 (𝑤)

=
∑︁

𝑢∈𝐿𝑇 (𝑘−1)
|𝛹𝑇 (𝑟,𝑢) |

∑︁
𝑤∈𝐿𝑇𝑢 (1)

|𝛹𝑇 (𝑢,𝑤) |𝑓 (𝑤).

Further, for every 𝑢 ∈ 𝐿𝑇 (𝑘 − 1) it holds that 𝐿𝑇𝑢 (1) ⊂ 𝑁𝑇 (𝑢), and for all 𝑤 ∈ 𝐿𝑇𝑢 (1) we have

|𝛹𝑇 (𝑢,𝑤) | = |P𝑇 [𝑤 | 𝑢 ] − P𝑇 [𝑤 | 𝑢 ] | ≤ 𝜆𝑤

1 + 𝜆𝑤
.

Thus, by the strict clique dynamics condition, we get∑︁
𝑢∈𝐿𝑇 (𝑘−1)

|𝛹𝑇 (𝑟,𝑢) |
∑︁

𝑤∈𝐿𝑇𝑢 (1)
|𝛹𝑇 (𝑢,𝑤) |𝑓 (𝑤) <

∑︁
𝑢∈𝐿𝑇 (𝑘−1)

|𝛹𝑇 (𝑟,𝑢) |
∑︁

𝑤∈𝑁𝑇 (𝑢)

𝜆𝑤

1 + 𝜆𝑤
𝑓 (𝑤)
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≤ (1 − 𝛼)
∑︁

𝑢∈𝐿𝑇 (𝑘−1)
|𝛹𝑇 (𝑟,𝑢) |𝑓 (𝑢) .

By the induction hypothesis, we obtain

(1 − 𝛼)
∑︁

𝑢∈𝐿𝑇 (𝑘−1)
|𝛹𝑇 (𝑟,𝑢) |𝑓 (𝑢) ≤ (1 − 𝛼) (1 − 𝛼)𝑘−1 𝑓 (𝑟 ) = (1 − 𝛼)𝑘 𝑓 (𝑟 ),

which concludes the proof. ■

Now, we use this layer-wise decay in the self-avoiding-walk tree to prove that Condition 3 is

satisfied.

▶ Lemma 6. Let (𝐺,𝝀) be an instance of the multivariate hard-core model. If (𝐺,𝝀) satisfies the
strict clique dynamics condition for a function 𝑓 and a constant 𝛼 , then it also satisfies Condition 3

for 𝑞 = 𝑓 and 𝐶 = 1

𝛼
. ◀

Proof. Note that if (𝐺,𝝀) satisfies the strict clique dynamics condition, the same holds for the

instance (𝐺 [𝑆],𝝀 [𝑆]) for the same function 𝑓 and constant 𝛼 .

Assume 𝐺 [𝑆] is connected and let 𝐺 ′ = 𝐺 [𝑆]. Further, let 𝑇 = T(𝑟,𝐺 ′) and 𝑆 =
⋃
𝑣∈𝑆 𝐶𝑇 (𝑣),

and define the function 𝑓 : 𝑆 → R>0 as in Lemma 31. Recall that, by definition,𝛹𝐺′ (𝑟, 𝑟 ) = 0. By

Lemma 29, we get ∑︁
𝑣∈𝑆

|𝛹𝐺′ (𝑟, 𝑣) |𝑓 (𝑣) =
∑︁

𝑣∈𝑆\{𝑟 }
|𝛹𝐺′ (𝑟, 𝑣) |𝑓 (𝑣)

=
∑︁

𝑣∈𝑆\{𝑟 }

������ ∑︁
�̂�∈𝐶𝑇 (𝑣)

𝛹𝑇 (𝑟, �̂�)

������𝑓 (𝑣)
≤

∑︁
𝑣∈𝑆\{𝑟 }

∑︁
�̂�∈𝐶𝑇 (𝑣)

|𝛹𝑇 (𝑟, �̂�) |𝑓 (�̂�) .

Note that the sets𝐶𝑇 (𝑣) for 𝑣 ∈ 𝑆 \ {𝑟 } are a partition of 𝑆 \ {𝑟 }. Recall that 𝐿𝑇 (𝑘) ⊂ 𝑆 denotes the

vertices in 𝑇 at layer 𝑘 ∈ N, and observe that the sets 𝐿𝑇 (𝑘) for 𝑘 ∈ N>0 are a partition of 𝑆 \ {𝑟 }
as well. Thus, we have∑︁

𝑣∈𝑆\{𝑟 }

∑︁
�̂�∈𝐶𝑇 (𝑣)

|𝛹𝑇 (𝑟, �̂�) |𝑓 (�̂�) ≤
∑︁
𝑘∈N>0

∑︁
𝑤∈𝐿𝑇 (𝑘)

|𝛹𝑇 (𝑟,𝑤) |𝑓 (𝑤).

By Lemma 31, we obtain the desired bound:∑︁
𝑘∈N>0

∑︁
𝑤∈𝐿𝑇 (𝑘)

|𝛹𝑇 (𝑟,𝑤) |𝑓 (𝑤) ≤ 𝑓 (𝑟 )
∑︁
𝑘∈N>0

(1 − 𝛼)𝑘 =
1

𝛼
𝑓 (𝑟 ).

Now, assume𝐺 [𝑆] is not connected. Set𝐺 ′
to be the largest connected component in𝐺 [𝑆] that
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contains 𝑟 and let 𝑆 ′ ⊂ 𝑆 be the set of vertices in 𝐺 ′
. The claim follows from applying the proof

above to 𝐺 ′
with vertex set 𝑆 ′ and by observing that𝛹𝐺 [𝑆 ] (𝑟, 𝑣) = 0 for all 𝑣 ∈ 𝑆 \ 𝑆 ′. ■

Lemma 6 immediately implies with Theorem 4 the following result for the mixing time of block

dynamics under strict clique dynamics condition.

▶ Corollary 32. Let (𝐺,𝝀) be an instance of the multivariate hard-core model. Let 𝛬 be a given

clique cover for𝐺 of size𝑚, and let 𝑍max = max𝑖∈[𝑚]{𝑍 (𝐺 [𝛬𝑖])}. If (𝐺, 𝜆) satisfies the strict clique
dynamics condition for a function 𝑓 and a constant 𝛼 , then the mixing time of the block dynamics

B = B(𝐺, 𝜆, 𝛬), starting from ∅ ∈ I(𝐺), is bounded by

𝜏
( ∅)
B (𝜀) ≤ 𝑚O(1/𝛼2)𝑍O(1/𝛼2)

max
ln

(
1

𝜀

)
. ◀

Finally, Lemma 6 together with Lemma 15 imply the following result.

▶ Corollary 33. Let (𝐺,𝝀) be an instance of the multivariate hard-core model that satisfies the

strict clique dynamics condition for a function 𝑓 and a constant 𝛼 . For every 𝑆 ⊆ 𝑉 it holds that

𝛽1
(
𝛹𝐺 [𝑆 ]

)
≤ 1

𝛼
. ◀

6 Comparing clique dynamics to block dynamics

Using Theorem 23, we show that a bound on the mixing time of the clique dynamics for any clique

cover is obtained based on a bound for the mixing time of the block dynamics for the same clique

cover.

▶ Lemma 34. Let (𝐺,𝝀) be an instance of the multivariate hard-core model, let 𝛬 be a clique

cover of 𝐺 with size𝑚, and let 𝑍max = max𝑖∈[𝑚]{𝑍 (𝛬𝑖)}. Let B = B(𝐺,𝝀, 𝛬) denote the block
dynamics and C = C(𝐺,𝝀, 𝛬) the clique dynamics based on 𝛬. Then

𝛽2(𝑃C) ≤ 1 − 1

2𝑍max

(
1 − 𝛽2(𝑃B)

)
. ◀

Proof. We aim to apply Theorem 23. Note that, by 𝜋C = 𝜇 = 𝜋B , we can choose 𝑎 = 1. We proceed

by constructing a set of paths 𝛤 and by upper-bounding𝐴(𝛤 ). For every (𝐼𝑠 , 𝐼𝑡 ) ∈ 𝐸 (B), we choose
the path 𝛾𝐼𝑠 𝐼𝑡 via edges in 𝐸

∗(C) as follows:

• 𝛾𝐼𝑠 𝐼𝑡 = (𝐼𝑠 , 𝐼𝑡 ) if 𝐼𝑠 ⊕ 𝐼𝑡 = {𝑣} for some 𝑣 ∈ 𝑉 , and

• 𝛾𝐼𝑠 𝐼𝑡 = (𝐼𝑠 , 𝐼𝑠 ∩ 𝐼𝑡 , 𝐼𝑡 ) if 𝐼𝑠 ⊕ 𝐼𝑡 = {𝑣,𝑤} for 𝑣 ≠ 𝑤.

We set 𝛤 to be the set of all such paths. Note that we actually only use edges in 𝐸 (C), which
means that we can ignore self loops while bounding 𝐴(𝛤 ). We proceed by doing a case distinction

on the transition (𝐼 , 𝐼 ′) ∈ 𝐸 (C).
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Case 1. Consider (𝐼 , 𝐼 ′) ∈ 𝐸 (C) with 𝐼 = 𝐼 ′ ∪ {𝑣} for a 𝑣 ∉ 𝐼 (i.e., removing 𝑣). First, note that

𝑄C (𝐼 , 𝐼 ′) = 𝜇 (𝐼 )
1

𝑚

∑︁
𝑖∈[𝑚]:
𝑣∈𝛬𝑖

𝜇 |𝛬𝑖
(
∅
�� 0 |𝑉 \𝛬𝑖

)
= 𝜇 (𝐼 ) 1

𝑚

∑︁
𝑖∈[𝑚]:
𝑣∈𝛬𝑖

1

𝑍 (𝐺 [𝛬𝑖])

≥ 𝜇 (𝐼 ) 1
𝑚

1

𝑍max

|{𝑖 ∈ [𝑚] | 𝑣 ∈ 𝛬𝑖 }|. (12)

Further, for all (𝐼𝑠 , 𝐼𝑡 ) ∈ 𝐸 (B) such that (𝐼 , 𝐼 ′) ∈ 𝐸
(
𝛾𝐼𝑠 𝐼𝑡

)
it holds that 𝐼𝑠 = 𝐼 , and either 𝐼𝑡 = 𝐼

′
or

𝐼𝑡 = 𝐼
′ ∪ {𝑤} for some 𝑤 ∈ 𝑉 that shares a clique with 𝑣. If 𝐼𝑡 = 𝐼

′
, then we have

𝑄B (𝐼 , 𝐼 ′) = 𝜇 (𝐼 )
1

𝑚

∑︁
𝑖∈[𝑚]:
𝑣∈𝛬𝑖

𝜇 |𝛬𝑖

(
∅
��� 𝜎 (𝐼 )

|𝑉 \𝛬𝑖

)
= 𝜇 (𝐼 ) 1

𝑚

∑︁
𝑖∈[𝑚]:
𝑣∈𝛬𝑖

𝜇 (𝐼 ′)
𝜇 (𝐼 ′) + ∑

𝑢∈𝛬𝑖 :
𝐼 ′∪{𝑢 }∈I

𝜇 (𝐼 ′ ∪ {𝑢})

= 𝜇 (𝐼 ) 1
𝑚

∑︁
𝑖∈[𝑚]:
𝑣∈𝛬𝑖

1

1 + ∑
𝑢∈𝛬𝑖 :

𝐼 ′∪{𝑢 }∈I

𝜆𝑢
. (13)

Otherwise, if 𝐼𝑡 = 𝐼
′ ∪ {𝑤}, we get

𝑄B (𝐼 , 𝐼 ′ ∪ {𝑤}) = 𝜇 (𝐼 ) 1
𝑚

∑︁
𝑖∈[𝑚]:
𝑣,𝑤∈𝛬𝑖

𝜇 |𝛬𝑖

(
{𝑤}

��� 𝜎 (𝐼 )
|𝑉 \𝛬𝑖

)
= 𝜇 (𝐼 ) 1

𝑚

∑︁
𝑖∈[𝑚]:
𝑣,𝑤∈𝛬𝑖

𝜇 (𝐼 ′ ∪ {𝑤})
𝜇 (𝐼 ′) + ∑

𝑢∈𝛬𝑖 :
𝐼 ′∪{𝑢 }∈I

𝜇 (𝐼 ′ ∪ {𝑢})

= 𝜇 (𝐼 ) 1
𝑚

∑︁
𝑖∈[𝑚]:
𝑣,𝑤∈𝛬𝑖

𝜆𝑤

1 + ∑
𝑢∈𝛬𝑖 :

𝐼 ′∪{𝑢 }∈I

𝜆𝑢
. (14)

40



Combining equations (13) and (14) and observing that

��𝛾𝐼𝑠 𝐼𝑡 �� ≤ 2 for all involved paths yields

∑︁
(𝐼𝑠 ,𝐼𝑡 ) ∈𝐸 (B) :
(𝐼 ,𝐼 ′) ∈𝛾𝐼𝑠 𝐼𝑡

��𝛾𝐼𝑠 𝐼𝑡 ��𝑄B (𝐼𝑠 , 𝐼𝑡 ) ≤ 2𝜇 (𝐼 ) 1
𝑚

∑︁
𝑖∈[𝑚]:
𝑣∈𝛬𝑖

©«
1

1 + ∑
𝑢∈𝛬𝑖 :

𝐼 ′∪{𝑢 }∈I

𝜆𝑢
+

∑︁
𝑤∈𝛬𝑖 :

𝐼 ′∪{𝑤}∈I

𝜆𝑤

1 + ∑
𝑢∈𝛬𝑖 :

𝐼 ′∪{𝑢 }∈I

𝜆𝑢

ª®®®®¬
= 2𝜇 (𝐼 ) 1

𝑚
|{𝑖 ∈ [𝑚] | 𝑣 ∈ 𝛬𝑖 }|.

Together with equation (12), we get

1

𝑄C (𝐼 , 𝐼 ′)
∑︁

(𝐼𝑠 ,𝐼𝑡 ) ∈𝐸 (B) :
(𝐼 ,𝐼 ′) ∈𝛾𝐼𝑠 𝐼𝑡

��𝛾𝐼𝑠 𝐼𝑡 ��𝑄B (𝐼𝑠 , 𝐼𝑡 ) ≤ 2𝑍max.

Case 2. Consider (𝐼 , 𝐼 ′) ∈ 𝐸 (C) with 𝐼 ′ = 𝐼 ∪ {𝑣} for some 𝑣 ∉ 𝐼 (i.e., adding 𝑣). Note that, as C
is reversible, it holds that (𝐼 ′, 𝐼 ) ∈ 𝐸 (C). As (𝐼 ′, 𝐼 ) is a transition that deletes 𝑣 from 𝐼 ′, resulting in

𝐼 , it was already considered in the first case. Further, by construction of 𝛤 , it holds that (𝐼 , 𝐼 ′) is on
a path 𝛾𝐼𝑠 𝐼𝑡 for any (𝐼𝑠 , 𝐼𝑡 ) ∈ 𝐸 (B) if and only if (𝐼 ′, 𝐼 ) is on the path 𝛾𝐼𝑡 𝐼𝑠 for (𝐼𝑡 , 𝐼𝑠) ∈ 𝐸 (B). Due
to reversibility of C and B, we know that 𝑄C and 𝑄B are symmetric. Thus, we can conclude from

our result for (𝐼 ′, 𝐼 ) in the first case that

1

𝑄C (𝐼 , 𝐼 ′)
∑︁

(𝐼𝑠 ,𝐼𝑡 ) ∈𝐸 (B) :
(𝐼 ,𝐼 ′) ∈𝛾𝐼𝑠 𝐼𝑡

��𝛾𝐼𝑠 𝐼𝑡 ��𝑄B (𝐼𝑠 , 𝐼𝑡 ) =
1

𝑄C (𝐼 ′, 𝐼 )
∑︁

(𝐼𝑡 ,𝐼𝑠 ) ∈𝐸 (B) :
(𝐼 ′,𝐼 ) ∈𝛾𝐼𝑡 𝐼𝑠

��𝛾𝐼𝑡 𝐼𝑠 ��𝑄B (𝐼𝑡 , 𝐼𝑠) ≤ 2𝑍max.

As C changes at most one vertex at each step, the above case distinction is complete and we get

𝐴(𝛤 ) ≤ 2𝑍max, which by Theorem 23 concludes the proof. ■

We immediately obtain the following corollary, which is central for our proof of Theorem 1.

▶ Corollary 5. Let (𝐺, 𝜆) be an instance of the univariate hard-core model such that the degree

of𝐺 is bounded by 𝛥. Let 𝛬 be a given clique cover of size𝑚 with 𝑍max = max𝑖∈[𝑚]{𝑍 (𝐺 [𝛬𝑖], 𝜆)}.
Denote by C = C(𝐺, 𝜆, 𝛬) the corresponding clique dynamics. If there is some 𝛿 ∈ R>0 such

that 𝜆 ≤ (1 − 𝛿)𝜆c(𝛥) then the mixing time of the clique dynamics C, starting from ∅ ∈ I(𝐺), is
bounded by

𝜏
( ∅)
C (𝜀) ≤ 𝑚O(1/𝛿2)𝑍O(1/𝛿2)

max
ln

(
1

𝜀

)
. ◀

Proof. Let B = B(𝐺, 𝜆, 𝛬). Due to Lemma 34 we know that 𝜏
( ∅)
C (𝜀) ≤ 2𝑍max𝜏

( ∅)
B (𝜀). Bounding

𝜏
( ∅)
B (𝜀) based on Corollary 27 proves the claim. ■
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7 The monoatomic hard-sphere model

We study the grand canonical ensemble of the monoatomic hard-sphere model in a 𝑑-dimensional

finite cubic region V = [0, ℓ)𝑑 of Euclidean space with side length ℓ ∈ R≥1. We write |V| = ℓ𝑑
for the volume of V. The hard-sphere model describes the distribution of identical particles,

represented as 𝑑-dimensional balls in V. This distribution is governed by a fugacity parameter

𝜆 ∈ R>0, describing the contribution of each particle to the chemical potential, and hard-core

interactions between particles, meaning that no two particles are allowed to overlap. For simplicity,

it is common to assume particles to have volume 1, meaning that their radius is 𝑟 = (1/𝑣𝑑 )1/𝑑 ,
where 𝑣𝑑 denotes the volume of a unit sphere in 𝑑 dimensions.

A probabilistic interpretation of grand canonical ensemble is that the centers of particles are

distributed according to a Poisson point process on V with activity 𝜆, conditioned on the fact that

particles are non-overlapping (i.e., each pair of distinct centers have distance at least 2𝑟 ). Note

that this implies that particles are indistinguishable, meaning that exchanging the positions of two

particles results in exactly the same configuration of the system. We aim for approximating the

grand canonical partition function, which can be seen as the normalizing constant of the resulting

distribution of system states. As a reminder, the partition function can formally be defined as

𝑍 (V, 𝜆) = 1 +
∑︁
𝑘∈N>0

𝜆𝑘

𝑘!

∫
V𝑘

𝐷

(
𝑥 (1) , . . . , 𝑥 (𝑘)

)
d𝜈𝑑×𝑘 ,

where

𝐷

(
𝑥 (1) , . . . , 𝑥 (𝑘)

)
=

{
1 if 𝑑

(
𝑥 (𝑖) , 𝑥 ( 𝑗) ) ≥ 2𝑟 for all 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗

0 otherwise

and 𝜈𝑑×𝑘 is the Lebesgue measure on R𝑑×𝑘 .

7.1 Hard-core representation

To apply our result for clique dynamics to the continuous hard-sphere model, we will approximate

it by an instance of the hard-core model. The main idea of this discretization is to restrict the

centers of spheres to vertices in an integer grid, while scaling the fugacity 𝜆 and the radius 𝑟

appropriately. The resulting discrete hard-sphere model can easily be transformed into a hard-core

instance. We proceed by formalizing the direct transformation from the continuous hard-sphere

model instance to the discrete hard-core model.

Let (V, 𝜆) be an instance of the continuous hard-sphere model with V = [0, ℓ)𝑑 . Recall that
we fixed the radius 𝑟 = (1/𝑣𝑑 )1/𝑑 . Let G(𝑛) = Z𝑑 ∩ [0, 𝑛)𝑑 be a finite integer grid of side length

𝑛 ∈ N>0. For any 𝜌 ∈ R>0 such that 𝜌ℓ ∈ N>0, the hard-core representation of (V, 𝜆) with
resolution 𝜌 is a hard-core model (𝐺𝜌 , 𝜆𝜌 ) with 𝐺𝜌 = (𝑉𝜌 , 𝐸𝜌 ) and

• there is a vertex 𝑣𝑥 ∈ 𝑉𝜌 for each grid point 𝑥 ∈ G(𝜌ℓ),
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• there is an edge (𝑣𝑥 , 𝑣𝑦) ∈ 𝐸𝜌 for any pair of grid points 𝑥,𝑦 ∈ G(𝜌ℓ) with 𝑥 ≠ 𝑦 and

𝑑 (𝑥,𝑦) ≤ 2𝜌𝑟 , and

• 𝜆𝜌 = 𝜌−𝑑𝜆.

Note that in the above definition 𝑑 (𝑥,𝑦) denotes the Euclidean distance.

We will use the following convergence result for the partition function of the hard-core repre-

sentation in terms of the resolution 𝜌 to approximate the hard-sphere partition function.

▶ Lemma 2. Let (V, 𝜆) be an instance of the continuous hard-sphere model in 𝑑 dimensions. For

each resolution 𝜌 ≥ 2

√
𝑑 it holds that

1 − 𝜌−1eΘ( |V | ln |V |) ≤ 𝑍 (V, 𝜆)
𝑍

(
𝐺𝜌 , 𝜆𝜌

) ≤ 1 + 𝜌−1eΘ( |V | ln |V |) . ◀

Proof. Note that it suffices to bound the additive error

��𝑍 (V, 𝜆) − 𝑍 (
𝐺𝜌 , 𝜆𝜌

) ��
. Because 𝑍 (V, 𝜆) ≥ 1,

this directly results in the desired multiplicative bound.

In order to obtain an additive bound, we start by transforming 𝑍
(
𝐺𝜌 , 𝜆𝜌

)
to a form that is more

similar to the form of 𝑍 (V, 𝜆).
LetV = [0, ℓ)𝑑 and let 𝜑 (𝜌)

: G(𝜌ℓ) → V with (𝑥1, . . . , 𝑥𝑑 ) ↦→ 𝜑 (𝜌) (𝑥) = (𝑥1/𝜌, . . . , 𝑥𝑑/𝜌). Note
that, for all 𝑥 (𝑖) , 𝑥 ( 𝑗) ∈ G(𝜌ℓ) it holds that

𝑑

(
𝑥 (𝑖) , 𝑥 ( 𝑗)

)
≥ 2𝜌𝑟 ↔ 𝑑

(
𝜑 (𝜌)

(
𝑥 (𝑖)

)
, 𝜑 (𝜌)

(
𝑥 ( 𝑗)

))
≥ 2𝑟 .

Thus, we see that

𝑍
(
𝐺𝜌 , 𝜆𝜌

)
=

∑︁
𝐼 ∈I(𝐺𝜌)

𝜆
|𝐼 |
𝜌

= 1 +
∑︁
𝑘∈N>0

∑︁
𝐼 ∈I(𝐺𝜌)

|𝐼 |=𝑘

𝜆𝑘𝜌

= 1 +
∑︁
𝑘∈N>0

𝜆𝑘𝜌

𝑘!

∑︁
(𝑥 (1) ,...,𝑥 (𝑘 ) )
∈(G(𝜌ℓ))𝑘

𝐷

(
𝜑 (𝜌)

(
𝑥 (1)

)
, . . . , 𝜑 (𝜌)

(
𝑥 (𝑘)

))

= 1 +
∑︁
𝑘∈N>0

𝜆𝑘

𝑘!

∑︁
(𝑥 (1) ,...,𝑥 (𝑘 ) )
∈(G(𝜌ℓ))𝑘

(
1

𝜌

)𝑑 ·𝑘
𝐷

(
𝜑 (𝜌)

(
𝑥 (1)

)
, . . . , 𝜑 (𝜌)

(
𝑥 (𝑘)

))
. (15)
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We continue by rewriting∑︁
(𝑥 (1) ,...,𝑥 (𝑘 ) )
∈(G(𝜌ℓ))𝑘

(
1

𝜌

)𝑑 ·𝑘
𝐷

(
𝜑 (𝜌)

(
𝑥 (1)

)
, . . . , 𝜑 (𝜌)

(
𝑥 (𝑘)

))

for any fixed 𝑘 ∈ N>0. Let 𝜑 (𝜌) (G(𝜌ℓ)) ⊆ V denote the image of 𝜑 (𝜌)
, and let 𝛷 (𝜌)

: V →
𝜑 (𝜌) (G(𝜌ℓ)) with

(𝑥1, . . . , 𝑥𝑑 ) ↦→
(
⌊𝜌𝑥1⌋
𝜌

, . . . ,
⌊𝜌𝑥𝑑⌋
𝜌

)
.

Further, for all 𝑘 ∈ N>0 and all

(
𝑥 (1) , . . . , 𝑥 (𝑘) ) ∈ (

𝜑 (𝜌) (G(𝜌ℓ))
)𝑘
, let

𝑊
(𝜌)
𝑥 (1) ,...,𝑥 (𝑘 ) =

{(
𝑦 (1) , . . . , 𝑦 (𝑘)

)
∈ V𝑘

��� ∀𝑖 ∈ [𝑘] : 𝛷 (𝜌)
(
𝑦 (𝑖)

)
= 𝑥 (𝑖)

}
=

((
𝛷 (𝜌)

)−1 (
𝑥 (1)

))
× · · · ×

((
𝛷 (𝜌)

)−1 (
𝑥 (𝑘)

))
.

Note that the sets𝑊
(𝜌)
𝑥 (1) ,...,𝑥 (𝑘 ) partitionV

𝑘
into (𝑑 × 𝑘)-dimensional hypercubes of side length 1/𝜌 .

Thus, for all

(
𝑥 (1) , . . . , 𝑥 (𝑘) ) ∈ (

𝜑 (𝜌) (G(𝜌ℓ))
)𝑘
, it holds that

𝜈𝑑×𝑘
(
𝑊

(𝜌)
𝑥 (1) ,...,𝑥 (𝑘 )

)
=

(
1

𝜌

)𝑑 ·𝑘
.

By this and by the definition of a Lebesgue integral for elementary functions, we obtain∑︁
(𝑥 (1) ,...,𝑥 (𝑘 ) )
∈(G(𝜌ℓ))𝑘

(
1

𝜌

)𝑑 ·𝑘
𝐷

(
𝜑 (𝜌)

(
𝑥 (1)

)
, . . . , 𝜑 (𝜌)

(
𝑥 (𝑘)

))

=
∑︁

(𝑥 (1) ,...,𝑥 (𝑘 ) )
∈(G(𝜌ℓ))𝑘

𝜈𝑑×𝑘
(
𝑊

(𝜌)
𝜑 (𝜌 ) (𝑥 (1) ),...,𝜑 (𝜌 ) (𝑥 (𝑘 ) )

)
· 𝐷

(
𝜑 (𝜌)

(
𝑥 (1)

)
, . . . , 𝜑 (𝜌)

(
𝑥 (𝑘)

))
=

∑︁
(𝑥 (1) ,...,𝑥 (𝑘 ) )

∈(𝜑 (𝜌 ) (G(𝜌ℓ)))𝑘

𝜈𝑑×𝑘
(
𝑊

(𝜌)
𝑥 (1) ,...,𝑥 (𝑘 )

)
· 𝐷

(
𝑥 (1) , . . . , 𝑥 (𝑘)

)

=

∫
V𝑘

𝐷

(
𝛷 (𝜌)

(
𝑥 (1)

)
, . . . ,𝛷 (𝜌)

(
𝑥 (𝑘)

))
d𝜈𝑑×𝑘 .
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Substituting this expression back into equation (15) yields

𝑍
(
𝐺𝜌 , 𝜆𝜌

)
= 1 +

∑︁
𝑘∈N>0

𝜆𝑘

𝑘!

∫
V𝑘

𝐷

(
𝛷 (𝜌)

(
𝑥 (1)

)
, . . . ,𝛷 (𝜌)

(
𝑥 (𝑘)

))
d𝜈𝑑×𝑘 .

We now express

��𝑍 (V, 𝜆) − 𝑍 (
𝐺𝜌 , 𝜆𝜌

) ��
in terms of the absolute difference of the integrals for all

𝑘 ∈ N>0. It holds that����∫
V𝑘

𝐷

(
𝑥 (1) , . . . , 𝑥 (𝑘)

)
d𝜈𝑑×𝑘 −

∫
V𝑘

𝐷

(
𝛷 (𝜌)

(
𝑥 (1)

)
, . . . ,𝛷 (𝜌)

(
𝑥 (𝑘)

))
d𝜈𝑑×𝑘

����
≤

∫
V𝑘

���𝐷 (
𝑥 (1) , . . . , 𝑥 (𝑘)

)
− 𝐷

(
𝛷 (𝜌)

(
𝑥 (1)

)
, . . . ,𝛷 (𝜌)

(
𝑥 (𝑘)

))��� d𝜈𝑑×𝑘 .
Let 𝑁 (𝜌) ⊆ V𝑘 be such that for all

(
𝑥 (1) , . . . , 𝑥 (𝑘) ) ∈ 𝑁 (𝜌)

it holds that 𝐷
(
𝑥 (1) , . . . , 𝑥 (𝑘) ) ≠

𝐷
(
𝛷 (𝜌) (𝑥 (1) ), . . . ,𝛷 (𝜌) (𝑥 (𝑘) ) )

. As 𝐷 is an indicator function, it holds that∫
V𝑘

���𝐷 (
𝑥 (1) , . . . , 𝑥 (𝑘)

)
− 𝐷

(
𝛷 (𝜌)

(
𝑥 (1)

)
, . . . ,𝛷 (𝜌)

(
𝑥 (𝑘)

))��� d𝜈𝑑×𝑘 = 𝜈𝑑×𝑘
(
𝑁 (𝜌)

)
.

We construct a superset of 𝑁 (𝜌)
, for which we calculate the Lebesgue measure. First, note that

𝑁 (𝜌) = ∅ for 𝑘 = 1, as in this case 𝐷
(
𝑥 (1) ) = 𝐷

(
𝛷 (𝜌) (𝑥 (1) ) ) = 1 for all 𝑥 (1) ∈ V. Further, let

𝐾 =
(
ℓ
√
𝑑/(2𝑟 )

)𝑑
. Note that, for all 𝑘 > 𝐾 , it holds that at least two particles have distance less

than 2𝑟 , meaning that such a configuration has always overlapping particles and 𝑁 (𝜌) = ∅. We are

left with considering 2 ≤ 𝑘 ≤ 𝐾 .

We observe that, for all

(
𝑥 (1) , . . . , 𝑥 (𝑘) ) ∈ V𝑘 such that

𝐷

(
𝑥 (1) , . . . , 𝑥 (𝑘)

)
≠ 𝐷

(
𝛷 (𝜌)

(
𝑥 (1)

)
, . . . ,𝛷 (𝜌)

(
𝑥 (𝑘)

))
,

there is a pair of points 𝑥 (𝑖) , 𝑥 ( 𝑗)
for 𝑖, 𝑗 ∈ [𝑘] such that 𝑖 ≠ 𝑗 and

𝑑

(
𝑥 (𝑖) , 𝑥 ( 𝑗)

)
< 2𝑟 ≤ 𝑑

(
𝛷 (𝜌)

(
𝑥 (𝑖)

)
,𝛷 (𝜌)

(
𝑥 ( 𝑗)

))
or

𝑑

(
𝑥 (𝑖) , 𝑥 ( 𝑗)

)
≥ 2𝑟 > 𝑑

(
𝛷 (𝜌)

(
𝑥 (𝑖)

)
,𝛷 (𝜌)

(
𝑥 ( 𝑗)

))
.

As, for every point 𝑥 (𝑖) ∈ V, it holds that

𝑑

(
𝑥 (𝑖) ,𝛷 (𝜌)

(
𝑥 (𝑖)

))
≤

√
𝑑

𝜌
,

45



there is a pair of points 𝑥 (𝑖) , 𝑥 ( 𝑗)
for 𝑖, 𝑗 ∈ [𝑘] such that 𝑖 ≠ 𝑗 and���2𝑟 − 𝑑 (

𝑥 (𝑖) , 𝑥 ( 𝑗)
)��� ≤ 2

√
𝑑

𝜌
.

For all 𝑖, 𝑗 ∈ [𝑘] with 𝑖 ≠ 𝑗 let 𝑆
(𝜌)
𝑖, 𝑗

⊆ V𝑘 be the set of points
(
𝑥 (1) , . . . , 𝑥 (𝑘) ) ∈ V𝑘 such that this is

the case. Then

𝜈𝑑×𝑘
(
𝑁 (𝜌)

)
≤ 𝜈𝑑×𝑘©«

⋃
1≤𝑖< 𝑗≤𝑘

𝑆
(𝜌)
𝑖, 𝑗

ª®¬ ≤
∑︁

1≤𝑖< 𝑗≤𝑘
𝜈𝑑×𝑘

(
𝑆
(𝜌)
𝑖, 𝑗

)
.

By Fubini’s theorem, noting that 𝑆
(𝜌)
𝑖, 𝑗

only depends on 𝑖 and 𝑗 , we get

𝜈𝑑×𝑘
(
𝑆
(𝜌)
𝑖, 𝑗

)
=

∫
V𝑘

1

{���2𝑟 − 𝑑 (
𝑥 (𝑖) , 𝑥 ( 𝑗)

)��� ≤ 2

√
𝑑

𝜌

}
d𝜈𝑑×𝑘

= ℓ𝑑 (𝑘−2)
∫
V2

1

{���2𝑟 − 𝑑 (
𝑥 (𝑖) , 𝑥 ( 𝑗)

)��� ≤ 2

√
𝑑

𝜌

}
d𝜈𝑑×2

≤ ℓ𝑑 (𝑘−1) · ©«
(
2𝑟 + 2

√
𝑑

𝜌

)𝑑
−

(
2𝑟 − 2

√
𝑑

𝜌

)𝑑ª®¬ ,
where the last equality comes from the fact that 𝑟 was chosen as the radius of a ball of volume 1 in

𝑑 dimensions. By the assumption 𝜌 ≥ 2

√
𝑑 and the binomial theorem, we further bound(

2𝑟 + 2

√
𝑑

𝜌

)𝑑
−

(
2𝑟 − 2

√
𝑑

𝜌

)𝑑
=

𝑑∑︁
𝑖=0

2 · 1{𝑖 is odd}
(
𝑑

𝑖

) (
2𝑟

)𝑑−𝑖 (
2

√
𝑑

𝜌

)𝑖
=
2

√
𝑑

𝜌

𝑑∑︁
𝑖=1

2 · 1{𝑖 is odd}
(
𝑑

𝑖

) (
2𝑟

)𝑑−𝑖 (
2

√
𝑑

𝜌

)𝑖−1
≤ 2

√
𝑑

𝜌

𝑑∑︁
𝑖=1

2 · 1{𝑖 is odd}
(
𝑑

𝑖

) (
2𝑟

)𝑑−𝑖
1
𝑖−1

≤ 2

2

√
𝑑

𝜌

(
2𝑟 + 1

)𝑑
.

Using this bound for 𝜈𝑑×𝑘
(
𝑆
(𝜌)
𝑖, 𝑗

)
, we obtain

𝜈𝑑×𝑘
(
𝑁 (𝜌)

)
≤ 𝑘2 · 2 · ℓ𝑑 (𝑘−1) · 2

√
𝑑

𝜌
· (2𝑟 + 1)𝑑 .
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Thus, we get

��𝑍 (V, 𝜆) − 𝑍 (
𝐺𝜌 , 𝜆𝜌

) �� ≤ 𝐾∑︁
𝑘=2

𝜆𝑘

𝑘!
𝜈𝑑×𝑘

(
𝑁 (𝜌)

)
≤ 1

𝜌

𝐾∑︁
𝑘=2

𝜆𝑘

𝑘!
𝑘2 · 4ℓ𝑑 (𝑘−1) ·

√
𝑑 · (2𝑟 + 1)𝑑 .

We simplify the bound further by

1

𝜌

𝐾∑︁
𝑘=2

𝜆𝑘

𝑘!
𝑘2 · 4ℓ𝑑 (𝑘−1) ·

√
𝑑 · (2𝑟 + 1)𝑑 ≤ 1

𝜌
𝐾2 · 4ℓ𝑑 (𝐾−1) ·

√
𝑑 · (2𝑟 + 1)𝑑

𝐾∑︁
𝑘=2

𝜆𝑘

𝑘!

≤ 1

𝜌
𝐾2 · 4ℓ𝑑 (𝐾−1) ·

√
𝑑 · (2𝑟 + 1)𝑑e𝜆,

where the last inequality follows from the Taylor expansion of e
𝑥
at 0.

Overall, we bound��𝑍 (V, 𝜆) − 𝑍 (
𝐺𝜌 , 𝜆𝜌

) �� ≤ 1

𝜌
𝐾2 · 4ℓ𝑑 (𝐾−1) ·

√
𝑑 · (2𝑟 + 1)𝑑e𝜆

≤ 1

𝜌
e
Θ(𝐾𝑑 ln(ℓ)+ln(𝑟+1)+e𝜆) .

Observe that 𝑟 ∈ O(1) and e
𝜆 ∈ O(1). Further, for 𝑟 = (1/𝑣𝑑 )1/𝑑 it holds that 𝐾 ∈ O

(
ℓ𝑑

)
. Thus we

have ��𝑍 (V, 𝜆) − 𝑍 (
𝐺𝜌 , 𝜆𝜌

) �� ≤ 1

𝜌
e
Θ(ℓ𝑑 ln(ℓ𝑑 )) = 1

𝜌
e
Θ( |V | ln( |V |)) ,

which concludes the proof. ■

7.2 Approximation bound

We aim for applying Corollary 5 to the hard-core representation of the hard-sphere model. In

order to do so, we need a bound on the maximum degree 𝛥𝜌 of the graph 𝐺𝜌 for any sufficiently

large resolution 𝜌 . Let 𝑏𝑑 (𝑠) denote the number of integer grid points in a 𝑑-dimensional sphere

of radius 𝑠 centered at the origin. Note that the number of neighbors of a vertex 𝑣𝑥 ∈ 𝑉𝜌 for any
grid point 𝑥 ∈ G(𝜌ℓ) is upper bounded by 𝑏𝑑 (2𝜌𝑟 ). We use the following bound on 𝑏𝑑 .

▶ Lemma 35. Let 𝛾 ∈ (0, 1] and 𝑠 ∈ R>0. For all 𝜌 ≥
(
2

√
𝑑
)𝑑/(𝛾𝑠) it holds that 𝑏𝑑 (𝜌𝑠) ≤

(1 + 𝛾) · 𝑣𝑑 · (𝜌𝑠)𝑑 . ◀

Proof. We start by considering a sphere of radius 𝜌𝑠 +
√
𝑑 at the origin. Note that this enlarged

sphere contains for each grid point (𝑥1, . . . , 𝑥𝑑 ) in the original sphere the cubic region [𝑥1, 𝑥1 +
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1] × · · · × [𝑥𝑑 , 𝑥𝑑 + 1] of volume 1. Thus, the volume of the enlarged sphere is a trivial upper bound

on the number of grid points in the original sphere.

Formally, we get

𝑏𝑑 (𝜌𝑠) ≤ 𝑣𝑑 ·
(
𝜌𝑠 +

√
𝑑

)𝑑
,

which we rewrite as

𝑣𝑑 ·
(
𝜌𝑠 +

√
𝑑

)𝑑
= 𝑣𝑑 · (𝜌𝑠)𝑑 + 𝑣𝑑 ·

∑︁
𝑖∈[𝑑 ]

(
𝑑

𝑖

)
(𝜌𝑠)𝑑−𝑖

√
𝑑
𝑖
.

Further, note that for our choice of 𝜌 it holds that 𝜌𝑠 ≥ 1. Thus, we get

𝑣𝑑 · (𝜌𝑠)𝑑 +𝑣𝑑 ·
∑︁
𝑖∈[𝑑 ]

(
𝑑

𝑖

)
(𝜌𝑠)𝑑−𝑖

√
𝑑
𝑖
≤ 𝑣𝑑 · (𝜌𝑠)𝑑 +𝑣𝑑 · (𝜌𝑠)𝑑−1 · 2𝑑

√
𝑑
𝑑
= 𝑣𝑑 · (𝜌𝑠)𝑑 ·

(
1 + 1

𝜌𝑠

(
2

√
𝑑

)𝑑 )
.

We conclude the proof by noting that

(
2

√
𝑑
)𝑑/𝜌𝑠 ≤ 𝛾 . ■

As we fixed 𝑟 = (1/𝑣𝑑 )1/𝑑 we can immediately conclude that for every 𝛾 ∈ (0, 1] there is some

𝜌𝛾 ∈ Θ(1/𝛾) such that for all 𝜌 ≥ 𝜌𝛾 it holds that

𝛥𝜌 ≤ (1 + 𝛾) (2𝜌)𝑑 .

Finally, the following general lemma will help us to turn a sampling scheme for 𝜇 (𝐺𝜌 ,𝜆𝜌 )
into a

randomized approximation of 𝑍
(
𝐺𝜌 , 𝜆𝜌

)
.

▶ Lemma 36 ([24, Lemma 13]). Let (𝐺,𝝀) be an instance of the multivariate hard-core model

and let 𝛬 be a clique cover of size𝑚 with 𝑍max = max𝑖∈[𝑚]{𝑍
(
𝐺𝜌 [𝛬𝑖]

)
}. Further, for 𝑖 ∈ [𝑚] let

𝑉𝑖 = 𝑉 \⋃
𝑗<𝑖 𝛬𝑗 . For every 𝜀 ∈ (0, 1] there are 𝑠 ∈ Θ

(
𝑚𝑍max/𝜀2

)
and 𝜀𝑠 ∈ Θ(𝜀/(𝑚𝑍max)) such that

a randomized 𝜀-approximation of 𝑍 (𝐺,𝝀) can be computed by drawing 𝑠 samples 𝜀𝑠-approximately

from 𝜇 (𝐺 [𝑉𝑖 ])
for each 𝑖 ∈ [𝑚]. ◀

Note that sampling from 𝜇 (𝐺 [𝑉𝑖 ])
means sampling from 𝜇 (𝐺)

for 𝑖 = 0 and ignoring all cliques

{𝛬𝑗 } 𝑗<𝑖 for 𝑖 ≥ 1.

▶ Theorem 1. Let (V, 𝜆) be an instance of the continuous hard-sphere model with V = [0, ℓ)𝑑 .
If there is a 𝛿 ∈ (0, 1] such that

𝜆 ≤ (1 − 𝛿) e
2
𝑑
,

then for each 𝜀 ∈ (0, 1] there is a randomized 𝜀-approximation of 𝑍 (V, 𝜆) computable in time

polynomial in |V|1/𝛿2 and 1

𝜀
. ◀

Proof. Set 𝛾 = 𝛿/2 and 𝜀 ′ = 𝜀/3. By combining Lemma 2 and Lemma 35, we know that we can
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choose a resolution 𝜌 ∈ Θ
(
e
|V | ln |V |/(𝜀 ′𝛾)

)
= Θ

(
e
|V | ln |V |/(𝜀𝛾)

)
such that

1 − 𝜀 ′ ≤ 𝑍 (V, 𝜆)
𝑍

(
𝐺𝜌 , 𝜆𝜌

) ≤ 1 + 𝜀 ′ and (16)

𝛥𝜌 ≤ (1 + 𝛾) (2𝜌)𝑑 . (17)

Note that (1 − 𝜀 ′)2 ≥ 1 − 𝜀 and (1 + 𝜀 ′)2 ≤ 1 + 𝜀. Thus, equation (16) implies that it is sufficient to

𝜀 ′-approximate 𝑍
(
𝐺𝜌 , 𝜆𝜌

)
. We start by arguing that we can apply Corollary 5 to 𝑍

(
𝐺𝜌 , 𝜆𝜌

)
. Then,

we construct a clique cover and show that each step of the clique dynamics can be computed

efficiently. Finally, we will use Lemma 36 to get the desired approximation.

To apply Corollary 5, we need to show that 𝜆𝜌 ≤ (1 − 𝛿 ′)𝜆c
(
𝛥𝜌

)
for some 𝛿 ′ ∈ (0, 1]. To this

end, we choose 𝛿 ′ = 𝛿/2. Due to equation (17) we know that

𝜆c
(
𝛥𝜌

)
=

(𝛥𝜌 − 1)𝛥𝜌−1

(𝛥𝜌 − 2)𝛥𝜌
≥

(
(1 + 𝛾) (2𝜌)𝑑 − 1

) (1+𝛾 ) (2𝜌)𝑑−1
(
(1 + 𝛾) (2𝜌)𝑑 − 2

) (1+𝛾 ) (2𝜌)𝑑 .

Now, note that

𝜆 ≤ (1 − 𝛿) e
2
𝑑
≤

1 − 𝛿
2

1 + 𝛿
2

e

2
𝑑
=
1 − 𝛿 ′
1 + 𝛾

e

2
𝑑
≤ (1 − 𝛿 ′)𝜌𝑑

(
(1 + 𝛾) (2𝜌)𝑑 − 1

) (1+𝛾 ) (2𝜌)𝑑−1
(
(1 + 𝛾) (2𝜌)𝑑 − 2

) (1+𝛾 ) (2𝜌)𝑑 ,

where the last inequality comes from the fact that 𝑥
(𝑥−1)𝑥−1
(𝑥−2)𝑥 converges to e from above as 𝑥 → ∞.

Dividing by 𝜌𝑑 yields 𝜆𝜌 = 𝜌−𝑑𝜆 ≤ (1 − 𝛿 ′)𝜆c
(
𝛥𝜌

)
.

We now construct the clique cover that we are going to use. This is done by dividing the grid

G(𝜌ℓ) into cubic regions of side length 𝑎 =

⌊
2𝜌√
𝑑
𝑣
−1/𝑑
𝑑

⌋
. Formally, for a tuple (𝑖1, . . . , 𝑖𝑑 ) ∈ N𝑑 , let

H𝑖1,...,𝑖𝑑 =
{
(𝑥1, . . . , 𝑥𝑑 ) ∈ G

�� ∀𝑗 ∈ [𝑑] : 𝑖 𝑗𝑎 ≤ 𝑥 𝑗 < (𝑖 𝑗 + 1)𝑎
}
.

Note that for every pair of grid points 𝑥,𝑦 ∈ H𝑖1,...,𝑖𝑑 it holds that 𝑑 (𝑥,𝑦) < 2𝜌𝑣
−1/𝑑
𝑑

= 2𝜌𝑟 . Thus,

the set of vertices, corresponding to grid points inH𝑖1,...,𝑖𝑑 , form a clique in𝐺𝜌 . We obtain a clique

cover 𝛬 of size𝑚 = |𝛬| ∈ O

(
(𝜌ℓ/𝑎)𝑑

)
= O( |V|). Further, it holds that

𝑍max ≤ 1 + 𝑎𝑑𝜆𝜌 = 1 + 𝑎𝑑𝜌−𝑑𝜆 ∈ O(1) .

By Corollary 5, the clique dynamics based on 𝛬 have mixing time polynomial in |V|1/𝛿′2 , thus also
polynomial in |V|1/𝛿2 , and in ln(1/𝜀𝑠) for any sampling error 𝜀𝑠 ∈ (0, 1].
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We proceed by arguing that we can compute each step efficiently. Note that we cannot construct

the graph explicitly, as it would be far to large for our choice of resolution 𝜌 . However, by

identifying each vertex by its corresponding grid point, deciding whether there is an edge between

two vertices or if a vertex belongs to a certain clique can be done by comparing integers up to size

O(𝜌ℓ), which can be done in O(ln(𝜌ℓ)) = O( |V| ln|V|). Choosing a clique from the clique cover

can be done by choosing 𝑑 integers up to size O(ℓ). Finally, for a given clique 𝛬𝑖 , we can sample

from 𝜇
(𝐺𝜌 ,𝜆𝜌 )
|𝛬𝑖

(
·
�� 0 |𝑉𝜌\𝛬𝑖 ) = 𝜇 (𝐺𝜌 [𝛬𝑖 ],𝜆𝜌 )

by

(1) sample 𝑥 ∈ H𝑖 uniformly at random, whereH𝑖 is the region of the grid corresponding to 𝛬𝑖 ,

and

(2) return ∅ with probability
1

𝑍 (𝐺𝜌 [𝛬𝑖 ]) and {𝑣𝑥 } otherwise.

Note that (1) involves sampling 𝑑 integers up to size O(𝑎) and step (2) involves computing

𝑍
(
𝐺𝜌 [𝛬𝑖]

)
= 1+|𝛬𝑖 |𝜌−𝑑𝜆. Thus, sampling from 𝜇 (𝐺𝜌 [𝛬𝑖 ],𝜆𝜌 )

can be done inO(ln(𝑎)) = O( |V| ln|V|).
We now know that we can sample 𝜀𝑠-approximately from 𝜇 (𝐺𝜌 ,𝜆𝜌 )

in time polynomial in |V|1/𝛿2

and ln(1/𝜀𝑠). Applying Lemma 36 proves the theorem. ■
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