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Abstract—We consider IoT networks where nodes are able to
move to change the network topology and improve area coverage
and network performance. We focus on the problem of global
optimization where the nodes make use of the predictability
of circumstances that affect network operations, such as the
communication and sensing ranges, to anticipate future actions
that need to be taken so that the correct operation of the
network continues to be guaranteed with a minimum global cost.
We provide a Mixed Integer Quadratic Program (MIQP)-based
solution that minimizes the overall energy consumed over the
entire deployment period while maintaining network connectivity
and full area coverage. Results show that significant performance
enhancement can be obtained when taking predictability into
account compared to the case where nodes make decisions based
only on their current observations.

I. INTRODUCTION

In many typical IoT applications, nodes are deployed
over a geographical area to perform sensing and transmit
the collected data to a local or remote entity in charge of
decision-making. The viability of these applications is heavily
dependent on minimizing energy consumption and ensuring
both area coverage and network connectivity. In the literature,
a lot of research efforts focused on static networks where
optimal node locations and configurations are calculated prior
to deployment (e.g. [1], [2]). Extensive research also targeted
mobile networks where nodes, initially deployed arbitrarily,
seek to find better locations in response to changing opera-
tional circumstances such as to continue ensuring coverage
of a moving phenomenon [2], [3]. Many techniques have
been proposed to allow nodes to move from an initial to a
target deployment with various objectives such as maximizing
coverage, maintaining connectivity, or minimizing energy con-
sumption by reducing the distance traveled by nodes. Most of
these techniques have concentrated on maintaining coverage
while reducing energy consumption and have been inspired by
various mathematical techniques (e.g. virtual force mechan-
ics, geometric computation, fuzzy logic, bio-inspired meta-
heuristics). As such they did not focus on providing solutions
that jointly optimize energy consumption, connectivity, and

coverage, during and after redeployment. Recently, a Mixed
Integer Linear Programming (MILP) formulation has been
proposed to provide solutions that jointly optimize node place-
ment and movements, as well as their activity scheduling [1].
Although the mathematical formulation presented in [1] leads
to an optimal solution, it is limited to static networks where
only collector nodes are mobile.

More generally, all of the aforementioned solutions have
mainly been designed to find an optimal solution to move
nodes from an initial situation to another one usually con-
sidered final. This is the best that can be done when future
circumstances that affect the operations of the network cannot
be known in advance. However, when these circumstances can
be predicted, a better solution can be obtained by optimizing
all nodes movements throughout the intermediary situations
between the initial and the final situation. Among those
predictable circumstances that affect network operations, there
are those related to weather changes such as temperature and
humidity which mainly affect the operations of the nodes elec-
tronic circuitry [4]. It has been shown in [5] that temperature
variations significantly affect the global network connectivity
and coverage in a predictable way. As the predictability of
weather conditions has significantly improved over time [6],
it is becoming plausible to take them into account in the design
of optimal solutions with a very high accuracy. Moreover, in
addition to omitting predictability in general, traditional solu-
tions did not provide an inclusive global framework based on
mathematical modeling that incorporates network connectivity
in the design of jointly optimized energy consumption and
coverage.

To deal with the deficiency of the existing literature in this
area and leverage the predictability of the conditions affecting
the network operations, particularly connectivity and coverage,
we provide in this paper a mathematical formulation based on
a MIQP which seeks to find the optimal initial placement and
trajectories of nodes over a time interval where circumstances
affecting coverage and connectivity can be predicted. Our



solution finds the optimal number of nodes and the actions
they need to take to ensure that the global performance of
the network remains optimal during its entire lifetime by
taking the future circumstances into account as they can be
predicted. Simulation results on some representative data taken
from the literature have shown that significant energy savings
will be achieved by taking into account predictability in the
optimization framework.

The remainder of the paper is organized as follows. In
Section II, we discuss the related work. In Section III, we
formulate the problem statement. In Section IV, we model the
problem as a Mixed Integer Quadratic Program. In Section V,
we present an evaluation of the proposed MIQP model. We
conclude the paper and we provide some future directions in
Section VI.

II. RELATED WORK

Strategies for preserving the optimal operation of mobile
sensor networks developed in the literature can be found
in the following survey papers [7], [8]. Many of these
strategies have been proposed based on the relation between
the communication and sensing ranges [9] and had various
objectives such as coverage maximization [2], and lifetime
maximization [1], [10], [11]. For instance, the authors in [1]
have proposed a Mixed Integer Linear Programming (MILP)
formulation to maximize the network lifetime by considering
optimal node deployment, activity scheduling, data routes, etc.,
and proposed two heuristics for the solution of their MILP
formulation. Unfortunately, this solution and other similar
propositions assume that once the network is deployed, the
circumstances governing the performance of communication
and sensing will remain unchanged and thus the network
continues to operate optimally.

In a more realistic setting, the communication and sensing
performance are dynamic and sometimes can be predictable.
Therefore, the solutions found prior to deployment will un-
likely continue to provide global optimal performance, partic-
ularly where the sensed phenomenon is dynamic and moves
over time [3]. In this case, nodes need to move individually or
collectively to continue to ensure coverage while maintaining
connectivity and optimizing their operations in relation to
energy, reliability, and delay [12].

Other mathematical techniques have been proposed such
as the one presented in [13] in which the authors propose
a virtual force algorithm (VFA) to maximize the coverage of
the network, using attractive and repulsive forces. The purpose
is to maintain a constant distant between every pair of nodes
and thus guarantee a uniform distribution of nodes over the de-
ployment area. Although VFA are proven to converge, the time
needed before the algorithm converges may be considerable.
Enhancements to this algorithm have been proposed: in [14]

to accelerate convergence of the algorithm, in [15] to preserve
connectivity in the network in addition to coverage, and in [16]
to maximize the lifetime of the network by considering the
residual energy in nodes before their relocation. However, and
these approaches do not take into account the predictability of
future conditions that effects coverage and connectivity and
thus would not result in global optimal performance.

Geometric computation-based approaches have also been
used in [17], [18], [19], [20] to preserve coverage by dis-
covering existing coverage holes (holes are discovered by
Voroni diagrams) and determine the target position where
nodes will be relocated. In [17], the authors define three
movement-assisted protocols based on Voronoi diagram in an
attempt to reach a uniform distribution of nodes in the covered
area. Although this algorithm and its variants [18], [19], [20]
maximize the overall coverage, they are greedy and thus are
not optimal. Moreover, they neither focus on energy savings,
nor do they take into account the future circumstances that
influence on the topology of the network.

Other approaches using fuzzy logic systems to control
the node movements, such as those presented in [21], [22],
[23], [24] are efficient in providing rapid deployment, where
oscillation and unnecessary movements are efficiently avoided
and fast deployment is achieved. Unfortunately, like other
existing approaches in the literature, they do not take into
account the predictability of the circumstances affecting the
network operation.

Meta-heuristic approaches have also been used to solve the
problem of network lifetime maximization. Various techniques
such as evolutionary algorithms, simulated annealing, particle
swarm optimization, and graph cellular automata have been
used [25], [26], [27]. However, most of the existing efforts
focused on minimizing the node mobility according to the
currently observed circumstances and overlooked the fact
that conditions affecting the operation of the network, such
communication and sensing ranges, could be predicted, and
thus resulted in suboptimal solutions.

Therefore, to cope with the deficiency of the literature on
taking advantage of the predictability of certain circumstances
affection the operation of the network, we propose an opti-
mization model for globally optimal performance.

III. PROBLEM STATEMENT AND ASSUMPTIONS

We consider an IoT network composed of N nodes de-
ployed over a rectangular area. We assume that all nodes are
identical and that the deployment area is homogeneous. In such
conditions, all nodes have similar sensing and communication
ranges, 7; and R, respectively, that are both dependent on time
t. We consider that a deployment is good if (i) the network is
connected, i.e. there is a path between any two nodes, and
(ii) that every point in the deployment area is covered by



at least K nodes, i.e. any point in the deployment area is
within the sensing range of at least K nodes. We assume that
nodes are free to move and can travel to any point in the
deployment area. We also assume that nodes can be in one
of two modes: On and Off. In the Off mode, nodes cannot
contribute to sensing and communication operations and thus
the amount of energy consumed in this mode is considered
negligible. We consider solving the following problems: (i)
at each time ¢, what is the optimal deployment and activity
scheduling of nodes, i.e. where nodes should be placed and
which ones should be in the On mode? and (ii) which nodes
should move and where they need to go? Both (i) and (ii)
should result in minimum energy consumption while both
connectivity and coverage should be preserved, over the entire
duration of network operation.

We consider that the deployment area is represented by
a square grid where C' and V are the sets of all square
centers and vertices. We consider that a node can only be
positioned at the center of a square. Clearly when the square
area becomes too small, we approach the continuous case. We
assume that there is a central entity, called the Collector, that
is able to collect nodes positions and instruct them on the
action to take: move or switch to Off or On modes. Nodes
execute the instructions at the beginning of each time slot and
keep the same configuration until the next instruction at the
beginning of the next slot. We assume that the deployment
area is obstacle-free. Thus nodes travel according a direct line
to reach their destinations. The distance traveled by nodes is
used to calculate the energy consumed during the movements.

IV. PROBLEM FORMULATION AS A MIQP
A. Decision Variables

We define the following binary decision variables xfp and
e;. Let xﬁp express the presence of a node at a given point of
the monitored area. We have:

1 if node 7 is located at center p € C' at time ¢
0 otherwise

(1)
Let e; denote the node status, i.e. whether the node located at
center p is On or Off. We have:

if a node is at center p € C and it is On at time ¢

1
e, =
0 otherwise

t
P

(2)
Definition (2) might not seem intuitive at first glance, how-
ever it has the property of avoiding quadratic constraints. A
more straightforward modeling would use a different decision
variable e} to denote whether a node is On at time ¢ or not.
However, as the latter leads to quadratic constraints and thus
increases the execution time dramatically, we choose to use
the first definition, i.e., the one described in (2).

B. Objective Function

The energy consumed during the time interval [t,¢ 4 1] is
composed of three parts: the energy spent in communication
(ECH), sensing (ESY), and movement (EM?). The energy con-
sumed in communication (EC?) depends on traffic and the
underlying access method used. Without loss of generality,
we assume in our model a simple traffic model where each
node rebroadcasts each packet it receives once. In this case,
every node sends exactly one packet and receives as many
packets as the number of its neighbors. We also assume an
access method where energy is consumed in transmission and
reception. Outside these operations, the node is assumed to be
in sleep mode to save energy. We use the Py, Py, and F, to
refer to the power consumed in transmission, reception, and
sleep modes, respectively. The energy consumed by a node that
is in On mode and located at position p during time interval
[t,t + 1] is given by the following expression:

EC!, = m(PuTix + 1), PuxTrx + PapTip) 3)
where m is the number of messages generated during interval

[t,t+1] and 77; is the number of neighbors of the node located
at center p at time ¢t. We have:

t o t t
np_szq*eq

qeC

peC;teT €]

where b;q is defined as follows:

- 1 ifdyg < Re
e 0 otherwise
where d is the euclidean distance between points p and q.

The energy ESf7 consumed in sensing during interval [¢, ¢+
1] is given by the following equation:

where p,qe Cit € T
(5)

ES; = Tsens]Dsens (6)

where Tgens and Py are the sensing duration and the power
consumed in sensing, respectively.

The energy EM! consumed by the movement of node i at time
t is related to the distance d,, between the previous position
p of the node, i.e. at time ¢ — 1, and its current position ¢ at
time ¢, xfg 1
the movement. We have:

t_ t—1, ¢
EM; = Fioy E E dpg * Ty, *Tig
peC qeC

, as well as the moving force Fy,,, consumed in

1€ N;p,geCiteT

(7

Our goal is to minimize the total energy consumption, i.e., the
sum of the amounts of energy consumed in communication,
sensing, and movement by all nodes over the entire operation
duration T'. Therefore, the objective function F expressing the



energy consumption that needs to be minimized is expressed
as follows:

f:ZZe;*EC;

teT peC

+ZZe;*ES§,

teT peC

+2_ ) BM; ®
teT ieN
t#£0
C. Deployment and On/Off Constraints

We define the following constraints in relation with the node
deployment and the On/Off scheduling:

S oal,=1 ieN;teT )

peC

> al, <1 peCiteT (10)

1EN

eéﬁZmﬁp peCiteT 11
iEN

Constraint (9) guarantees that a node is placed at exactly one
location at each time slot. Constraint (10) guarantees that at
most one node can be placed at a given location at each time
slot. Constraint (11) ensures that absent nodes are Off. Both
:cfp and e; are binary, thus the following additional constraints
are defined:

i, € {0,1}
e, €{0,1}

12)
13)

D. Coverage Constraints

With the square grid chosen in our model, it is sufficient to
guarantee that each square vertex is covered to ensure that the
entire area is covered. This is due to the fact that the length
of each square side is always smaller than smallest range,
between communication and sensing, at any given time, i.e.
the square side should be smaller than min(R;, ;). To reduce
the number of points resulting to the discretization we consider
that the square side is equal to min(Ry,r;). The entire area
coverage is guaranteed if the following constraint is satisfied.

t ot
E apy€, > K
peC

veViteT (14)

where a,, is defined as:

. 1 ifdy, <1y where pe C,veViteT
am): .
0 otherwise

15)

K is the number of nodes covering vertex v. In what follows,
we assume that it is sufficient to have each point covered by
at least one node; therefore, we take K equal to 1.

E. Connectivity constraints

We formulate the connectivity constraint as a network flow
problem. We define the decision variables f,, as the flow
quantity transmitted from a node potentially located at center
p to another node potentially located at ¢ (p,q € C). We
assume that each node generates a flow unit in the network
and verify if these units can be recovered by the Collector. The
following constraints ensure that the deployed nodes and the
Collector form a connected network. The flow conservation
model that ensure that the network is connected is modelled
by the following constraints.

S Hateh=fL qeC\{shteT (16
peC reC

PF#q r#q

t tot )

g SN xb e, p,qeCiteT a7
Y fp=2 ¢ teT (18)
peC peC

c#s

t

pg 20 (19)

Constraint (16) expresses the condition of flow conservation at
each position. More specifically, if an active node is located at
point g, it injects one more packet. Constraint (17) ensures that
no packets goes out from center p to center ¢ if: (i) the distance
between p and ¢ is greater than the communication radius, or
(i) no active node is located in p or in q. Constraint (18)
ensures that injected units can be recovered by the Collector.
Constraint (19) ensures that decision variables f;q are positive.

FE Global MIQP Model

Our general optimization model can be written as follows:
minimize: (8)
subject to:

(9), (10), (11), (12), (13), (14), (16), (17), (18), and (19)

V. EVALUATION

To evaluate the gain obtained where conditions that affect
the operation of the deployed network can be predicted, we
compare the performance of our solution with a baseline solu-
tion that does not take into account the predictability of these
conditions. We consider measuring the energy consumption
in both solutions where both connectivity and coverage are
maintained. We use IBM CPLEX [28] to solve our MIQP
model.

In the first set of simulations, we use 9 nodes in a square
area of 80x80m?. We model the predictability of sensing and
communication ranges by time series which vary according to
the plots shown in Fig. 1 (top subplot). For energy consuming
operations, we use the following values: 72mW, 72mW, 3uW,
3uW, 3Newton for Py, P, Fip, Psens, and Finoy, respectively.
We consider that the exchanged messages are generated at
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Fig. 1. Energy consumption and distance traveled by nodes in both cases:
with and without predictability.
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Fig. 2. Impact of the number of nodes on energy consumption in both cases:
with and without predictability.

a rate that the transmission of messages occupies 3% of the
time slot. Under such configuration, node movement generally
consumes much more energy than communication.

In Fig. 1 (middle subplot), we plot the total distance
traveled by all nodes in the case of the baseline solution
and compare it with our solution. In both cases, nodes run

3000 r T T r - ; ; ; ;
+—4 Pridictible with Activity Scheduling
+—a Pridictible without Activity Scheduling

2500
2000 F vt
1500

1000

Energy Consumption (Joule)
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Fig. 3. Impact of Nodes Number on Energy Consumption in the Predictive
and No Predictive Models

a scheduling technique according the On/Off strategy and are
able to move to any other location if it is deemed to reduce
global energy consumption. In the baseline solution, nodes do
not take advantage of the predictability of the circumstances
affecting the operation of the network. Therefore, their goal
is to minimize energy consumption during the time interval
[t,t + 1] taking into account the previous setting. In the
case of our solution, nodes leverage the predictability of the
settings and aim at minimizing the total energy consumption
during the entire time during which the circumstances can be
predicted, i.e. in [0,7]. Fig. 1 (middle subplot) shows that
in the baseline solution, nodes perform location change each
time interval with the aim to keep the network at the lowest
energy consumption. However, as shown in Fig. 1 (bottom
subplot) this does not turn out to be always globally optimal
over time. The reason is that, as nodes do not know the
future variations of the circumstances under which the network
operate, they will perform local optimization. However, our
solution shows that it is better that nodes do not move because
the benefit obtained with such movement will be suppressed by
subsequent settings and nodes might need to move back again.
In our solution, we show that making use of the predictability
information allows nodes to take the optimal decision on
movement and scheduling at any given time that will be
globally optimal in the future as well. We also show that our
solution achieves a significant gain compared to the baseline
solutions and thus the advantage of taking into account the
predictability of circumstances affecting the network.

In Fig. 2, we show the energy consumption of both the
baseline solution and ours under the variability of the number
of nodes. We show that predictability consideration achieves
higher energy gains when the number of nodes deployed
initially is small. However, if the number of nodes deployed



initially is large, to the extent where there is a node in every
square center, both methods achieve the same amount of
energy consumption. In such setting, the solution obtained
with the baseline solution does not involve node mobility but
only scheduling, which explains the same amounts of energy
consumption obtained in both methods.

To assess the benefit of activity scheduling to the global
solution, we plot in Fig. 3 the amount of energy consumption
over time in cases where nodes switch between On and Off
modes and the case where nodes are constantly in On mode.
‘We remind that in On mode, nodes use an ideal access method,
so idle listening is minimized. The Off mode mainly allows
nodes to save energy that would have been spent in sensing
otherwise.

VI. CONCLUSION

We have proposed a Mixed Integer Quadratic Program
that allows minimizing global energy consumption in IoT
networks while maintaining both connectivity and coverage.
We have shown that taking into account the predictability
of the circumstances affecting the operations of the network,
such as the communication and sensing ranges, results in
significant energy savings because it allows nodes to take
optimal decisions on movement and activity scheduling based
on future conditions rather than current observations only. In
a future work, we plan to extend the provided initial solution
and formulation by designing specific heuristics to deal with
the complexity of the addressed problem, as well as providing
a distributed solution for the predictability-based optimality
problem.
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