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Ergodic quasi-exchangeable stationary processes are

isomorphic to Bernoulli processes

Doureid Hamdan

Abstract

A discrete time process, with law µ, is quasi-exchangeable if for any finite permutation σ of time

indices, the law µ
σ of the resulting process is equivalent to µ. For a quasi-exchangeable stationary

process, our main results are (1) if the process is ergodic then it is isomorphic to a Bernoulli

process and (2) if the family of all Radon-Nikodym derivatives {dµ
σ

dµ
} is uniformly integrable then

the process is a mixture of Bernoulli processes, which generalizes De Finetti’s Theorem. We give

application of (1) to some determinantal processes.

1 Introduction, Notation

According to the generalization, by Hewitt and Savage [9], of De Finetti’s classical Theorem,
an exchangeable sequence (Xn)n≥1 of random variables, with values in a presentable space,
is a mixture of sequences of independent identically distributed random variables, meaning
that the law of the process (Xn) is an integral of the laws of some family of independent
processes ( The family of presentable spaces include the polish or locally compact spaces).
In the present paper we consider, more generally, the class of stationary quasi-exchangeable
sequences of random variables ( Definition 2 below). For a stationary quasi-exchangeable
sequence (Xn)n≥1, we prove mainly two facts:
(1) Theorem 1: if the dynamical system generated by (Xn) is ergodic, then it is isomorphic
to a Bernoulli system.
Our result (1) implies, Theorem 3, that the discrete time stationary quasi-invariant deter-
minantal processes are isomorphic to Bernoulli processes. These determinantal processes

Keywords: Ergodic processes, quasi exchangeable sequence, translation-invariant determinantal process,
Bernoulli system, De Finetti’s Theorem.
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contain the discrete time translation-invariant determinantal processes in the family consid-
ered by Bufetov in [4] ( for example, the discrete sine process of Borodin Okounkov and
Olshanski).
Also, we give( Corollary 2, Remark 7) a simple proof of De Finetti’s Theorem, when the
state space K is compact.
(2) Under the additional hypothesis that the family

{
dµσ

dµ
: σ is a permutation of only finitely many coordinates}

of Radon-Nikodym derivatives, be uniformly integrable, we prove( Theorem 2) that the pro-
cess is a mixture of i.i.d. sequences. This generalizes the De Finetti’s Theorem.
We establish, first, some definitions and notations.

Definition 1

A sequence (Xn)n≥1 of random variables is exchangeable if the law P σ of the process
(Xσ(n))n≥1 is equal to the law P of the process (Xn)n≥1, for every permutation σ of the
set N of natural numbers, which leaves fixed all but a finite number of integers.

Suppose that for any n ≥ 1, Xn takes values in the measurable space (K,F). Then the
sequence (Xn)n≥1 is exchangeable, if and only if

P (X1 ∈ A1, ..., Xn ∈ An) = P (Xτ(1) ∈ A1, ..., Xτ(n) ∈ An), (1)

holds for all n ≥ 1, A1, ..., An ∈ F and any permutation τ of {1, ..., n}, or equivalently, if
and only if for any permutation σ of {1, ..., n} ( τ = σ−1),

P (X1 ∈ A1, ..., Xn ∈ An) = P (X1 ∈ Aσ(1), ..., Xn ∈ Aσ(n)). (2)

In the particular case where τ is defined by

τ(k) = k + 1, for 1 ≤ k ≤ n− 1, and τ(n) = 1,

and when An = K, equality (1) reads

P (X1 ∈ A1, ..., Xn−1 ∈ An−1) = P (X2 ∈ A1, ..., Xn ∈ An−1) (shift-inv). (3)

which proves that the law P of an exchangeable sequence is invariant by the unilateral shift
on (KN,F⊗N).

Let

Ω := KZ, endowed with the product sigma algebra B := F⊗Z, and

X ′
n(ω) = ωn, for all integer n ∈ Z and all ω ∈ Ω.
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Suppose that (Xn)n≥1, with law P , is exchangeable. Define the measure µ on (Ω,B), which
extends P , by setting for all l, k ≥ 0, and A−l, ..., Ak ∈ F ,

µ(X ′
−l ∈ A−l, ..., X

′
k ∈ Ak) := P (X1 ∈ A−l, ..., Xk+l+1 ∈ Ak).

Then, by (3), for all p ≥ 1,

µ(X ′
−l ∈ A−l, ..., X

′
k ∈ Ak) = P (Xp ∈ A−l, ..., Xk+l+p ∈ Ak). (shift-inv)′. (4)

so that µ extends to a probability measure on Ω, which is also invariant by the shift trans-
formation S : (Sω)n = ωn+1, n ∈ Z, ω ∈ Ω.
Let G be the group of all permutations of Z and H ⊂ G, be the subgroup of all permutations
with finite support:

σ ∈ H ⇐⇒ σ ∈ G, and ∃N, σ(n) = n, ∀n, | n |≥ N. (a1)

Let HN be the subgroup of of all permutations which leaves fixed any n in {n ∈ Z :| n |>
N}:

HN := {σ ∈ G : σ(n) = n, ∀n, with | n |> N}, (a2)

so that H =
⋃

N HN .

For any τ ∈ G, let the transformation Tτ : Ω → Ω, be defined for all ω ∈ Ω, by

(Tτ (ω))n = ωτ(n), ∀n ∈ Z.

Then Tτ is B-measurable, and, when K is a topological space, Tτ is continuous for the
product topology on Ω. Also for all σ and τ in H ,

Tτ◦σ = Tσ ◦ Tτ , (5)

from which follows that

T−1
σ = Tσ−1 . (6)

Now for every σ ∈ H , any N and A1, ..., A2N+1 ∈ F , one can see that the following equality
holds

µ(X ′
σ(−N) ∈ A1, ..., X

′
σ(N) ∈ A2N+1) = µ(X ′

−N ∈ A1, ..., X
′
N ∈ A2N+1) (exchang). (7)

and that it is also equivalent to

µ ◦ T−1
σ (X ′

−N ∈ A1, ..., X
′
N ∈ A2N+1) = µ(X ′

−N ∈ A1, ..., X
′
N ∈ A2N+1). (8)

In conclusion, the preceding shows that the exchangeability of the process (Xn)n≥1 is the
same as the exchangeability of the process (X ′

n)n∈Z and it is also equivalent to the invari-
ance of µ, the law of (X ′

n)n∈Z, by the transformation Tτ , for all τ ∈ H , and in particular,
implies, as noted before, the invariance of µ by the shift S. Henceforth, the process (Xn)
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we consider will be indexed by Z, and furthermore Xn will be the nth coordinate function
on Ω := KZ.

A slight generalization of exchangeability is given by the following

Definition 2

We say that a sequence (Xn)n∈Z of random variables, with law µ, is quasi exchangeable if
µ ◦ T−1

σ is equivalent to µ, for all permutation σ ∈ H.
We note that also invariant or symmetric, are used in place of exchangeable, so that quasi
invariance, quasi exchangeability, and quasi symmetry are all equivalent terms.

In this case we denote the Radon-Nikodym derivative of µ ◦T−1
σ with respect to µ, by φσ

φσ :=
dµ ◦ T−1

σ

dµ
. (9)

Since we are only interested exclusively in stationary sequences of random variables, the
following remark may justify Definition 2.

Remark 1

Naturally we shall say that a unilateral sequence (Xn)n≥1 of random variables is quasi-
exchangeable if its law P is equivalent to the law P σ of the sequence (Xσ(n))n≥1, for every
permutation σ of the set N of natural numbers, which leaves fixed all but a finite number of
integers.
Then, if (Xn)n≥1, with law P, is quasi-exchangeable and stationary, the sequence (X ′

n)n∈Z,
with law µ defined by (4), will be shift invariant and quasi-exchangeable.

Definition 3

Let (Xn)n∈Z be a quasi exchangeable process, with law µ. If the family {dµ◦T
−1
σ

dµ
: σ ∈ H} of

all Radon-Nikodym derivatives is uniformly integrable, we say that the process X is quasi-
exchangeable with uniformly integrable densities.

We shall also use the following notations.
If L and s are integers with L ≥ 0 and s ≥ 1, and A−L, ..., As are measurable subsets of K,
we set

Π(A−L, ..., A0) := {ω ∈ Ω : ω−L ∈ A−L, ..., ω0 ∈ A0} (10)

F (A1, ..., As) := {ω ∈ Ω : ω1 ∈ A1, ..., ωs ∈ As}. (11)

and for all I ⊂ Z,

AI := the smallest algebra containing the sets {ω ∈ Ω : ωj ∈ A}, j ∈ I, A ∈ F ,
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and BI := the sigma algebra generated by AI .

In the following particular cases:

I = {n ∈ Z : n ≤ p} AI is denoted A≤p

I = {n ∈ Z : n ≥ p} AI is denoted A≥p, ∀p ∈ Z,

I = Z AI is denoted A.

The same notation will be used for BI , in particular BZ = B.
Similarly, if µ is a measure on Ω, then µI denotes the restriction of µ to the sigma-algebra
BI . Also, M1(Y ) will denote the set of all Radon probability measures on the topological
space Y , and if (Z,G, m) is a probability space and G1 is a sub sigma-algebra of G, the
conditional expectation of a function f ∈ L1(Z,G, m) given G1 will be denoted by Em[f | G1],
or, if there is no confusion on the measure m, simply by E[f | G1].
Also, the smallest sigma-algebra which contains a finite number of sigma-algebras F1, ...,Fn

[ respectively a sequence Fn of sigma-algebras] is denoted by F1∨F2∨ ...∨Fn or by ∨nj=1Fj

[ respectively
∨

nFn]. The complement of a subset A is denoted Ac.

2 The main results

We shall first recall some definitions and some results which will be useful in this section.

Defintion 4

The probability spaces (Ω1,F1, m1), (Ω2,F2, m2) are said to be isomorphic if there exist
M1 ∈ F1, M2 ∈ F2 with m1(M1) = m2(M2) = 1 and an invertible measure preserving
trasformation φ : M1 → M2 (where for i = 1, 2, Mi is equiped with the induced sigma-
algebra {Mi ∩ B : B ∈ Fi}, and the restriction of the measure mi to this sigma-algebra.)

Defintion 5

A probability space (Ω,F , m) is a Lebesgue ( or Lebesgue-Rohlin) space if it is isomorphic
to a probability space which is the disjoint union of at most countable number of points
{y1, y2, ...} each of positive measure and the space ([0, s],L([0, s], λ) where L([0, s]) is
the sigma-algebra of Lebesgue measurable subsets of [0, s], λ is the Lebesgue measure and
s = 1−

∑∞
n=1m({yn}).

Often in ergodic theory all probability spaces are assumed to be Lebesgue spaces. Note that
a countable product of Lebesgue spaces is a Lebesgue space. Note also that if E is a com-
plete separable metric space and Bm(E) denotes the completion of the Borel sigma-algebra
B(E) of E under a probability measure m, then (E,Bm(E), m) is a Lebesgue space.
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Definition 6

Let (Ω,F , m) be a probability space. The relation =m defined on F by A =m B ⇐⇒
m(A∆B) = 0 is an equivalence relation. For any A ∈ F , let Ã denotes the equivalence
class to which A belongs, and F̃ := {Ã : A ∈ F}. Then F̃ is a Boolean σ-algebra under
the operations of complementation, union and intersection inherited from F . The measure
m induces a measure m̃ on F̃ by m̃(Ã) = m(A). The pair (F̃ , m̃) is the measure algebra
corresponding to the probability space (Ω,F , m) .

Note that the function d(Ã, B̃) := m(A∆B), defines a distance( the Nikodym distance) on
F̃ . We say that F̃ is separable if the metric space (F̃ , d) is separable.

Defintion 7

The measure algebras F̃1 and F̃2 of the probability spaces (Ω1,F1, m1), (Ω2,F2, m2) are
said to be isomorphic if there is a bijection Φ : F̃2 → F̃1 which preserves complements,
countable unions and intersections and satisfies m̃1(ΦÃ) = m̃2(Ã), ∀Ã ∈ F̃2.
The probability spaces are said to be conjugate if their measure algebras are isomorphic.

Definition 8

Let, for i = 1, 2 (Ωi,Fi, mi) a probability space and Ti : Ωi → Ωi a measure preserving
transformation.
a) We say that T1 is isomorphic to T2 if
(a1) there exist M1 ∈ F1, M2 ∈ F2 with m1(M1) = m2(M2) = 1 such that T1M1 ⊂ M1,
T2M2 ⊂M2 and
(a2) there is an invertible measure preserving transformation φ :M1 →M2 with φ(T1x) =
T2φ(x), ∀x ∈M1.
b) If (a1) holds and (a2) holds with φ not necessarily invertible we say that T2 is a factor
of T1.

Clearly isomorphism between measure preserving transformations is stronger than conju-
gacy. For Lebesgue spaces the two notions coincide.

Remark 2

suppose that T2 is a factor of T1 and let φ the factor map. Let

Φ : F̃2 → F̃1, Φ(Ã) = φ̃−1(A), ∀A ∈ F2. (a3)

Then Φ is an injetive homomorphism of measure algebras. In fact it preserves complements
and countable unions and hence countable intersections: this follows from the fact that φ−1

preserves these operations.
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The following implications which hold true for all A,B ∈ F2,

Φ(Ã) = Φ(B̃) ⇐⇒ φ−1(A) =m1 φ
−1(B) ⇐⇒

∫

| 1φ−1A − 1φ−1B | dm1 = 0

⇐⇒

∫

| 1A − 1B | dm2 = 0 ⇐⇒ Ã = B̃,

show that Φ is well defined and injective.
It follows that Φ is a bijection from F̃2 onto its image Φ(F̃2). Also we have

m̃1(Φ(Ã)) = m1(φ
−1(A) = m2(A) = m̃2(Ã), ∀A ∈ F2.

We conclude that the two measure algebras (F̃2, m̃2) and (Φ(F̃2), m̃1) are isomorphic, the
isomorphism being given by Φ as in (a3) above.

Defnition 9: ( [24], Définition 4.11, p. 105)
Let (K,F , m) be a probability space. Let (Ω,G, µ) =

∏∞
n=−∞(K,F , m) and T be the shift:

(Tω)n = ωn+1, ∀ω ∈ Ω, n ∈ Z. The dynamical system (Ω,G, µ, T ) is called the Bernoulli
shift with state space (K,F , m).

Remark 3

A Bernoulli shift with Lebesgue state space is called a generalized Bernoulli shift in [18], and
also the following equivalent definition is given there:

Dfinition 9’

Let T be a one-to-one, invertible measure-preserving transformation on a separable measure
algebra G̃ corresponding to the Lebesgue probability space (Ω,G, µ) . We say that T is a
generalized Bernoulli shift if there is a sub-σ-algebra E such that the T nE , n ∈ Z,
(i) are independent in the sense that for every n ≥ 1 and A−n ∈ T−nE , ..., An ∈ T nE we
have µ(

⋂n
j=−nAj) =

∏n
j=−n µ(Aj), and

(ii) generate the full measure algebra in that for each A in G, there is a sequence of sets
An ∈ ∨nj=−nT

jE , such that limn µ(A∆An) = 0.

We shall use the following Theorem:

Theorem A([18], Theorem 2)
Let T be a one-to-one invertible measure preserving transformation on a measure algebra
L . If L is the increasing union of invariant sub-σ-algebras Li such that T restricted to
each Li is a Bernoulli shift, then T is a generalized Bernoulli shift.

Remark 4

One should note that, with the notation in Theorem A, L = F̃ where F = ∨nLn, for in
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fact this measure algebra F̃ is the smallest measure algebra containing the union ∪nLn.

Theorem A is reformulated in [24] as

Theorem A’ ( [24], Theorem 4.29, p.106)
Let (X,B, m) be a Lebesgue space and T : X → X an invertible measure preserving trans-
formation. Then, if Fn is an increasing sequence of sub–σ-algebras of B with TFn = Fn,
which generates B, and if the factor transformation associated with each Fn is conjugate to
a Bernoulli automorphism then (X,B, T,m) is conjugate to a Bernoulli automorphism.

Definition 10 ( [12], Définition 3)
Let K be a finite set, Ω := KZ, S the shift on Ω, and µ a shift invariant probability measure
on Ω.
The system (Ω,B(Ω), S, µ) is said to be ≤≤faiblement de Bernoulli≥≥ if the two measures µ
and µ≤−1×µ≥0 coincide on the two sided tail sigma algebra T :=

⋂

n≥0(
∨

k≤−n Bk∨
∨

k≥n Bk).

Let ν := µ≤−1 × µ≥0. Then

ν ◦ S−m = µ≤−1−m × µ≥−m. (a4)

In fact, for any l, s ∈ Z, with l ≤ s, and any subsets Al, ...As of K, let C := {ω ∈ Ω : ωl ∈
Al, ..., ωs ∈ As}, which we write as C = (ωl ∈ Al, ..., ωs ∈ As), so that S−mC = (ωl+m ∈
Al, ..., ωm+s ∈ As).
If 0 ≤ l +m, we have S−mC ∈ B≥0, and then

ν(S−mC) = µ≥0(S
−mC) = µ(S−mC) = µ(C) = µ(ωl ∈ Al, ..., ωs ∈ As)

= µ≥−m(ωl ∈ Al, ..., ωs ∈ As) = µ≥−m(C) = µ≤−m−1 × µ≥−m(C).

Similarly, if m+ s ≤ −1 we have S−mC ∈ B≤−1, and then also

ν(S−mC) = µ≤−m−1 × µ≥−m(C).

If l +m < 0 and m+ s ≥ 0, then

ν(S−mC) = ν(ωl+m ∈ Al, ..., ω−1 ∈ A−m−1, ω0 ∈ A−m, ..., ωs+m ∈ As)

= µ(ωl+m ∈ Al, ..., ω−1 ∈ A−m−1)µ(ω0 ∈ A−m, ..., ωs+m ∈ As)

= µ(ωl ∈ Al, ..., ω−m−1 ∈ A−m−1)µ(ω−m ∈ A−m, ..., ωs ∈ As)

= µ≤−m−1 × µ≥−m(C),

which ends the proof of (a4).

Also, from

S−1Bk = Bk+1,
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one can see that

S−1T = T ,

and therefore, if µ and µ≤−1 × µ≥0 coincide on T , we get, by (a4), for any E ∈ T ,

µ(E) = µ(Sm+1E) = ν(Sm+1E) = µ≤m × µ≥m+1(E).

Hence we have the following

Remark 5

The following are equivalent

(i) The system (Ω, S, µ) is faiblement de Bernoulli.
(ii) for any m, µ and µ≤m × µ≥m+1 coincide on T .
(iii) For some m, µ and µ≤m × µ≥m+1 coincide on T .

In the following theorem, which is the main result of this section, we suppose that K is a (
Polish ) complete separable metric space and F = B(K), the Borel sigma algebra of K.

Theorem 1

Let (Xn)n∈Z be a stationary quasi exchangeable process, with law µ, such that the dynamical
system (Ω, S, µ) is ergodic. Then the process is isomorphic to a Bernoulli process.
In the particular case where the state space K is finite the system (Ω, S, µ) is ”faiblement de
Bernoulli”.

Proof We consider first the case where the state space K is finite, and then we prove that
(Ω, S, µ) is ”faiblement de Bernoulli”. For this, we shall use the ergodicity and the quasi-
exchangeability under a particular infinite family of permutations, in order to find a sequence
of measures converging to µ≤0 × µ≥1 on all cylinders and such that any measure in the
sequence, coincides with µ on the two-sided tail sigma-algebra T :=

⋂

n(B≤−n ∨B≥n). The
details follow.
For all natural numbers k and P, such that 1 ≤ k < P, let us consider the permutation
( involution) σ := σP,k ∈ H which translates the ”interval” I := N ∩ [1, ..., k] by P ,
translates the ”interval” P + I = N∩ [P +1, ..., P + k] by −P, and leaves fixed all n ∈ Z,
which are not in the disjoint union I ∪ (P + I) , that is, which is defined by

σ(j) = P + j, and σ(P + j) = j, if 1 ≤ j ≤ k

σ(n) = n if n /∈ {1, ..., k} ∪ {P + j : j = 1, ..., k},

so that

Tσ(ω)n = ωn, if n /∈ {1, ..., k} ∪ {P + j : j = 1, ..., k}

Tσ(ω)j = ωP+j and Tσ(ω)P+j = ωj for 1 ≤ j ≤ k.
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Note first that for every M ∈ T , and any τ ∈ H , we have T−1
τ M = M . Next let P0 ∈ N

such that 1 ≤ P0 − k, be fixed, and recall that φσ := dµ◦T−1
σ

dµ
. For all integers L ≥ 0,

and m with 1 ≤ m ≤ P0 − k, consider any measurable subsets A−L, ..., Ak, B1, ..., Bk,
C1, ..., Cm of K, and also any M ∈ T . Let P ≥ P0. Using the notation as in (10) and
(11), and setting

E = Π(A−L, ..., A0) := {ω ∈ Ω : ω−L ∈ A−L, ..., ω0 ∈ A0}, (12)

the equality

µ(T−1
σ (M ∩ E ∩ F (A1, ..., Ak) ∩ S

−kF (C1, ..., Cm) ∩ S
−PF (B1, ..., Bk)) =

µ(M ∩ E ∩ F (B1, ..., Bk) ∩ S
−kF (C1, ..., Cm) ∩ S

−PF (A1, ..., Ak))

which holds by the definitions of σ and Tσ, reads also, in view of quasi invariance, as
∫

M∩E∩F (A1,...,Ak)∩S−kF (C1,...,Cm)

1F (B1,...,Bk) ◦ S
Pφσdµ =

∫

M∩E∩F (B1,...,Bk)∩S−kF (C1,...,Cm)

1F (A1,...,Ak) ◦ S
Pdµ. (13)

For every integer Q ≥ P0, consider the following two functions ξQB1,...,Bk
∈ L1(µ) and

ψQA1,...,Ak
∈ L∞(µ), defined by

ξQB1,...,Bk
:=

1

Q

Q
∑

P=P0

1F (B1,...,Bk) ◦ S
PφσP,k

,

and ψQA1,...,Ak
:=

1

Q

Q
∑

P=P0

1F (A1,...,Ak) ◦ S
P .

Then, by (13), we obtain
∫

M∩E∩F (A1,...,Ak)∩S−kF (C1,...,Cm)

ξQB1,...,Bk
dµ =

∫

M∩E∩F (B1,...,Bk)∩S−kF (C1,...,Cm)

ψQA1,...,Ak
dµ,

which we write as
∫

M∩E∩S−kF (C1,...,Cm)

1F (A1,...,Ak)ξ
Q
B1,...,Bk

dµ =

∫

M∩E∩S−kF (C1,...,Cm)

1F (B1,...,Bk)ψ
Q
A1,...,Ak

dµ.

Since this last equality holds true for all L ≥ 1, 1 ≤ m ≤ P0 − k, all E as in (12) and all
C1, ..., Cm, and any M ∈ T , we have the equality

E[1F (A1,...,Ak)ξ
Q
B1,...,Bk

| T ∨ B≤0 ∨ B{k+1,...,P0}] = E[1F (B1,...,Bk)ψ
Q
A1,...,Ak

| T ∨ B≤0 ∨ B{k+1,...,P0}]].(14)
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Now, k, P0 being fixed, by ergodicity, the sequence (ψQA1,...,Ak
)Q≥P0 converges in L2(µ) norm

to the constant µ(F (A1, ..., Ak)). Then, by Cauchy Schwartz for example, the sequence
(1F (B1,...,Bk)ψ

Q
A1,...,Ak

)Q≥P0 converges in L2(µ) norm also to µ(F (A1, ..., Ak))1F (B1,...,Bk). It
follows that the sequence in the left side of (14) converges in norm L2(µ),
to µ(F (A1, ..., Ak))E[1F (B1,...,Bk) | T ∨ B≤0 ∨ B{k+1,...,P0}].

In particular,

lim
Q

sup
M∈T ∨B≤0∨B{k+1,...,P0}

|

∫

M∩F (A1,...,Ak)

ξQB1...,Bk
dµ− µ(M ∩ F (B1, ..., Bk))µ(F (A1, ..., Ak)) |= 0.(15)

The sequence (ξQ(B1,...,Bk)
)Q≥P0, is bounded in L1(µ) :

|| ξQ(B1,...Bk)
||1≤||

1

Q

Q
∑

P=P0

φσP,k
||1=

Q− k

Q
≤ 1.

Then it is bounded in the bidual L∞∗(µ) of L1(µ). Hence, by Alaoglu-Bourbaki Theorem(
[7], Theorem 2, p.424), this sequence has at least one weak-star cluster point. Let ηk(B1,...,Bk)

∈

L∞∗(µ) be such a cluster point. Then ηkB1,...,Bk
is positive, because for eachQ, ξQ(B1,...,Bk)

is

positive. Also, for any x∗ ∈ L∞(µ), there exists a subsequence of natural numbers (Qj)j≥1 =
(Qj(x

∗))j≥1, which may depend on x∗, converging to infinity such that

ηk(B1,...,Bk)
(x∗) = lim

j
ξ
Qj(x∗)
B1,...,Bk

(x∗).

Taking, in particular, x∗ = x∗0, where x∗0 = 1M∩F (A1,...,Ak), we obtain

ηk(B1,...,Bk)
(M ∩ F (A1, ..., Ak)) = lim

j

∫

M∩F (A1,...,Ak)

ξ
Qj(x

∗
0)

B1,...,Bk
dµ. (16)

Then, in view of (15), the limit in (16) is independent of the sequence (Qj(x
∗
0)), and the

following equality holds

ηkB1,...,Bk
(M ∩ F (A1, ..., Ak)) = µ(M ∩ F (B1, ..., Bk))µ(F (A1, ..., Ak)) (17)

for all M ∈ T ∨ B≤0 ∨ B{k+1,...,P0}.
In the particular case, where B1 = ... = Bk = K, let us denote ηkB1,...,Bk

simply by ηk.
Then, by (17),

ηk(M ∩ F (A1, ..., Ak)) = µ(M)µ(F (A1, ..., Ak)), ∀M ∈ T ∨ B≤0 ∨ B{k+1,...,P0}, (18)

which means that, under ηk, the algebra A{1,...,k} and the sigma algebra T ∨B≤0∨B{k+1,...,P0}

are independent( Note that as element of L∞∗(µ), ηk may have a non null purely finitely
additive part). Set

M = T ∨ B≤0.

11



Then by (18), we have in particular

ηk(A ∩M) = µ(A)µ(M), ∀A ∈ A{1,...,k}, ∀M ∈ M. (19)

Also, if we denote by Dk, the smallest algebra containing M∪A{1,...,k}, then Dk ⊂ Dk+1,
and (19) implies that ηk+1 extends ηk from Dk to Dk+1. By induction we then have, for
every n ≥ 0,

ηk+n(A ∩M) = µ(A)µ(M), ∀A ∈ A{1,...,k}, ∀M ∈ M. (20)

Now, the sequence (ηk)k≥1 is norm bounded in L∞∗(µ), since by positivity and by (18)
we have

|| ηk ||L∞∗(µ)= ηk(Ω) = 1.

Then (ηk)k≥1 has at least one weak-star cluster point. By (20), every such cluster point,
say η, satisfies

η(A ∩M) = µ(A)µ(M), ∀A ∈ A{1,...,k}, ∀k ≥ 1, ∀M ∈ M. (21)

which means

η(A ∩M) = µ(A)µ(M), ∀A ∈ A≥1, ∀M ∈ M.

In particular

η(A ∩B) = µ(A)µ(B), ∀A ∈ B≤0, ∀B ∈ A≥1. (22)

Notice that (22) implies that η and µ≤0 × µ≥1 coincide on all cylinders. We recall that,
for any subset I ⊂ Z, µI denotes the restriction of µ to the sigma algebra BI . Also (21)
implies that η and µ coincide on T .
It follows that if L is the algebra generated by M∪A≥1, then clearly L contains A and,
by (21), that η and µ

≤0
× µ

≥1
coincide also on L, so that η is countably additive on L.

We also note that B is the smallest sigma-algebra containing L. Then the unique countably
additive measure η̃ extending η to the sigma algebra B, is the measure µ≤0 × µ≥1.
Then, in particular, η̃ satisfies

η̃(A ∩B) := µ(A)µ(B), A ∈ B≤0, B ∈ B≥1. (23)

Since T ⊂ M, we also have, by (21), as noted before,

η̃(M) = η(M) = µ(M), ∀M ∈ T . (24)

In conclusion, the countably additive measure η̃ on B satisfies the equalities (23) and (24),
which means, in view of Remark 5, when the state space K is finite, that the system (Ω, S, µ)
is ”faiblement de Bernoulli”. Since in this case, ”faiblement de Bernoulli” is equivalent to
weak Bernoulli ( [12], Proposition 2) and also, a system which is weak Bernoulli is isomorphic

12



to a Bernoulli system [17], the proof is complete in this finite case.

To end the proof in the general case, we establish first the following Lemma.

Lemma 1

Let Ω = KZ, S the shift on Ω and µ be an S-invariant probability measure on Ω. Let Xn be

the nth coordinate function on Ω and Π = {A0, ..., Ak−1} be a finite measurable partition of
K.
Let Ω1 := {0, ..., k − 1}Z, S1 the shift on Ω1, Yn the nth coordinate function on Ω1 and
θ : Ω → Ω1 the factor map defined by:

θ(x) = y ⇐⇒ (Snx)0 ∈ Ay(n), ∀n ∈ Z ⇐⇒ xn ∈ Ay(n), ∀n ∈ Z,

for any x = (xn)n∈Z ∈ Ω, that is

θ(x)(n) = j ⇐⇒ (Snx)0 ∈ Aj ⇐⇒ xn ∈ Aj .

Let ν = µ ◦ θ−1. Then
(1) the quasi-exchangeability[ respectively exchangeability] of the process X = (Xn) implies
the same property for the process Y = (Yn).
(2) the ergodicity of the process (Xn) implies the ergodicity of (Yn).

Proof: (1) Note first that ν is the law of the process Y . For any permutation σ, let the
transformation Rσ : Ω1 → Ω1, defined by

Rσ(y)(n) = y(σ(n)), ∀n ∈ Z, ∀y ∈ Ω1.

Then the quasi-exchangeability[ respectively exchangeability] of (Yn) follows from the com-
mutation relationship

Rσ ◦ θ = θ ◦ Tσ

because if this relationship holds we will get

ν ◦R−1
σ = µ ◦ θ−1 ◦R−1

σ = µ ◦ T−1
σ ◦ θ−1

and then

ν ◦R−1
σ (A) = 0 ⇐⇒ (µ ◦ T−1

σ )(θ−1A) = 0 ⇐⇒ µ(θ−1A) = 0 ⇐⇒ ν(A) = 0.

[Respectively

ν ◦R−1
σ (A) = (µ ◦ T−1

σ )(θ−1A) = µ(θ−1A) = ν(A).]

The commutation relation is a consequence of the following

Rσ(θ(x))(n) = j ⇐⇒ θ(x)(σ(n)) = j ⇐⇒ xσ(n) ∈ Aj

⇐⇒ Tσ(x)(n) ∈ Aj ⇐⇒ θ(Tσ(x))(n) = j

13



where x ∈ Ω, n ∈ Z, and j = 0, 1, ..., k − 1.
(2) The dynamical system (Ω1, S1, ν) is a factor of (Ω, S, µ), for in fact for all n ∈ Z, x ∈ Ω
and 0 ≤ j < k, the following implications

(θ(Sx))n = j ⇐⇒ (Sx)n ∈ Aj ⇐⇒ xn+1 ∈ Aj and

(S1(θx))n = j ⇐⇒ (θx)n+1 = j ⇐⇒ xn+1 ∈ Aj

show the equality θ ◦ S = S1 ◦ θ. Then (2) follows because a factor of an ergodic system is
ergodic.

Corollary 1

Under the same conditions of the above Lemma, if the process X with law µ is quasi-
exchangeable and the system (Ω, S, µ) is ergodic, then the system (Ω1, S1, µ ◦ θ−1) is iso-
morphic to a Bernoulli system.

Proof The result follows immediately by Lemma 1 from the finite case.

We continue the proof of the theorem in the general case where K is a polish space and
F = B(K). To do this, for every finite partition Π = {A0, ..., Ak−1} of K, where each Aj is
in F , consider the corresponding time zero partition P = P(Π) of Ω := KZ, defined by

P = P(Π) := {{ω ∈ KZ : ω0 ∈ A0}, ..., {ω ∈ KZ : ω0 ∈ Ak−1}},

and let

PS :=

∞
∨

−∞

SnP

be the corresponding invariant sigma-algebra.
Denote the cells of the time zero partition P(Π) by P0, ..., Pk−1, specifically

Pj := {ω ∈ Ω : ω0 ∈ Aj}, ∀j = 0, ..., k − 1,

and note then that for every n ∈ Z,

SnPj = {Snω : ω0 ∈ Aj} = {ω ∈ KZ : ω−n ∈ Aj}.

On the other hand with the notation as in corollary 1, the dynamical system (Ω1,B(Ω1), S1, ν)
is ≤≤ faiblement de Bernoulli≥≥ and hence isomorphic to a Bernoulli system. Then, Ω1 being
compact metric so that (Ω1,B(Ω1), ν) is a Lebesgue space, it follows according to Definition
5’, that there exists a sub sigma algebra E of B(Ω1) which satisfies the conditions (i) and
(ii) in that definition. Also, by Lemma 1, (Ω1,B(Ω1), S1, ν) is a factor of (Ω, S, µ), the
factor map being θ, so that θ−1E satisfies the same two conditions (i) and (ii) above in
(Ω, S, µ).
Clearly, because that the following implications

θ(x)(n) = j ⇐⇒ xn ∈ Aj ⇐⇒ (Snx)0 ∈ Aj ⇐⇒ Snx ∈ Pj ⇐⇒ x ∈ S−nPj

14



hold for every n ∈ Z, and any j = 0, ..., k − 1, we have, for any a ∈ Ω1 = {0, 1, ..., k − 1}Z,
and every cylinder C := {y ∈ Ω1 : y−p = a−p, ..., yq = aq},

θ(x) ∈ C ⇐⇒ θ(x)(n) = an, ∀n = −p, ..., q ⇐⇒ x ∈ ∩n=−p,...,qS
−nPan .

Then θ−1B(Ω1) = ∨n∈ZS
nP, and therefore θ−1(E) ⊂ ∨n∈ZS

nP.

It follows then, according to Remark 2, that the two measure algebras (P̃S, µ̃) and (B̃(Ω1), µ̃ ◦ θ−1)
are isomorphic. Hence (KZ, S,PS, µ) is conjugate to a Bernoulli shift.

We prove now the following claim.
Claim

There exists an increasing sequence Πn := {An0 , ..., A
n
pn
} of finite partitions of K whose

elements are in F , such that F = ∨nσ(Πn).

In the following proof of this claim we shall use the notation:

σ(D) := the smallest sigma algebra containing the family D of subsets of a set, and

σ(V ) := the smallest sigma algebra for which the random variable V is measurable.

We observe first that it suffices to prove this claim when the state space is a complete separa-
ble metric space, for in fact if f : K1 → K2 is a homeomorphism, and Π1 = {A0, ..., Ak−1}
is a finite partition of K1, by Borel sets, then {f(A0), ..., f(Ak−1)} is a partiition of K2

by Borel sets also, and evidently B(K2) = f(B(K1)) := {f(A) : A ∈ B((K1)}.
Suppose then that K is complete separable metric, and note that the Borel sigma algebra of
a separable metric space is separable ( meaning that it is generated by an at most countable
family of sets) and countably separated ( in that there exists an at most countable family
of sets separating the points); a countable base of open sets satisfies these two conditions.
Moreover, there exists a subset M in [0, 1] and a one-to-one mapping f : K → M which is
(B(K),B(M))-measurable such that B(K) = {f−1(A) : A ∈ B(M)} [[1], Theorem 6.5.8.] (
One can also see that M is a Borel set in [0, 1] but this is not needed for the proof).
Let Dn = {[2

n−1
2n

, 1]} ∪ {[ k
2n
, k+1

2n
[: k = 0, 1, ..., 2n − 2} be the dyadic partition of [0, 1],

and D′
n = {M ∩ A : A ∈ Dn} be the induced partition on M. Then the sequence

Qn := {f−1(B) : B ∈ D′
n} of finite partitions of K, by Borel sets, satisfies Qn ⊂ Qn+1.

Because
∨

n σ(Dn) = B([0, 1]), we have
∨

n σ(D
′
n) = B(M) and thus

∨

nQn = B(K). The
claim is proved.
Let then Πn be as in the preceding claim, and set Pn := P(Πn) = {{ω ∈ KZ : ω0 ∈
An0}, ..., {ω ∈ KZ : ω0 ∈ Anpn}}. Then

SjPn = {{ω ∈ KZ : ω−j ∈ An0}, ..., {ω ∈ KZ : ω−j ∈ Anpn}}.

Now, recalling that Xj is the jth coordinate, then for every s = 0, ..., pn, we have X
−1
−j (A

n
s ) =
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{ω ∈ Ω : ω−j ∈ Ans} so that SjPn = X−1
−j (Πn) and clearly hence

∨

n

SjPn =
∨

n

X−1
−j (Πn) = X−1

−j (
∨

n

Πn) = X−1
−j (B(K)) = σ(X−j) = B{−j}.

Now, for every j, (Pn)S ⊃ SjPn and then
∨

n(Pn)S ⊃ B{−j}, so that

F⊗Z ⊃
∨

n

(Pn)S ⊃
∨

j

σ(X−j) =
∨

j

B{−j} = F⊗Z,

that is the increasing sequence of invariant sub-σ-algeras (Pn)S generates the full σ-algebra
F⊗Z = B(KZ).
In conclusion we have proved that this sequence of the invariant sigma algebras (Pn)S sat-
isfies the two conditions (i) and (ii) in Theorem A, so that, according to that Theorem, the
system (Ω, S,B(Ω), µ) is isomorphic to a Bernoulli system. �

Recall that the exchangeability means the equalities µ ◦ T−1
σ = µ, for all σ ∈ H , so that the

following result ( Theorem 2) generalizes De Finetti’s Theorem.

The following Lemma will be used in the proof of Theorem 2. We leave its proof to the reader.

Lemma 2( [10], ex. (12,63), p. 186)
Let (X,B, ν) be a measure space and f be a ν-measurable function. Then
there exists a B-measurable function g, which is equal to f , ν almost everywhere.
In particular
If µ is a Borel (respectively Baire) measure on a topological space and if f ∈ L1(µ) then there
exists a Borel( respectively Baire) function g such that f = g µ almost everywhere.

Theorem 2

Let X = (Xn)n∈Z be a stationary process. Then the following properties are equivalent
(1) X is exchangeable.
(2) X is quasi-exchangeable with uniformly integrable densities.
(3) X is a mixture of Bernoulli processes.

Proof The equivalence (1) ⇐⇒ (3) is the generalization by Hewitt-Savage of De Finetti’s
Theorem to presentable spaces. The implication (1) ⇒ (2) is trivial. We show that (2)
implies (3). For this, let µ denotes the law of the process, and for every N ≥ 1, consider the
measure

νN :=
1

card(HN)

∑

σ∈HN

µ ◦ T−1
σ = (

1

card(HN)

∑

σ∈HN

φσ)µ,

where, as in (a2), HN := {σ ∈ H : σ(n) = n, ∀n, | n |> N}, and card(HN) = (2N + 1)!
denotes its cardinality.
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Scheme of the proof: We prove first that any cluster point ν of the sequence (νN)N≥1 is
invariant by Tσ, for any permutation σ ∈ H (and thus the Hewitt-Savage generalization
of De Finetti’s Theorem applies to that cluster point ν). The hypothesis implies that ν is
absolutely continuous with respect to µ, and using the definition of ν, we prove that also µ is
absolutely continuous with respect to ν and we conclude using the Hewitt-Savage mentioned
Theorem( or also by Corollary 2 and Remark 7 below).
The details are as follows.
Let ν be a cluster point of the sequence (νN)N≥1, and Nk → ∞ with ν = limk νNk

. Notice
that the uniform integrability of the family {φσ : σ ∈ H} implies the same property for the
family { 1

card(HN )

∑

σ∈HN
φσ : N ≥ 1}, so that, if fN := 1

card(HN )

∑

σ∈HN
φσ, then (fNk

)

is also uniformly integrable, so that according to Dunford-Pettis Theorem, (fNk
) admits

a subsequence which we still denote (fNk
), which converges weakly in L1(µ), to some

f ∈ L1(µ). It follows that the sequence of probability measures νNk
converges to ν := fµ,

in the sense that

∀A ∈ B, ν(A) = lim
k
νNk

(A).

Now, because, for every τ ∈ H, there is k0(τ) such that τ ∈ HNk
, for any k ≥ k0(τ), the

measure ν is invariant by Tτ , for all τ ∈ H . In fact let A be a measurable set, and τ ∈ H .
Then, with M := Nk, and using (5), the following equalities hold

νNk
(T−1

τ A) =
1

card(HM)

∑

σ∈HM

µ ◦ T−1
σ (T−1

τ A) =
1

card(HM)

∑

σ∈HM

µ ◦ (TτTσ)
−1(A)

=
1

card(HM)

∑

σ∈HM

µ ◦ T−1
σ◦τ (A) =

1

card(HM)

∑

σ∈(HM )τ

µ ◦ T−1
σ (A).

But, as noted before, for k big enough, τ ∈ HNk
= HM , so that HM = (HM)τ, since HM

is a group, and then

νNk
(T−1

τ A) =
1

card(HM)

∑

σ∈(HM )τ

µ ◦ T−1
σ (A) =

1

card(HM)

∑

σ∈HM

µ ◦ T−1
σ (A) = νNk

(A)

and consequently ν(T−1
τ (A)) = ν(A).

It follows that ν is also invariant by the shift S, (hence it will be equal to µ, if µ was
ergodic, and thus µ will be invariant by H , hence µ will be Bernoulli, by the Hewitt-Savage
generalization of De Finetti’s Theorem, or by Proposition 1 below).

Suppose now that the system is not necessarily ergodic. By a slight adaptation of the
Hewitt-Savage generalization of De Finetti’s Theorem [9] or also, in the case where K is
compact, by Corollary 2 and Remark 7 below, being invariant by all Tτ , the measure ν is
given by an average of independent measures:

there exists a probability measure β ∈M1(K̃), such that

ν(A) =

∫

K̃

(π̃(A))dβ(π̃) =

∫

K̃

(

∫

KZ

1Adπ̃)dβ(π̃) (25)

17



for all A ∈ Ba(K
Z), the Baire sigma algebra of KZ, where K̃ =M1(K

Z) and where, for any
probability measure π on K, the probability measure π̃ denotes the corresponding product
measure on KZ: π̃ := π⊗Z.

By repeated use of Lebesgue dominated convergence theorem and monotone convergence
theorem, we deduce from (25) that, for any Ba(K

Z) measurable and ν-integrable h,

ν(h) =

∫

K̃

dβ(π̃)

∫

KZ

hdπ̃. (26)

Also, ν = fµ is absolutely continuous with repect to µ, and thus, f is S-invariant µ almost
everywhere.
Now the following implications, which hold for all σ ∈ H ,

ν ◦ T−1
σ = ν ⇐⇒ f ◦ T−1

σ µ ◦ T−1
σ = fµ ⇐⇒ f ◦ T−1

σ φσµ = fµ

⇐⇒ f ◦ T−1
σ φσ = f µ a.e. ⇐⇒ fφσ ◦ Tσ = f ◦ Tσ µ a.e.

(the last implications use the equivalence of µ, µ ◦ T−1
σ and µ ◦ Tσ) imply that the set

A0 := {f = 0} is mod(µ) invariant by Tσ, for all σ. Then, in particular

µ(T−1
σ (A0)) = µ(A0),

so that

0 = ν(A0) = lim
k
νNk

(A0) = lim
k

1

card(HNk
)

∑

σ∈HNk

µ(T−1
σ (A0)) = µ(A0).

Then ν is equivalent to µ so that, for some S-invariant g ∈ L1(ν), µ = gν.
Now, according to Lemma 2 above, for some E with ν(E) = 1, g = g1 on E and g1 is
Ba(K

Z) measurable. Then, setting F := ∩n∈ZS
nE, we obtain g = g ◦Sn = g1 ◦S

n = g1 on
F. We note that g1 ◦ S

n is Ba(K
Z) measurable for every n. Then, for any A ∈ Ba(K

Z),
and any n,

ν(g1A) = ν(g11A1F ) = ν(g1 ◦ S
n1A1F ) = ν(g1 ◦ S

n1A) since g11F = g1 ◦ S
n1F

but by (26), ν(g1 ◦ S
n1A) =

∫

K̃

dβ(π̃)

∫

KZ

g1 ◦ S
n1Adπ̃,

and then, since this last equality holds for every n, we have

ν(g1A) = lim
n

∫

K̃

dβ(π̃)

∫

KZ

g1 ◦ S
n1Adπ̃.

Then, using Lebesgue bounded convergence Theorem and the mixing property of the Bernoulli
system (KZ, S, π̃), we obtain

ν(g1A) =

∫

K̃

dβ(π̃)

∫

KZ

g1dπ̃

∫

KZ

1Adπ̃, (27)
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because

vn(π̃) :=

∫

KZ

g1 ◦ S
n1Adπ̃ →

∫

KZ

g1dπ̃

∫

KZ

1Adπ̃

and

| vn(π̃) |≤

∫

KZ

g1dπ̃,

∫

K̃

dβ(π̃)

∫

KZ

g1dπ̃ = ν(g1) = 1.

Now setting v(π̃) :=
∫

KZ g1dπ̃, and β1 = vβ, the equality (27) reads

ν(g1A) =

∫

K̃

dβ(π̃)v(π̃)

∫

KZ

1Adπ̃,

that is

µ(A) = ν(g1A) =

∫

K̃

dβ1(π̃)

∫

KZ

1Adπ̃ =

∫

K̃

π̃(A)dβ1(π̃)

and this ends the proof, because

∫

K̃

dβ1(π̃) =

∫

K̃

dβ1(π̃)π̃(1) = ν(g) = µ(1) = 1.�

The simplicity of the proof together with the absence of topological hypothesis on the state
space K, justify the following particular case of De Finetti’s theorem.

Proposition 1

If µ is invariant by Tσ for all σ ∈ H, and ergodic for the shift S, then µ is the product
measure.

Proof Let N ≥ 1, and A1, ..., AN+1 be measurable subsets of K. For any P > N + 1, let
τ := τN,P ∈ H, be the transposition defined by

τN,P (n) = n, ∀n /∈ {N + 1, P}, τN,P (N + 1) = P and τN,P (P ) = N + 1.

Then, because µ ◦ T−1
τN,P

= µ, the following equality

µ(ω0 ∈ A0, ..., ωN+1 ∈ AN+1) = µ(ω0 ∈ A0, ..., ωN ∈ AN , ωP ∈ AN+1)

holds for all P > N + 1. Hence

µ(ω0 ∈ A0, ..., ωN+1 ∈ AN+1) =
1

Q−N − 1

Q
∑

P=N+2

µ(ω0 ∈ A0, ..., ωN ∈ AN , ωP ∈ AN+1)

19



holds for all Q > N + 1, and shows then, by ergodicity, that

µ(ω0 ∈ A0, ..., ωN+1 ∈ AN+1) = µ(ω0 ∈ A0, ..., ωN ∈ AN )µ(ω0 ∈ AN+1).

The proof is achieved.�

Recall that, if µ is a probability measure on Ω, then a measurable set A is µ-almost ev-
erywhere shift-invariant if 1A = 1A ◦ S in L1(µ), and also that it is µ-almost everywhere
exchangeable if 1A = 1A ◦ Tσ in L1(µ), for any σ ∈ H .
Let us use the following notation

S = the convex set of all exchangeable probability measures on Ω = KZ.

We have seen that S is a subset of M1(Ω, S), the space of all shift invariant probability
measures on Ω. It is clear, when K is a compact space, that S is closed in M1(Ω, S) for the
weak star topology σ(C(K)∗, C(K)). Then S is convex compact for this topology. We need
the following Lemma [16], which is easy to prove.

Lemma 3

For all µ ∈ S, the sigma-algebra Iµ of µ-invariant sets is equal to the sigma-algebra Exch of
µ-exchangeable sets:

Iµ = Exch.

Lemma 4

The set of measures which are extreme points of S is the set of all Bernoulli measures.

Proof Let µ ∈ S be an extreme point. By Proposition 1, it suffices to show that µ is
ergodic for the shift S. Suppose that µ is not ergodic. Then there exists an invariant set
A, with µ(A) ∈]0, 1[. Then A ∈ Exch also, because Iµ = Exch, by Lemma 3. Set then
µ1 =

1
µ(A)

1Aµ and µ2 =
1

µ(Ac)
1Acµ. Then µ1, µ2 ∈ S, µ1 6= µ2 and µ = µ(A)µ1 + µ(Ac)µ2, so

that µ is not extremal in S, contradicting the hypothesis, and we conclude that µ is ergodic.�

Remark 6

It follows from Lemma 4 that the set of exreme points of S is closed.

Corollary 2

Let (Xn) be an exchangeable sequence with values in a compact metrizable space K, with law
µ. Then there exists a probability measure η supported on the Bernoulli measures such that
for every Borel subset A of KZ,

µ(A) =

∫

Ber

π̃(A)dη(π̃)
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where Ber stands for the set of all Bernoulli probability measures on Ω = KZ. In particular
for any k ≥ 1, all Borel sets A1, ..., Ak in K,

µ(X1 ∈ A1, ..., Xk ∈ Ak) =

∫

Ber

π(X1 ∈ A1)...π(X1 ∈ Ak)dη(π̃).

Proof

Since Ω is compact metrizable M1(Ω, S) is compact metrizable. Then S is compact metriz-
able also, and so, by Choquet Theorem ([19], p.14), there is a probability measure η on S,
which represents µ and is supported by the extreme points of S and this ends the proof by
Lemma 4. �

Remark 7

Under the conditions as in the Corollary above, but assuming only the state space K to be
compact Hausdorff, the same conclusion holds, with Borel replaced by Baire.

Corollary 3

If the state space K is compact metrizable, the set S is a simplex.

Proof For any µ ∈ S, the decomposition µ =
∫

E
ξdη(ξ), on the ergodic measures, which

is unique since M1(Ω, S) is a simplex, is, by Corollary 2, given( represented) by a measure
η concentrated on the subset Ber. Then, because, by Lemma 4, Ber is the set of extreme
points of S, we conclude that every µ ∈ S is the barycenter of a unique measure which is
supported by the extreme points of S.
Since S, being a closed subset of the compact metrizable space M1(Ω, S), is metrizable, it
follows then, by Choquet Theorem( [ 19], p. 60), that S is a simplex.�

3 Application: Bernoullicity of some Determinantal

Processes

We recall some properties of simple point processes and determinantal processes. For more
details we refer to [6, 20, 21, 23, 5, 11].
A simple random point process with phase a locally compact Polish space E is a probability
measure P on the measurable space (Conf (E),B(Conf (E)), where Conf (E) is the space
of locally finite subsets of E, endowed with the vague topology of measures, by identifying
every ξ ∈ Conf (E) with the atomic integer valued measure

∑

x∈ξ δx.

Let λ be a measure on E. A locally integrable function ρ(n) on the cartesian product En, is

21



called a n-point correlation function of P if

∫

Conf (E)

m
∏

j=1

ξ(Bj)!

(ξ(Bj)− kj)!
dP (ξ) =

∫

B
k1
1 ×...×Bkm

m

ρ(n)(x1, ..., xn)dλ(x1)...dλ(xn),

for all disjoint bounded Borel subsets B1, ..., Bm of E, and all k1, ..., km ∈ N, with k1 + ...+
km = n( [23] Def. 2 , [5] Def 2, [11])).
The point process P , all of whose correlation functions ρ(n) exist, is called determinantal if
there exists a function k : E × E → R, such that for all n and x1, ..., xn ∈ E,

ρ(n)(x1, ..., xn) = det[(k(xi, xj))i,j=1,...,n].

The function k above is called the correlation kernel of the process P .

In [20, 21] (see also [23] Theorem 3 p. 934) it is proved that if K is a bounded symmetric
integral operator on L2(E, λ) with kernel k, which is also of locally trace class and with
spectrum contained in [0, 1], then there exists a unique probability measure P on Conf (E),
such that for every nonnegative continuous function ψ with compact support,

∫

Conf(E)
exp(〈−ψ, ξ〉)dP (ξ) = Det(I −

√

(1− e−ψ)K
√

(1− e−ψ)) (d1)

where the determinant is the Fredholm determinant ( see [22]), and where
√

(1− e−ψ)K
√

(1− e−ψ) denotes the integral operator with kernel

L(x, y) =
√

1− e−ψ(x))k(x, y)
√

1− e−ψ(y)),

and moreover the correlation functions of P are given by

ρ(n)(x1, ..., xn) = det(k(xi, xj))i,j=1,...,n.

In the particular case, where E is countable( in fact E = Z) and λ is the counting measure,
which is relevant to our purpose, by identifying a subset A of E with its indicator function
1A, we can take the configuration space to be equal {0, 1}E and then (d1) is equivalent to
(d2) below ([21] Theorem 1.1, see also [13] and [15] p. 319)

P ({ω ∈ {0, 1}E : ω(e) = 1, ∀e ∈ A}) = P ({ξ ⊂ E : A ⊂ ξ}) = det(k(x, y))x,y∈A (d2)

for any finite subset A of E.

We have the following result

Theorem 3

Any stationary discrete time quasi-invariant determinantal process X = (Xn)n∈Z, with phase
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space Z is isomorphic to a Bernoulli system.

Proof Let µ be the law of the process X . Since Ω := {0, 1}Z is the configuration space of
the process X , µ is a shift invariant probability measure on Ω. It follows from Theorem
7 in [23], that a translation invariant determinantal random point field, with one-particle
space E = Z, is mixing of any order and then in particular it is ergodic, meaning in our
setting that the system (Ω, S, µ) is ergodic. Hence the process X satisfies the hypothesis in
Theorem 1, and therefore it is isomorphic to a Bernoulli process. �

In [4] Bufetov considered a class of determinantal processes with phase space F , where
F = R (the continuous case), or F = a countable subset of R, without accumulation points(
the discrete case), corresponding to projection operators with integrable kernels. In the
discrete case, he proved( [4], Theorem 1.6) that they are quasi-invariant, which means quasi-
exchangeable. It follows then from the preceding Theorem 3, that the processes in this class,
corresponding to the phase space F = Z, and which are translation invariant, are isomorphic
to Bernoulli systems.
This applies, in particular, to the discrete sine process. Recall that the discrete sine kernel
which is translation invariant kernel on the lattice Z is defined by

S(x, y; a) = S1(x− y, a), x, y ∈ Z, where

S1(x, a) :=
sin(x(arccos(a/2))

πx
, x ∈ Z, x 6= 0

S1(0, a) =
arccos(a/2)

π
.

where a is a real number (−2 ≤ a ≤ 2)( [2] p. 486).

4 The family of quasi symmetric processes is strictly

contained in the Bernoulli processes

There exists processes generating dynamical systems isomorphic to Bernoulli and which are
not quasiexchangeable.

Before giving some examples, let us, when K is a finite set K := {0, ..., k − 1}, denote the
cylinder

C := {ω ∈ KZ : ω0 = x0, ..., ωn = xn}, simply by [[x0, x1, ..., xn]]. (28)

Then, for any permutation σ ∈ H, with τ := σ−1, and such that the support of σ is included
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in {0, 1, ..., n},

T−1
σ C = [[xτ(0), xτ(1), ..., xτ(n)]]

so that, for a stationary Markov chain defined by a stochastic matrix Π = (Πi,j)i;j=0,...,k−1

and an invariant probability vector p = (p(0), p(1), ..., p(k − 1)), we have

µ(C) = p(x0)Πx0,x1Πx1,x2...Πxn−1,xn and

µ(T−1
σ C) = p(xτ(0))Πxτ(0),xτ(1)Πxτ(1),xτ(2)....Πxτ(n−1),xτ(n)

.

(In general,

C = {ω : ωj ∈ Aj, j ∈ J} ⇒ T−1
σ C = {ω : ωk ∈ Aτ(k), k ∈ σ(J)}.)

As a simple example, consider the stationary Markov chain with state space K := {0, 1},
defined by the matrix Π given by

(

t 1− t
1 0

)

and the invariant row probability vector p ( meaning pΠ = p)

p =
1

2− t
(1, 1− t).

Now the matrix Π2 is equal to

(

t2 + 1− t t(1− t)
t 1− t

)

so that for all t with 0 < t < 1, Π is irreducible and aperiodic, and then this Markov
chain is isomorphic to a Bernoulli shift.

For n = 2, for example, let τ = σ−1, be the transposition defined by

τ(0) = 1, τ(1) = 0, τ(n) = n, ∀n 6= 0, 1

and take C := [[0, 1, 1]] so that if D := T−1
σ C, then T−1

σ D = C, and hence the following
holds

µ(C) ≤ µ([[1, 1]]) = 0, T−1
σ C = [[1, 0, 1]] and then µ(T−1

σ C) 6= 0,

also µ(D) 6= 0 and µ(T−1
σ D) = 0,

and proves that µ [resp. µ ◦ T−1
σ ] is not absolutely continuous with respect to µ ◦ T−1

σ [resp.
µ]

More generally, we have the following
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Proposition 2

Any stationary Markov chain with finite state space K, with irreducible and aperiodic tran-
sition matrix Π having at least one zero entry, is isomorphic to Bernoulli but it is not
quasi-exchangeable.

Proof Observe first, due to the irreducibility and aperiodicity of Π, that if p is the row
invariant probability vector, then all the coordinates of p are > 0. Let i0, j0 ∈ K, such that
Πi0,j0 = 0. Then the following holds

∃a,Πj0,a > 0, ∃j,Πi0,j > 0, ∃n, (Πn)a,i0 > 0

that is ∃x1, ..., xn−1, Πa,x1Πx1,x2...Πxn−1,i0 > 0.

Let, with notation as in (28),

C := [[j, a, x1, ..., xn−1, i0, j0]],

D := [[j0, a, x1, ..., xn−1, i0, j]],

and σ ∈ H, be the transposition defined by

σ(p) = p, ∀p /∈ {0, n+ 2} and

σ(0) = n + 2, σ(n + 2) = 0.

Then

T−1
σ C = D and T−1

σ D = C.

But

µ(C) = µ(j)Πj,aΠa,x1 ...Πxn−1,i0Πi0,j0 = 0, and

µ(D) = µ(j0)Πj0,aΠa,x1 ...Πxn−1,i0Πi0,j 6= 0

so that, µ ◦ T−1
σ [ respectively µ] is not absolutely continuous with respect to µ[ respectively

µ ◦ T−1
σ ], because

µ(C) = 0, µ(T−1
σ C) 6= 0,

µ(T−1
σ D) = 0, µ(D) 6= 0.

The proof is achieved because any mixing Markov chain is isomorphic to a Bernoulli System.
�
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