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ON SELF-SIMILAR SINGULARITY FORMATION FOR THE BINORMAL FLOW

. This equation, also known as the Local Induction Approximation, is a standard model for vortex filament dynamics, and its self-similar solution describes the formation of a corner singularity on the filament. Our approach strongly uses the link that Hasimoto pointed out in 1972 between the solution of the binormal flow and the one of the 1-D cubic Schrödinger equation, as well as the existence results associated to the latter.

Introduction

In this paper, we propose a new proof of the stability of self-similar solutions of the binormal flow [START_REF] Arms | Localized-induction concept on a curved vortex and motion of an elliptic vortex ring[END_REF] χ t = χ x ∧ χ xx .

In terms of physics, χ(t, x) belongs to R 3 , t represents the time and x is the arclength variable. This equation was proposed in 1906 by DaRios in [START_REF] Da Rios | On the motion of an unbounded fluid with a vortex filament of any shape[END_REF] and re-discovered in 1965 by Arms and Harma in [START_REF] Arms | Localized-induction concept on a curved vortex and motion of an elliptic vortex ring[END_REF], for modeling a vortex filament dynamic under Euler equations. In a few words, its formal derivation goes as follows. If we consider the velocity of an incompressible fluid u and its vorticity ω, the Biot-Savart law tells us that:

u(t, x) = R 3
(x -y) ∧ ω(t, y) 4π|x -y| 3 dy.

Then, if we suppose that ω(t) belongs to a 1D curve (i.e. ω = Γχ x δ χ ) with χ x of norm 1, we can write:

u(t, x) = ∞ -∞ (x -χ(t, s)) ∧ ω(t, χ(t, s)) 4π|x -χ(t, s)| 3 ds.
Conducting a Taylor expansion around zero on the space variable and restricting the domain of integration to [-L, L] approximates the previous integral by:

u(t, 0) ≈ Γ 4π L -L
((x 1 , x 2 , 0) -sχ s (t, 0) -s 2 2 χ ss (t, 0)) ∧ (χ s (t, 0) + sχ ss (t, 0)) |(x 1 , x 2 , -s)| 3 ds

= Γ 4π (-x 2 , x 1 , 0) 2 L -L ds (1 + s 2 ) 3 2 + Γ 4π (x 1 , x 2 , 0) ∧ χ ss (t, 0) L -L s | 2 + s 2 | 3 2 ds - Γ 8π χ s (t, 0) ∧ χ ss (t, 0) L -L s 2 |1 + s 2 | 3 2
ds.

The first term corresponds to a fluid rotating around a still vertical axis, the second term vanishes by a parity argument, and the third term gives us [START_REF] Arms | Localized-induction concept on a curved vortex and motion of an elliptic vortex ring[END_REF], after a time-renormalization. This model is sometimes called the Local Induction Approximation (LIA) or vortex filament equation (VFE), and is the subject of further discutions in [START_REF] Batchelor | An Introduction to the Fluid Dynamics[END_REF] , [START_REF] Ricca | The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics[END_REF] and more recently by Jerrard and Seis in [START_REF] Jerrard | On the vortex filament conjecture for Euler flows[END_REF] with stronger assumptions but rigorous arguments.

In 1972, Hasimoto linked the solutions χ(t, x) of ( 1) to solutions of a 1-D cubic Schrödinger equation by using the Frenet and parallel frames in [START_REF] Hasimoto | A soliton in a vortex filament[END_REF] . This transformation is in the same spirit as the Mandelung transform. Conversly, for a given real potential a and a given solution ψ of [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF] iψ t + ψ xx + 1 2 (|ψ| 2 -a(t))ψ = 0, the Hasimoto transformation is reversible by using Frenet frames for non vanishing curvatures vortices. However the calculations are much faster and work for any curvatures by constructing first parallel frames (T, e 1 , e 2 )(t, x) that satisfy:

(3)

T x = R(ψN ), N x = -ψT, T t = I(ψ x N ), N t = -iψ x T - i 2 (|ψ| 2 -a(t))N,
with N = e 1 + ie 2 , and any orthonormal basis as initial data. It follows that the vector T satisfies the 1-D Schrödinger map with values in S 2 :

T t = T ∧ T xx ,
and can be integrated into a solution χ of the binormal flow (1) starting at a point P at (t 0 , x 0 ) with the formula:

χ(t, x) = P + t t 0 (T ∧ T x )(τ, x 0 )dτ + x x 0 T (t, s)ds, ∀(t, x).
In this paper, we study the stability of the self-similar solutions {χ α } α>0 of (1) determined for t > 0 by a curvature of α √ t and a torsion of x 2t .The behaviour of χ α (t, s) for t > 0 was exhibited by physicists in [START_REF] Lakshmanan | On the evolution of higher dimensional Heisenberg continuum spin systems[END_REF] and [START_REF] Lakshmanan | On the the dynamics of a continuum spin system[END_REF] and a numeric study on it was done in [START_REF] Buttke | A numerical study of superfluid turbulence in the Self-Induction Approximation[END_REF]. In [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF], it has been proven that they are solutions of (2), smooth as long as t > 0 and have a trace at t = 0 forming a one corner polygonal line of angle θ such that

(4) sin θ 2 = e -π α 2 2 .
This class of solutions correspond to solutions of 1-D cubic NLS solutions

ψ α (t, x) = α e i x 2 4t √ t ,
taking a(t) = α 2 t in (2). Theorem 1.1 (The initial value problem for the binormal flow). Let χ 0 a smooth arclength parametrized curve of R 3 , except at one point located at arc-length x = 0 where it forms a corner of angle θ. Let c be the curvature of χ 0 , τ its torsion and α given by (4). If α defined from θ by (4) is small enough, and if

c ∈ W 3,1 ∩ H 2 , c x ∈ W 2,1 ∩ H 2 , x 2 c ∈ W 3,1 ∩ H 2 , (1 + x 2 )c ∈ L 2 , x -2 c ∈ L 2 , τ ∈ H 2 and τ 2 ∈ H 1 ,
then there exists t 0 > 0 and

(5)

χ(t, x) ∈ C([-t 0 , t 0 ], Lip) ∩ C([-t 0 , t 0 ]\{0}, C 4 ),
a solution of the binormal flow (1) on (0, t 0 ], having χ 0 as a limit at time t = 0, and there exists C > 0 such that:

(6) sup x |χ(t, x) -χ 0 (x)| ≤ C √ t.
Moreover, the tangent vector T = ∂ x χ has a limit at time zero with the same time-decay rate:

(7) ∀t > 0 ∀x ∈ R ∃C(x) |T (t, x) -∂ x χ 0 (t)| ≤ C(x)t 1 4 .
This type of result has already been proven by Banica and Vega in Theorem 1.2 of [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF], under weaker assumptions on the curvature and torsion of χ 0 . As a counterpart, the corresponding scattering results for (2) (existence of wave operator and asymptotic completeness) obtained in [START_REF] Banica | Scattering for 1D cubic NLS and singular vortex dynamics[END_REF] are with weaker decay. As a consequence, the proof require to obtain asymptotic space states for T (t, x) and N (t, x) when x → ±∞, and a much more technical iterative argument to obtain the limit for T and N at time t = 0. In here, we will use stronger decay of the wave operator results in [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF] to give a concise proof of Theroem 1.1.

We note that even under more restrictive hypothesis than in [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF], we do not have an asymptotic completeness result with better decay, that would allow us to give also a concise proof of Theorem 1.3 of the second stability result in [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF].

Let us streamline here the constructive proof of Theorem 1.1. Denoting T 0 the tangent vector to χ 0 , we define the complex valued functions g ∈ C and N 0 ∈ S 2 + iS 2 defined by the parallel frame system:

(8) T 0x (x) = (g(x)N 0 (x)) N 0x (x) = -g(x)T 0 (x) ,
with initial data (A + α , B + α ) for x > 0 and (A - α , B - α ) for x < 0, where A ± α and B ± α stand for the complex vectors appearing in the asymptotics of the normals vectors of the same self-similar solution χ α (see Theorem 1 of [START_REF] Gutiérrez | Formation of singularities and self-similar vortex motion under the localized induction approximation[END_REF]). Let us note that, using Frenet frame, there exists γ ∈ [0, 2π] such that: [START_REF] Hasimoto | A soliton in a vortex filament[END_REF] g(x) = c(x)e i( x 0 τ (s)ds+γ) , as explained in Remark 2.1 of [START_REF] Banica | Stability of the self-similar dynamics of a vortex filament[END_REF]. Now set:

(10)

u + = F -1 √ i g(2•)e iα 2 log |•| .
The hypothesis of Theorem 1.1 on c and τ allow u + to belong to some particular Sobolev spaces in order to use the existence of a wave operator for (2) proved in Theorem 1.4 of [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF]. More precisely, u + is in Ḣ-2 ∩ H 2 ∩ W 2,1 and α is small, so there exists t 0 > 0 and a unique solution of (2) on (0, t 0 ] of the form:

(11) ψ(t, x) = e i x 2 4t √ t α + u 1 t , x t ,
with u being a perturbation that writes:

(12) u(t, x) = e it∂ 2 x u + (x) + r(t, x).

The proof of this result uses scattering methods after performing a pseudo-conformal transformation, and allows us to have the following control on the time decay of the remainder term r, for k = 1 and k = 2:

(13) r(t) L 2 x = O(t -1 2 ) , ∇ k r(t) L 2 x = O(t -1
). The next step in our proof is to use the parallel frame (3) with the function ψ given by [START_REF] Lakshmanan | On the evolution of higher dimensional Heisenberg continuum spin systems[END_REF] to construct a solution χ of (1) on (0, t 0 ].

Then, we consider the vectors T and N given by (3), as well as Ñ a modulated version of N defined later. We prove in section 2.2 that T and Ñ admit a trace at time t = 0, thanks to bounds on the perturbation u given in Corollary 2.2, consequence of bound [START_REF] Ricca | The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics[END_REF].

Then, in section 2.3 we find the ODE system verified by T |t=0 and Ñ|t=0 for x = 0 that turns out to be the same as the one of T 0 and N 0 , due to [START_REF] Jerrard | On the vortex filament conjecture for Euler flows[END_REF]. Sections 2.2 and 2.3 are the part of the proof that simplify consistently the proof in [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF].

Finally, in section 2.4, we use self-similar paths to determine T |t=0 and Ñ|t=0 at x = 0 + and x = 0 -for the ODE system, that coincides with the corner singularity directions of χ 0 and complete the Cauchy Problem. These last results allows us to conclude in section 3 that we recovered χ 0 at time t = 0.

Construction of perturbed self-similar solution of the binormal flow

As announced in the introduction, we first define the complex-valued function g with the system verified by χ 0 's tangent and normal vectors T 0 and N 0 :

(14) T 0x (x) = (g(x)N 0 (x)) N 0x (x) = -g(x)T 0 (x) ,
with initial data (A + α , B + α ) for x > 0 and (A - α , B - α ) for x < 0, and consider

(15) u + = F -1 √ i g(2•)e iα 2 log |•| .
We now deduce regularity on u + from the the hypothesis of Theorem 1.1 on c and τ , which is the purpose of the following lemma.

Lemma 2.1. Consider the curvature c and the torsion τ of a parametrized curve. Define u + by formula (15) and recall expression (9) of g. If

c ∈ W 3,1 ∩ H 2 , c x ∈ W 2,1 ∩ H 2 , x 2 c ∈ W 3,1 ∩ H 2 , (1 + x 2 )c ∈ L 2 , x -2 c ∈ L 2 ,
and τ ∈ H 2 and τ 2 ∈ H 1 , then u + ∈ W 1,2 ∩ H 2 ∩ Ḣ-2 and (1 + x 2 )u + ∈ L ∞ , (1 + x 2 )xu + ∈ L ∞ .
This lemma will allow us to apply a wave operator existence theorem right after, but also to use the weighted L ∞ bound on u + in the proof of Corollary 2.2.

Proof. The idea of the proof is to write the inverse Fourier transform formula and perform integration by parts on it, to gain decay. We have by definition:

u + (x) = R e -ixy √
ic(2y)e i( 2y 0 τ (s)ds+γ) e iα 2 log |y| dy, so integrating by parts to times leads to:

u + (x) = - R e -ixy -ix √ i(2c (2y) + ic(2y)τ (2y) + iα 2 c(2y) y )e i( 2y 0 τ (s)ds+γ) e iα 2 log |y| dy = R e -ixy x 2 √ i(4c (2y) + i2c (2y)τ (2y) + i2c(2y)τ (2y))e i( 2y 0 τ (s)ds+γ) e iα 2 log |y| dy + R e -ixy x 2 √ iiα 2 2yc (2y) + c(2y) y 2 e i( 2y 0 τ (s)ds+γ) e iα 2 log |y| dy + R e -ixy x 2 √ iiτ (2y)(2c (2y) + ic(2y)τ (2y) + iα 2 c(2y) y )e i( 2y 0 τ (s)ds+γ) e iα 2 log |y| dy + R e -ixy x 2 √ i iα 2 y (2c (2y) + ic(2y)τ (2y) + iα 2 c(2y) y )e i( 2y 0 τ (s)ds+γ) e iα 2 log |y| dy.
Because all of the terms in those integrals are by hypothesis either L 1 , or a product of two L 2 functions, it all converges and we deduce that u + ∈ L 1 and (1

+ x 2 )u + ∈ L ∞ .
Then, it is straightforward to check that (1 + x 2 )xu + ∈ L ∞ with an additional integration by parts. To obtain ∇u + ∈ L 1 , we write :

∇u + (x) = -i R e -ixy y
√ ic(2y)e i( 2y 0 τ (s)ds+γ) e iα 2 log |y| dy, and perform as well two integration by parts. We similarly show that

∇ 2 u + ∈ L 1 .
Finally, for the L 2 hypothesis, we use Parseval identity to claim that (1

+ x 2 )c ∈ L 2 and x -2 c ∈ L 2 imply that u + ∈ H 2 ∩ Ḣ-2 .
Thanks to this lemma we have that u + is in W 1,2 ∩ H 2 ∩ Ḣ-2 under the hypothesis of Theorem 1.1. Therefore, we can apply Theorem 1.2 of [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF], to obtain a unique solution of (2) on (0, t 0 ] that writes:

(16) ψ(t, x) = e i x 2 4t √ t α + u 1 t , x t ,
where:

(17) u(t, x) = e it∂ 2 x u + (x) + r(t, x),
with r satisfying [START_REF] Ricca | The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics[END_REF].

Then, equations (3) of Hasimoto's construction allows us to construct χ, a solution of (1) on (0, t 0 ] by its tangent and normal vectors T and N . However, in order to identify the trace of χ(t) at time t = 0, we need a better understanding of the perturbation u.

Preliminary bound.

In order to obtain a bound on u that is sharp enough, we shall use the decay given by (13).

Corollary 2.2 (L ∞ bound on the perturbation u). Let u defined by (17). Under the hypothesis of Theorem 1.1, we have the following bound on u and its derivative as t goes to zero:

u 1 t , x t ≤ t 1 2 , with r 1 t , x t ≤ t 3 4 ,
and

∂ x u 1 t , x t ≤ x √ t + t 1 2 , with ∂ x r 1 t , x t ≤ t 1 2 .
Moreover, we have:

(18) ix 2t u 1 t , x t -u 1 t , x t x ≤ t 1 2 .
The last estimate comes from a cancellation, and gives us more decay that expected.

Proof. First, we give a bound of the remainder term r and its derivative using the decay [START_REF] Ricca | The contributions of Da Rios and Levi-Civita to asymptotic potential theory and vortex filament dynamics[END_REF] given in Theorem 1.2 of [START_REF] Banica | On the stability of a singular vortex dynamics[END_REF] (wave operator existence). For this, we apply the Gagliardo Niremberg interpolation inequality:

r 1 t , x t ≤ t 1 4 r 1 t , • 1 2 L 2 t -1 4 ∂ x r 1 t , • 1 2 L 2 ≤ t 3 4 ,
and similarly:

∂ x r 1 t , x t ≤ t 1 2 .
Next, we simply write:

e i 1 t ∂ 2 x u + x t = √ te i t 4 ( x t -y) 2 u + (y)dy ≤ √ t u + L 1 ,
and for the other term we use the fact that xu + (x) ∈ L 1 , obtained in Lemma 2.1:

∂ x e i 1 t ∂ 2 x u + x t = ∂ x √ te i t 4 ( x t -y) 2 u + (y)dy = ix 2t e i 1 t ∂ 2 x u + x t + √ te i t 4 ( x t -y) 2 iy 2 u + (y)dy ,
that ensures:

∂ x u 1 t , x t ≤ x √ t + √ t.
Finally, (18) comes directly from the previous expression, as we write:

ix 2t u 1 t , x t -u 1 t , x t x = √ te i t 4 ( x t -y) 2 iy 2 u + (y)dy .
We are now ready to tackle our proof.

2.2.

Limit at time t = 0. As announced, the next step is to prove the existence of a limit for vectors T and N , up to a phase.

Lemma 2.3 (Limit of vector T). The tangent vector T of χ has a limit at time zero with a convergence rate given by:

∀t 0 ≥ t 2 ≥ t 1 > 0 ∀x ∈ R * |T (t 2 , x) -T (t 1 , x)| ≤ xt 1 4 2 + t 3 4 2 + √ t 2 x .
This lemma, gives us the convergence rate (7) announced in Theorem 1.1.

Proof. Now let t 2 ≥ t 1 > 0,

|T (t 2 , x) -T (t 1 , x)| = t 2 t 1 T t (t, x)dt = t 2 t 1 ψ x N (t, x)dt = t 2 t 1 e -i x 2 4t √ t -ix 2t u 1 t , x t -i xα 2t + u 1 t , x t x N (t, x)dt ≤xt 1 4 2 + t 2 + t 2 t 1 e -i x 2 4t ixα 2t √ t N (t, x)dt + t 2 t 1 e -i x 2 4t √ t -ix 2t e i 1 t ∂ 2 x u + x t + e i 1 t ∂ 2 x u + x t x N (t, x)dt ,
where the terms with the remainder r has provided enough decay. Then, if we use (18), we have that:

t 2 t 1 e -i x 2 4t √ t -ix 2t e i 1 t ∂ 2 x u + x t + e i 1 t ∂ 2 x u + x t x N (t, x)dt ≤ t 2 .
For the other term, we integrate by parts:

t 2 t 1 e -i x 2 4t ixα 2t √ t N (t, x)dt ≤ e -i x 2 4t 2 √ tα x N (t, x) t 2 t 1 + t 2 t 1 e -i x 2 4t α x √ t N (t, x)dt + t 2 t 1 e -i x 2 4t 2 √ tα x N t (t, x)dt ≤ 2α √ t 2 x + t 2 t 1 e -i x 2 4t 2 √ tα x N t (t, x)dt .
We must now expand the term in N t :

t 2 t 1 e -i x 2 4t 2 √ tα x N t (t, x)dt ≤ t 2 t 1 e -i x 2 4t 2 √ tα x i e i x 2 4t √ t ix 2t u 1 t , x t + i xα 2t + u 1 t , x t x T (t, x)dt + t 2 t 1 e -i x 2 4t 2 √ tα x i 2 |u 1 t , x t | 2 t + 2 (u 1 t , x t α) t N (t, x)dt ≤t 3 4 2 + t 2 x ,
using both (18) and the fact that T is real, so we have:

t 2 t 1 α 2 t T (t, x)dt = 0.
To sum up, we showed that:

∀t 0 ≥ t 2 ≥ t 1 > 0 ∀x ∈ R * |T (t 2 , x) -T (t 1 , x)| ≤ xt 1 4 2 + t 3 4 2 + √ t 2 x ,
and the lemma is proven. Note that, for self similar paths, we also obtained that |T (t, x √ t) -T (t, x √ t)| goes to zero as t, 1

x and x √ t simultaneously go to zero.

In order for N to converge, we must add a phase.

Lemma 2.4 (Limit of vector N). Let us write

Ñ (t, x) = e iα 2 ln |x| √ t N (t, x) = e iφ N,
where N is the normal vector of χ. Then Ñ has a limit at time zero with a convergence rate given by:

∀t 0 ≥ t 2 ≥ t 1 > 0 ∀x ∈ R * | Ñ (t 2 , x) -Ñ (t 1 , x)| ≤ xt 1 4 2 + t 1 2 2 + √ t 2 x + t 2 2 .
Note that the factor |x| in φ could be replaced by anything independent of t, but is chosen for assuring properties at time t = 0 as we will see in Lemma 2.6.

Proof. To follow the proof, the reader must only keep in mind that |u 

Ñt = e iφ N t -i α 2 2t N (t, x)e iφ ,
given 0 < t 1 ≤ t 2 ≤ t 0 , we have:

Ñ (t 2 , x) -Ñ (t 1 , x) = t 2 t 1 Ñt (t, x)dt = t 2 t 1 -iψ x T e iφ + i 2 (|ψ| 2 - α 2 t )N e iφ dt -i α 2 2t N (t, x)e iφ = - t 2 t 1 i e i x 2 4t √ t ix 2t u 1 t , x t + i xα 2t + u 1 t , x t x T (t, x)e iφ dt + i 2 t 2 t 1 ¡ ¡ ¡ α 2 t + |u 1 t , x t | 2 t + 2 (u 1 t , x t α) t - ¡ ¡ ¡ α 2 t N (t, x)e iφ dt.
-

t 2 t 1 i α 2 2t N (t, x)e iφ dt.
As before, we use (18) so terms with u in the first integral partially cancel with each other. Using bounds of Corollary 2.2, we are now left with only a difference to study:

| Ñ (t 2 , x) -Ñ (t 1 , x)| ≤ xt 1 4 2 + t 1 2 2 + - t 2 t 1 i e i x 2 4t √ t ix 2t αT (t, x)e iφ dt - t 2 t 1 i α 2 2t N (t, x)e iφ dt .
For that, we integrate by parts the first term: 

t 2 t 1 e i x
| Ñ (t 2 , x)-Ñ (t 1 , x)| ≤ xt 1 4
2 +t

1 2 2 + √ t 2 x + t 2 t 1 e i x 2 4t 2 √ t ix αT t (t, x)e iφ dt - t 2 t 1 i α 2 2t N (t, x)e iφ dt .
We then use the fact that T t = (ψ x N ) = 1 2i (ψ x N -ψ x N ) to write:

t 2 t 1 e i x 2 4t 2 √ t ix αT t (t, x)e iφ dt = 1 2i t 2 t 1 2 ix α -ix 2t u 1 t , x t -i xα 2t + u 1 t , x t x N (t, x)e iφ dt - 1 2i t 2 t 1 e i x 2 4t 2 ix αe i x 2 4t ix 2t u 1 t , x t + i xα 2t + u 1 t , x t x N (t, x)e iφ dt.
Again, thanks to Corollary 2.2, only the terms without u are worth studying. Moreover, the first term cancels with the term coming from the phase φ. Therefore we have:

| Ñ (t 2 , x) -Ñ (t 1 , x)| ≤ xt 1 4 2 + t 1 2 2 + √ t 2 x + 1 2i t 2 t 1 e i 2x 2 4t α 2 t N (t, x)e iφ dt .
The other one has a phase, so we perform a second integration by parts on it:

1 2i t 2 t 1 e i 2x 2 4t α 2 t N (t, x)e iφ dt = 1 2i e i 2x 2 4t 2α 2 t ix 2 N (t, x)e iφ t 2 t 1 + 1 2i t 2 t 1 e i 2x 2 4t 2α 2 ix 2 N (t, x)e iφ dt - 1 2i t 2 t 1 e i 2x 2 4t 2α 2 t ix 2 N t (t, x)e iφ dt + 1 2i t 2 t 1 e i 2x 2 4t α 2 α 2 x 2 N (t, x)e iφ dt.
We finally expand the N t term and observe that it has the desired behavior:

- 1 2i t 2 t 1 e i 2x 2 4t 2α 2 t ix 2 N t (t, x)e iφ dt = + 1 2i t 2 t 1 e i x 2 4t 2α 2 t ix 2 i √ t -ix 2t u 1 t , x t -i xα 2t -u 1 t , x t x T (t, x)e iφ dt - 1 2i t 2 t 1 e i 2x 2 4t 2α 2 t ix 2 |u 1 t , x t | 2 t + 2 (u 1 t , x t α) t N (t, x)e iφ dt.
To sum up, we proved that:

∀t 0 ≥ t 2 ≥ t 1 > 0 ∀x ∈ R * | Ñ (t 2 , x) -Ñ (t 1 , x)| ≤ xt 1 4 2 + t 1 2 2 + √ t 2 x + t 2 x 2 .
As for T , we also obtained that, for self similar paths, |N (t, x √ t) -N (t, x √ t)| goes to zero as t, 1

x and x √ t simultaneously go to zero.

2.3. More information about the tangents vectors at time t = 0.

The aim of this section is to quantify the evolution of T |t=0 and Ñ|t=0 with respect to the space variable. More precisely, we will show that:

T x (0, x) = 1 √ i u + x 2 e -iα 2 log |x| Ñ (0, x), Ñx (0, x) = -1 √ i u + x 2 e -iα 2 log |x| T (0, x), ∀x = 0.
Those two claims can be proved separately and that is what we are going to do. Lemma 2.5 (Properties of T |t=0 ). Let x ∈ R * , then we have:

T x (0, x) = lim t→0 T x (t, x) = 1 √ i u + x 2 e -iα 2 log |x| Ñ (0, x). Proof. Let (x 1 , x 2 ) ∈ R * + 2 .
We are going to write the variation of T at t > 0 between x 1 and x 2 , with the idea to make t go to zero:

T (t, x 2 ) -T (t, x 1 ) = x 2 x 1 T x (t, s)ds = x 2 x 1 (ψN )(t, s)ds = x 2 x 1 e -i s 2 4t √ t (u 1 t , s t + α)N (t, s)ds = e -i s 2 4t 2 √ t is αN (t, s) x 2 x 1 + x 2 x 1 e -i s 2 4t 2 √ t is 2 αN (t, s)ds + x 2 x 1 e -i s 2 4t 2 is 2 e i s 2 4t α 2 T (t, s)ds + x 2 x 1 e -i s 2 4t 2 is 2 e i s 2 4t u 1 t , s t T (t, s)ds + x 2 x 1 e -i s 2 4t √ t u 1 t , s t N (t, s)ds.
The last term will provide us the differential equation that we are looking for. The term in α 2 vanishes since it is an imaginary term inside the operator. All the other termes go to zero with t thanks to Corollary 2.2. Now, recall that u 1 t , x t = e i 1 t ∂ 2

x u + x t + r 1 t , x t . If we write:

e i 1 t ∂ 2 x u + x t = e i x 2 4t
i t e -i xy 2 e i y 2 4 t u + (y)dy, we have: 4 . Note that in [START_REF] Banica | The initial value problem for the binormal flow with rough data[END_REF], r decays like t 1 4 so the present argument is not enough. Then, let us consider (t n ) n∈Z such that ∀n ∈ N, e iα 2 log √ tn = 1 and t n -→ n→∞ 0,

e -i x 2 4t √ t u 1 t , x t = 1 √ i e -i xy 2 e i y 2 4 t u + (y)dy + e -i x 2 4t √ t r 1 t , x t -→ t→0 1 √ i u + x 2 , since r 1 t , x t L ∞ ≤ t 3 
N (t n , x) = e -iφ(tn,x) Ñ (t n , x) = e -iα 2 log |x| √ t n Ñ (t n , x) -→ n→∞ e -iα 2 log |x| Ñ (0, x),
so by multiplying the limits:

e -i x 2 4tn √ t n u 1 t n , x t n N (t n , x) -→ n→∞ 1 √ i u + x 2 e -iα 2 log |x| Ñ (0, x),
and by dominated convergence:

x 2 x 1 e -i s 2 4tn u 1 tn , x tn √ t n N (t n , s)ds -→ n→∞ x 2 x 1 1 √ i u + x 2 e -iα 2 log |x| Ñ (0, x).
To sum up, we proved that:

T (t n , x 2 ) -T (t n , x 1 ) -→ n→∞ x 2 x 1 1 √ i u + x 2 e -iα 2 log |x| Ñ (0, x)dx,
and the conclusion of the lemma is obtained by taking x 1 = x, x 2 = x + h, dividing by h, using Lemma 2.3 and chosing n large with respect to h.

Lemma 2.6 (Properties of Ñ|t=0 ). For x = 0, we have:

Ñx (0, x) = lim t→0 Ñx (t, x) = 1 √ i u + s 2 e -iα 2 log |x| T (0, s). Proof. Let (x 1 , x 2 ) ∈ R * + 2
, we write:

Ñ (t, x 2 ) -Ñ (t, x 1 ) = x 2 x 1 Ñx (t, s)ds = x 2 x 1 (-ψT + i α 2 s N )e iφ ds.
The term produced by the phase will help removing an otherwise non vanishing term, so we start by looking at the integral of N x : As with T , we will treat the term with u at the end, first we have to make sure that the T s term goes to zero with t, using that T s = (ψN ):

x 2 x 1 e i s 2 4t 2 √ t is αT s (t, s)e iφ ds = x 2 x 1 e i s 2 4t 2 √ t is α e i s 2 4t √ t u 1 t , s t N (t, s)e iφ ds + x 2 x 1 e 2i s 2 4t 1 is α 2 e iφ N (t, s)ds + x 2 x 1 1 is α 2 N (t, s)e iφ ds + x 2 x 1 e i s 2 4t 1 is αe -i s 2 4t u 1 t , s t N (t, s)e iφ ds.
The first term is treated with Cauchy Schwarz, as well as the fourth. The second tends to zero with an IBP and the third is canceled by the phase.

We shall now obtain the differential equation verified by Ñ . Again, using (t n ) n∈Z such that e iα 2 log √ tn = 1 and t n -→ n→∞ 0, e iφ(tn,x) T (t n , x) -→ n→∞ e iα 2 log |x| T (0, x),

and by multiplying the limits under the integral we write:

x 2 x 1 e i s 2 4tn √ t n u 1 t n , s t n e iφ T (t, s)ds -→ n→∞ x 2 x 1 1 √ i u + s 2 e iα 2 log |x| T (0, s).
Hence:

Ñ (t n , x 2 ) -Ñ (t n , x 1 ) -→ n→∞ - x 2 x 1 1 √ i u + s 2 e -iα 2 log |s| T (0, s)ds,
and the conclusion of the lemma is obtained by taking x 1 = x, x 2 = x + h, dividing by h, using Lemma 2.4 and chosing n large with respect to h.

Description of the angles via self-similar paths.

For the description of the angles, we will follow the same proof as for Proposition 5.1 of [START_REF] Banica | Stability of the self-similar dynamics of a vortex filament[END_REF]. For sake of completeness, we recall here the proof. As recalled in the introduction, we denote by A ± α ∈ S 2 the directions of the corner generated at time t = 0 by the canonical self-similar solution χ α (t, x) of the binormal flow of curvature α √ t : A ± α := ∂ x χ α (0, 0 ± ). The frame of the profile χ(1) satisfies the system:

(19) ∂ x T α (1, x) = (|αe -i x 2 4 N α (1, x)), ∂ x N α (1, x) = -αe i x 2 4 T α (1, x),
and for x → ±∞, there exists B ± α ⊥ A ± α , with (B ± α ), (A ± α ) ∈ S 2 such that:

T α (1, x) = A ± α + O( 1 x ) and e iα 2 log |x| N α (1, x) = B ± α + O( 1 x 
).

Lemma 2.7 (Self similar paths ). Let t n be a sequence of positive times converging to zero. Up to a subsequence, there exists for all x ∈ R a limit given by:

(T * (x), N * (x)) = lim t→0 (T (t n , x √ t n ), N (t n , x √ t n )),
such that (T * , N * (x)) satisfies system (19) in the strong sense.

Then, there exists a unique rotation Θ, such that, for x → ±∞:

T * (x) = Θ(A ± α ) + O( 1 |x| ), N * (x) = Θ(B ± α ) + O( 1 |x| 
).

Proof. Let (t n ) n∈N ∈ R N + a sequence of positive times converging to 0. As explained in [START_REF] Banica | Stability of the self-similar dynamics of a vortex filament[END_REF], u ∈ L 4 ((1, ∞), L ∞ ) so we can chose (t n ) n∈N such that u(1/t n ) L ∞ goes to zero. We now naturally define the following sequences:

∀n ∈ N (T n , N n ) = (T (t n , x √ t n ), N (t n , x √ t n )).
Since T L ∞ ≤ 1 and N L ∞ ≤ 2 it is obvious that those sequences are bounded. Let us prove their equicontinuity. For all n ∈ N, T n is derivable and using that T x = (ψN ) and N x = -ψT ,

T n (x) = √ t n (ψN )(t n , x √ t n ) = [αe -i x 2 4 N (t n , x √ t n )] + o(1)N n (x).
Similarly, for all x ∈ R,

N n (x) = √ t n (-ψN )(t n , x √ t n ) = -αe i x 2 4 T (t n , x √ t n ) + o(1)T n (x).
Sequences (T n , N n ) are uniformly bounded, so (T n , N n ) are equicontinuous. By d'Arzela-Ascoli theorem on T = {T n , n ∈ N} and N = {N n , n ∈ N}, there exists a subsequence of (T n , N n ), converging toward (T * (x), N * (x)). For convenience, we will not write the extractice.

As the coefficients involved in the ODE are analytic, we conclude that (T * , N * (x)) satisfies system (19) in the strong sense, as (T α (x), N α (x)). Therefore, there exists an unique rotation Θ such that

   T * (x) = Θ(T α (x)), (N * (x)) = Θ( (N α (x))), (N * (x)) = Θ( (N α (x))).
So we conclude that for x → ±∞:

T * (x) = Θ(A ± α ) + O( 1 |x| ), N * (x) = Θ(B ± α ) + O( 1 |x| 
).

Lemma 2.8 (Description of the singularity). We have

T (0, 0 ± ) = Θ(A ± α
) and e iα 2 log |x| Ñ (0, 0 ± ) = Θ(B ± α ), where Θ has been introduced in Lemma 2.7.

The proof of this lemma uses all we did in the previous section concerning the limit of vectors Ñ and T .

Proof. Let ε > 0. The main idea of this proof is to write So we have |T (0, 0 + ) -Θ(A + α )| ≤ ε, i.e. T (0, 0 + ) = Θ(A + α ). Similarly, for x < 0 we prove that T (0, 0 -) = Θ(A - α ). For Ñ we follow the same path, taking care to handle the phases. For (t n ) n∈N ∈ R N + converging to zero, such that exp(iα 2 log √ t n ) = 1, we have: 

|T (0, 0 + ) -Θ(A + α )| ≤|T (0, 0 + ) -T (0, x √ t n )| + |T (0, x √ t n ) -T (
|Θ(B + α ) -Ñ (0,
√ t n )| + | Ñ (t n , x √ t n ) -Ñ (0, x √ t n )| + | Ñ (0, x √ t n ) -Ñ (0, k+)|.
The first term is small for x big enough thanks to Lemma 2.7. The second is small for n big enough thanks to Lemma 2.7. The third term is zero, the fourth term is small when t n is small enough using Lemma 2.4. Finally, the last term is controlled by C(u)x √ t n due to Lemma 2.6, and we have the desired result.

Recovering the initial curve χ 0

In this section, we prove that the curve χ is equal to χ 0 at time zero, combining the results of the two previous parts and the choice of u + in the introduction. The system that verify N and T at time zero is the following:

T x (0, x) = 1 √ i u +
x 2 e -iα 2 log |x| Ñ (0, x), Ñx (0, x) = -1 √ i u +

x 2 e -iα 2 log |x| T (0, x), ∀x = 0, with initial value given by T (0, 0 ± ) = Θ(A ± α ) and e iα 2 log |x| Ñ (0, 0 ± ) = Θ(B ± α ). Recalling the definition of u + given by (10), T (0) and Ñ (0) satisfy the same Cauchy system (8) as T 0 and N 0 , hence χ(0) = χ 0 .

Finally, we are left to prove the convergence rate (6) of χ(t, x) as t goes to zero. Since χ t (t, x) = c(t, x) and c(t, x) = |ψ(t, x)| ≤ C √ t , we have:

|χ(t 2 , x) -χ(t 1 , x)| ≤ t 2 t 1 C √ t dt ≤ C √ t 2 ,
and Theorem 1.1 is proven.

  First, we chose x big enough, such that|T * (x) -Θ(A + α )| ≤ ε 4 , thanks to Lemma 2.7. Then we chose n big enough, such that |T (t n , x √ t n ) -T * (x)| ≤ ε 4 thanks to convergence, such that |T (0, x √ t n ) -T (t n , x √ t n )| ≤ ε 4 thanks to Lemma 2.3 and finally such that |T (0, 0 + ) -T (0, x √ t n )| ≤ ε 4 , using Lemma 2.5: |T (0, 0 + ) -T (0, x √ t

t n , x √ t n )| + |T (t n , x √ t n ) -T * (x)| + |T * (x) -Θ(A + α )|. n )| ≤ T x ∞ x √ t n ≤ C(u + )x √ t n .

  k+)| ≤|Θ(B + α ) -e iα 2 log |x| N * (x)| + |e iα 2 log |x| N * (x) -e iα 2 log |x| N (t n , x √ t n )| + |e iα 2 log |x| N (t n , x √ t n ) -e

	iα 2 ln	|x √ √ t n | t n N (t n , x

Acknowledgments

This paper has been written during my PhD under the supervision of Valeria Banica and Nicolas Burq, I would like to thank them for their precious help and discussions.